• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Copyright 2020 Huawei Technologies Co., Ltd
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7# http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ============================================================================
15"""dataset base."""
16import os
17
18from mindspore import dataset as ds
19from mindspore.common import dtype as mstype
20from mindspore.dataset.transforms import c_transforms as C
21from mindspore.dataset.vision import Inter
22from mindspore.dataset.vision import c_transforms as CV
23
24
25def create_mnist_dataset(mode='train', num_samples=2, batch_size=2):
26    """create dataset for train or test"""
27    mnist_path = '/home/workspace/mindspore_dataset/mnist'
28    num_parallel_workers = 1
29
30    # define dataset
31    mnist_ds = ds.MnistDataset(os.path.join(mnist_path, mode), num_samples=num_samples, shuffle=False)
32
33    resize_height, resize_width = 32, 32
34
35    # define map operations
36    resize_op = CV.Resize((resize_height, resize_width), interpolation=Inter.LINEAR)  # Bilinear mode
37    rescale_nml_op = CV.Rescale(1 / 0.3081, -1 * 0.1307 / 0.3081)
38    rescale_op = CV.Rescale(1.0 / 255.0, shift=0.0)
39    hwc2chw_op = CV.HWC2CHW()
40    type_cast_op = C.TypeCast(mstype.int32)
41
42    # apply map operations on images
43    mnist_ds = mnist_ds.map(operations=type_cast_op, input_columns="label", num_parallel_workers=num_parallel_workers)
44    mnist_ds = mnist_ds.map(operations=resize_op, input_columns="image", num_parallel_workers=num_parallel_workers)
45    mnist_ds = mnist_ds.map(operations=rescale_op, input_columns="image", num_parallel_workers=num_parallel_workers)
46    mnist_ds = mnist_ds.map(operations=rescale_nml_op, input_columns="image", num_parallel_workers=num_parallel_workers)
47    mnist_ds = mnist_ds.map(operations=hwc2chw_op, input_columns="image", num_parallel_workers=num_parallel_workers)
48
49    # apply DatasetOps
50    mnist_ds = mnist_ds.batch(batch_size=batch_size, drop_remainder=True)
51
52    return mnist_ds
53