• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
4  * Copyright (C) 2005-2006 Thomas Gleixner
5  *
6  * This file contains driver APIs to the irq subsystem.
7  */
8 
9 #define pr_fmt(fmt) "genirq: " fmt
10 
11 #include <linux/irq.h>
12 #include <linux/kthread.h>
13 #include <linux/module.h>
14 #include <linux/random.h>
15 #include <linux/interrupt.h>
16 #include <linux/irqdomain.h>
17 #include <linux/slab.h>
18 #include <linux/sched.h>
19 #include <linux/sched/rt.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/isolation.h>
22 #include <uapi/linux/sched/types.h>
23 #include <linux/task_work.h>
24 
25 #include "internals.h"
26 
27 #if defined(CONFIG_IRQ_FORCED_THREADING) && !defined(CONFIG_PREEMPT_RT)
28 __read_mostly bool force_irqthreads;
29 EXPORT_SYMBOL_GPL(force_irqthreads);
30 
setup_forced_irqthreads(char * arg)31 static int __init setup_forced_irqthreads(char *arg)
32 {
33 	force_irqthreads = true;
34 	return 0;
35 }
36 early_param("threadirqs", setup_forced_irqthreads);
37 #endif
38 
__synchronize_hardirq(struct irq_desc * desc,bool sync_chip)39 static void __synchronize_hardirq(struct irq_desc *desc, bool sync_chip)
40 {
41 	struct irq_data *irqd = irq_desc_get_irq_data(desc);
42 	bool inprogress;
43 
44 	do {
45 		unsigned long flags;
46 
47 		/*
48 		 * Wait until we're out of the critical section.  This might
49 		 * give the wrong answer due to the lack of memory barriers.
50 		 */
51 		while (irqd_irq_inprogress(&desc->irq_data))
52 			cpu_relax();
53 
54 		/* Ok, that indicated we're done: double-check carefully. */
55 		raw_spin_lock_irqsave(&desc->lock, flags);
56 		inprogress = irqd_irq_inprogress(&desc->irq_data);
57 
58 		/*
59 		 * If requested and supported, check at the chip whether it
60 		 * is in flight at the hardware level, i.e. already pending
61 		 * in a CPU and waiting for service and acknowledge.
62 		 */
63 		if (!inprogress && sync_chip) {
64 			/*
65 			 * Ignore the return code. inprogress is only updated
66 			 * when the chip supports it.
67 			 */
68 			__irq_get_irqchip_state(irqd, IRQCHIP_STATE_ACTIVE,
69 						&inprogress);
70 		}
71 		raw_spin_unlock_irqrestore(&desc->lock, flags);
72 
73 		/* Oops, that failed? */
74 	} while (inprogress);
75 }
76 
77 /**
78  *	synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs)
79  *	@irq: interrupt number to wait for
80  *
81  *	This function waits for any pending hard IRQ handlers for this
82  *	interrupt to complete before returning. If you use this
83  *	function while holding a resource the IRQ handler may need you
84  *	will deadlock. It does not take associated threaded handlers
85  *	into account.
86  *
87  *	Do not use this for shutdown scenarios where you must be sure
88  *	that all parts (hardirq and threaded handler) have completed.
89  *
90  *	Returns: false if a threaded handler is active.
91  *
92  *	This function may be called - with care - from IRQ context.
93  *
94  *	It does not check whether there is an interrupt in flight at the
95  *	hardware level, but not serviced yet, as this might deadlock when
96  *	called with interrupts disabled and the target CPU of the interrupt
97  *	is the current CPU.
98  */
synchronize_hardirq(unsigned int irq)99 bool synchronize_hardirq(unsigned int irq)
100 {
101 	struct irq_desc *desc = irq_to_desc(irq);
102 
103 	if (desc) {
104 		__synchronize_hardirq(desc, false);
105 		return !atomic_read(&desc->threads_active);
106 	}
107 
108 	return true;
109 }
110 EXPORT_SYMBOL(synchronize_hardirq);
111 
112 /**
113  *	synchronize_irq - wait for pending IRQ handlers (on other CPUs)
114  *	@irq: interrupt number to wait for
115  *
116  *	This function waits for any pending IRQ handlers for this interrupt
117  *	to complete before returning. If you use this function while
118  *	holding a resource the IRQ handler may need you will deadlock.
119  *
120  *	Can only be called from preemptible code as it might sleep when
121  *	an interrupt thread is associated to @irq.
122  *
123  *	It optionally makes sure (when the irq chip supports that method)
124  *	that the interrupt is not pending in any CPU and waiting for
125  *	service.
126  */
synchronize_irq(unsigned int irq)127 void synchronize_irq(unsigned int irq)
128 {
129 	struct irq_desc *desc = irq_to_desc(irq);
130 
131 	if (desc) {
132 		__synchronize_hardirq(desc, true);
133 		/*
134 		 * We made sure that no hardirq handler is
135 		 * running. Now verify that no threaded handlers are
136 		 * active.
137 		 */
138 		wait_event(desc->wait_for_threads,
139 			   !atomic_read(&desc->threads_active));
140 	}
141 }
142 EXPORT_SYMBOL(synchronize_irq);
143 
144 #ifdef CONFIG_SMP
145 cpumask_var_t irq_default_affinity;
146 
__irq_can_set_affinity(struct irq_desc * desc)147 static bool __irq_can_set_affinity(struct irq_desc *desc)
148 {
149 	if (!desc || !irqd_can_balance(&desc->irq_data) ||
150 	    !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity)
151 		return false;
152 	return true;
153 }
154 
155 /**
156  *	irq_can_set_affinity - Check if the affinity of a given irq can be set
157  *	@irq:		Interrupt to check
158  *
159  */
irq_can_set_affinity(unsigned int irq)160 int irq_can_set_affinity(unsigned int irq)
161 {
162 	return __irq_can_set_affinity(irq_to_desc(irq));
163 }
164 
165 /**
166  * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space
167  * @irq:	Interrupt to check
168  *
169  * Like irq_can_set_affinity() above, but additionally checks for the
170  * AFFINITY_MANAGED flag.
171  */
irq_can_set_affinity_usr(unsigned int irq)172 bool irq_can_set_affinity_usr(unsigned int irq)
173 {
174 	struct irq_desc *desc = irq_to_desc(irq);
175 
176 	return __irq_can_set_affinity(desc) &&
177 		!irqd_affinity_is_managed(&desc->irq_data);
178 }
179 
180 /**
181  *	irq_set_thread_affinity - Notify irq threads to adjust affinity
182  *	@desc:		irq descriptor which has affitnity changed
183  *
184  *	We just set IRQTF_AFFINITY and delegate the affinity setting
185  *	to the interrupt thread itself. We can not call
186  *	set_cpus_allowed_ptr() here as we hold desc->lock and this
187  *	code can be called from hard interrupt context.
188  */
irq_set_thread_affinity(struct irq_desc * desc)189 void irq_set_thread_affinity(struct irq_desc *desc)
190 {
191 	struct irqaction *action;
192 
193 	for_each_action_of_desc(desc, action)
194 		if (action->thread)
195 			set_bit(IRQTF_AFFINITY, &action->thread_flags);
196 }
197 
198 #ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK
irq_validate_effective_affinity(struct irq_data * data)199 static void irq_validate_effective_affinity(struct irq_data *data)
200 {
201 	const struct cpumask *m = irq_data_get_effective_affinity_mask(data);
202 	struct irq_chip *chip = irq_data_get_irq_chip(data);
203 
204 	if (!cpumask_empty(m))
205 		return;
206 	pr_warn_once("irq_chip %s did not update eff. affinity mask of irq %u\n",
207 		     chip->name, data->irq);
208 }
209 
irq_init_effective_affinity(struct irq_data * data,const struct cpumask * mask)210 static inline void irq_init_effective_affinity(struct irq_data *data,
211 					       const struct cpumask *mask)
212 {
213 	cpumask_copy(irq_data_get_effective_affinity_mask(data), mask);
214 }
215 #else
irq_validate_effective_affinity(struct irq_data * data)216 static inline void irq_validate_effective_affinity(struct irq_data *data) { }
irq_init_effective_affinity(struct irq_data * data,const struct cpumask * mask)217 static inline void irq_init_effective_affinity(struct irq_data *data,
218 					       const struct cpumask *mask) { }
219 #endif
220 
irq_do_set_affinity(struct irq_data * data,const struct cpumask * mask,bool force)221 int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask,
222 			bool force)
223 {
224 	struct irq_desc *desc = irq_data_to_desc(data);
225 	struct irq_chip *chip = irq_data_get_irq_chip(data);
226 	int ret;
227 
228 	if (!chip || !chip->irq_set_affinity)
229 		return -EINVAL;
230 
231 	/*
232 	 * If this is a managed interrupt and housekeeping is enabled on
233 	 * it check whether the requested affinity mask intersects with
234 	 * a housekeeping CPU. If so, then remove the isolated CPUs from
235 	 * the mask and just keep the housekeeping CPU(s). This prevents
236 	 * the affinity setter from routing the interrupt to an isolated
237 	 * CPU to avoid that I/O submitted from a housekeeping CPU causes
238 	 * interrupts on an isolated one.
239 	 *
240 	 * If the masks do not intersect or include online CPU(s) then
241 	 * keep the requested mask. The isolated target CPUs are only
242 	 * receiving interrupts when the I/O operation was submitted
243 	 * directly from them.
244 	 *
245 	 * If all housekeeping CPUs in the affinity mask are offline, the
246 	 * interrupt will be migrated by the CPU hotplug code once a
247 	 * housekeeping CPU which belongs to the affinity mask comes
248 	 * online.
249 	 */
250 	if (irqd_affinity_is_managed(data) &&
251 	    housekeeping_enabled(HK_FLAG_MANAGED_IRQ)) {
252 		const struct cpumask *hk_mask, *prog_mask;
253 
254 		static DEFINE_RAW_SPINLOCK(tmp_mask_lock);
255 		static struct cpumask tmp_mask;
256 
257 		hk_mask = housekeeping_cpumask(HK_FLAG_MANAGED_IRQ);
258 
259 		raw_spin_lock(&tmp_mask_lock);
260 		cpumask_and(&tmp_mask, mask, hk_mask);
261 		if (!cpumask_intersects(&tmp_mask, cpu_online_mask))
262 			prog_mask = mask;
263 		else
264 			prog_mask = &tmp_mask;
265 		ret = chip->irq_set_affinity(data, prog_mask, force);
266 		raw_spin_unlock(&tmp_mask_lock);
267 	} else {
268 		ret = chip->irq_set_affinity(data, mask, force);
269 	}
270 	switch (ret) {
271 	case IRQ_SET_MASK_OK:
272 	case IRQ_SET_MASK_OK_DONE:
273 		cpumask_copy(desc->irq_common_data.affinity, mask);
274 		fallthrough;
275 	case IRQ_SET_MASK_OK_NOCOPY:
276 		irq_validate_effective_affinity(data);
277 		irq_set_thread_affinity(desc);
278 		ret = 0;
279 	}
280 
281 	return ret;
282 }
283 
284 #ifdef CONFIG_GENERIC_PENDING_IRQ
irq_set_affinity_pending(struct irq_data * data,const struct cpumask * dest)285 static inline int irq_set_affinity_pending(struct irq_data *data,
286 					   const struct cpumask *dest)
287 {
288 	struct irq_desc *desc = irq_data_to_desc(data);
289 
290 	irqd_set_move_pending(data);
291 	irq_copy_pending(desc, dest);
292 	return 0;
293 }
294 #else
irq_set_affinity_pending(struct irq_data * data,const struct cpumask * dest)295 static inline int irq_set_affinity_pending(struct irq_data *data,
296 					   const struct cpumask *dest)
297 {
298 	return -EBUSY;
299 }
300 #endif
301 
irq_try_set_affinity(struct irq_data * data,const struct cpumask * dest,bool force)302 static int irq_try_set_affinity(struct irq_data *data,
303 				const struct cpumask *dest, bool force)
304 {
305 	int ret = irq_do_set_affinity(data, dest, force);
306 
307 	/*
308 	 * In case that the underlying vector management is busy and the
309 	 * architecture supports the generic pending mechanism then utilize
310 	 * this to avoid returning an error to user space.
311 	 */
312 	if (ret == -EBUSY && !force)
313 		ret = irq_set_affinity_pending(data, dest);
314 	return ret;
315 }
316 
irq_set_affinity_deactivated(struct irq_data * data,const struct cpumask * mask,bool force)317 static bool irq_set_affinity_deactivated(struct irq_data *data,
318 					 const struct cpumask *mask, bool force)
319 {
320 	struct irq_desc *desc = irq_data_to_desc(data);
321 
322 	/*
323 	 * Handle irq chips which can handle affinity only in activated
324 	 * state correctly
325 	 *
326 	 * If the interrupt is not yet activated, just store the affinity
327 	 * mask and do not call the chip driver at all. On activation the
328 	 * driver has to make sure anyway that the interrupt is in a
329 	 * useable state so startup works.
330 	 */
331 	if (!IS_ENABLED(CONFIG_IRQ_DOMAIN_HIERARCHY) ||
332 	    irqd_is_activated(data) || !irqd_affinity_on_activate(data))
333 		return false;
334 
335 	cpumask_copy(desc->irq_common_data.affinity, mask);
336 	irq_init_effective_affinity(data, mask);
337 	irqd_set(data, IRQD_AFFINITY_SET);
338 	return true;
339 }
340 
irq_set_affinity_locked(struct irq_data * data,const struct cpumask * mask,bool force)341 int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask,
342 			    bool force)
343 {
344 	struct irq_chip *chip = irq_data_get_irq_chip(data);
345 	struct irq_desc *desc = irq_data_to_desc(data);
346 	int ret = 0;
347 
348 	if (!chip || !chip->irq_set_affinity)
349 		return -EINVAL;
350 
351 	if (irq_set_affinity_deactivated(data, mask, force))
352 		return 0;
353 
354 	if (irq_can_move_pcntxt(data) && !irqd_is_setaffinity_pending(data)) {
355 		ret = irq_try_set_affinity(data, mask, force);
356 	} else {
357 		irqd_set_move_pending(data);
358 		irq_copy_pending(desc, mask);
359 	}
360 
361 	if (desc->affinity_notify) {
362 		kref_get(&desc->affinity_notify->kref);
363 		if (!schedule_work(&desc->affinity_notify->work)) {
364 			/* Work was already scheduled, drop our extra ref */
365 			kref_put(&desc->affinity_notify->kref,
366 				 desc->affinity_notify->release);
367 		}
368 	}
369 	irqd_set(data, IRQD_AFFINITY_SET);
370 
371 	return ret;
372 }
373 
__irq_set_affinity(unsigned int irq,const struct cpumask * mask,bool force)374 int __irq_set_affinity(unsigned int irq, const struct cpumask *mask, bool force)
375 {
376 	struct irq_desc *desc = irq_to_desc(irq);
377 	unsigned long flags;
378 	int ret;
379 
380 	if (!desc)
381 		return -EINVAL;
382 
383 	raw_spin_lock_irqsave(&desc->lock, flags);
384 	ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force);
385 	raw_spin_unlock_irqrestore(&desc->lock, flags);
386 	return ret;
387 }
388 
irq_set_affinity_hint(unsigned int irq,const struct cpumask * m)389 int irq_set_affinity_hint(unsigned int irq, const struct cpumask *m)
390 {
391 	unsigned long flags;
392 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
393 
394 	if (!desc)
395 		return -EINVAL;
396 	desc->affinity_hint = m;
397 	irq_put_desc_unlock(desc, flags);
398 	/* set the initial affinity to prevent every interrupt being on CPU0 */
399 	if (m)
400 		__irq_set_affinity(irq, m, false);
401 	return 0;
402 }
403 EXPORT_SYMBOL_GPL(irq_set_affinity_hint);
404 
irq_affinity_notify(struct work_struct * work)405 static void irq_affinity_notify(struct work_struct *work)
406 {
407 	struct irq_affinity_notify *notify =
408 		container_of(work, struct irq_affinity_notify, work);
409 	struct irq_desc *desc = irq_to_desc(notify->irq);
410 	cpumask_var_t cpumask;
411 	unsigned long flags;
412 
413 	if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL))
414 		goto out;
415 
416 	raw_spin_lock_irqsave(&desc->lock, flags);
417 	if (irq_move_pending(&desc->irq_data))
418 		irq_get_pending(cpumask, desc);
419 	else
420 		cpumask_copy(cpumask, desc->irq_common_data.affinity);
421 	raw_spin_unlock_irqrestore(&desc->lock, flags);
422 
423 	notify->notify(notify, cpumask);
424 
425 	free_cpumask_var(cpumask);
426 out:
427 	kref_put(&notify->kref, notify->release);
428 }
429 
430 /**
431  *	irq_set_affinity_notifier - control notification of IRQ affinity changes
432  *	@irq:		Interrupt for which to enable/disable notification
433  *	@notify:	Context for notification, or %NULL to disable
434  *			notification.  Function pointers must be initialised;
435  *			the other fields will be initialised by this function.
436  *
437  *	Must be called in process context.  Notification may only be enabled
438  *	after the IRQ is allocated and must be disabled before the IRQ is
439  *	freed using free_irq().
440  */
441 int
irq_set_affinity_notifier(unsigned int irq,struct irq_affinity_notify * notify)442 irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify)
443 {
444 	struct irq_desc *desc = irq_to_desc(irq);
445 	struct irq_affinity_notify *old_notify;
446 	unsigned long flags;
447 
448 	/* The release function is promised process context */
449 	might_sleep();
450 
451 	if (!desc || desc->istate & IRQS_NMI)
452 		return -EINVAL;
453 
454 	/* Complete initialisation of *notify */
455 	if (notify) {
456 		notify->irq = irq;
457 		kref_init(&notify->kref);
458 		INIT_WORK(&notify->work, irq_affinity_notify);
459 	}
460 
461 	raw_spin_lock_irqsave(&desc->lock, flags);
462 	old_notify = desc->affinity_notify;
463 	desc->affinity_notify = notify;
464 	raw_spin_unlock_irqrestore(&desc->lock, flags);
465 
466 	if (old_notify) {
467 		if (cancel_work_sync(&old_notify->work)) {
468 			/* Pending work had a ref, put that one too */
469 			kref_put(&old_notify->kref, old_notify->release);
470 		}
471 		kref_put(&old_notify->kref, old_notify->release);
472 	}
473 
474 	return 0;
475 }
476 EXPORT_SYMBOL_GPL(irq_set_affinity_notifier);
477 
478 #ifndef CONFIG_AUTO_IRQ_AFFINITY
479 /*
480  * Generic version of the affinity autoselector.
481  */
irq_setup_affinity(struct irq_desc * desc)482 int irq_setup_affinity(struct irq_desc *desc)
483 {
484 	struct cpumask *set = irq_default_affinity;
485 	int ret, node = irq_desc_get_node(desc);
486 	static DEFINE_RAW_SPINLOCK(mask_lock);
487 	static struct cpumask mask;
488 
489 	/* Excludes PER_CPU and NO_BALANCE interrupts */
490 	if (!__irq_can_set_affinity(desc))
491 		return 0;
492 
493 	raw_spin_lock(&mask_lock);
494 	/*
495 	 * Preserve the managed affinity setting and a userspace affinity
496 	 * setup, but make sure that one of the targets is online.
497 	 */
498 	if (irqd_affinity_is_managed(&desc->irq_data) ||
499 	    irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) {
500 		if (cpumask_intersects(desc->irq_common_data.affinity,
501 				       cpu_online_mask))
502 			set = desc->irq_common_data.affinity;
503 		else
504 			irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET);
505 	}
506 
507 	cpumask_and(&mask, cpu_online_mask, set);
508 	if (cpumask_empty(&mask))
509 		cpumask_copy(&mask, cpu_online_mask);
510 
511 	if (node != NUMA_NO_NODE) {
512 		const struct cpumask *nodemask = cpumask_of_node(node);
513 
514 		/* make sure at least one of the cpus in nodemask is online */
515 		if (cpumask_intersects(&mask, nodemask))
516 			cpumask_and(&mask, &mask, nodemask);
517 	}
518 	ret = irq_do_set_affinity(&desc->irq_data, &mask, false);
519 	raw_spin_unlock(&mask_lock);
520 	return ret;
521 }
522 #else
523 /* Wrapper for ALPHA specific affinity selector magic */
irq_setup_affinity(struct irq_desc * desc)524 int irq_setup_affinity(struct irq_desc *desc)
525 {
526 	return irq_select_affinity(irq_desc_get_irq(desc));
527 }
528 #endif /* CONFIG_AUTO_IRQ_AFFINITY */
529 #endif /* CONFIG_SMP */
530 
531 
532 /**
533  *	irq_set_vcpu_affinity - Set vcpu affinity for the interrupt
534  *	@irq: interrupt number to set affinity
535  *	@vcpu_info: vCPU specific data or pointer to a percpu array of vCPU
536  *	            specific data for percpu_devid interrupts
537  *
538  *	This function uses the vCPU specific data to set the vCPU
539  *	affinity for an irq. The vCPU specific data is passed from
540  *	outside, such as KVM. One example code path is as below:
541  *	KVM -> IOMMU -> irq_set_vcpu_affinity().
542  */
irq_set_vcpu_affinity(unsigned int irq,void * vcpu_info)543 int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info)
544 {
545 	unsigned long flags;
546 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
547 	struct irq_data *data;
548 	struct irq_chip *chip;
549 	int ret = -ENOSYS;
550 
551 	if (!desc)
552 		return -EINVAL;
553 
554 	data = irq_desc_get_irq_data(desc);
555 	do {
556 		chip = irq_data_get_irq_chip(data);
557 		if (chip && chip->irq_set_vcpu_affinity)
558 			break;
559 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
560 		data = data->parent_data;
561 #else
562 		data = NULL;
563 #endif
564 	} while (data);
565 
566 	if (data)
567 		ret = chip->irq_set_vcpu_affinity(data, vcpu_info);
568 	irq_put_desc_unlock(desc, flags);
569 
570 	return ret;
571 }
572 EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity);
573 
__disable_irq(struct irq_desc * desc)574 void __disable_irq(struct irq_desc *desc)
575 {
576 	if (!desc->depth++)
577 		irq_disable(desc);
578 }
579 
__disable_irq_nosync(unsigned int irq)580 static int __disable_irq_nosync(unsigned int irq)
581 {
582 	unsigned long flags;
583 	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
584 
585 	if (!desc)
586 		return -EINVAL;
587 	__disable_irq(desc);
588 	irq_put_desc_busunlock(desc, flags);
589 	return 0;
590 }
591 
592 /**
593  *	disable_irq_nosync - disable an irq without waiting
594  *	@irq: Interrupt to disable
595  *
596  *	Disable the selected interrupt line.  Disables and Enables are
597  *	nested.
598  *	Unlike disable_irq(), this function does not ensure existing
599  *	instances of the IRQ handler have completed before returning.
600  *
601  *	This function may be called from IRQ context.
602  */
disable_irq_nosync(unsigned int irq)603 void disable_irq_nosync(unsigned int irq)
604 {
605 	__disable_irq_nosync(irq);
606 }
607 EXPORT_SYMBOL(disable_irq_nosync);
608 
609 /**
610  *	disable_irq - disable an irq and wait for completion
611  *	@irq: Interrupt to disable
612  *
613  *	Disable the selected interrupt line.  Enables and Disables are
614  *	nested.
615  *	This function waits for any pending IRQ handlers for this interrupt
616  *	to complete before returning. If you use this function while
617  *	holding a resource the IRQ handler may need you will deadlock.
618  *
619  *	This function may be called - with care - from IRQ context.
620  */
disable_irq(unsigned int irq)621 void disable_irq(unsigned int irq)
622 {
623 	if (!__disable_irq_nosync(irq))
624 		synchronize_irq(irq);
625 }
626 EXPORT_SYMBOL(disable_irq);
627 
628 /**
629  *	disable_hardirq - disables an irq and waits for hardirq completion
630  *	@irq: Interrupt to disable
631  *
632  *	Disable the selected interrupt line.  Enables and Disables are
633  *	nested.
634  *	This function waits for any pending hard IRQ handlers for this
635  *	interrupt to complete before returning. If you use this function while
636  *	holding a resource the hard IRQ handler may need you will deadlock.
637  *
638  *	When used to optimistically disable an interrupt from atomic context
639  *	the return value must be checked.
640  *
641  *	Returns: false if a threaded handler is active.
642  *
643  *	This function may be called - with care - from IRQ context.
644  */
disable_hardirq(unsigned int irq)645 bool disable_hardirq(unsigned int irq)
646 {
647 	if (!__disable_irq_nosync(irq))
648 		return synchronize_hardirq(irq);
649 
650 	return false;
651 }
652 EXPORT_SYMBOL_GPL(disable_hardirq);
653 
654 /**
655  *	disable_nmi_nosync - disable an nmi without waiting
656  *	@irq: Interrupt to disable
657  *
658  *	Disable the selected interrupt line. Disables and enables are
659  *	nested.
660  *	The interrupt to disable must have been requested through request_nmi.
661  *	Unlike disable_nmi(), this function does not ensure existing
662  *	instances of the IRQ handler have completed before returning.
663  */
disable_nmi_nosync(unsigned int irq)664 void disable_nmi_nosync(unsigned int irq)
665 {
666 	disable_irq_nosync(irq);
667 }
668 
__enable_irq(struct irq_desc * desc)669 void __enable_irq(struct irq_desc *desc)
670 {
671 	switch (desc->depth) {
672 	case 0:
673  err_out:
674 		WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n",
675 		     irq_desc_get_irq(desc));
676 		break;
677 	case 1: {
678 		if (desc->istate & IRQS_SUSPENDED)
679 			goto err_out;
680 		/* Prevent probing on this irq: */
681 		irq_settings_set_noprobe(desc);
682 		/*
683 		 * Call irq_startup() not irq_enable() here because the
684 		 * interrupt might be marked NOAUTOEN. So irq_startup()
685 		 * needs to be invoked when it gets enabled the first
686 		 * time. If it was already started up, then irq_startup()
687 		 * will invoke irq_enable() under the hood.
688 		 */
689 		irq_startup(desc, IRQ_RESEND, IRQ_START_FORCE);
690 		break;
691 	}
692 	default:
693 		desc->depth--;
694 	}
695 }
696 
697 /**
698  *	enable_irq - enable handling of an irq
699  *	@irq: Interrupt to enable
700  *
701  *	Undoes the effect of one call to disable_irq().  If this
702  *	matches the last disable, processing of interrupts on this
703  *	IRQ line is re-enabled.
704  *
705  *	This function may be called from IRQ context only when
706  *	desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL !
707  */
enable_irq(unsigned int irq)708 void enable_irq(unsigned int irq)
709 {
710 	unsigned long flags;
711 	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
712 
713 	if (!desc)
714 		return;
715 	if (WARN(!desc->irq_data.chip,
716 		 KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq))
717 		goto out;
718 
719 	__enable_irq(desc);
720 out:
721 	irq_put_desc_busunlock(desc, flags);
722 }
723 EXPORT_SYMBOL(enable_irq);
724 
725 /**
726  *	enable_nmi - enable handling of an nmi
727  *	@irq: Interrupt to enable
728  *
729  *	The interrupt to enable must have been requested through request_nmi.
730  *	Undoes the effect of one call to disable_nmi(). If this
731  *	matches the last disable, processing of interrupts on this
732  *	IRQ line is re-enabled.
733  */
enable_nmi(unsigned int irq)734 void enable_nmi(unsigned int irq)
735 {
736 	enable_irq(irq);
737 }
738 
set_irq_wake_real(unsigned int irq,unsigned int on)739 static int set_irq_wake_real(unsigned int irq, unsigned int on)
740 {
741 	struct irq_desc *desc = irq_to_desc(irq);
742 	int ret = -ENXIO;
743 
744 	if (irq_desc_get_chip(desc)->flags &  IRQCHIP_SKIP_SET_WAKE)
745 		return 0;
746 
747 	if (desc->irq_data.chip->irq_set_wake)
748 		ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on);
749 
750 	return ret;
751 }
752 
753 /**
754  *	irq_set_irq_wake - control irq power management wakeup
755  *	@irq:	interrupt to control
756  *	@on:	enable/disable power management wakeup
757  *
758  *	Enable/disable power management wakeup mode, which is
759  *	disabled by default.  Enables and disables must match,
760  *	just as they match for non-wakeup mode support.
761  *
762  *	Wakeup mode lets this IRQ wake the system from sleep
763  *	states like "suspend to RAM".
764  *
765  *	Note: irq enable/disable state is completely orthogonal
766  *	to the enable/disable state of irq wake. An irq can be
767  *	disabled with disable_irq() and still wake the system as
768  *	long as the irq has wake enabled. If this does not hold,
769  *	then the underlying irq chip and the related driver need
770  *	to be investigated.
771  */
irq_set_irq_wake(unsigned int irq,unsigned int on)772 int irq_set_irq_wake(unsigned int irq, unsigned int on)
773 {
774 	unsigned long flags;
775 	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
776 	int ret = 0;
777 
778 	if (!desc)
779 		return -EINVAL;
780 
781 	/* Don't use NMIs as wake up interrupts please */
782 	if (desc->istate & IRQS_NMI) {
783 		ret = -EINVAL;
784 		goto out_unlock;
785 	}
786 
787 	/* wakeup-capable irqs can be shared between drivers that
788 	 * don't need to have the same sleep mode behaviors.
789 	 */
790 	if (on) {
791 		if (desc->wake_depth++ == 0) {
792 			ret = set_irq_wake_real(irq, on);
793 			if (ret)
794 				desc->wake_depth = 0;
795 			else
796 				irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE);
797 		}
798 	} else {
799 		if (desc->wake_depth == 0) {
800 			WARN(1, "Unbalanced IRQ %d wake disable\n", irq);
801 		} else if (--desc->wake_depth == 0) {
802 			ret = set_irq_wake_real(irq, on);
803 			if (ret)
804 				desc->wake_depth = 1;
805 			else
806 				irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE);
807 		}
808 	}
809 
810 out_unlock:
811 	irq_put_desc_busunlock(desc, flags);
812 	return ret;
813 }
814 EXPORT_SYMBOL(irq_set_irq_wake);
815 
816 /*
817  * Internal function that tells the architecture code whether a
818  * particular irq has been exclusively allocated or is available
819  * for driver use.
820  */
can_request_irq(unsigned int irq,unsigned long irqflags)821 int can_request_irq(unsigned int irq, unsigned long irqflags)
822 {
823 	unsigned long flags;
824 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
825 	int canrequest = 0;
826 
827 	if (!desc)
828 		return 0;
829 
830 	if (irq_settings_can_request(desc)) {
831 		if (!desc->action ||
832 		    irqflags & desc->action->flags & IRQF_SHARED)
833 			canrequest = 1;
834 	}
835 	irq_put_desc_unlock(desc, flags);
836 	return canrequest;
837 }
838 
__irq_set_trigger(struct irq_desc * desc,unsigned long flags)839 int __irq_set_trigger(struct irq_desc *desc, unsigned long flags)
840 {
841 	struct irq_chip *chip = desc->irq_data.chip;
842 	int ret, unmask = 0;
843 
844 	if (!chip || !chip->irq_set_type) {
845 		/*
846 		 * IRQF_TRIGGER_* but the PIC does not support multiple
847 		 * flow-types?
848 		 */
849 		pr_debug("No set_type function for IRQ %d (%s)\n",
850 			 irq_desc_get_irq(desc),
851 			 chip ? (chip->name ? : "unknown") : "unknown");
852 		return 0;
853 	}
854 
855 	if (chip->flags & IRQCHIP_SET_TYPE_MASKED) {
856 		if (!irqd_irq_masked(&desc->irq_data))
857 			mask_irq(desc);
858 		if (!irqd_irq_disabled(&desc->irq_data))
859 			unmask = 1;
860 	}
861 
862 	/* Mask all flags except trigger mode */
863 	flags &= IRQ_TYPE_SENSE_MASK;
864 	ret = chip->irq_set_type(&desc->irq_data, flags);
865 
866 	switch (ret) {
867 	case IRQ_SET_MASK_OK:
868 	case IRQ_SET_MASK_OK_DONE:
869 		irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK);
870 		irqd_set(&desc->irq_data, flags);
871 		fallthrough;
872 
873 	case IRQ_SET_MASK_OK_NOCOPY:
874 		flags = irqd_get_trigger_type(&desc->irq_data);
875 		irq_settings_set_trigger_mask(desc, flags);
876 		irqd_clear(&desc->irq_data, IRQD_LEVEL);
877 		irq_settings_clr_level(desc);
878 		if (flags & IRQ_TYPE_LEVEL_MASK) {
879 			irq_settings_set_level(desc);
880 			irqd_set(&desc->irq_data, IRQD_LEVEL);
881 		}
882 
883 		ret = 0;
884 		break;
885 	default:
886 		pr_err("Setting trigger mode %lu for irq %u failed (%pS)\n",
887 		       flags, irq_desc_get_irq(desc), chip->irq_set_type);
888 	}
889 	if (unmask)
890 		unmask_irq(desc);
891 	return ret;
892 }
893 
894 #ifdef CONFIG_HARDIRQS_SW_RESEND
irq_set_parent(int irq,int parent_irq)895 int irq_set_parent(int irq, int parent_irq)
896 {
897 	unsigned long flags;
898 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
899 
900 	if (!desc)
901 		return -EINVAL;
902 
903 	desc->parent_irq = parent_irq;
904 
905 	irq_put_desc_unlock(desc, flags);
906 	return 0;
907 }
908 EXPORT_SYMBOL_GPL(irq_set_parent);
909 #endif
910 
911 /*
912  * Default primary interrupt handler for threaded interrupts. Is
913  * assigned as primary handler when request_threaded_irq is called
914  * with handler == NULL. Useful for oneshot interrupts.
915  */
irq_default_primary_handler(int irq,void * dev_id)916 static irqreturn_t irq_default_primary_handler(int irq, void *dev_id)
917 {
918 	return IRQ_WAKE_THREAD;
919 }
920 
921 /*
922  * Primary handler for nested threaded interrupts. Should never be
923  * called.
924  */
irq_nested_primary_handler(int irq,void * dev_id)925 static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id)
926 {
927 	WARN(1, "Primary handler called for nested irq %d\n", irq);
928 	return IRQ_NONE;
929 }
930 
irq_forced_secondary_handler(int irq,void * dev_id)931 static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id)
932 {
933 	WARN(1, "Secondary action handler called for irq %d\n", irq);
934 	return IRQ_NONE;
935 }
936 
irq_wait_for_interrupt(struct irqaction * action)937 static int irq_wait_for_interrupt(struct irqaction *action)
938 {
939 	for (;;) {
940 		set_current_state(TASK_INTERRUPTIBLE);
941 
942 		if (kthread_should_stop()) {
943 			/* may need to run one last time */
944 			if (test_and_clear_bit(IRQTF_RUNTHREAD,
945 					       &action->thread_flags)) {
946 				__set_current_state(TASK_RUNNING);
947 				return 0;
948 			}
949 			__set_current_state(TASK_RUNNING);
950 			return -1;
951 		}
952 
953 		if (test_and_clear_bit(IRQTF_RUNTHREAD,
954 				       &action->thread_flags)) {
955 			__set_current_state(TASK_RUNNING);
956 			return 0;
957 		}
958 		schedule();
959 	}
960 }
961 
962 /*
963  * Oneshot interrupts keep the irq line masked until the threaded
964  * handler finished. unmask if the interrupt has not been disabled and
965  * is marked MASKED.
966  */
irq_finalize_oneshot(struct irq_desc * desc,struct irqaction * action)967 static void irq_finalize_oneshot(struct irq_desc *desc,
968 				 struct irqaction *action)
969 {
970 	if (!(desc->istate & IRQS_ONESHOT) ||
971 	    action->handler == irq_forced_secondary_handler)
972 		return;
973 again:
974 	chip_bus_lock(desc);
975 	raw_spin_lock_irq(&desc->lock);
976 
977 	/*
978 	 * Implausible though it may be we need to protect us against
979 	 * the following scenario:
980 	 *
981 	 * The thread is faster done than the hard interrupt handler
982 	 * on the other CPU. If we unmask the irq line then the
983 	 * interrupt can come in again and masks the line, leaves due
984 	 * to IRQS_INPROGRESS and the irq line is masked forever.
985 	 *
986 	 * This also serializes the state of shared oneshot handlers
987 	 * versus "desc->threads_onehsot |= action->thread_mask;" in
988 	 * irq_wake_thread(). See the comment there which explains the
989 	 * serialization.
990 	 */
991 	if (unlikely(irqd_irq_inprogress(&desc->irq_data))) {
992 		raw_spin_unlock_irq(&desc->lock);
993 		chip_bus_sync_unlock(desc);
994 		cpu_relax();
995 		goto again;
996 	}
997 
998 	/*
999 	 * Now check again, whether the thread should run. Otherwise
1000 	 * we would clear the threads_oneshot bit of this thread which
1001 	 * was just set.
1002 	 */
1003 	if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags))
1004 		goto out_unlock;
1005 
1006 	desc->threads_oneshot &= ~action->thread_mask;
1007 
1008 	if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) &&
1009 	    irqd_irq_masked(&desc->irq_data))
1010 		unmask_threaded_irq(desc);
1011 
1012 out_unlock:
1013 	raw_spin_unlock_irq(&desc->lock);
1014 	chip_bus_sync_unlock(desc);
1015 }
1016 
1017 #ifdef CONFIG_SMP
1018 /*
1019  * Check whether we need to change the affinity of the interrupt thread.
1020  */
1021 static void
irq_thread_check_affinity(struct irq_desc * desc,struct irqaction * action)1022 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action)
1023 {
1024 	cpumask_var_t mask;
1025 	bool valid = true;
1026 
1027 	if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags))
1028 		return;
1029 
1030 	/*
1031 	 * In case we are out of memory we set IRQTF_AFFINITY again and
1032 	 * try again next time
1033 	 */
1034 	if (!alloc_cpumask_var(&mask, GFP_KERNEL)) {
1035 		set_bit(IRQTF_AFFINITY, &action->thread_flags);
1036 		return;
1037 	}
1038 
1039 	raw_spin_lock_irq(&desc->lock);
1040 	/*
1041 	 * This code is triggered unconditionally. Check the affinity
1042 	 * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out.
1043 	 */
1044 	if (cpumask_available(desc->irq_common_data.affinity)) {
1045 		const struct cpumask *m;
1046 
1047 		m = irq_data_get_effective_affinity_mask(&desc->irq_data);
1048 		cpumask_copy(mask, m);
1049 	} else {
1050 		valid = false;
1051 	}
1052 	raw_spin_unlock_irq(&desc->lock);
1053 
1054 	if (valid)
1055 		set_cpus_allowed_ptr(current, mask);
1056 	free_cpumask_var(mask);
1057 }
1058 #else
1059 static inline void
irq_thread_check_affinity(struct irq_desc * desc,struct irqaction * action)1060 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { }
1061 #endif
1062 
1063 /*
1064  * Interrupts which are not explicitly requested as threaded
1065  * interrupts rely on the implicit bh/preempt disable of the hard irq
1066  * context. So we need to disable bh here to avoid deadlocks and other
1067  * side effects.
1068  */
1069 static irqreturn_t
irq_forced_thread_fn(struct irq_desc * desc,struct irqaction * action)1070 irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action)
1071 {
1072 	irqreturn_t ret;
1073 
1074 	local_bh_disable();
1075 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1076 		local_irq_disable();
1077 	ret = action->thread_fn(action->irq, action->dev_id);
1078 	if (ret == IRQ_HANDLED)
1079 		atomic_inc(&desc->threads_handled);
1080 
1081 	irq_finalize_oneshot(desc, action);
1082 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1083 		local_irq_enable();
1084 	local_bh_enable();
1085 	return ret;
1086 }
1087 
1088 /*
1089  * Interrupts explicitly requested as threaded interrupts want to be
1090  * preemtible - many of them need to sleep and wait for slow busses to
1091  * complete.
1092  */
irq_thread_fn(struct irq_desc * desc,struct irqaction * action)1093 static irqreturn_t irq_thread_fn(struct irq_desc *desc,
1094 		struct irqaction *action)
1095 {
1096 	irqreturn_t ret;
1097 
1098 	ret = action->thread_fn(action->irq, action->dev_id);
1099 	if (ret == IRQ_HANDLED)
1100 		atomic_inc(&desc->threads_handled);
1101 
1102 	irq_finalize_oneshot(desc, action);
1103 	return ret;
1104 }
1105 
wake_threads_waitq(struct irq_desc * desc)1106 static void wake_threads_waitq(struct irq_desc *desc)
1107 {
1108 	if (atomic_dec_and_test(&desc->threads_active))
1109 		wake_up(&desc->wait_for_threads);
1110 }
1111 
irq_thread_dtor(struct callback_head * unused)1112 static void irq_thread_dtor(struct callback_head *unused)
1113 {
1114 	struct task_struct *tsk = current;
1115 	struct irq_desc *desc;
1116 	struct irqaction *action;
1117 
1118 	if (WARN_ON_ONCE(!(current->flags & PF_EXITING)))
1119 		return;
1120 
1121 	action = kthread_data(tsk);
1122 
1123 	pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n",
1124 	       tsk->comm, tsk->pid, action->irq);
1125 
1126 
1127 	desc = irq_to_desc(action->irq);
1128 	/*
1129 	 * If IRQTF_RUNTHREAD is set, we need to decrement
1130 	 * desc->threads_active and wake possible waiters.
1131 	 */
1132 	if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags))
1133 		wake_threads_waitq(desc);
1134 
1135 	/* Prevent a stale desc->threads_oneshot */
1136 	irq_finalize_oneshot(desc, action);
1137 }
1138 
irq_wake_secondary(struct irq_desc * desc,struct irqaction * action)1139 static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action)
1140 {
1141 	struct irqaction *secondary = action->secondary;
1142 
1143 	if (WARN_ON_ONCE(!secondary))
1144 		return;
1145 
1146 	raw_spin_lock_irq(&desc->lock);
1147 	__irq_wake_thread(desc, secondary);
1148 	raw_spin_unlock_irq(&desc->lock);
1149 }
1150 
1151 /*
1152  * Interrupt handler thread
1153  */
irq_thread(void * data)1154 static int irq_thread(void *data)
1155 {
1156 	struct callback_head on_exit_work;
1157 	struct irqaction *action = data;
1158 	struct irq_desc *desc = irq_to_desc(action->irq);
1159 	irqreturn_t (*handler_fn)(struct irq_desc *desc,
1160 			struct irqaction *action);
1161 
1162 	if (force_irqthreads && test_bit(IRQTF_FORCED_THREAD,
1163 					&action->thread_flags))
1164 		handler_fn = irq_forced_thread_fn;
1165 	else
1166 		handler_fn = irq_thread_fn;
1167 
1168 	init_task_work(&on_exit_work, irq_thread_dtor);
1169 	task_work_add(current, &on_exit_work, TWA_NONE);
1170 
1171 	irq_thread_check_affinity(desc, action);
1172 
1173 	while (!irq_wait_for_interrupt(action)) {
1174 		irqreturn_t action_ret;
1175 
1176 		irq_thread_check_affinity(desc, action);
1177 
1178 		action_ret = handler_fn(desc, action);
1179 		if (action_ret == IRQ_WAKE_THREAD)
1180 			irq_wake_secondary(desc, action);
1181 
1182 		wake_threads_waitq(desc);
1183 	}
1184 
1185 	/*
1186 	 * This is the regular exit path. __free_irq() is stopping the
1187 	 * thread via kthread_stop() after calling
1188 	 * synchronize_hardirq(). So neither IRQTF_RUNTHREAD nor the
1189 	 * oneshot mask bit can be set.
1190 	 */
1191 	task_work_cancel(current, irq_thread_dtor);
1192 	return 0;
1193 }
1194 
1195 /**
1196  *	irq_wake_thread - wake the irq thread for the action identified by dev_id
1197  *	@irq:		Interrupt line
1198  *	@dev_id:	Device identity for which the thread should be woken
1199  *
1200  */
irq_wake_thread(unsigned int irq,void * dev_id)1201 void irq_wake_thread(unsigned int irq, void *dev_id)
1202 {
1203 	struct irq_desc *desc = irq_to_desc(irq);
1204 	struct irqaction *action;
1205 	unsigned long flags;
1206 
1207 	if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1208 		return;
1209 
1210 	raw_spin_lock_irqsave(&desc->lock, flags);
1211 	for_each_action_of_desc(desc, action) {
1212 		if (action->dev_id == dev_id) {
1213 			if (action->thread)
1214 				__irq_wake_thread(desc, action);
1215 			break;
1216 		}
1217 	}
1218 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1219 }
1220 EXPORT_SYMBOL_GPL(irq_wake_thread);
1221 
irq_setup_forced_threading(struct irqaction * new)1222 static int irq_setup_forced_threading(struct irqaction *new)
1223 {
1224 	if (!force_irqthreads)
1225 		return 0;
1226 	if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT))
1227 		return 0;
1228 
1229 	/*
1230 	 * No further action required for interrupts which are requested as
1231 	 * threaded interrupts already
1232 	 */
1233 	if (new->handler == irq_default_primary_handler)
1234 		return 0;
1235 
1236 	new->flags |= IRQF_ONESHOT;
1237 
1238 	/*
1239 	 * Handle the case where we have a real primary handler and a
1240 	 * thread handler. We force thread them as well by creating a
1241 	 * secondary action.
1242 	 */
1243 	if (new->handler && new->thread_fn) {
1244 		/* Allocate the secondary action */
1245 		new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1246 		if (!new->secondary)
1247 			return -ENOMEM;
1248 		new->secondary->handler = irq_forced_secondary_handler;
1249 		new->secondary->thread_fn = new->thread_fn;
1250 		new->secondary->dev_id = new->dev_id;
1251 		new->secondary->irq = new->irq;
1252 		new->secondary->name = new->name;
1253 	}
1254 	/* Deal with the primary handler */
1255 	set_bit(IRQTF_FORCED_THREAD, &new->thread_flags);
1256 	new->thread_fn = new->handler;
1257 	new->handler = irq_default_primary_handler;
1258 	return 0;
1259 }
1260 
irq_request_resources(struct irq_desc * desc)1261 static int irq_request_resources(struct irq_desc *desc)
1262 {
1263 	struct irq_data *d = &desc->irq_data;
1264 	struct irq_chip *c = d->chip;
1265 
1266 	return c->irq_request_resources ? c->irq_request_resources(d) : 0;
1267 }
1268 
irq_release_resources(struct irq_desc * desc)1269 static void irq_release_resources(struct irq_desc *desc)
1270 {
1271 	struct irq_data *d = &desc->irq_data;
1272 	struct irq_chip *c = d->chip;
1273 
1274 	if (c->irq_release_resources)
1275 		c->irq_release_resources(d);
1276 }
1277 
irq_supports_nmi(struct irq_desc * desc)1278 static bool irq_supports_nmi(struct irq_desc *desc)
1279 {
1280 	struct irq_data *d = irq_desc_get_irq_data(desc);
1281 
1282 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
1283 	/* Only IRQs directly managed by the root irqchip can be set as NMI */
1284 	if (d->parent_data)
1285 		return false;
1286 #endif
1287 	/* Don't support NMIs for chips behind a slow bus */
1288 	if (d->chip->irq_bus_lock || d->chip->irq_bus_sync_unlock)
1289 		return false;
1290 
1291 	return d->chip->flags & IRQCHIP_SUPPORTS_NMI;
1292 }
1293 
irq_nmi_setup(struct irq_desc * desc)1294 static int irq_nmi_setup(struct irq_desc *desc)
1295 {
1296 	struct irq_data *d = irq_desc_get_irq_data(desc);
1297 	struct irq_chip *c = d->chip;
1298 
1299 	return c->irq_nmi_setup ? c->irq_nmi_setup(d) : -EINVAL;
1300 }
1301 
irq_nmi_teardown(struct irq_desc * desc)1302 static void irq_nmi_teardown(struct irq_desc *desc)
1303 {
1304 	struct irq_data *d = irq_desc_get_irq_data(desc);
1305 	struct irq_chip *c = d->chip;
1306 
1307 	if (c->irq_nmi_teardown)
1308 		c->irq_nmi_teardown(d);
1309 }
1310 
1311 static int
setup_irq_thread(struct irqaction * new,unsigned int irq,bool secondary)1312 setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary)
1313 {
1314 	struct task_struct *t;
1315 
1316 	if (!secondary) {
1317 		t = kthread_create(irq_thread, new, "irq/%d-%s", irq,
1318 				   new->name);
1319 	} else {
1320 		t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq,
1321 				   new->name);
1322 	}
1323 
1324 	if (IS_ERR(t))
1325 		return PTR_ERR(t);
1326 
1327 	sched_set_fifo(t);
1328 
1329 	/*
1330 	 * We keep the reference to the task struct even if
1331 	 * the thread dies to avoid that the interrupt code
1332 	 * references an already freed task_struct.
1333 	 */
1334 	new->thread = get_task_struct(t);
1335 	/*
1336 	 * Tell the thread to set its affinity. This is
1337 	 * important for shared interrupt handlers as we do
1338 	 * not invoke setup_affinity() for the secondary
1339 	 * handlers as everything is already set up. Even for
1340 	 * interrupts marked with IRQF_NO_BALANCE this is
1341 	 * correct as we want the thread to move to the cpu(s)
1342 	 * on which the requesting code placed the interrupt.
1343 	 */
1344 	set_bit(IRQTF_AFFINITY, &new->thread_flags);
1345 	return 0;
1346 }
1347 
1348 /*
1349  * Internal function to register an irqaction - typically used to
1350  * allocate special interrupts that are part of the architecture.
1351  *
1352  * Locking rules:
1353  *
1354  * desc->request_mutex	Provides serialization against a concurrent free_irq()
1355  *   chip_bus_lock	Provides serialization for slow bus operations
1356  *     desc->lock	Provides serialization against hard interrupts
1357  *
1358  * chip_bus_lock and desc->lock are sufficient for all other management and
1359  * interrupt related functions. desc->request_mutex solely serializes
1360  * request/free_irq().
1361  */
1362 static int
__setup_irq(unsigned int irq,struct irq_desc * desc,struct irqaction * new)1363 __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new)
1364 {
1365 	struct irqaction *old, **old_ptr;
1366 	unsigned long flags, thread_mask = 0;
1367 	int ret, nested, shared = 0;
1368 
1369 	if (!desc)
1370 		return -EINVAL;
1371 
1372 	if (desc->irq_data.chip == &no_irq_chip)
1373 		return -ENOSYS;
1374 	if (!try_module_get(desc->owner))
1375 		return -ENODEV;
1376 
1377 	new->irq = irq;
1378 
1379 	/*
1380 	 * If the trigger type is not specified by the caller,
1381 	 * then use the default for this interrupt.
1382 	 */
1383 	if (!(new->flags & IRQF_TRIGGER_MASK))
1384 		new->flags |= irqd_get_trigger_type(&desc->irq_data);
1385 
1386 	/*
1387 	 * Check whether the interrupt nests into another interrupt
1388 	 * thread.
1389 	 */
1390 	nested = irq_settings_is_nested_thread(desc);
1391 	if (nested) {
1392 		if (!new->thread_fn) {
1393 			ret = -EINVAL;
1394 			goto out_mput;
1395 		}
1396 		/*
1397 		 * Replace the primary handler which was provided from
1398 		 * the driver for non nested interrupt handling by the
1399 		 * dummy function which warns when called.
1400 		 */
1401 		new->handler = irq_nested_primary_handler;
1402 	} else {
1403 		if (irq_settings_can_thread(desc)) {
1404 			ret = irq_setup_forced_threading(new);
1405 			if (ret)
1406 				goto out_mput;
1407 		}
1408 	}
1409 
1410 	/*
1411 	 * Create a handler thread when a thread function is supplied
1412 	 * and the interrupt does not nest into another interrupt
1413 	 * thread.
1414 	 */
1415 	if (new->thread_fn && !nested) {
1416 		ret = setup_irq_thread(new, irq, false);
1417 		if (ret)
1418 			goto out_mput;
1419 		if (new->secondary) {
1420 			ret = setup_irq_thread(new->secondary, irq, true);
1421 			if (ret)
1422 				goto out_thread;
1423 		}
1424 	}
1425 
1426 	/*
1427 	 * Drivers are often written to work w/o knowledge about the
1428 	 * underlying irq chip implementation, so a request for a
1429 	 * threaded irq without a primary hard irq context handler
1430 	 * requires the ONESHOT flag to be set. Some irq chips like
1431 	 * MSI based interrupts are per se one shot safe. Check the
1432 	 * chip flags, so we can avoid the unmask dance at the end of
1433 	 * the threaded handler for those.
1434 	 */
1435 	if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)
1436 		new->flags &= ~IRQF_ONESHOT;
1437 
1438 	/*
1439 	 * Protects against a concurrent __free_irq() call which might wait
1440 	 * for synchronize_hardirq() to complete without holding the optional
1441 	 * chip bus lock and desc->lock. Also protects against handing out
1442 	 * a recycled oneshot thread_mask bit while it's still in use by
1443 	 * its previous owner.
1444 	 */
1445 	mutex_lock(&desc->request_mutex);
1446 
1447 	/*
1448 	 * Acquire bus lock as the irq_request_resources() callback below
1449 	 * might rely on the serialization or the magic power management
1450 	 * functions which are abusing the irq_bus_lock() callback,
1451 	 */
1452 	chip_bus_lock(desc);
1453 
1454 	/* First installed action requests resources. */
1455 	if (!desc->action) {
1456 		ret = irq_request_resources(desc);
1457 		if (ret) {
1458 			pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n",
1459 			       new->name, irq, desc->irq_data.chip->name);
1460 			goto out_bus_unlock;
1461 		}
1462 	}
1463 
1464 	/*
1465 	 * The following block of code has to be executed atomically
1466 	 * protected against a concurrent interrupt and any of the other
1467 	 * management calls which are not serialized via
1468 	 * desc->request_mutex or the optional bus lock.
1469 	 */
1470 	raw_spin_lock_irqsave(&desc->lock, flags);
1471 	old_ptr = &desc->action;
1472 	old = *old_ptr;
1473 	if (old) {
1474 		/*
1475 		 * Can't share interrupts unless both agree to and are
1476 		 * the same type (level, edge, polarity). So both flag
1477 		 * fields must have IRQF_SHARED set and the bits which
1478 		 * set the trigger type must match. Also all must
1479 		 * agree on ONESHOT.
1480 		 * Interrupt lines used for NMIs cannot be shared.
1481 		 */
1482 		unsigned int oldtype;
1483 
1484 		if (desc->istate & IRQS_NMI) {
1485 			pr_err("Invalid attempt to share NMI for %s (irq %d) on irqchip %s.\n",
1486 				new->name, irq, desc->irq_data.chip->name);
1487 			ret = -EINVAL;
1488 			goto out_unlock;
1489 		}
1490 
1491 		/*
1492 		 * If nobody did set the configuration before, inherit
1493 		 * the one provided by the requester.
1494 		 */
1495 		if (irqd_trigger_type_was_set(&desc->irq_data)) {
1496 			oldtype = irqd_get_trigger_type(&desc->irq_data);
1497 		} else {
1498 			oldtype = new->flags & IRQF_TRIGGER_MASK;
1499 			irqd_set_trigger_type(&desc->irq_data, oldtype);
1500 		}
1501 
1502 		if (!((old->flags & new->flags) & IRQF_SHARED) ||
1503 		    (oldtype != (new->flags & IRQF_TRIGGER_MASK)) ||
1504 		    ((old->flags ^ new->flags) & IRQF_ONESHOT))
1505 			goto mismatch;
1506 
1507 		/* All handlers must agree on per-cpuness */
1508 		if ((old->flags & IRQF_PERCPU) !=
1509 		    (new->flags & IRQF_PERCPU))
1510 			goto mismatch;
1511 
1512 		/* add new interrupt at end of irq queue */
1513 		do {
1514 			/*
1515 			 * Or all existing action->thread_mask bits,
1516 			 * so we can find the next zero bit for this
1517 			 * new action.
1518 			 */
1519 			thread_mask |= old->thread_mask;
1520 			old_ptr = &old->next;
1521 			old = *old_ptr;
1522 		} while (old);
1523 		shared = 1;
1524 	}
1525 
1526 	/*
1527 	 * Setup the thread mask for this irqaction for ONESHOT. For
1528 	 * !ONESHOT irqs the thread mask is 0 so we can avoid a
1529 	 * conditional in irq_wake_thread().
1530 	 */
1531 	if (new->flags & IRQF_ONESHOT) {
1532 		/*
1533 		 * Unlikely to have 32 resp 64 irqs sharing one line,
1534 		 * but who knows.
1535 		 */
1536 		if (thread_mask == ~0UL) {
1537 			ret = -EBUSY;
1538 			goto out_unlock;
1539 		}
1540 		/*
1541 		 * The thread_mask for the action is or'ed to
1542 		 * desc->thread_active to indicate that the
1543 		 * IRQF_ONESHOT thread handler has been woken, but not
1544 		 * yet finished. The bit is cleared when a thread
1545 		 * completes. When all threads of a shared interrupt
1546 		 * line have completed desc->threads_active becomes
1547 		 * zero and the interrupt line is unmasked. See
1548 		 * handle.c:irq_wake_thread() for further information.
1549 		 *
1550 		 * If no thread is woken by primary (hard irq context)
1551 		 * interrupt handlers, then desc->threads_active is
1552 		 * also checked for zero to unmask the irq line in the
1553 		 * affected hard irq flow handlers
1554 		 * (handle_[fasteoi|level]_irq).
1555 		 *
1556 		 * The new action gets the first zero bit of
1557 		 * thread_mask assigned. See the loop above which or's
1558 		 * all existing action->thread_mask bits.
1559 		 */
1560 		new->thread_mask = 1UL << ffz(thread_mask);
1561 
1562 	} else if (new->handler == irq_default_primary_handler &&
1563 		   !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) {
1564 		/*
1565 		 * The interrupt was requested with handler = NULL, so
1566 		 * we use the default primary handler for it. But it
1567 		 * does not have the oneshot flag set. In combination
1568 		 * with level interrupts this is deadly, because the
1569 		 * default primary handler just wakes the thread, then
1570 		 * the irq lines is reenabled, but the device still
1571 		 * has the level irq asserted. Rinse and repeat....
1572 		 *
1573 		 * While this works for edge type interrupts, we play
1574 		 * it safe and reject unconditionally because we can't
1575 		 * say for sure which type this interrupt really
1576 		 * has. The type flags are unreliable as the
1577 		 * underlying chip implementation can override them.
1578 		 */
1579 		pr_err("Threaded irq requested with handler=NULL and !ONESHOT for %s (irq %d)\n",
1580 		       new->name, irq);
1581 		ret = -EINVAL;
1582 		goto out_unlock;
1583 	}
1584 
1585 	if (!shared) {
1586 		init_waitqueue_head(&desc->wait_for_threads);
1587 
1588 		/* Setup the type (level, edge polarity) if configured: */
1589 		if (new->flags & IRQF_TRIGGER_MASK) {
1590 			ret = __irq_set_trigger(desc,
1591 						new->flags & IRQF_TRIGGER_MASK);
1592 
1593 			if (ret)
1594 				goto out_unlock;
1595 		}
1596 
1597 		/*
1598 		 * Activate the interrupt. That activation must happen
1599 		 * independently of IRQ_NOAUTOEN. request_irq() can fail
1600 		 * and the callers are supposed to handle
1601 		 * that. enable_irq() of an interrupt requested with
1602 		 * IRQ_NOAUTOEN is not supposed to fail. The activation
1603 		 * keeps it in shutdown mode, it merily associates
1604 		 * resources if necessary and if that's not possible it
1605 		 * fails. Interrupts which are in managed shutdown mode
1606 		 * will simply ignore that activation request.
1607 		 */
1608 		ret = irq_activate(desc);
1609 		if (ret)
1610 			goto out_unlock;
1611 
1612 		desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \
1613 				  IRQS_ONESHOT | IRQS_WAITING);
1614 		irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS);
1615 
1616 		if (new->flags & IRQF_PERCPU) {
1617 			irqd_set(&desc->irq_data, IRQD_PER_CPU);
1618 			irq_settings_set_per_cpu(desc);
1619 		}
1620 
1621 		if (new->flags & IRQF_ONESHOT)
1622 			desc->istate |= IRQS_ONESHOT;
1623 
1624 		/* Exclude IRQ from balancing if requested */
1625 		if (new->flags & IRQF_NOBALANCING) {
1626 			irq_settings_set_no_balancing(desc);
1627 			irqd_set(&desc->irq_data, IRQD_NO_BALANCING);
1628 		}
1629 
1630 		if (irq_settings_can_autoenable(desc)) {
1631 			irq_startup(desc, IRQ_RESEND, IRQ_START_COND);
1632 		} else {
1633 			/*
1634 			 * Shared interrupts do not go well with disabling
1635 			 * auto enable. The sharing interrupt might request
1636 			 * it while it's still disabled and then wait for
1637 			 * interrupts forever.
1638 			 */
1639 			WARN_ON_ONCE(new->flags & IRQF_SHARED);
1640 			/* Undo nested disables: */
1641 			desc->depth = 1;
1642 		}
1643 
1644 	} else if (new->flags & IRQF_TRIGGER_MASK) {
1645 		unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK;
1646 		unsigned int omsk = irqd_get_trigger_type(&desc->irq_data);
1647 
1648 		if (nmsk != omsk)
1649 			/* hope the handler works with current  trigger mode */
1650 			pr_warn("irq %d uses trigger mode %u; requested %u\n",
1651 				irq, omsk, nmsk);
1652 	}
1653 
1654 	*old_ptr = new;
1655 
1656 	irq_pm_install_action(desc, new);
1657 
1658 	/* Reset broken irq detection when installing new handler */
1659 	desc->irq_count = 0;
1660 	desc->irqs_unhandled = 0;
1661 
1662 	/*
1663 	 * Check whether we disabled the irq via the spurious handler
1664 	 * before. Reenable it and give it another chance.
1665 	 */
1666 	if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) {
1667 		desc->istate &= ~IRQS_SPURIOUS_DISABLED;
1668 		__enable_irq(desc);
1669 	}
1670 
1671 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1672 	chip_bus_sync_unlock(desc);
1673 	mutex_unlock(&desc->request_mutex);
1674 
1675 	irq_setup_timings(desc, new);
1676 
1677 	/*
1678 	 * Strictly no need to wake it up, but hung_task complains
1679 	 * when no hard interrupt wakes the thread up.
1680 	 */
1681 	if (new->thread)
1682 		wake_up_process(new->thread);
1683 	if (new->secondary)
1684 		wake_up_process(new->secondary->thread);
1685 
1686 	register_irq_proc(irq, desc);
1687 	new->dir = NULL;
1688 	register_handler_proc(irq, new);
1689 	return 0;
1690 
1691 mismatch:
1692 	if (!(new->flags & IRQF_PROBE_SHARED)) {
1693 		pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n",
1694 		       irq, new->flags, new->name, old->flags, old->name);
1695 #ifdef CONFIG_DEBUG_SHIRQ
1696 		dump_stack();
1697 #endif
1698 	}
1699 	ret = -EBUSY;
1700 
1701 out_unlock:
1702 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1703 
1704 	if (!desc->action)
1705 		irq_release_resources(desc);
1706 out_bus_unlock:
1707 	chip_bus_sync_unlock(desc);
1708 	mutex_unlock(&desc->request_mutex);
1709 
1710 out_thread:
1711 	if (new->thread) {
1712 		struct task_struct *t = new->thread;
1713 
1714 		new->thread = NULL;
1715 		kthread_stop(t);
1716 		put_task_struct(t);
1717 	}
1718 	if (new->secondary && new->secondary->thread) {
1719 		struct task_struct *t = new->secondary->thread;
1720 
1721 		new->secondary->thread = NULL;
1722 		kthread_stop(t);
1723 		put_task_struct(t);
1724 	}
1725 out_mput:
1726 	module_put(desc->owner);
1727 	return ret;
1728 }
1729 
1730 /*
1731  * Internal function to unregister an irqaction - used to free
1732  * regular and special interrupts that are part of the architecture.
1733  */
__free_irq(struct irq_desc * desc,void * dev_id)1734 static struct irqaction *__free_irq(struct irq_desc *desc, void *dev_id)
1735 {
1736 	unsigned irq = desc->irq_data.irq;
1737 	struct irqaction *action, **action_ptr;
1738 	unsigned long flags;
1739 
1740 	WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1741 
1742 	mutex_lock(&desc->request_mutex);
1743 	chip_bus_lock(desc);
1744 	raw_spin_lock_irqsave(&desc->lock, flags);
1745 
1746 	/*
1747 	 * There can be multiple actions per IRQ descriptor, find the right
1748 	 * one based on the dev_id:
1749 	 */
1750 	action_ptr = &desc->action;
1751 	for (;;) {
1752 		action = *action_ptr;
1753 
1754 		if (!action) {
1755 			WARN(1, "Trying to free already-free IRQ %d\n", irq);
1756 			raw_spin_unlock_irqrestore(&desc->lock, flags);
1757 			chip_bus_sync_unlock(desc);
1758 			mutex_unlock(&desc->request_mutex);
1759 			return NULL;
1760 		}
1761 
1762 		if (action->dev_id == dev_id)
1763 			break;
1764 		action_ptr = &action->next;
1765 	}
1766 
1767 	/* Found it - now remove it from the list of entries: */
1768 	*action_ptr = action->next;
1769 
1770 	irq_pm_remove_action(desc, action);
1771 
1772 	/* If this was the last handler, shut down the IRQ line: */
1773 	if (!desc->action) {
1774 		irq_settings_clr_disable_unlazy(desc);
1775 		/* Only shutdown. Deactivate after synchronize_hardirq() */
1776 		irq_shutdown(desc);
1777 	}
1778 
1779 #ifdef CONFIG_SMP
1780 	/* make sure affinity_hint is cleaned up */
1781 	if (WARN_ON_ONCE(desc->affinity_hint))
1782 		desc->affinity_hint = NULL;
1783 #endif
1784 
1785 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1786 	/*
1787 	 * Drop bus_lock here so the changes which were done in the chip
1788 	 * callbacks above are synced out to the irq chips which hang
1789 	 * behind a slow bus (I2C, SPI) before calling synchronize_hardirq().
1790 	 *
1791 	 * Aside of that the bus_lock can also be taken from the threaded
1792 	 * handler in irq_finalize_oneshot() which results in a deadlock
1793 	 * because kthread_stop() would wait forever for the thread to
1794 	 * complete, which is blocked on the bus lock.
1795 	 *
1796 	 * The still held desc->request_mutex() protects against a
1797 	 * concurrent request_irq() of this irq so the release of resources
1798 	 * and timing data is properly serialized.
1799 	 */
1800 	chip_bus_sync_unlock(desc);
1801 
1802 	unregister_handler_proc(irq, action);
1803 
1804 	/*
1805 	 * Make sure it's not being used on another CPU and if the chip
1806 	 * supports it also make sure that there is no (not yet serviced)
1807 	 * interrupt in flight at the hardware level.
1808 	 */
1809 	__synchronize_hardirq(desc, true);
1810 
1811 #ifdef CONFIG_DEBUG_SHIRQ
1812 	/*
1813 	 * It's a shared IRQ -- the driver ought to be prepared for an IRQ
1814 	 * event to happen even now it's being freed, so let's make sure that
1815 	 * is so by doing an extra call to the handler ....
1816 	 *
1817 	 * ( We do this after actually deregistering it, to make sure that a
1818 	 *   'real' IRQ doesn't run in parallel with our fake. )
1819 	 */
1820 	if (action->flags & IRQF_SHARED) {
1821 		local_irq_save(flags);
1822 		action->handler(irq, dev_id);
1823 		local_irq_restore(flags);
1824 	}
1825 #endif
1826 
1827 	/*
1828 	 * The action has already been removed above, but the thread writes
1829 	 * its oneshot mask bit when it completes. Though request_mutex is
1830 	 * held across this which prevents __setup_irq() from handing out
1831 	 * the same bit to a newly requested action.
1832 	 */
1833 	if (action->thread) {
1834 		kthread_stop(action->thread);
1835 		put_task_struct(action->thread);
1836 		if (action->secondary && action->secondary->thread) {
1837 			kthread_stop(action->secondary->thread);
1838 			put_task_struct(action->secondary->thread);
1839 		}
1840 	}
1841 
1842 	/* Last action releases resources */
1843 	if (!desc->action) {
1844 		/*
1845 		 * Reaquire bus lock as irq_release_resources() might
1846 		 * require it to deallocate resources over the slow bus.
1847 		 */
1848 		chip_bus_lock(desc);
1849 		/*
1850 		 * There is no interrupt on the fly anymore. Deactivate it
1851 		 * completely.
1852 		 */
1853 		raw_spin_lock_irqsave(&desc->lock, flags);
1854 		irq_domain_deactivate_irq(&desc->irq_data);
1855 		raw_spin_unlock_irqrestore(&desc->lock, flags);
1856 
1857 		irq_release_resources(desc);
1858 		chip_bus_sync_unlock(desc);
1859 		irq_remove_timings(desc);
1860 	}
1861 
1862 	mutex_unlock(&desc->request_mutex);
1863 
1864 	irq_chip_pm_put(&desc->irq_data);
1865 	module_put(desc->owner);
1866 	kfree(action->secondary);
1867 	return action;
1868 }
1869 
1870 /**
1871  *	free_irq - free an interrupt allocated with request_irq
1872  *	@irq: Interrupt line to free
1873  *	@dev_id: Device identity to free
1874  *
1875  *	Remove an interrupt handler. The handler is removed and if the
1876  *	interrupt line is no longer in use by any driver it is disabled.
1877  *	On a shared IRQ the caller must ensure the interrupt is disabled
1878  *	on the card it drives before calling this function. The function
1879  *	does not return until any executing interrupts for this IRQ
1880  *	have completed.
1881  *
1882  *	This function must not be called from interrupt context.
1883  *
1884  *	Returns the devname argument passed to request_irq.
1885  */
free_irq(unsigned int irq,void * dev_id)1886 const void *free_irq(unsigned int irq, void *dev_id)
1887 {
1888 	struct irq_desc *desc = irq_to_desc(irq);
1889 	struct irqaction *action;
1890 	const char *devname;
1891 
1892 	if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1893 		return NULL;
1894 
1895 #ifdef CONFIG_SMP
1896 	if (WARN_ON(desc->affinity_notify))
1897 		desc->affinity_notify = NULL;
1898 #endif
1899 
1900 	action = __free_irq(desc, dev_id);
1901 
1902 	if (!action)
1903 		return NULL;
1904 
1905 	devname = action->name;
1906 	kfree(action);
1907 	return devname;
1908 }
1909 EXPORT_SYMBOL(free_irq);
1910 
1911 /* This function must be called with desc->lock held */
__cleanup_nmi(unsigned int irq,struct irq_desc * desc)1912 static const void *__cleanup_nmi(unsigned int irq, struct irq_desc *desc)
1913 {
1914 	const char *devname = NULL;
1915 
1916 	desc->istate &= ~IRQS_NMI;
1917 
1918 	if (!WARN_ON(desc->action == NULL)) {
1919 		irq_pm_remove_action(desc, desc->action);
1920 		devname = desc->action->name;
1921 		unregister_handler_proc(irq, desc->action);
1922 
1923 		kfree(desc->action);
1924 		desc->action = NULL;
1925 	}
1926 
1927 	irq_settings_clr_disable_unlazy(desc);
1928 	irq_shutdown_and_deactivate(desc);
1929 
1930 	irq_release_resources(desc);
1931 
1932 	irq_chip_pm_put(&desc->irq_data);
1933 	module_put(desc->owner);
1934 
1935 	return devname;
1936 }
1937 
free_nmi(unsigned int irq,void * dev_id)1938 const void *free_nmi(unsigned int irq, void *dev_id)
1939 {
1940 	struct irq_desc *desc = irq_to_desc(irq);
1941 	unsigned long flags;
1942 	const void *devname;
1943 
1944 	if (!desc || WARN_ON(!(desc->istate & IRQS_NMI)))
1945 		return NULL;
1946 
1947 	if (WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1948 		return NULL;
1949 
1950 	/* NMI still enabled */
1951 	if (WARN_ON(desc->depth == 0))
1952 		disable_nmi_nosync(irq);
1953 
1954 	raw_spin_lock_irqsave(&desc->lock, flags);
1955 
1956 	irq_nmi_teardown(desc);
1957 	devname = __cleanup_nmi(irq, desc);
1958 
1959 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1960 
1961 	return devname;
1962 }
1963 
1964 /**
1965  *	request_threaded_irq - allocate an interrupt line
1966  *	@irq: Interrupt line to allocate
1967  *	@handler: Function to be called when the IRQ occurs.
1968  *		  Primary handler for threaded interrupts
1969  *		  If NULL and thread_fn != NULL the default
1970  *		  primary handler is installed
1971  *	@thread_fn: Function called from the irq handler thread
1972  *		    If NULL, no irq thread is created
1973  *	@irqflags: Interrupt type flags
1974  *	@devname: An ascii name for the claiming device
1975  *	@dev_id: A cookie passed back to the handler function
1976  *
1977  *	This call allocates interrupt resources and enables the
1978  *	interrupt line and IRQ handling. From the point this
1979  *	call is made your handler function may be invoked. Since
1980  *	your handler function must clear any interrupt the board
1981  *	raises, you must take care both to initialise your hardware
1982  *	and to set up the interrupt handler in the right order.
1983  *
1984  *	If you want to set up a threaded irq handler for your device
1985  *	then you need to supply @handler and @thread_fn. @handler is
1986  *	still called in hard interrupt context and has to check
1987  *	whether the interrupt originates from the device. If yes it
1988  *	needs to disable the interrupt on the device and return
1989  *	IRQ_WAKE_THREAD which will wake up the handler thread and run
1990  *	@thread_fn. This split handler design is necessary to support
1991  *	shared interrupts.
1992  *
1993  *	Dev_id must be globally unique. Normally the address of the
1994  *	device data structure is used as the cookie. Since the handler
1995  *	receives this value it makes sense to use it.
1996  *
1997  *	If your interrupt is shared you must pass a non NULL dev_id
1998  *	as this is required when freeing the interrupt.
1999  *
2000  *	Flags:
2001  *
2002  *	IRQF_SHARED		Interrupt is shared
2003  *	IRQF_TRIGGER_*		Specify active edge(s) or level
2004  *
2005  */
request_threaded_irq(unsigned int irq,irq_handler_t handler,irq_handler_t thread_fn,unsigned long irqflags,const char * devname,void * dev_id)2006 int request_threaded_irq(unsigned int irq, irq_handler_t handler,
2007 			 irq_handler_t thread_fn, unsigned long irqflags,
2008 			 const char *devname, void *dev_id)
2009 {
2010 	struct irqaction *action;
2011 	struct irq_desc *desc;
2012 	int retval;
2013 
2014 	if (irq == IRQ_NOTCONNECTED)
2015 		return -ENOTCONN;
2016 
2017 	/*
2018 	 * Sanity-check: shared interrupts must pass in a real dev-ID,
2019 	 * otherwise we'll have trouble later trying to figure out
2020 	 * which interrupt is which (messes up the interrupt freeing
2021 	 * logic etc).
2022 	 *
2023 	 * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and
2024 	 * it cannot be set along with IRQF_NO_SUSPEND.
2025 	 */
2026 	if (((irqflags & IRQF_SHARED) && !dev_id) ||
2027 	    (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) ||
2028 	    ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND)))
2029 		return -EINVAL;
2030 
2031 	desc = irq_to_desc(irq);
2032 	if (!desc)
2033 		return -EINVAL;
2034 
2035 	if (!irq_settings_can_request(desc) ||
2036 	    WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2037 		return -EINVAL;
2038 
2039 	if (!handler) {
2040 		if (!thread_fn)
2041 			return -EINVAL;
2042 		handler = irq_default_primary_handler;
2043 	}
2044 
2045 	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2046 	if (!action)
2047 		return -ENOMEM;
2048 
2049 	action->handler = handler;
2050 	action->thread_fn = thread_fn;
2051 	action->flags = irqflags;
2052 	action->name = devname;
2053 	action->dev_id = dev_id;
2054 
2055 	retval = irq_chip_pm_get(&desc->irq_data);
2056 	if (retval < 0) {
2057 		kfree(action);
2058 		return retval;
2059 	}
2060 
2061 	retval = __setup_irq(irq, desc, action);
2062 
2063 	if (retval) {
2064 		irq_chip_pm_put(&desc->irq_data);
2065 		kfree(action->secondary);
2066 		kfree(action);
2067 	}
2068 
2069 #ifdef CONFIG_DEBUG_SHIRQ_FIXME
2070 	if (!retval && (irqflags & IRQF_SHARED)) {
2071 		/*
2072 		 * It's a shared IRQ -- the driver ought to be prepared for it
2073 		 * to happen immediately, so let's make sure....
2074 		 * We disable the irq to make sure that a 'real' IRQ doesn't
2075 		 * run in parallel with our fake.
2076 		 */
2077 		unsigned long flags;
2078 
2079 		disable_irq(irq);
2080 		local_irq_save(flags);
2081 
2082 		handler(irq, dev_id);
2083 
2084 		local_irq_restore(flags);
2085 		enable_irq(irq);
2086 	}
2087 #endif
2088 	return retval;
2089 }
2090 EXPORT_SYMBOL(request_threaded_irq);
2091 
2092 /**
2093  *	request_any_context_irq - allocate an interrupt line
2094  *	@irq: Interrupt line to allocate
2095  *	@handler: Function to be called when the IRQ occurs.
2096  *		  Threaded handler for threaded interrupts.
2097  *	@flags: Interrupt type flags
2098  *	@name: An ascii name for the claiming device
2099  *	@dev_id: A cookie passed back to the handler function
2100  *
2101  *	This call allocates interrupt resources and enables the
2102  *	interrupt line and IRQ handling. It selects either a
2103  *	hardirq or threaded handling method depending on the
2104  *	context.
2105  *
2106  *	On failure, it returns a negative value. On success,
2107  *	it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED.
2108  */
request_any_context_irq(unsigned int irq,irq_handler_t handler,unsigned long flags,const char * name,void * dev_id)2109 int request_any_context_irq(unsigned int irq, irq_handler_t handler,
2110 			    unsigned long flags, const char *name, void *dev_id)
2111 {
2112 	struct irq_desc *desc;
2113 	int ret;
2114 
2115 	if (irq == IRQ_NOTCONNECTED)
2116 		return -ENOTCONN;
2117 
2118 	desc = irq_to_desc(irq);
2119 	if (!desc)
2120 		return -EINVAL;
2121 
2122 	if (irq_settings_is_nested_thread(desc)) {
2123 		ret = request_threaded_irq(irq, NULL, handler,
2124 					   flags, name, dev_id);
2125 		return !ret ? IRQC_IS_NESTED : ret;
2126 	}
2127 
2128 	ret = request_irq(irq, handler, flags, name, dev_id);
2129 	return !ret ? IRQC_IS_HARDIRQ : ret;
2130 }
2131 EXPORT_SYMBOL_GPL(request_any_context_irq);
2132 
2133 /**
2134  *	request_nmi - allocate an interrupt line for NMI delivery
2135  *	@irq: Interrupt line to allocate
2136  *	@handler: Function to be called when the IRQ occurs.
2137  *		  Threaded handler for threaded interrupts.
2138  *	@irqflags: Interrupt type flags
2139  *	@name: An ascii name for the claiming device
2140  *	@dev_id: A cookie passed back to the handler function
2141  *
2142  *	This call allocates interrupt resources and enables the
2143  *	interrupt line and IRQ handling. It sets up the IRQ line
2144  *	to be handled as an NMI.
2145  *
2146  *	An interrupt line delivering NMIs cannot be shared and IRQ handling
2147  *	cannot be threaded.
2148  *
2149  *	Interrupt lines requested for NMI delivering must produce per cpu
2150  *	interrupts and have auto enabling setting disabled.
2151  *
2152  *	Dev_id must be globally unique. Normally the address of the
2153  *	device data structure is used as the cookie. Since the handler
2154  *	receives this value it makes sense to use it.
2155  *
2156  *	If the interrupt line cannot be used to deliver NMIs, function
2157  *	will fail and return a negative value.
2158  */
request_nmi(unsigned int irq,irq_handler_t handler,unsigned long irqflags,const char * name,void * dev_id)2159 int request_nmi(unsigned int irq, irq_handler_t handler,
2160 		unsigned long irqflags, const char *name, void *dev_id)
2161 {
2162 	struct irqaction *action;
2163 	struct irq_desc *desc;
2164 	unsigned long flags;
2165 	int retval;
2166 
2167 	if (irq == IRQ_NOTCONNECTED)
2168 		return -ENOTCONN;
2169 
2170 	/* NMI cannot be shared, used for Polling */
2171 	if (irqflags & (IRQF_SHARED | IRQF_COND_SUSPEND | IRQF_IRQPOLL))
2172 		return -EINVAL;
2173 
2174 	if (!(irqflags & IRQF_PERCPU))
2175 		return -EINVAL;
2176 
2177 	if (!handler)
2178 		return -EINVAL;
2179 
2180 	desc = irq_to_desc(irq);
2181 
2182 	if (!desc || irq_settings_can_autoenable(desc) ||
2183 	    !irq_settings_can_request(desc) ||
2184 	    WARN_ON(irq_settings_is_per_cpu_devid(desc)) ||
2185 	    !irq_supports_nmi(desc))
2186 		return -EINVAL;
2187 
2188 	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2189 	if (!action)
2190 		return -ENOMEM;
2191 
2192 	action->handler = handler;
2193 	action->flags = irqflags | IRQF_NO_THREAD | IRQF_NOBALANCING;
2194 	action->name = name;
2195 	action->dev_id = dev_id;
2196 
2197 	retval = irq_chip_pm_get(&desc->irq_data);
2198 	if (retval < 0)
2199 		goto err_out;
2200 
2201 	retval = __setup_irq(irq, desc, action);
2202 	if (retval)
2203 		goto err_irq_setup;
2204 
2205 	raw_spin_lock_irqsave(&desc->lock, flags);
2206 
2207 	/* Setup NMI state */
2208 	desc->istate |= IRQS_NMI;
2209 	retval = irq_nmi_setup(desc);
2210 	if (retval) {
2211 		__cleanup_nmi(irq, desc);
2212 		raw_spin_unlock_irqrestore(&desc->lock, flags);
2213 		return -EINVAL;
2214 	}
2215 
2216 	raw_spin_unlock_irqrestore(&desc->lock, flags);
2217 
2218 	return 0;
2219 
2220 err_irq_setup:
2221 	irq_chip_pm_put(&desc->irq_data);
2222 err_out:
2223 	kfree(action);
2224 
2225 	return retval;
2226 }
2227 
enable_percpu_irq(unsigned int irq,unsigned int type)2228 void enable_percpu_irq(unsigned int irq, unsigned int type)
2229 {
2230 	unsigned int cpu = smp_processor_id();
2231 	unsigned long flags;
2232 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2233 
2234 	if (!desc)
2235 		return;
2236 
2237 	/*
2238 	 * If the trigger type is not specified by the caller, then
2239 	 * use the default for this interrupt.
2240 	 */
2241 	type &= IRQ_TYPE_SENSE_MASK;
2242 	if (type == IRQ_TYPE_NONE)
2243 		type = irqd_get_trigger_type(&desc->irq_data);
2244 
2245 	if (type != IRQ_TYPE_NONE) {
2246 		int ret;
2247 
2248 		ret = __irq_set_trigger(desc, type);
2249 
2250 		if (ret) {
2251 			WARN(1, "failed to set type for IRQ%d\n", irq);
2252 			goto out;
2253 		}
2254 	}
2255 
2256 	irq_percpu_enable(desc, cpu);
2257 out:
2258 	irq_put_desc_unlock(desc, flags);
2259 }
2260 EXPORT_SYMBOL_GPL(enable_percpu_irq);
2261 
enable_percpu_nmi(unsigned int irq,unsigned int type)2262 void enable_percpu_nmi(unsigned int irq, unsigned int type)
2263 {
2264 	enable_percpu_irq(irq, type);
2265 }
2266 
2267 /**
2268  * irq_percpu_is_enabled - Check whether the per cpu irq is enabled
2269  * @irq:	Linux irq number to check for
2270  *
2271  * Must be called from a non migratable context. Returns the enable
2272  * state of a per cpu interrupt on the current cpu.
2273  */
irq_percpu_is_enabled(unsigned int irq)2274 bool irq_percpu_is_enabled(unsigned int irq)
2275 {
2276 	unsigned int cpu = smp_processor_id();
2277 	struct irq_desc *desc;
2278 	unsigned long flags;
2279 	bool is_enabled;
2280 
2281 	desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2282 	if (!desc)
2283 		return false;
2284 
2285 	is_enabled = cpumask_test_cpu(cpu, desc->percpu_enabled);
2286 	irq_put_desc_unlock(desc, flags);
2287 
2288 	return is_enabled;
2289 }
2290 EXPORT_SYMBOL_GPL(irq_percpu_is_enabled);
2291 
disable_percpu_irq(unsigned int irq)2292 void disable_percpu_irq(unsigned int irq)
2293 {
2294 	unsigned int cpu = smp_processor_id();
2295 	unsigned long flags;
2296 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2297 
2298 	if (!desc)
2299 		return;
2300 
2301 	irq_percpu_disable(desc, cpu);
2302 	irq_put_desc_unlock(desc, flags);
2303 }
2304 EXPORT_SYMBOL_GPL(disable_percpu_irq);
2305 
disable_percpu_nmi(unsigned int irq)2306 void disable_percpu_nmi(unsigned int irq)
2307 {
2308 	disable_percpu_irq(irq);
2309 }
2310 
2311 /*
2312  * Internal function to unregister a percpu irqaction.
2313  */
__free_percpu_irq(unsigned int irq,void __percpu * dev_id)2314 static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2315 {
2316 	struct irq_desc *desc = irq_to_desc(irq);
2317 	struct irqaction *action;
2318 	unsigned long flags;
2319 
2320 	WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
2321 
2322 	if (!desc)
2323 		return NULL;
2324 
2325 	raw_spin_lock_irqsave(&desc->lock, flags);
2326 
2327 	action = desc->action;
2328 	if (!action || action->percpu_dev_id != dev_id) {
2329 		WARN(1, "Trying to free already-free IRQ %d\n", irq);
2330 		goto bad;
2331 	}
2332 
2333 	if (!cpumask_empty(desc->percpu_enabled)) {
2334 		WARN(1, "percpu IRQ %d still enabled on CPU%d!\n",
2335 		     irq, cpumask_first(desc->percpu_enabled));
2336 		goto bad;
2337 	}
2338 
2339 	/* Found it - now remove it from the list of entries: */
2340 	desc->action = NULL;
2341 
2342 	desc->istate &= ~IRQS_NMI;
2343 
2344 	raw_spin_unlock_irqrestore(&desc->lock, flags);
2345 
2346 	unregister_handler_proc(irq, action);
2347 
2348 	irq_chip_pm_put(&desc->irq_data);
2349 	module_put(desc->owner);
2350 	return action;
2351 
2352 bad:
2353 	raw_spin_unlock_irqrestore(&desc->lock, flags);
2354 	return NULL;
2355 }
2356 
2357 /**
2358  *	remove_percpu_irq - free a per-cpu interrupt
2359  *	@irq: Interrupt line to free
2360  *	@act: irqaction for the interrupt
2361  *
2362  * Used to remove interrupts statically setup by the early boot process.
2363  */
remove_percpu_irq(unsigned int irq,struct irqaction * act)2364 void remove_percpu_irq(unsigned int irq, struct irqaction *act)
2365 {
2366 	struct irq_desc *desc = irq_to_desc(irq);
2367 
2368 	if (desc && irq_settings_is_per_cpu_devid(desc))
2369 	    __free_percpu_irq(irq, act->percpu_dev_id);
2370 }
2371 
2372 /**
2373  *	free_percpu_irq - free an interrupt allocated with request_percpu_irq
2374  *	@irq: Interrupt line to free
2375  *	@dev_id: Device identity to free
2376  *
2377  *	Remove a percpu interrupt handler. The handler is removed, but
2378  *	the interrupt line is not disabled. This must be done on each
2379  *	CPU before calling this function. The function does not return
2380  *	until any executing interrupts for this IRQ have completed.
2381  *
2382  *	This function must not be called from interrupt context.
2383  */
free_percpu_irq(unsigned int irq,void __percpu * dev_id)2384 void free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2385 {
2386 	struct irq_desc *desc = irq_to_desc(irq);
2387 
2388 	if (!desc || !irq_settings_is_per_cpu_devid(desc))
2389 		return;
2390 
2391 	chip_bus_lock(desc);
2392 	kfree(__free_percpu_irq(irq, dev_id));
2393 	chip_bus_sync_unlock(desc);
2394 }
2395 EXPORT_SYMBOL_GPL(free_percpu_irq);
2396 
free_percpu_nmi(unsigned int irq,void __percpu * dev_id)2397 void free_percpu_nmi(unsigned int irq, void __percpu *dev_id)
2398 {
2399 	struct irq_desc *desc = irq_to_desc(irq);
2400 
2401 	if (!desc || !irq_settings_is_per_cpu_devid(desc))
2402 		return;
2403 
2404 	if (WARN_ON(!(desc->istate & IRQS_NMI)))
2405 		return;
2406 
2407 	kfree(__free_percpu_irq(irq, dev_id));
2408 }
2409 
2410 /**
2411  *	setup_percpu_irq - setup a per-cpu interrupt
2412  *	@irq: Interrupt line to setup
2413  *	@act: irqaction for the interrupt
2414  *
2415  * Used to statically setup per-cpu interrupts in the early boot process.
2416  */
setup_percpu_irq(unsigned int irq,struct irqaction * act)2417 int setup_percpu_irq(unsigned int irq, struct irqaction *act)
2418 {
2419 	struct irq_desc *desc = irq_to_desc(irq);
2420 	int retval;
2421 
2422 	if (!desc || !irq_settings_is_per_cpu_devid(desc))
2423 		return -EINVAL;
2424 
2425 	retval = irq_chip_pm_get(&desc->irq_data);
2426 	if (retval < 0)
2427 		return retval;
2428 
2429 	retval = __setup_irq(irq, desc, act);
2430 
2431 	if (retval)
2432 		irq_chip_pm_put(&desc->irq_data);
2433 
2434 	return retval;
2435 }
2436 
2437 /**
2438  *	__request_percpu_irq - allocate a percpu interrupt line
2439  *	@irq: Interrupt line to allocate
2440  *	@handler: Function to be called when the IRQ occurs.
2441  *	@flags: Interrupt type flags (IRQF_TIMER only)
2442  *	@devname: An ascii name for the claiming device
2443  *	@dev_id: A percpu cookie passed back to the handler function
2444  *
2445  *	This call allocates interrupt resources and enables the
2446  *	interrupt on the local CPU. If the interrupt is supposed to be
2447  *	enabled on other CPUs, it has to be done on each CPU using
2448  *	enable_percpu_irq().
2449  *
2450  *	Dev_id must be globally unique. It is a per-cpu variable, and
2451  *	the handler gets called with the interrupted CPU's instance of
2452  *	that variable.
2453  */
__request_percpu_irq(unsigned int irq,irq_handler_t handler,unsigned long flags,const char * devname,void __percpu * dev_id)2454 int __request_percpu_irq(unsigned int irq, irq_handler_t handler,
2455 			 unsigned long flags, const char *devname,
2456 			 void __percpu *dev_id)
2457 {
2458 	struct irqaction *action;
2459 	struct irq_desc *desc;
2460 	int retval;
2461 
2462 	if (!dev_id)
2463 		return -EINVAL;
2464 
2465 	desc = irq_to_desc(irq);
2466 	if (!desc || !irq_settings_can_request(desc) ||
2467 	    !irq_settings_is_per_cpu_devid(desc))
2468 		return -EINVAL;
2469 
2470 	if (flags && flags != IRQF_TIMER)
2471 		return -EINVAL;
2472 
2473 	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2474 	if (!action)
2475 		return -ENOMEM;
2476 
2477 	action->handler = handler;
2478 	action->flags = flags | IRQF_PERCPU | IRQF_NO_SUSPEND;
2479 	action->name = devname;
2480 	action->percpu_dev_id = dev_id;
2481 
2482 	retval = irq_chip_pm_get(&desc->irq_data);
2483 	if (retval < 0) {
2484 		kfree(action);
2485 		return retval;
2486 	}
2487 
2488 	retval = __setup_irq(irq, desc, action);
2489 
2490 	if (retval) {
2491 		irq_chip_pm_put(&desc->irq_data);
2492 		kfree(action);
2493 	}
2494 
2495 	return retval;
2496 }
2497 EXPORT_SYMBOL_GPL(__request_percpu_irq);
2498 
2499 /**
2500  *	request_percpu_nmi - allocate a percpu interrupt line for NMI delivery
2501  *	@irq: Interrupt line to allocate
2502  *	@handler: Function to be called when the IRQ occurs.
2503  *	@name: An ascii name for the claiming device
2504  *	@dev_id: A percpu cookie passed back to the handler function
2505  *
2506  *	This call allocates interrupt resources for a per CPU NMI. Per CPU NMIs
2507  *	have to be setup on each CPU by calling prepare_percpu_nmi() before
2508  *	being enabled on the same CPU by using enable_percpu_nmi().
2509  *
2510  *	Dev_id must be globally unique. It is a per-cpu variable, and
2511  *	the handler gets called with the interrupted CPU's instance of
2512  *	that variable.
2513  *
2514  *	Interrupt lines requested for NMI delivering should have auto enabling
2515  *	setting disabled.
2516  *
2517  *	If the interrupt line cannot be used to deliver NMIs, function
2518  *	will fail returning a negative value.
2519  */
request_percpu_nmi(unsigned int irq,irq_handler_t handler,const char * name,void __percpu * dev_id)2520 int request_percpu_nmi(unsigned int irq, irq_handler_t handler,
2521 		       const char *name, void __percpu *dev_id)
2522 {
2523 	struct irqaction *action;
2524 	struct irq_desc *desc;
2525 	unsigned long flags;
2526 	int retval;
2527 
2528 	if (!handler)
2529 		return -EINVAL;
2530 
2531 	desc = irq_to_desc(irq);
2532 
2533 	if (!desc || !irq_settings_can_request(desc) ||
2534 	    !irq_settings_is_per_cpu_devid(desc) ||
2535 	    irq_settings_can_autoenable(desc) ||
2536 	    !irq_supports_nmi(desc))
2537 		return -EINVAL;
2538 
2539 	/* The line cannot already be NMI */
2540 	if (desc->istate & IRQS_NMI)
2541 		return -EINVAL;
2542 
2543 	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2544 	if (!action)
2545 		return -ENOMEM;
2546 
2547 	action->handler = handler;
2548 	action->flags = IRQF_PERCPU | IRQF_NO_SUSPEND | IRQF_NO_THREAD
2549 		| IRQF_NOBALANCING;
2550 	action->name = name;
2551 	action->percpu_dev_id = dev_id;
2552 
2553 	retval = irq_chip_pm_get(&desc->irq_data);
2554 	if (retval < 0)
2555 		goto err_out;
2556 
2557 	retval = __setup_irq(irq, desc, action);
2558 	if (retval)
2559 		goto err_irq_setup;
2560 
2561 	raw_spin_lock_irqsave(&desc->lock, flags);
2562 	desc->istate |= IRQS_NMI;
2563 	raw_spin_unlock_irqrestore(&desc->lock, flags);
2564 
2565 	return 0;
2566 
2567 err_irq_setup:
2568 	irq_chip_pm_put(&desc->irq_data);
2569 err_out:
2570 	kfree(action);
2571 
2572 	return retval;
2573 }
2574 
2575 /**
2576  *	prepare_percpu_nmi - performs CPU local setup for NMI delivery
2577  *	@irq: Interrupt line to prepare for NMI delivery
2578  *
2579  *	This call prepares an interrupt line to deliver NMI on the current CPU,
2580  *	before that interrupt line gets enabled with enable_percpu_nmi().
2581  *
2582  *	As a CPU local operation, this should be called from non-preemptible
2583  *	context.
2584  *
2585  *	If the interrupt line cannot be used to deliver NMIs, function
2586  *	will fail returning a negative value.
2587  */
prepare_percpu_nmi(unsigned int irq)2588 int prepare_percpu_nmi(unsigned int irq)
2589 {
2590 	unsigned long flags;
2591 	struct irq_desc *desc;
2592 	int ret = 0;
2593 
2594 	WARN_ON(preemptible());
2595 
2596 	desc = irq_get_desc_lock(irq, &flags,
2597 				 IRQ_GET_DESC_CHECK_PERCPU);
2598 	if (!desc)
2599 		return -EINVAL;
2600 
2601 	if (WARN(!(desc->istate & IRQS_NMI),
2602 		 KERN_ERR "prepare_percpu_nmi called for a non-NMI interrupt: irq %u\n",
2603 		 irq)) {
2604 		ret = -EINVAL;
2605 		goto out;
2606 	}
2607 
2608 	ret = irq_nmi_setup(desc);
2609 	if (ret) {
2610 		pr_err("Failed to setup NMI delivery: irq %u\n", irq);
2611 		goto out;
2612 	}
2613 
2614 out:
2615 	irq_put_desc_unlock(desc, flags);
2616 	return ret;
2617 }
2618 
2619 /**
2620  *	teardown_percpu_nmi - undoes NMI setup of IRQ line
2621  *	@irq: Interrupt line from which CPU local NMI configuration should be
2622  *	      removed
2623  *
2624  *	This call undoes the setup done by prepare_percpu_nmi().
2625  *
2626  *	IRQ line should not be enabled for the current CPU.
2627  *
2628  *	As a CPU local operation, this should be called from non-preemptible
2629  *	context.
2630  */
teardown_percpu_nmi(unsigned int irq)2631 void teardown_percpu_nmi(unsigned int irq)
2632 {
2633 	unsigned long flags;
2634 	struct irq_desc *desc;
2635 
2636 	WARN_ON(preemptible());
2637 
2638 	desc = irq_get_desc_lock(irq, &flags,
2639 				 IRQ_GET_DESC_CHECK_PERCPU);
2640 	if (!desc)
2641 		return;
2642 
2643 	if (WARN_ON(!(desc->istate & IRQS_NMI)))
2644 		goto out;
2645 
2646 	irq_nmi_teardown(desc);
2647 out:
2648 	irq_put_desc_unlock(desc, flags);
2649 }
2650 
__irq_get_irqchip_state(struct irq_data * data,enum irqchip_irq_state which,bool * state)2651 int __irq_get_irqchip_state(struct irq_data *data, enum irqchip_irq_state which,
2652 			    bool *state)
2653 {
2654 	struct irq_chip *chip;
2655 	int err = -EINVAL;
2656 
2657 	do {
2658 		chip = irq_data_get_irq_chip(data);
2659 		if (WARN_ON_ONCE(!chip))
2660 			return -ENODEV;
2661 		if (chip->irq_get_irqchip_state)
2662 			break;
2663 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2664 		data = data->parent_data;
2665 #else
2666 		data = NULL;
2667 #endif
2668 	} while (data);
2669 
2670 	if (data)
2671 		err = chip->irq_get_irqchip_state(data, which, state);
2672 	return err;
2673 }
2674 
2675 /**
2676  *	irq_get_irqchip_state - returns the irqchip state of a interrupt.
2677  *	@irq: Interrupt line that is forwarded to a VM
2678  *	@which: One of IRQCHIP_STATE_* the caller wants to know about
2679  *	@state: a pointer to a boolean where the state is to be storeed
2680  *
2681  *	This call snapshots the internal irqchip state of an
2682  *	interrupt, returning into @state the bit corresponding to
2683  *	stage @which
2684  *
2685  *	This function should be called with preemption disabled if the
2686  *	interrupt controller has per-cpu registers.
2687  */
irq_get_irqchip_state(unsigned int irq,enum irqchip_irq_state which,bool * state)2688 int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2689 			  bool *state)
2690 {
2691 	struct irq_desc *desc;
2692 	struct irq_data *data;
2693 	unsigned long flags;
2694 	int err = -EINVAL;
2695 
2696 	desc = irq_get_desc_buslock(irq, &flags, 0);
2697 	if (!desc)
2698 		return err;
2699 
2700 	data = irq_desc_get_irq_data(desc);
2701 
2702 	err = __irq_get_irqchip_state(data, which, state);
2703 
2704 	irq_put_desc_busunlock(desc, flags);
2705 	return err;
2706 }
2707 EXPORT_SYMBOL_GPL(irq_get_irqchip_state);
2708 
2709 /**
2710  *	irq_set_irqchip_state - set the state of a forwarded interrupt.
2711  *	@irq: Interrupt line that is forwarded to a VM
2712  *	@which: State to be restored (one of IRQCHIP_STATE_*)
2713  *	@val: Value corresponding to @which
2714  *
2715  *	This call sets the internal irqchip state of an interrupt,
2716  *	depending on the value of @which.
2717  *
2718  *	This function should be called with preemption disabled if the
2719  *	interrupt controller has per-cpu registers.
2720  */
irq_set_irqchip_state(unsigned int irq,enum irqchip_irq_state which,bool val)2721 int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2722 			  bool val)
2723 {
2724 	struct irq_desc *desc;
2725 	struct irq_data *data;
2726 	struct irq_chip *chip;
2727 	unsigned long flags;
2728 	int err = -EINVAL;
2729 
2730 	desc = irq_get_desc_buslock(irq, &flags, 0);
2731 	if (!desc)
2732 		return err;
2733 
2734 	data = irq_desc_get_irq_data(desc);
2735 
2736 	do {
2737 		chip = irq_data_get_irq_chip(data);
2738 		if (WARN_ON_ONCE(!chip)) {
2739 			err = -ENODEV;
2740 			goto out_unlock;
2741 		}
2742 		if (chip->irq_set_irqchip_state)
2743 			break;
2744 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2745 		data = data->parent_data;
2746 #else
2747 		data = NULL;
2748 #endif
2749 	} while (data);
2750 
2751 	if (data)
2752 		err = chip->irq_set_irqchip_state(data, which, val);
2753 
2754 out_unlock:
2755 	irq_put_desc_busunlock(desc, flags);
2756 	return err;
2757 }
2758 EXPORT_SYMBOL_GPL(irq_set_irqchip_state);
2759