1 /**
2 * Copyright 2020 Huawei Technologies Co., Ltd
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "nnacl/int8/fixed_point.h"
18
19 // returns the high-32 bits of a * b with rounding
20 // assume that a and b is divided by 2^31, who fall into [-1, 1]
21 // so the mantissa of a * b is (a / 2^31) * (b / 2^31) * 2^31= (a * b) / 2^31
22 // actually we compute 2 * a * b / 2^32
23 // and take 32 bits of mantissa for rounding
SaturatingRoundingDoublingHighMul(int a,int b)24 int SaturatingRoundingDoublingHighMul(int a, int b) {
25 if (a == INT_MIN && b == INT_MIN) {
26 return INT_MAX;
27 }
28 int64_t ab = ((int64_t)a) * ((int64_t)b);
29 int64_t rounding = ab >= 0 ? (1ll << 30) : (1ll - (1ll << 30));
30 // do not apply right shift to potential negetive values
31 int ab_mantissa = (int)((ab + rounding) / (1ll << 31));
32 return ab_mantissa;
33 }
34
SaturatingRoundingDoublingHighMulInt16(int16_t a,int16_t b)35 int16_t SaturatingRoundingDoublingHighMulInt16(int16_t a, int16_t b) {
36 if (a == SHRT_MIN && b == SHRT_MIN) {
37 return SHRT_MAX;
38 }
39 int32_t ab = ((int32_t)a) * ((int32_t)b);
40 int16_t rounding = ab >= 0 ? (1ll << 14) : (1ll - (1ll << 14));
41 return (int16_t)((ab + rounding) / (1ll << 15));
42 }
43
44 // division by a 2^exponent with rounding
45 // or arithmetic right shift with rounding
RoundingDivideByPOT(int x,int exponent)46 int RoundingDivideByPOT(int x, int exponent) {
47 const int mask = (1ll << exponent) - 1;
48 const int remainder = x & mask;
49 const int threshold = (mask >> 1) + (x < 0 ? 1 : 0);
50 return (x >> exponent) + (remainder > threshold ? 1 : 0);
51 }
52
UpwardRounding(int x,int exponent)53 int UpwardRounding(int x, int exponent) {
54 const int32_t rounding_offset = (exponent > 0) ? (1 << (exponent - 1)) : 0;
55 if (x > INT32_MAX - rounding_offset) {
56 return 1 << (31 - exponent);
57 }
58 return (x + rounding_offset) >> exponent;
59 }
60
MultiplyByQuantizedMultiplier(int32_t value,int32_t multiplier,int32_t left_shift,int32_t right_shift)61 int MultiplyByQuantizedMultiplier(int32_t value, int32_t multiplier, int32_t left_shift, int32_t right_shift) {
62 return RoundingDivideByPOT(SaturatingRoundingDoublingHighMul(value * (1 << left_shift), multiplier), -right_shift);
63 }
64
MultiplyByQuantizedMultiplierWithUpwardRounding(int32_t value,int32_t multiplier,int32_t left_shift,int32_t right_shift)65 int MultiplyByQuantizedMultiplierWithUpwardRounding(int32_t value, int32_t multiplier, int32_t left_shift,
66 int32_t right_shift) {
67 return UpwardRounding(SaturatingRoundingDoublingHighMul(value * (1 << left_shift), multiplier), -right_shift);
68 }
69
MultiplyByMultiplierAndRightShift(int32_t value,int32_t multiplier,int32_t right_shift)70 int MultiplyByMultiplierAndRightShift(int32_t value, int32_t multiplier, int32_t right_shift) {
71 return RoundingDivideByPOT(SaturatingRoundingDoublingHighMul(value, multiplier), right_shift);
72 }
73
FractionsBits(int integer_bits)74 int FractionsBits(int integer_bits) { return 8 * (int)(sizeof(int32_t)) - 1 - integer_bits; }
75
FixedPoint_One(int integer_bits,int fractions_bits)76 int FixedPoint_One(int integer_bits, int fractions_bits) {
77 return (integer_bits == 0 ? INT32_MAX : ((1) << (uint32_t)(integer_bits == 0 ? 0 : fractions_bits)));
78 }
79
RoundingHalfSum(int32_t a,int32_t b)80 int RoundingHalfSum(int32_t a, int32_t b) {
81 int64_t sum = (int64_t)a + (int64_t)b;
82 return (int32_t)((sum + (sum > 0 ? 1 : -1)) / 2);
83 }
84
BitAnd(int32_t a,int32_t b)85 int32_t BitAnd(int32_t a, int32_t b) { return (uint32_t)a & (uint32_t)b; }
86
BitOr(int32_t a,int32_t b)87 int32_t BitOr(int32_t a, int32_t b) { return (uint32_t)a | (uint32_t)b; }
88
BitXor(int32_t a,int32_t b)89 int32_t BitXor(int32_t a, int32_t b) { return (uint32_t)a ^ (uint32_t)b; }
90
BitNot(int32_t a)91 int32_t BitNot(int32_t a) { return ~(uint32_t)a; }
92
BitsSelect(int mask,int bound,int val)93 int BitsSelect(int mask, int bound, int val) { return BitXor(BitAnd(mask, bound), BitAnd(BitNot(mask), val)); }
94
ConstantPOT(int fractional_bits,int exponent)95 int ConstantPOT(int fractional_bits, int exponent) { return (1 << (uint32_t)(fractional_bits + exponent)); }
96
MaskIfNonZero(int32_t a)97 int32_t MaskIfNonZero(int32_t a) { return a ? BitNot(0) : 0; }
98
MaskIfZero(int32_t a)99 int32_t MaskIfZero(int32_t a) { return MaskIfNonZero(!a); }
100
MaskIfLessThan(int32_t a,int32_t b)101 int32_t MaskIfLessThan(int32_t a, int32_t b) { return MaskIfNonZero((a < b)); }
102
CountLeadingZeroBits(uint32_t x)103 int CountLeadingZeroBits(uint32_t x) {
104 #if defined(__GUNC__)
105 return x ? __builtin_clz(x) : 8 * sizeof(uint32_t);
106 #else
107 if (x == 0) {
108 return 8 * sizeof(uint32_t);
109 }
110 const int32_t leading_positive = (uint32_t)(1) << (8 * sizeof(uint32_t) - 1);
111 int leading_zeros = 0;
112 while (x < leading_positive) {
113 x <<= 1;
114 leading_zeros++;
115 }
116 return leading_zeros;
117 #endif
118 }
119
CountLeadingSignBits(int32_t x)120 int CountLeadingSignBits(int32_t x) {
121 #if defined(__GUNC__) && !defined(__clang__)
122 return x ? __builtin_clrsb(x) : 8 * sizeof(int32_t);
123 #else
124 return x >= 0 ? CountLeadingZeroBits((uint32_t)x) - 1 : x != INT32_MIN ? CountLeadingZeroBits(2 * (uint32_t)(-x)) : 0;
125 #endif
126 }
127
SaturatingRoundingMultiplyByPOT(int32_t x,int exponent)128 int SaturatingRoundingMultiplyByPOT(int32_t x, int exponent) {
129 if (exponent > 0) {
130 const int min = INT32_MIN;
131 const int max = INT32_MAX;
132 const int scalar_int_bits = 8 * (int)(sizeof(int32_t));
133 const int threshold = ((1 << (uint32_t)(scalar_int_bits - 1 - exponent)) - 1);
134 const int positive_mask = x > threshold ? BitNot(0) : 0;
135 const int negative_mask = x < -threshold ? BitNot(0) : 0;
136 int result = x * ((int32_t)(1) << (uint32_t)exponent);
137 result = BitsSelect(positive_mask, max, result);
138 result = BitsSelect(negative_mask, min, result);
139 return result;
140 } else if (exponent < 0) {
141 return RoundingDivideByPOT(x, -exponent);
142 } else {
143 return x;
144 }
145 }
146
Rescale(int x,int integer_bits_src,int integer_bits_dst)147 int32_t Rescale(int x, int integer_bits_src, int integer_bits_dst) {
148 int exponent = integer_bits_src - integer_bits_dst;
149 return SaturatingRoundingMultiplyByPOT(x, exponent);
150 }
151
reciprocal_on_interval_between_0_1(int32_t a)152 int32_t reciprocal_on_interval_between_0_1(int32_t a) {
153 int one = FixedPoint_One(0, FractionsBits(0));
154 int half_sum = RoundingHalfSum(a, one);
155 const int constant_48_over_17 = 1515870810;
156 const int constant_neg_32_over_17 = -1010580540;
157 int x = constant_48_over_17 + SaturatingRoundingDoublingHighMul(half_sum, constant_neg_32_over_17);
158 for (int i = 0; i < 3; i++) {
159 int half_sum_times_x = SaturatingRoundingDoublingHighMul(half_sum, x);
160 int one_minus_half_sum_times_x = FixedPoint_One(2, FractionsBits(2)) - half_sum_times_x;
161 x = x + Rescale(SaturatingRoundingDoublingHighMul(x, one_minus_half_sum_times_x), 2 + 2, 2);
162 }
163 return Rescale(x, 2 - 1, 0);
164 }
165
ComputerReciprocal(int32_t x,int x_digits,int * recip_shift)166 int32_t ComputerReciprocal(int32_t x, int x_digits, int *recip_shift) {
167 int leading_zreos_plus_one = CountLeadingZeroBits((uint32_t)x);
168 *recip_shift = x_digits - leading_zreos_plus_one;
169 const int32_t shifted_minus_one = (int32_t)(((uint32_t)x << leading_zreos_plus_one) - ((uint32_t)(1) << 31));
170 const int32_t shifted_scaled = reciprocal_on_interval_between_0_1(shifted_minus_one);
171 return shifted_scaled;
172 }
173
exp_on_interval_values(int a)174 int exp_on_interval_values(int a) {
175 const int constant_neg_1_over_8 = 1895147668;
176 const int constant_1_over_3 = 715827883;
177 int fractional_bits = FractionsBits(0);
178 int x = a + ConstantPOT(fractional_bits, -3);
179 int x2 = SaturatingRoundingDoublingHighMul(x, x);
180 int x3 = SaturatingRoundingDoublingHighMul(x2, x);
181 int x4 = SaturatingRoundingDoublingHighMul(x2, x2);
182 int x4_over_4 = SaturatingRoundingMultiplyByPOT(x4, -2);
183 int x4_over_24_plus_x3_over_6_plus_x2_over_2 =
184 SaturatingRoundingMultiplyByPOT((SaturatingRoundingDoublingHighMul((x4_over_4 + x3), constant_1_over_3) + x2), -1);
185 return constant_neg_1_over_8 +
186 SaturatingRoundingDoublingHighMul(constant_neg_1_over_8, (x + x4_over_24_plus_x3_over_6_plus_x2_over_2));
187 }
188
exp_barrel_shifter(int exponent,int muliplier,int integer_bits,int fractional_bits,int remainder,int * result)189 void exp_barrel_shifter(int exponent, int muliplier, int integer_bits, int fractional_bits, int remainder,
190 int *result) {
191 if (integer_bits > exponent) {
192 int total_shift = integer_bits > exponent ? fractional_bits + exponent : 0;
193 *result = BitsSelect(MaskIfNonZero(BitAnd(remainder, (1 << (uint32_t)total_shift))),
194 SaturatingRoundingDoublingHighMul(*result, muliplier), *result);
195 }
196 }
197
exp_on_negative_values(int a,const int integer_bits)198 int exp_on_negative_values(int a, const int integer_bits) {
199 int fractional_bits = FractionsBits(integer_bits);
200 const int one_quarter = ConstantPOT(fractional_bits, -2);
201 int a_mod_quarter_minus_one_quarter = ((unsigned)(a) & (one_quarter - 1)) - one_quarter;
202 int result = exp_on_interval_values(Rescale(a_mod_quarter_minus_one_quarter, integer_bits, 0));
203 int remainder = a_mod_quarter_minus_one_quarter - a;
204
205 exp_barrel_shifter(-2, 1672461947, integer_bits, fractional_bits, remainder, &result);
206 exp_barrel_shifter(-1, 1302514674, integer_bits, fractional_bits, remainder, &result);
207 exp_barrel_shifter(+0, 790015084, integer_bits, fractional_bits, remainder, &result);
208 exp_barrel_shifter(+1, 290630308, integer_bits, fractional_bits, remainder, &result);
209 exp_barrel_shifter(+2, 39332535, integer_bits, fractional_bits, remainder, &result);
210 exp_barrel_shifter(+3, 720401, integer_bits, fractional_bits, remainder, &result);
211 exp_barrel_shifter(+4, 242, integer_bits, fractional_bits, remainder, &result);
212
213 int clamp_bits = integer_bits > 5 ? 36 - integer_bits : 0;
214 if (integer_bits > 5) {
215 const int clamp = -(1 << (uint32_t)clamp_bits);
216 result = BitsSelect(MaskIfLessThan(a, clamp), 0, result);
217 }
218 result = BitsSelect(MaskIfZero(a), FixedPoint_One(0, fractional_bits), result);
219 return result;
220 }
221
GetSqrtQuantMultiplierExp(int32_t input,int reverse_shift,int32_t * multiplier,int32_t * shift)222 void GetSqrtQuantMultiplierExp(int32_t input, int reverse_shift, int32_t *multiplier, int32_t *shift) {
223 if (input <= 1) {
224 *multiplier = INT_MAX;
225 *shift = 0;
226 }
227 *shift = 11;
228 while (input >= (1 << 29)) {
229 input /= 4;
230 ++*shift;
231 }
232 int max_left_shift_bits = CountLeadingSignBits(input);
233 int left_shift_bit_pairs = max_left_shift_bits / 2 - 1;
234 *shift -= left_shift_bit_pairs;
235 input <<= 2 * left_shift_bit_pairs;
236 int32_t fixedpoint_f3_input = input >> 1; // sign: 1 bit, integer: 3 bit, fractional: 28 bit
237 int32_t fp_f3_half_input = SaturatingRoundingMultiplyByPOT(fixedpoint_f3_input, -1);
238 int32_t fp_f3_half_three = (1 << 28) + (1 << 27);
239 int32_t tmp = (1 << 28); // one
240 for (int i = 0; i < 5; i++) {
241 int32_t tmp3 = Rescale(SaturatingRoundingDoublingHighMul(tmp, SaturatingRoundingDoublingHighMul(tmp, tmp)), 9, 3);
242 tmp = Rescale(SaturatingRoundingDoublingHighMul(fp_f3_half_three, tmp) -
243 SaturatingRoundingDoublingHighMul(fp_f3_half_input, tmp3),
244 6, 3);
245 }
246 const int32_t fp_f0_half_sqrt_2 = 1518500250; // sqrt(2) / 2
247 tmp = SaturatingRoundingDoublingHighMul(tmp, fp_f0_half_sqrt_2);
248 *multiplier = tmp;
249 if (*shift < 0) {
250 *multiplier <<= -*shift;
251 *shift = 0;
252 }
253 *shift *= reverse_shift;
254 }
255
256 #ifdef ENABLE_NEON
RoundingDivideByPOTInt32x4(int32x4_t x,int exponent)257 int32x4_t RoundingDivideByPOTInt32x4(int32x4_t x, int exponent) {
258 const int32x4_t shift_vec = vdupq_n_s32(-exponent);
259 const int32x4_t fixup = vshrq_n_s32(vandq_s32(x, shift_vec), 31);
260 const int32x4_t fixed_up_x = vqaddq_s32(x, fixup);
261 return vrshlq_s32(fixed_up_x, shift_vec);
262 }
263
SaturatingRoundingDoublingHighMulInt32x4(int32x4_t a,int32x4_t b)264 int32x4_t SaturatingRoundingDoublingHighMulInt32x4(int32x4_t a, int32x4_t b) { return vqrdmulhq_s32(a, b); }
265 #endif
266