1 //===- llvm/ADT/DepthFirstIterator.h - Depth First iterator -----*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file builds on the ADT/GraphTraits.h file to build generic depth
10 // first graph iterator. This file exposes the following functions/types:
11 //
12 // df_begin/df_end/df_iterator
13 // * Normal depth-first iteration - visit a node and then all of its children.
14 //
15 // idf_begin/idf_end/idf_iterator
16 // * Depth-first iteration on the 'inverse' graph.
17 //
18 // df_ext_begin/df_ext_end/df_ext_iterator
19 // * Normal depth-first iteration - visit a node and then all of its children.
20 // This iterator stores the 'visited' set in an external set, which allows
21 // it to be more efficient, and allows external clients to use the set for
22 // other purposes.
23 //
24 // idf_ext_begin/idf_ext_end/idf_ext_iterator
25 // * Depth-first iteration on the 'inverse' graph.
26 // This iterator stores the 'visited' set in an external set, which allows
27 // it to be more efficient, and allows external clients to use the set for
28 // other purposes.
29 //
30 //===----------------------------------------------------------------------===//
31
32 #ifndef LLVM_ADT_DEPTHFIRSTITERATOR_H
33 #define LLVM_ADT_DEPTHFIRSTITERATOR_H
34
35 #include "llvm/ADT/GraphTraits.h"
36 #include "llvm/ADT/None.h"
37 #include "llvm/ADT/Optional.h"
38 #include "llvm/ADT/SmallPtrSet.h"
39 #include "llvm/ADT/iterator_range.h"
40 #include <iterator>
41 #include <set>
42 #include <utility>
43 #include <vector>
44
45 namespace llvm {
46
47 // df_iterator_storage - A private class which is used to figure out where to
48 // store the visited set.
49 template<class SetType, bool External> // Non-external set
50 class df_iterator_storage {
51 public:
52 SetType Visited;
53 };
54
55 template<class SetType>
56 class df_iterator_storage<SetType, true> {
57 public:
df_iterator_storage(SetType & VSet)58 df_iterator_storage(SetType &VSet) : Visited(VSet) {}
df_iterator_storage(const df_iterator_storage & S)59 df_iterator_storage(const df_iterator_storage &S) : Visited(S.Visited) {}
60
61 SetType &Visited;
62 };
63
64 // The visited stated for the iteration is a simple set augmented with
65 // one more method, completed, which is invoked when all children of a
66 // node have been processed. It is intended to distinguish of back and
67 // cross edges in the spanning tree but is not used in the common case.
68 template <typename NodeRef, unsigned SmallSize=8>
69 struct df_iterator_default_set : public SmallPtrSet<NodeRef, SmallSize> {
70 using BaseSet = SmallPtrSet<NodeRef, SmallSize>;
71 using iterator = typename BaseSet::iterator;
72
insertdf_iterator_default_set73 std::pair<iterator,bool> insert(NodeRef N) { return BaseSet::insert(N); }
74 template <typename IterT>
insertdf_iterator_default_set75 void insert(IterT Begin, IterT End) { BaseSet::insert(Begin,End); }
76
completeddf_iterator_default_set77 void completed(NodeRef) {}
78 };
79
80 // Generic Depth First Iterator
81 template <class GraphT,
82 class SetType =
83 df_iterator_default_set<typename GraphTraits<GraphT>::NodeRef>,
84 bool ExtStorage = false, class GT = GraphTraits<GraphT>>
85 class df_iterator
86 : public std::iterator<std::forward_iterator_tag, typename GT::NodeRef>,
87 public df_iterator_storage<SetType, ExtStorage> {
88 using super = std::iterator<std::forward_iterator_tag, typename GT::NodeRef>;
89 using NodeRef = typename GT::NodeRef;
90 using ChildItTy = typename GT::ChildIteratorType;
91
92 // First element is node reference, second is the 'next child' to visit.
93 // The second child is initialized lazily to pick up graph changes during the
94 // DFS.
95 using StackElement = std::pair<NodeRef, Optional<ChildItTy>>;
96
97 // VisitStack - Used to maintain the ordering. Top = current block
98 std::vector<StackElement> VisitStack;
99
100 private:
df_iterator(NodeRef Node)101 inline df_iterator(NodeRef Node) {
102 this->Visited.insert(Node);
103 VisitStack.push_back(StackElement(Node, None));
104 }
105
106 inline df_iterator() = default; // End is when stack is empty
107
df_iterator(NodeRef Node,SetType & S)108 inline df_iterator(NodeRef Node, SetType &S)
109 : df_iterator_storage<SetType, ExtStorage>(S) {
110 if (this->Visited.insert(Node).second)
111 VisitStack.push_back(StackElement(Node, None));
112 }
113
df_iterator(SetType & S)114 inline df_iterator(SetType &S)
115 : df_iterator_storage<SetType, ExtStorage>(S) {
116 // End is when stack is empty
117 }
118
toNext()119 inline void toNext() {
120 do {
121 NodeRef Node = VisitStack.back().first;
122 Optional<ChildItTy> &Opt = VisitStack.back().second;
123
124 if (!Opt)
125 Opt.emplace(GT::child_begin(Node));
126
127 // Notice that we directly mutate *Opt here, so that
128 // VisitStack.back().second actually gets updated as the iterator
129 // increases.
130 while (*Opt != GT::child_end(Node)) {
131 NodeRef Next = *(*Opt)++;
132 // Has our next sibling been visited?
133 if (this->Visited.insert(Next).second) {
134 // No, do it now.
135 VisitStack.push_back(StackElement(Next, None));
136 return;
137 }
138 }
139 this->Visited.completed(Node);
140
141 // Oops, ran out of successors... go up a level on the stack.
142 VisitStack.pop_back();
143 } while (!VisitStack.empty());
144 }
145
146 public:
147 using pointer = typename super::pointer;
148
149 // Provide static begin and end methods as our public "constructors"
begin(const GraphT & G)150 static df_iterator begin(const GraphT &G) {
151 return df_iterator(GT::getEntryNode(G));
152 }
end(const GraphT & G)153 static df_iterator end(const GraphT &G) { return df_iterator(); }
154
155 // Static begin and end methods as our public ctors for external iterators
begin(const GraphT & G,SetType & S)156 static df_iterator begin(const GraphT &G, SetType &S) {
157 return df_iterator(GT::getEntryNode(G), S);
158 }
end(const GraphT & G,SetType & S)159 static df_iterator end(const GraphT &G, SetType &S) { return df_iterator(S); }
160
161 bool operator==(const df_iterator &x) const {
162 return VisitStack == x.VisitStack;
163 }
164 bool operator!=(const df_iterator &x) const { return !(*this == x); }
165
166 const NodeRef &operator*() const { return VisitStack.back().first; }
167
168 // This is a nonstandard operator-> that dereferences the pointer an extra
169 // time... so that you can actually call methods ON the Node, because
170 // the contained type is a pointer. This allows BBIt->getTerminator() f.e.
171 //
172 NodeRef operator->() const { return **this; }
173
174 df_iterator &operator++() { // Preincrement
175 toNext();
176 return *this;
177 }
178
179 /// Skips all children of the current node and traverses to next node
180 ///
181 /// Note: This function takes care of incrementing the iterator. If you
182 /// always increment and call this function, you risk walking off the end.
skipChildren()183 df_iterator &skipChildren() {
184 VisitStack.pop_back();
185 if (!VisitStack.empty())
186 toNext();
187 return *this;
188 }
189
190 df_iterator operator++(int) { // Postincrement
191 df_iterator tmp = *this;
192 ++*this;
193 return tmp;
194 }
195
196 // nodeVisited - return true if this iterator has already visited the
197 // specified node. This is public, and will probably be used to iterate over
198 // nodes that a depth first iteration did not find: ie unreachable nodes.
199 //
nodeVisited(NodeRef Node)200 bool nodeVisited(NodeRef Node) const {
201 return this->Visited.count(Node) != 0;
202 }
203
204 /// getPathLength - Return the length of the path from the entry node to the
205 /// current node, counting both nodes.
getPathLength()206 unsigned getPathLength() const { return VisitStack.size(); }
207
208 /// getPath - Return the n'th node in the path from the entry node to the
209 /// current node.
getPath(unsigned n)210 NodeRef getPath(unsigned n) const { return VisitStack[n].first; }
211 };
212
213 // Provide global constructors that automatically figure out correct types...
214 //
215 template <class T>
df_begin(const T & G)216 df_iterator<T> df_begin(const T& G) {
217 return df_iterator<T>::begin(G);
218 }
219
220 template <class T>
df_end(const T & G)221 df_iterator<T> df_end(const T& G) {
222 return df_iterator<T>::end(G);
223 }
224
225 // Provide an accessor method to use them in range-based patterns.
226 template <class T>
depth_first(const T & G)227 iterator_range<df_iterator<T>> depth_first(const T& G) {
228 return make_range(df_begin(G), df_end(G));
229 }
230
231 // Provide global definitions of external depth first iterators...
232 template <class T, class SetTy = std::set<typename GraphTraits<T>::NodeRef>>
233 struct df_ext_iterator : public df_iterator<T, SetTy, true> {
df_ext_iteratordf_ext_iterator234 df_ext_iterator(const df_iterator<T, SetTy, true> &V)
235 : df_iterator<T, SetTy, true>(V) {}
236 };
237
238 template <class T, class SetTy>
df_ext_begin(const T & G,SetTy & S)239 df_ext_iterator<T, SetTy> df_ext_begin(const T& G, SetTy &S) {
240 return df_ext_iterator<T, SetTy>::begin(G, S);
241 }
242
243 template <class T, class SetTy>
df_ext_end(const T & G,SetTy & S)244 df_ext_iterator<T, SetTy> df_ext_end(const T& G, SetTy &S) {
245 return df_ext_iterator<T, SetTy>::end(G, S);
246 }
247
248 template <class T, class SetTy>
depth_first_ext(const T & G,SetTy & S)249 iterator_range<df_ext_iterator<T, SetTy>> depth_first_ext(const T& G,
250 SetTy &S) {
251 return make_range(df_ext_begin(G, S), df_ext_end(G, S));
252 }
253
254 // Provide global definitions of inverse depth first iterators...
255 template <class T,
256 class SetTy =
257 df_iterator_default_set<typename GraphTraits<T>::NodeRef>,
258 bool External = false>
259 struct idf_iterator : public df_iterator<Inverse<T>, SetTy, External> {
idf_iteratoridf_iterator260 idf_iterator(const df_iterator<Inverse<T>, SetTy, External> &V)
261 : df_iterator<Inverse<T>, SetTy, External>(V) {}
262 };
263
264 template <class T>
idf_begin(const T & G)265 idf_iterator<T> idf_begin(const T& G) {
266 return idf_iterator<T>::begin(Inverse<T>(G));
267 }
268
269 template <class T>
idf_end(const T & G)270 idf_iterator<T> idf_end(const T& G){
271 return idf_iterator<T>::end(Inverse<T>(G));
272 }
273
274 // Provide an accessor method to use them in range-based patterns.
275 template <class T>
inverse_depth_first(const T & G)276 iterator_range<idf_iterator<T>> inverse_depth_first(const T& G) {
277 return make_range(idf_begin(G), idf_end(G));
278 }
279
280 // Provide global definitions of external inverse depth first iterators...
281 template <class T, class SetTy = std::set<typename GraphTraits<T>::NodeRef>>
282 struct idf_ext_iterator : public idf_iterator<T, SetTy, true> {
idf_ext_iteratoridf_ext_iterator283 idf_ext_iterator(const idf_iterator<T, SetTy, true> &V)
284 : idf_iterator<T, SetTy, true>(V) {}
idf_ext_iteratoridf_ext_iterator285 idf_ext_iterator(const df_iterator<Inverse<T>, SetTy, true> &V)
286 : idf_iterator<T, SetTy, true>(V) {}
287 };
288
289 template <class T, class SetTy>
idf_ext_begin(const T & G,SetTy & S)290 idf_ext_iterator<T, SetTy> idf_ext_begin(const T& G, SetTy &S) {
291 return idf_ext_iterator<T, SetTy>::begin(Inverse<T>(G), S);
292 }
293
294 template <class T, class SetTy>
idf_ext_end(const T & G,SetTy & S)295 idf_ext_iterator<T, SetTy> idf_ext_end(const T& G, SetTy &S) {
296 return idf_ext_iterator<T, SetTy>::end(Inverse<T>(G), S);
297 }
298
299 template <class T, class SetTy>
inverse_depth_first_ext(const T & G,SetTy & S)300 iterator_range<idf_ext_iterator<T, SetTy>> inverse_depth_first_ext(const T& G,
301 SetTy &S) {
302 return make_range(idf_ext_begin(G, S), idf_ext_end(G, S));
303 }
304
305 } // end namespace llvm
306
307 #endif // LLVM_ADT_DEPTHFIRSTITERATOR_H
308