• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/inode.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  64-bit file support on 64-bit platforms by Jakub Jelinek
17  *	(jj@sunsite.ms.mff.cuni.cz)
18  *
19  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20  */
21 
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/dax.h>
27 #include <linux/quotaops.h>
28 #include <linux/string.h>
29 #include <linux/buffer_head.h>
30 #include <linux/writeback.h>
31 #include <linux/pagevec.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/uio.h>
35 #include <linux/bio.h>
36 #include <linux/workqueue.h>
37 #include <linux/kernel.h>
38 #include <linux/printk.h>
39 #include <linux/slab.h>
40 #include <linux/bitops.h>
41 #include <linux/iomap.h>
42 #include <linux/iversion.h>
43 
44 #include "ext4_jbd2.h"
45 #include "xattr.h"
46 #include "acl.h"
47 #include "truncate.h"
48 
49 #include <trace/events/ext4.h>
50 
ext4_inode_csum(struct inode * inode,struct ext4_inode * raw,struct ext4_inode_info * ei)51 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
52 			      struct ext4_inode_info *ei)
53 {
54 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
55 	__u32 csum;
56 	__u16 dummy_csum = 0;
57 	int offset = offsetof(struct ext4_inode, i_checksum_lo);
58 	unsigned int csum_size = sizeof(dummy_csum);
59 
60 	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
61 	csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
62 	offset += csum_size;
63 	csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
64 			   EXT4_GOOD_OLD_INODE_SIZE - offset);
65 
66 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
67 		offset = offsetof(struct ext4_inode, i_checksum_hi);
68 		csum = ext4_chksum(sbi, csum, (__u8 *)raw +
69 				   EXT4_GOOD_OLD_INODE_SIZE,
70 				   offset - EXT4_GOOD_OLD_INODE_SIZE);
71 		if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
72 			csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
73 					   csum_size);
74 			offset += csum_size;
75 		}
76 		csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
77 				   EXT4_INODE_SIZE(inode->i_sb) - offset);
78 	}
79 
80 	return csum;
81 }
82 
ext4_inode_csum_verify(struct inode * inode,struct ext4_inode * raw,struct ext4_inode_info * ei)83 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
84 				  struct ext4_inode_info *ei)
85 {
86 	__u32 provided, calculated;
87 
88 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
89 	    cpu_to_le32(EXT4_OS_LINUX) ||
90 	    !ext4_has_metadata_csum(inode->i_sb))
91 		return 1;
92 
93 	provided = le16_to_cpu(raw->i_checksum_lo);
94 	calculated = ext4_inode_csum(inode, raw, ei);
95 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
96 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
97 		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
98 	else
99 		calculated &= 0xFFFF;
100 
101 	return provided == calculated;
102 }
103 
ext4_inode_csum_set(struct inode * inode,struct ext4_inode * raw,struct ext4_inode_info * ei)104 void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
105 			 struct ext4_inode_info *ei)
106 {
107 	__u32 csum;
108 
109 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
110 	    cpu_to_le32(EXT4_OS_LINUX) ||
111 	    !ext4_has_metadata_csum(inode->i_sb))
112 		return;
113 
114 	csum = ext4_inode_csum(inode, raw, ei);
115 	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
116 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
117 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
118 		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
119 }
120 
ext4_begin_ordered_truncate(struct inode * inode,loff_t new_size)121 static inline int ext4_begin_ordered_truncate(struct inode *inode,
122 					      loff_t new_size)
123 {
124 	trace_ext4_begin_ordered_truncate(inode, new_size);
125 	/*
126 	 * If jinode is zero, then we never opened the file for
127 	 * writing, so there's no need to call
128 	 * jbd2_journal_begin_ordered_truncate() since there's no
129 	 * outstanding writes we need to flush.
130 	 */
131 	if (!EXT4_I(inode)->jinode)
132 		return 0;
133 	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
134 						   EXT4_I(inode)->jinode,
135 						   new_size);
136 }
137 
138 static void ext4_invalidatepage(struct page *page, unsigned int offset,
139 				unsigned int length);
140 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
141 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
142 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
143 				  int pextents);
144 
145 /*
146  * Test whether an inode is a fast symlink.
147  * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
148  */
ext4_inode_is_fast_symlink(struct inode * inode)149 int ext4_inode_is_fast_symlink(struct inode *inode)
150 {
151 	if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
152 		int ea_blocks = EXT4_I(inode)->i_file_acl ?
153 				EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
154 
155 		if (ext4_has_inline_data(inode))
156 			return 0;
157 
158 		return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
159 	}
160 	return S_ISLNK(inode->i_mode) && inode->i_size &&
161 	       (inode->i_size < EXT4_N_BLOCKS * 4);
162 }
163 
164 /*
165  * Called at the last iput() if i_nlink is zero.
166  */
ext4_evict_inode(struct inode * inode)167 void ext4_evict_inode(struct inode *inode)
168 {
169 	handle_t *handle;
170 	int err;
171 	/*
172 	 * Credits for final inode cleanup and freeing:
173 	 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
174 	 * (xattr block freeing), bitmap, group descriptor (inode freeing)
175 	 */
176 	int extra_credits = 6;
177 	struct ext4_xattr_inode_array *ea_inode_array = NULL;
178 	bool freeze_protected = false;
179 
180 	trace_ext4_evict_inode(inode);
181 
182 	if (inode->i_nlink) {
183 		/*
184 		 * When journalling data dirty buffers are tracked only in the
185 		 * journal. So although mm thinks everything is clean and
186 		 * ready for reaping the inode might still have some pages to
187 		 * write in the running transaction or waiting to be
188 		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
189 		 * (via truncate_inode_pages()) to discard these buffers can
190 		 * cause data loss. Also even if we did not discard these
191 		 * buffers, we would have no way to find them after the inode
192 		 * is reaped and thus user could see stale data if he tries to
193 		 * read them before the transaction is checkpointed. So be
194 		 * careful and force everything to disk here... We use
195 		 * ei->i_datasync_tid to store the newest transaction
196 		 * containing inode's data.
197 		 *
198 		 * Note that directories do not have this problem because they
199 		 * don't use page cache.
200 		 */
201 		if (inode->i_ino != EXT4_JOURNAL_INO &&
202 		    ext4_should_journal_data(inode) &&
203 		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
204 		    inode->i_data.nrpages) {
205 			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
206 			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
207 
208 			jbd2_complete_transaction(journal, commit_tid);
209 			filemap_write_and_wait(&inode->i_data);
210 		}
211 		truncate_inode_pages_final(&inode->i_data);
212 
213 		goto no_delete;
214 	}
215 
216 	if (is_bad_inode(inode))
217 		goto no_delete;
218 	dquot_initialize(inode);
219 
220 	if (ext4_should_order_data(inode))
221 		ext4_begin_ordered_truncate(inode, 0);
222 	truncate_inode_pages_final(&inode->i_data);
223 
224 	/*
225 	 * For inodes with journalled data, transaction commit could have
226 	 * dirtied the inode. Flush worker is ignoring it because of I_FREEING
227 	 * flag but we still need to remove the inode from the writeback lists.
228 	 */
229 	if (!list_empty_careful(&inode->i_io_list)) {
230 		WARN_ON_ONCE(!ext4_should_journal_data(inode));
231 		inode_io_list_del(inode);
232 	}
233 
234 	/*
235 	 * Protect us against freezing - iput() caller didn't have to have any
236 	 * protection against it. When we are in a running transaction though,
237 	 * we are already protected against freezing and we cannot grab further
238 	 * protection due to lock ordering constraints.
239 	 */
240 	if (!ext4_journal_current_handle()) {
241 		sb_start_intwrite(inode->i_sb);
242 		freeze_protected = true;
243 	}
244 
245 	if (!IS_NOQUOTA(inode))
246 		extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
247 
248 	/*
249 	 * Block bitmap, group descriptor, and inode are accounted in both
250 	 * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
251 	 */
252 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
253 			 ext4_blocks_for_truncate(inode) + extra_credits - 3);
254 	if (IS_ERR(handle)) {
255 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
256 		/*
257 		 * If we're going to skip the normal cleanup, we still need to
258 		 * make sure that the in-core orphan linked list is properly
259 		 * cleaned up.
260 		 */
261 		ext4_orphan_del(NULL, inode);
262 		if (freeze_protected)
263 			sb_end_intwrite(inode->i_sb);
264 		goto no_delete;
265 	}
266 
267 	if (IS_SYNC(inode))
268 		ext4_handle_sync(handle);
269 
270 	/*
271 	 * Set inode->i_size to 0 before calling ext4_truncate(). We need
272 	 * special handling of symlinks here because i_size is used to
273 	 * determine whether ext4_inode_info->i_data contains symlink data or
274 	 * block mappings. Setting i_size to 0 will remove its fast symlink
275 	 * status. Erase i_data so that it becomes a valid empty block map.
276 	 */
277 	if (ext4_inode_is_fast_symlink(inode))
278 		memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
279 	inode->i_size = 0;
280 	err = ext4_mark_inode_dirty(handle, inode);
281 	if (err) {
282 		ext4_warning(inode->i_sb,
283 			     "couldn't mark inode dirty (err %d)", err);
284 		goto stop_handle;
285 	}
286 	if (inode->i_blocks) {
287 		err = ext4_truncate(inode);
288 		if (err) {
289 			ext4_error_err(inode->i_sb, -err,
290 				       "couldn't truncate inode %lu (err %d)",
291 				       inode->i_ino, err);
292 			goto stop_handle;
293 		}
294 	}
295 
296 	/* Remove xattr references. */
297 	err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
298 				      extra_credits);
299 	if (err) {
300 		ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
301 stop_handle:
302 		ext4_journal_stop(handle);
303 		ext4_orphan_del(NULL, inode);
304 		if (freeze_protected)
305 			sb_end_intwrite(inode->i_sb);
306 		ext4_xattr_inode_array_free(ea_inode_array);
307 		goto no_delete;
308 	}
309 
310 	/*
311 	 * Kill off the orphan record which ext4_truncate created.
312 	 * AKPM: I think this can be inside the above `if'.
313 	 * Note that ext4_orphan_del() has to be able to cope with the
314 	 * deletion of a non-existent orphan - this is because we don't
315 	 * know if ext4_truncate() actually created an orphan record.
316 	 * (Well, we could do this if we need to, but heck - it works)
317 	 */
318 	ext4_orphan_del(handle, inode);
319 	EXT4_I(inode)->i_dtime	= (__u32)ktime_get_real_seconds();
320 
321 	/*
322 	 * One subtle ordering requirement: if anything has gone wrong
323 	 * (transaction abort, IO errors, whatever), then we can still
324 	 * do these next steps (the fs will already have been marked as
325 	 * having errors), but we can't free the inode if the mark_dirty
326 	 * fails.
327 	 */
328 	if (ext4_mark_inode_dirty(handle, inode))
329 		/* If that failed, just do the required in-core inode clear. */
330 		ext4_clear_inode(inode);
331 	else
332 		ext4_free_inode(handle, inode);
333 	ext4_journal_stop(handle);
334 	if (freeze_protected)
335 		sb_end_intwrite(inode->i_sb);
336 	ext4_xattr_inode_array_free(ea_inode_array);
337 	return;
338 no_delete:
339 	if (!list_empty(&EXT4_I(inode)->i_fc_list))
340 		ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM);
341 	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
342 }
343 
344 #ifdef CONFIG_QUOTA
ext4_get_reserved_space(struct inode * inode)345 qsize_t *ext4_get_reserved_space(struct inode *inode)
346 {
347 	return &EXT4_I(inode)->i_reserved_quota;
348 }
349 #endif
350 
351 /*
352  * Called with i_data_sem down, which is important since we can call
353  * ext4_discard_preallocations() from here.
354  */
ext4_da_update_reserve_space(struct inode * inode,int used,int quota_claim)355 void ext4_da_update_reserve_space(struct inode *inode,
356 					int used, int quota_claim)
357 {
358 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
359 	struct ext4_inode_info *ei = EXT4_I(inode);
360 
361 	spin_lock(&ei->i_block_reservation_lock);
362 	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
363 	if (unlikely(used > ei->i_reserved_data_blocks)) {
364 		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
365 			 "with only %d reserved data blocks",
366 			 __func__, inode->i_ino, used,
367 			 ei->i_reserved_data_blocks);
368 		WARN_ON(1);
369 		used = ei->i_reserved_data_blocks;
370 	}
371 
372 	/* Update per-inode reservations */
373 	ei->i_reserved_data_blocks -= used;
374 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
375 
376 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
377 
378 	/* Update quota subsystem for data blocks */
379 	if (quota_claim)
380 		dquot_claim_block(inode, EXT4_C2B(sbi, used));
381 	else {
382 		/*
383 		 * We did fallocate with an offset that is already delayed
384 		 * allocated. So on delayed allocated writeback we should
385 		 * not re-claim the quota for fallocated blocks.
386 		 */
387 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
388 	}
389 
390 	/*
391 	 * If we have done all the pending block allocations and if
392 	 * there aren't any writers on the inode, we can discard the
393 	 * inode's preallocations.
394 	 */
395 	if ((ei->i_reserved_data_blocks == 0) &&
396 	    !inode_is_open_for_write(inode))
397 		ext4_discard_preallocations(inode, 0);
398 }
399 
__check_block_validity(struct inode * inode,const char * func,unsigned int line,struct ext4_map_blocks * map)400 static int __check_block_validity(struct inode *inode, const char *func,
401 				unsigned int line,
402 				struct ext4_map_blocks *map)
403 {
404 	if (ext4_has_feature_journal(inode->i_sb) &&
405 	    (inode->i_ino ==
406 	     le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
407 		return 0;
408 	if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) {
409 		ext4_error_inode(inode, func, line, map->m_pblk,
410 				 "lblock %lu mapped to illegal pblock %llu "
411 				 "(length %d)", (unsigned long) map->m_lblk,
412 				 map->m_pblk, map->m_len);
413 		return -EFSCORRUPTED;
414 	}
415 	return 0;
416 }
417 
ext4_issue_zeroout(struct inode * inode,ext4_lblk_t lblk,ext4_fsblk_t pblk,ext4_lblk_t len)418 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
419 		       ext4_lblk_t len)
420 {
421 	int ret;
422 
423 	if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
424 		return fscrypt_zeroout_range(inode, lblk, pblk, len);
425 
426 	ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
427 	if (ret > 0)
428 		ret = 0;
429 
430 	return ret;
431 }
432 
433 #define check_block_validity(inode, map)	\
434 	__check_block_validity((inode), __func__, __LINE__, (map))
435 
436 #ifdef ES_AGGRESSIVE_TEST
ext4_map_blocks_es_recheck(handle_t * handle,struct inode * inode,struct ext4_map_blocks * es_map,struct ext4_map_blocks * map,int flags)437 static void ext4_map_blocks_es_recheck(handle_t *handle,
438 				       struct inode *inode,
439 				       struct ext4_map_blocks *es_map,
440 				       struct ext4_map_blocks *map,
441 				       int flags)
442 {
443 	int retval;
444 
445 	map->m_flags = 0;
446 	/*
447 	 * There is a race window that the result is not the same.
448 	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
449 	 * is that we lookup a block mapping in extent status tree with
450 	 * out taking i_data_sem.  So at the time the unwritten extent
451 	 * could be converted.
452 	 */
453 	down_read(&EXT4_I(inode)->i_data_sem);
454 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
455 		retval = ext4_ext_map_blocks(handle, inode, map, 0);
456 	} else {
457 		retval = ext4_ind_map_blocks(handle, inode, map, 0);
458 	}
459 	up_read((&EXT4_I(inode)->i_data_sem));
460 
461 	/*
462 	 * We don't check m_len because extent will be collpased in status
463 	 * tree.  So the m_len might not equal.
464 	 */
465 	if (es_map->m_lblk != map->m_lblk ||
466 	    es_map->m_flags != map->m_flags ||
467 	    es_map->m_pblk != map->m_pblk) {
468 		printk("ES cache assertion failed for inode: %lu "
469 		       "es_cached ex [%d/%d/%llu/%x] != "
470 		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
471 		       inode->i_ino, es_map->m_lblk, es_map->m_len,
472 		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
473 		       map->m_len, map->m_pblk, map->m_flags,
474 		       retval, flags);
475 	}
476 }
477 #endif /* ES_AGGRESSIVE_TEST */
478 
479 /*
480  * The ext4_map_blocks() function tries to look up the requested blocks,
481  * and returns if the blocks are already mapped.
482  *
483  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
484  * and store the allocated blocks in the result buffer head and mark it
485  * mapped.
486  *
487  * If file type is extents based, it will call ext4_ext_map_blocks(),
488  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
489  * based files
490  *
491  * On success, it returns the number of blocks being mapped or allocated.  if
492  * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
493  * is marked as unwritten. If the create == 1, it will mark @map as mapped.
494  *
495  * It returns 0 if plain look up failed (blocks have not been allocated), in
496  * that case, @map is returned as unmapped but we still do fill map->m_len to
497  * indicate the length of a hole starting at map->m_lblk.
498  *
499  * It returns the error in case of allocation failure.
500  */
ext4_map_blocks(handle_t * handle,struct inode * inode,struct ext4_map_blocks * map,int flags)501 int ext4_map_blocks(handle_t *handle, struct inode *inode,
502 		    struct ext4_map_blocks *map, int flags)
503 {
504 	struct extent_status es;
505 	int retval;
506 	int ret = 0;
507 #ifdef ES_AGGRESSIVE_TEST
508 	struct ext4_map_blocks orig_map;
509 
510 	memcpy(&orig_map, map, sizeof(*map));
511 #endif
512 
513 	map->m_flags = 0;
514 	ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n",
515 		  flags, map->m_len, (unsigned long) map->m_lblk);
516 
517 	/*
518 	 * ext4_map_blocks returns an int, and m_len is an unsigned int
519 	 */
520 	if (unlikely(map->m_len > INT_MAX))
521 		map->m_len = INT_MAX;
522 
523 	/* We can handle the block number less than EXT_MAX_BLOCKS */
524 	if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
525 		return -EFSCORRUPTED;
526 
527 	/* Lookup extent status tree firstly */
528 	if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) &&
529 	    ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
530 		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
531 			map->m_pblk = ext4_es_pblock(&es) +
532 					map->m_lblk - es.es_lblk;
533 			map->m_flags |= ext4_es_is_written(&es) ?
534 					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
535 			retval = es.es_len - (map->m_lblk - es.es_lblk);
536 			if (retval > map->m_len)
537 				retval = map->m_len;
538 			map->m_len = retval;
539 		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
540 			map->m_pblk = 0;
541 			retval = es.es_len - (map->m_lblk - es.es_lblk);
542 			if (retval > map->m_len)
543 				retval = map->m_len;
544 			map->m_len = retval;
545 			retval = 0;
546 		} else {
547 			BUG();
548 		}
549 #ifdef ES_AGGRESSIVE_TEST
550 		ext4_map_blocks_es_recheck(handle, inode, map,
551 					   &orig_map, flags);
552 #endif
553 		goto found;
554 	}
555 
556 	/*
557 	 * Try to see if we can get the block without requesting a new
558 	 * file system block.
559 	 */
560 	down_read(&EXT4_I(inode)->i_data_sem);
561 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
562 		retval = ext4_ext_map_blocks(handle, inode, map, 0);
563 	} else {
564 		retval = ext4_ind_map_blocks(handle, inode, map, 0);
565 	}
566 	if (retval > 0) {
567 		unsigned int status;
568 
569 		if (unlikely(retval != map->m_len)) {
570 			ext4_warning(inode->i_sb,
571 				     "ES len assertion failed for inode "
572 				     "%lu: retval %d != map->m_len %d",
573 				     inode->i_ino, retval, map->m_len);
574 			WARN_ON(1);
575 		}
576 
577 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
578 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
579 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
580 		    !(status & EXTENT_STATUS_WRITTEN) &&
581 		    ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
582 				       map->m_lblk + map->m_len - 1))
583 			status |= EXTENT_STATUS_DELAYED;
584 		ret = ext4_es_insert_extent(inode, map->m_lblk,
585 					    map->m_len, map->m_pblk, status);
586 		if (ret < 0)
587 			retval = ret;
588 	}
589 	up_read((&EXT4_I(inode)->i_data_sem));
590 
591 found:
592 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
593 		ret = check_block_validity(inode, map);
594 		if (ret != 0)
595 			return ret;
596 	}
597 
598 	/* If it is only a block(s) look up */
599 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
600 		return retval;
601 
602 	/*
603 	 * Returns if the blocks have already allocated
604 	 *
605 	 * Note that if blocks have been preallocated
606 	 * ext4_ext_get_block() returns the create = 0
607 	 * with buffer head unmapped.
608 	 */
609 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
610 		/*
611 		 * If we need to convert extent to unwritten
612 		 * we continue and do the actual work in
613 		 * ext4_ext_map_blocks()
614 		 */
615 		if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
616 			return retval;
617 
618 	/*
619 	 * Here we clear m_flags because after allocating an new extent,
620 	 * it will be set again.
621 	 */
622 	map->m_flags &= ~EXT4_MAP_FLAGS;
623 
624 	/*
625 	 * New blocks allocate and/or writing to unwritten extent
626 	 * will possibly result in updating i_data, so we take
627 	 * the write lock of i_data_sem, and call get_block()
628 	 * with create == 1 flag.
629 	 */
630 	down_write(&EXT4_I(inode)->i_data_sem);
631 
632 	/*
633 	 * We need to check for EXT4 here because migrate
634 	 * could have changed the inode type in between
635 	 */
636 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
637 		retval = ext4_ext_map_blocks(handle, inode, map, flags);
638 	} else {
639 		retval = ext4_ind_map_blocks(handle, inode, map, flags);
640 
641 		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
642 			/*
643 			 * We allocated new blocks which will result in
644 			 * i_data's format changing.  Force the migrate
645 			 * to fail by clearing migrate flags
646 			 */
647 			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
648 		}
649 
650 		/*
651 		 * Update reserved blocks/metadata blocks after successful
652 		 * block allocation which had been deferred till now. We don't
653 		 * support fallocate for non extent files. So we can update
654 		 * reserve space here.
655 		 */
656 		if ((retval > 0) &&
657 			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
658 			ext4_da_update_reserve_space(inode, retval, 1);
659 	}
660 
661 	if (retval > 0) {
662 		unsigned int status;
663 
664 		if (unlikely(retval != map->m_len)) {
665 			ext4_warning(inode->i_sb,
666 				     "ES len assertion failed for inode "
667 				     "%lu: retval %d != map->m_len %d",
668 				     inode->i_ino, retval, map->m_len);
669 			WARN_ON(1);
670 		}
671 
672 		/*
673 		 * We have to zeroout blocks before inserting them into extent
674 		 * status tree. Otherwise someone could look them up there and
675 		 * use them before they are really zeroed. We also have to
676 		 * unmap metadata before zeroing as otherwise writeback can
677 		 * overwrite zeros with stale data from block device.
678 		 */
679 		if (flags & EXT4_GET_BLOCKS_ZERO &&
680 		    map->m_flags & EXT4_MAP_MAPPED &&
681 		    map->m_flags & EXT4_MAP_NEW) {
682 			ret = ext4_issue_zeroout(inode, map->m_lblk,
683 						 map->m_pblk, map->m_len);
684 			if (ret) {
685 				retval = ret;
686 				goto out_sem;
687 			}
688 		}
689 
690 		/*
691 		 * If the extent has been zeroed out, we don't need to update
692 		 * extent status tree.
693 		 */
694 		if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
695 		    ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
696 			if (ext4_es_is_written(&es))
697 				goto out_sem;
698 		}
699 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
700 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
701 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
702 		    !(status & EXTENT_STATUS_WRITTEN) &&
703 		    ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
704 				       map->m_lblk + map->m_len - 1))
705 			status |= EXTENT_STATUS_DELAYED;
706 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
707 					    map->m_pblk, status);
708 		if (ret < 0) {
709 			retval = ret;
710 			goto out_sem;
711 		}
712 	}
713 
714 out_sem:
715 	up_write((&EXT4_I(inode)->i_data_sem));
716 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
717 		ret = check_block_validity(inode, map);
718 		if (ret != 0)
719 			return ret;
720 
721 		/*
722 		 * Inodes with freshly allocated blocks where contents will be
723 		 * visible after transaction commit must be on transaction's
724 		 * ordered data list.
725 		 */
726 		if (map->m_flags & EXT4_MAP_NEW &&
727 		    !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
728 		    !(flags & EXT4_GET_BLOCKS_ZERO) &&
729 		    !ext4_is_quota_file(inode) &&
730 		    ext4_should_order_data(inode)) {
731 			loff_t start_byte =
732 				(loff_t)map->m_lblk << inode->i_blkbits;
733 			loff_t length = (loff_t)map->m_len << inode->i_blkbits;
734 
735 			if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
736 				ret = ext4_jbd2_inode_add_wait(handle, inode,
737 						start_byte, length);
738 			else
739 				ret = ext4_jbd2_inode_add_write(handle, inode,
740 						start_byte, length);
741 			if (ret)
742 				return ret;
743 		}
744 	}
745 	if (retval > 0 && (map->m_flags & EXT4_MAP_UNWRITTEN ||
746 				map->m_flags & EXT4_MAP_MAPPED))
747 		ext4_fc_track_range(handle, inode, map->m_lblk,
748 					map->m_lblk + map->m_len - 1);
749 	if (retval < 0)
750 		ext_debug(inode, "failed with err %d\n", retval);
751 	return retval;
752 }
753 
754 /*
755  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
756  * we have to be careful as someone else may be manipulating b_state as well.
757  */
ext4_update_bh_state(struct buffer_head * bh,unsigned long flags)758 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
759 {
760 	unsigned long old_state;
761 	unsigned long new_state;
762 
763 	flags &= EXT4_MAP_FLAGS;
764 
765 	/* Dummy buffer_head? Set non-atomically. */
766 	if (!bh->b_page) {
767 		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
768 		return;
769 	}
770 	/*
771 	 * Someone else may be modifying b_state. Be careful! This is ugly but
772 	 * once we get rid of using bh as a container for mapping information
773 	 * to pass to / from get_block functions, this can go away.
774 	 */
775 	do {
776 		old_state = READ_ONCE(bh->b_state);
777 		new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
778 	} while (unlikely(
779 		 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
780 }
781 
_ext4_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh,int flags)782 static int _ext4_get_block(struct inode *inode, sector_t iblock,
783 			   struct buffer_head *bh, int flags)
784 {
785 	struct ext4_map_blocks map;
786 	int ret = 0;
787 
788 	if (ext4_has_inline_data(inode))
789 		return -ERANGE;
790 
791 	map.m_lblk = iblock;
792 	map.m_len = bh->b_size >> inode->i_blkbits;
793 
794 	ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
795 			      flags);
796 	if (ret > 0) {
797 		map_bh(bh, inode->i_sb, map.m_pblk);
798 		ext4_update_bh_state(bh, map.m_flags);
799 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
800 		ret = 0;
801 	} else if (ret == 0) {
802 		/* hole case, need to fill in bh->b_size */
803 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
804 	}
805 	return ret;
806 }
807 
ext4_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh,int create)808 int ext4_get_block(struct inode *inode, sector_t iblock,
809 		   struct buffer_head *bh, int create)
810 {
811 	return _ext4_get_block(inode, iblock, bh,
812 			       create ? EXT4_GET_BLOCKS_CREATE : 0);
813 }
814 
815 /*
816  * Get block function used when preparing for buffered write if we require
817  * creating an unwritten extent if blocks haven't been allocated.  The extent
818  * will be converted to written after the IO is complete.
819  */
ext4_get_block_unwritten(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)820 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
821 			     struct buffer_head *bh_result, int create)
822 {
823 	ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
824 		   inode->i_ino, create);
825 	return _ext4_get_block(inode, iblock, bh_result,
826 			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
827 }
828 
829 /* Maximum number of blocks we map for direct IO at once. */
830 #define DIO_MAX_BLOCKS 4096
831 
832 /*
833  * `handle' can be NULL if create is zero
834  */
ext4_getblk(handle_t * handle,struct inode * inode,ext4_lblk_t block,int map_flags)835 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
836 				ext4_lblk_t block, int map_flags)
837 {
838 	struct ext4_map_blocks map;
839 	struct buffer_head *bh;
840 	int create = map_flags & EXT4_GET_BLOCKS_CREATE;
841 	int err;
842 
843 	J_ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
844 		 || handle != NULL || create == 0);
845 
846 	map.m_lblk = block;
847 	map.m_len = 1;
848 	err = ext4_map_blocks(handle, inode, &map, map_flags);
849 
850 	if (err == 0)
851 		return create ? ERR_PTR(-ENOSPC) : NULL;
852 	if (err < 0)
853 		return ERR_PTR(err);
854 
855 	bh = sb_getblk(inode->i_sb, map.m_pblk);
856 	if (unlikely(!bh))
857 		return ERR_PTR(-ENOMEM);
858 	if (map.m_flags & EXT4_MAP_NEW) {
859 		J_ASSERT(create != 0);
860 		J_ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
861 			 || (handle != NULL));
862 
863 		/*
864 		 * Now that we do not always journal data, we should
865 		 * keep in mind whether this should always journal the
866 		 * new buffer as metadata.  For now, regular file
867 		 * writes use ext4_get_block instead, so it's not a
868 		 * problem.
869 		 */
870 		lock_buffer(bh);
871 		BUFFER_TRACE(bh, "call get_create_access");
872 		err = ext4_journal_get_create_access(handle, bh);
873 		if (unlikely(err)) {
874 			unlock_buffer(bh);
875 			goto errout;
876 		}
877 		if (!buffer_uptodate(bh)) {
878 			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
879 			set_buffer_uptodate(bh);
880 		}
881 		unlock_buffer(bh);
882 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
883 		err = ext4_handle_dirty_metadata(handle, inode, bh);
884 		if (unlikely(err))
885 			goto errout;
886 	} else
887 		BUFFER_TRACE(bh, "not a new buffer");
888 	return bh;
889 errout:
890 	brelse(bh);
891 	return ERR_PTR(err);
892 }
893 
ext4_bread(handle_t * handle,struct inode * inode,ext4_lblk_t block,int map_flags)894 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
895 			       ext4_lblk_t block, int map_flags)
896 {
897 	struct buffer_head *bh;
898 	int ret;
899 
900 	bh = ext4_getblk(handle, inode, block, map_flags);
901 	if (IS_ERR(bh))
902 		return bh;
903 	if (!bh || ext4_buffer_uptodate(bh))
904 		return bh;
905 
906 	ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true);
907 	if (ret) {
908 		put_bh(bh);
909 		return ERR_PTR(ret);
910 	}
911 	return bh;
912 }
913 
914 /* Read a contiguous batch of blocks. */
ext4_bread_batch(struct inode * inode,ext4_lblk_t block,int bh_count,bool wait,struct buffer_head ** bhs)915 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
916 		     bool wait, struct buffer_head **bhs)
917 {
918 	int i, err;
919 
920 	for (i = 0; i < bh_count; i++) {
921 		bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
922 		if (IS_ERR(bhs[i])) {
923 			err = PTR_ERR(bhs[i]);
924 			bh_count = i;
925 			goto out_brelse;
926 		}
927 	}
928 
929 	for (i = 0; i < bh_count; i++)
930 		/* Note that NULL bhs[i] is valid because of holes. */
931 		if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
932 			ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false);
933 
934 	if (!wait)
935 		return 0;
936 
937 	for (i = 0; i < bh_count; i++)
938 		if (bhs[i])
939 			wait_on_buffer(bhs[i]);
940 
941 	for (i = 0; i < bh_count; i++) {
942 		if (bhs[i] && !buffer_uptodate(bhs[i])) {
943 			err = -EIO;
944 			goto out_brelse;
945 		}
946 	}
947 	return 0;
948 
949 out_brelse:
950 	for (i = 0; i < bh_count; i++) {
951 		brelse(bhs[i]);
952 		bhs[i] = NULL;
953 	}
954 	return err;
955 }
956 
ext4_walk_page_buffers(handle_t * handle,struct buffer_head * head,unsigned from,unsigned to,int * partial,int (* fn)(handle_t * handle,struct buffer_head * bh))957 int ext4_walk_page_buffers(handle_t *handle,
958 			   struct buffer_head *head,
959 			   unsigned from,
960 			   unsigned to,
961 			   int *partial,
962 			   int (*fn)(handle_t *handle,
963 				     struct buffer_head *bh))
964 {
965 	struct buffer_head *bh;
966 	unsigned block_start, block_end;
967 	unsigned blocksize = head->b_size;
968 	int err, ret = 0;
969 	struct buffer_head *next;
970 
971 	for (bh = head, block_start = 0;
972 	     ret == 0 && (bh != head || !block_start);
973 	     block_start = block_end, bh = next) {
974 		next = bh->b_this_page;
975 		block_end = block_start + blocksize;
976 		if (block_end <= from || block_start >= to) {
977 			if (partial && !buffer_uptodate(bh))
978 				*partial = 1;
979 			continue;
980 		}
981 		err = (*fn)(handle, bh);
982 		if (!ret)
983 			ret = err;
984 	}
985 	return ret;
986 }
987 
988 /*
989  * To preserve ordering, it is essential that the hole instantiation and
990  * the data write be encapsulated in a single transaction.  We cannot
991  * close off a transaction and start a new one between the ext4_get_block()
992  * and the commit_write().  So doing the jbd2_journal_start at the start of
993  * prepare_write() is the right place.
994  *
995  * Also, this function can nest inside ext4_writepage().  In that case, we
996  * *know* that ext4_writepage() has generated enough buffer credits to do the
997  * whole page.  So we won't block on the journal in that case, which is good,
998  * because the caller may be PF_MEMALLOC.
999  *
1000  * By accident, ext4 can be reentered when a transaction is open via
1001  * quota file writes.  If we were to commit the transaction while thus
1002  * reentered, there can be a deadlock - we would be holding a quota
1003  * lock, and the commit would never complete if another thread had a
1004  * transaction open and was blocking on the quota lock - a ranking
1005  * violation.
1006  *
1007  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1008  * will _not_ run commit under these circumstances because handle->h_ref
1009  * is elevated.  We'll still have enough credits for the tiny quotafile
1010  * write.
1011  */
do_journal_get_write_access(handle_t * handle,struct buffer_head * bh)1012 int do_journal_get_write_access(handle_t *handle,
1013 				struct buffer_head *bh)
1014 {
1015 	int dirty = buffer_dirty(bh);
1016 	int ret;
1017 
1018 	if (!buffer_mapped(bh) || buffer_freed(bh))
1019 		return 0;
1020 	/*
1021 	 * __block_write_begin() could have dirtied some buffers. Clean
1022 	 * the dirty bit as jbd2_journal_get_write_access() could complain
1023 	 * otherwise about fs integrity issues. Setting of the dirty bit
1024 	 * by __block_write_begin() isn't a real problem here as we clear
1025 	 * the bit before releasing a page lock and thus writeback cannot
1026 	 * ever write the buffer.
1027 	 */
1028 	if (dirty)
1029 		clear_buffer_dirty(bh);
1030 	BUFFER_TRACE(bh, "get write access");
1031 	ret = ext4_journal_get_write_access(handle, bh);
1032 	if (!ret && dirty)
1033 		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1034 	return ret;
1035 }
1036 
1037 #ifdef CONFIG_FS_ENCRYPTION
ext4_block_write_begin(struct page * page,loff_t pos,unsigned len,get_block_t * get_block)1038 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1039 				  get_block_t *get_block)
1040 {
1041 	unsigned from = pos & (PAGE_SIZE - 1);
1042 	unsigned to = from + len;
1043 	struct inode *inode = page->mapping->host;
1044 	unsigned block_start, block_end;
1045 	sector_t block;
1046 	int err = 0;
1047 	unsigned blocksize = inode->i_sb->s_blocksize;
1048 	unsigned bbits;
1049 	struct buffer_head *bh, *head, *wait[2];
1050 	int nr_wait = 0;
1051 	int i;
1052 
1053 	BUG_ON(!PageLocked(page));
1054 	BUG_ON(from > PAGE_SIZE);
1055 	BUG_ON(to > PAGE_SIZE);
1056 	BUG_ON(from > to);
1057 
1058 	if (!page_has_buffers(page))
1059 		create_empty_buffers(page, blocksize, 0);
1060 	head = page_buffers(page);
1061 	bbits = ilog2(blocksize);
1062 	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1063 
1064 	for (bh = head, block_start = 0; bh != head || !block_start;
1065 	    block++, block_start = block_end, bh = bh->b_this_page) {
1066 		block_end = block_start + blocksize;
1067 		if (block_end <= from || block_start >= to) {
1068 			if (PageUptodate(page)) {
1069 				if (!buffer_uptodate(bh))
1070 					set_buffer_uptodate(bh);
1071 			}
1072 			continue;
1073 		}
1074 		if (buffer_new(bh))
1075 			clear_buffer_new(bh);
1076 		if (!buffer_mapped(bh)) {
1077 			WARN_ON(bh->b_size != blocksize);
1078 			err = get_block(inode, block, bh, 1);
1079 			if (err)
1080 				break;
1081 			if (buffer_new(bh)) {
1082 				if (PageUptodate(page)) {
1083 					clear_buffer_new(bh);
1084 					set_buffer_uptodate(bh);
1085 					mark_buffer_dirty(bh);
1086 					continue;
1087 				}
1088 				if (block_end > to || block_start < from)
1089 					zero_user_segments(page, to, block_end,
1090 							   block_start, from);
1091 				continue;
1092 			}
1093 		}
1094 		if (PageUptodate(page)) {
1095 			if (!buffer_uptodate(bh))
1096 				set_buffer_uptodate(bh);
1097 			continue;
1098 		}
1099 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1100 		    !buffer_unwritten(bh) &&
1101 		    (block_start < from || block_end > to)) {
1102 			ext4_read_bh_lock(bh, 0, false);
1103 			wait[nr_wait++] = bh;
1104 		}
1105 	}
1106 	/*
1107 	 * If we issued read requests, let them complete.
1108 	 */
1109 	for (i = 0; i < nr_wait; i++) {
1110 		wait_on_buffer(wait[i]);
1111 		if (!buffer_uptodate(wait[i]))
1112 			err = -EIO;
1113 	}
1114 	if (unlikely(err)) {
1115 		page_zero_new_buffers(page, from, to);
1116 	} else if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
1117 		for (i = 0; i < nr_wait; i++) {
1118 			int err2;
1119 
1120 			err2 = fscrypt_decrypt_pagecache_blocks(page, blocksize,
1121 								bh_offset(wait[i]));
1122 			if (err2) {
1123 				clear_buffer_uptodate(wait[i]);
1124 				err = err2;
1125 			}
1126 		}
1127 	}
1128 
1129 	return err;
1130 }
1131 #endif
1132 
ext4_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)1133 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1134 			    loff_t pos, unsigned len, unsigned flags,
1135 			    struct page **pagep, void **fsdata)
1136 {
1137 	struct inode *inode = mapping->host;
1138 	int ret, needed_blocks;
1139 	handle_t *handle;
1140 	int retries = 0;
1141 	struct page *page;
1142 	pgoff_t index;
1143 	unsigned from, to;
1144 
1145 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1146 		return -EIO;
1147 
1148 	trace_ext4_write_begin(inode, pos, len, flags);
1149 	/*
1150 	 * Reserve one block more for addition to orphan list in case
1151 	 * we allocate blocks but write fails for some reason
1152 	 */
1153 	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1154 	index = pos >> PAGE_SHIFT;
1155 	from = pos & (PAGE_SIZE - 1);
1156 	to = from + len;
1157 
1158 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1159 		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1160 						    flags, pagep);
1161 		if (ret < 0)
1162 			return ret;
1163 		if (ret == 1)
1164 			return 0;
1165 	}
1166 
1167 	/*
1168 	 * grab_cache_page_write_begin() can take a long time if the
1169 	 * system is thrashing due to memory pressure, or if the page
1170 	 * is being written back.  So grab it first before we start
1171 	 * the transaction handle.  This also allows us to allocate
1172 	 * the page (if needed) without using GFP_NOFS.
1173 	 */
1174 retry_grab:
1175 	page = grab_cache_page_write_begin(mapping, index, flags);
1176 	if (!page)
1177 		return -ENOMEM;
1178 	unlock_page(page);
1179 
1180 retry_journal:
1181 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1182 	if (IS_ERR(handle)) {
1183 		put_page(page);
1184 		return PTR_ERR(handle);
1185 	}
1186 
1187 	lock_page(page);
1188 	if (page->mapping != mapping) {
1189 		/* The page got truncated from under us */
1190 		unlock_page(page);
1191 		put_page(page);
1192 		ext4_journal_stop(handle);
1193 		goto retry_grab;
1194 	}
1195 	/* In case writeback began while the page was unlocked */
1196 	wait_for_stable_page(page);
1197 
1198 #ifdef CONFIG_FS_ENCRYPTION
1199 	if (ext4_should_dioread_nolock(inode))
1200 		ret = ext4_block_write_begin(page, pos, len,
1201 					     ext4_get_block_unwritten);
1202 	else
1203 		ret = ext4_block_write_begin(page, pos, len,
1204 					     ext4_get_block);
1205 #else
1206 	if (ext4_should_dioread_nolock(inode))
1207 		ret = __block_write_begin(page, pos, len,
1208 					  ext4_get_block_unwritten);
1209 	else
1210 		ret = __block_write_begin(page, pos, len, ext4_get_block);
1211 #endif
1212 	if (!ret && ext4_should_journal_data(inode)) {
1213 		ret = ext4_walk_page_buffers(handle, page_buffers(page),
1214 					     from, to, NULL,
1215 					     do_journal_get_write_access);
1216 	}
1217 
1218 	if (ret) {
1219 		bool extended = (pos + len > inode->i_size) &&
1220 				!ext4_verity_in_progress(inode);
1221 
1222 		unlock_page(page);
1223 		/*
1224 		 * __block_write_begin may have instantiated a few blocks
1225 		 * outside i_size.  Trim these off again. Don't need
1226 		 * i_size_read because we hold i_mutex.
1227 		 *
1228 		 * Add inode to orphan list in case we crash before
1229 		 * truncate finishes
1230 		 */
1231 		if (extended && ext4_can_truncate(inode))
1232 			ext4_orphan_add(handle, inode);
1233 
1234 		ext4_journal_stop(handle);
1235 		if (extended) {
1236 			ext4_truncate_failed_write(inode);
1237 			/*
1238 			 * If truncate failed early the inode might
1239 			 * still be on the orphan list; we need to
1240 			 * make sure the inode is removed from the
1241 			 * orphan list in that case.
1242 			 */
1243 			if (inode->i_nlink)
1244 				ext4_orphan_del(NULL, inode);
1245 		}
1246 
1247 		if (ret == -ENOSPC &&
1248 		    ext4_should_retry_alloc(inode->i_sb, &retries))
1249 			goto retry_journal;
1250 		put_page(page);
1251 		return ret;
1252 	}
1253 	*pagep = page;
1254 	return ret;
1255 }
1256 
1257 /* For write_end() in data=journal mode */
write_end_fn(handle_t * handle,struct buffer_head * bh)1258 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1259 {
1260 	int ret;
1261 	if (!buffer_mapped(bh) || buffer_freed(bh))
1262 		return 0;
1263 	set_buffer_uptodate(bh);
1264 	ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1265 	clear_buffer_meta(bh);
1266 	clear_buffer_prio(bh);
1267 	return ret;
1268 }
1269 
1270 /*
1271  * We need to pick up the new inode size which generic_commit_write gave us
1272  * `file' can be NULL - eg, when called from page_symlink().
1273  *
1274  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1275  * buffers are managed internally.
1276  */
ext4_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)1277 static int ext4_write_end(struct file *file,
1278 			  struct address_space *mapping,
1279 			  loff_t pos, unsigned len, unsigned copied,
1280 			  struct page *page, void *fsdata)
1281 {
1282 	handle_t *handle = ext4_journal_current_handle();
1283 	struct inode *inode = mapping->host;
1284 	loff_t old_size = inode->i_size;
1285 	int ret = 0, ret2;
1286 	int i_size_changed = 0;
1287 	bool verity = ext4_verity_in_progress(inode);
1288 
1289 	trace_ext4_write_end(inode, pos, len, copied);
1290 
1291 	if (ext4_has_inline_data(inode))
1292 		return ext4_write_inline_data_end(inode, pos, len, copied, page);
1293 
1294 	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1295 	/*
1296 	 * it's important to update i_size while still holding page lock:
1297 	 * page writeout could otherwise come in and zero beyond i_size.
1298 	 *
1299 	 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1300 	 * blocks are being written past EOF, so skip the i_size update.
1301 	 */
1302 	if (!verity)
1303 		i_size_changed = ext4_update_inode_size(inode, pos + copied);
1304 	unlock_page(page);
1305 	put_page(page);
1306 
1307 	if (old_size < pos && !verity)
1308 		pagecache_isize_extended(inode, old_size, pos);
1309 	/*
1310 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
1311 	 * makes the holding time of page lock longer. Second, it forces lock
1312 	 * ordering of page lock and transaction start for journaling
1313 	 * filesystems.
1314 	 */
1315 	if (i_size_changed)
1316 		ret = ext4_mark_inode_dirty(handle, inode);
1317 
1318 	if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1319 		/* if we have allocated more blocks and copied
1320 		 * less. We will have blocks allocated outside
1321 		 * inode->i_size. So truncate them
1322 		 */
1323 		ext4_orphan_add(handle, inode);
1324 
1325 	ret2 = ext4_journal_stop(handle);
1326 	if (!ret)
1327 		ret = ret2;
1328 
1329 	if (pos + len > inode->i_size && !verity) {
1330 		ext4_truncate_failed_write(inode);
1331 		/*
1332 		 * If truncate failed early the inode might still be
1333 		 * on the orphan list; we need to make sure the inode
1334 		 * is removed from the orphan list in that case.
1335 		 */
1336 		if (inode->i_nlink)
1337 			ext4_orphan_del(NULL, inode);
1338 	}
1339 
1340 	return ret ? ret : copied;
1341 }
1342 
1343 /*
1344  * This is a private version of page_zero_new_buffers() which doesn't
1345  * set the buffer to be dirty, since in data=journalled mode we need
1346  * to call ext4_handle_dirty_metadata() instead.
1347  */
ext4_journalled_zero_new_buffers(handle_t * handle,struct page * page,unsigned from,unsigned to)1348 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1349 					    struct page *page,
1350 					    unsigned from, unsigned to)
1351 {
1352 	unsigned int block_start = 0, block_end;
1353 	struct buffer_head *head, *bh;
1354 
1355 	bh = head = page_buffers(page);
1356 	do {
1357 		block_end = block_start + bh->b_size;
1358 		if (buffer_new(bh)) {
1359 			if (block_end > from && block_start < to) {
1360 				if (!PageUptodate(page)) {
1361 					unsigned start, size;
1362 
1363 					start = max(from, block_start);
1364 					size = min(to, block_end) - start;
1365 
1366 					zero_user(page, start, size);
1367 					write_end_fn(handle, bh);
1368 				}
1369 				clear_buffer_new(bh);
1370 			}
1371 		}
1372 		block_start = block_end;
1373 		bh = bh->b_this_page;
1374 	} while (bh != head);
1375 }
1376 
ext4_journalled_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)1377 static int ext4_journalled_write_end(struct file *file,
1378 				     struct address_space *mapping,
1379 				     loff_t pos, unsigned len, unsigned copied,
1380 				     struct page *page, void *fsdata)
1381 {
1382 	handle_t *handle = ext4_journal_current_handle();
1383 	struct inode *inode = mapping->host;
1384 	loff_t old_size = inode->i_size;
1385 	int ret = 0, ret2;
1386 	int partial = 0;
1387 	unsigned from, to;
1388 	int size_changed = 0;
1389 	bool verity = ext4_verity_in_progress(inode);
1390 
1391 	trace_ext4_journalled_write_end(inode, pos, len, copied);
1392 	from = pos & (PAGE_SIZE - 1);
1393 	to = from + len;
1394 
1395 	BUG_ON(!ext4_handle_valid(handle));
1396 
1397 	if (ext4_has_inline_data(inode))
1398 		return ext4_write_inline_data_end(inode, pos, len, copied, page);
1399 
1400 	if (unlikely(copied < len) && !PageUptodate(page)) {
1401 		copied = 0;
1402 		ext4_journalled_zero_new_buffers(handle, page, from, to);
1403 	} else {
1404 		if (unlikely(copied < len))
1405 			ext4_journalled_zero_new_buffers(handle, page,
1406 							 from + copied, to);
1407 		ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1408 					     from + copied, &partial,
1409 					     write_end_fn);
1410 		if (!partial)
1411 			SetPageUptodate(page);
1412 	}
1413 	if (!verity)
1414 		size_changed = ext4_update_inode_size(inode, pos + copied);
1415 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1416 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1417 	unlock_page(page);
1418 	put_page(page);
1419 
1420 	if (old_size < pos && !verity)
1421 		pagecache_isize_extended(inode, old_size, pos);
1422 
1423 	if (size_changed) {
1424 		ret2 = ext4_mark_inode_dirty(handle, inode);
1425 		if (!ret)
1426 			ret = ret2;
1427 	}
1428 
1429 	if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1430 		/* if we have allocated more blocks and copied
1431 		 * less. We will have blocks allocated outside
1432 		 * inode->i_size. So truncate them
1433 		 */
1434 		ext4_orphan_add(handle, inode);
1435 
1436 	ret2 = ext4_journal_stop(handle);
1437 	if (!ret)
1438 		ret = ret2;
1439 	if (pos + len > inode->i_size && !verity) {
1440 		ext4_truncate_failed_write(inode);
1441 		/*
1442 		 * If truncate failed early the inode might still be
1443 		 * on the orphan list; we need to make sure the inode
1444 		 * is removed from the orphan list in that case.
1445 		 */
1446 		if (inode->i_nlink)
1447 			ext4_orphan_del(NULL, inode);
1448 	}
1449 
1450 	return ret ? ret : copied;
1451 }
1452 
1453 /*
1454  * Reserve space for a single cluster
1455  */
ext4_da_reserve_space(struct inode * inode)1456 static int ext4_da_reserve_space(struct inode *inode)
1457 {
1458 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1459 	struct ext4_inode_info *ei = EXT4_I(inode);
1460 	int ret;
1461 
1462 	/*
1463 	 * We will charge metadata quota at writeout time; this saves
1464 	 * us from metadata over-estimation, though we may go over by
1465 	 * a small amount in the end.  Here we just reserve for data.
1466 	 */
1467 	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1468 	if (ret)
1469 		return ret;
1470 
1471 	spin_lock(&ei->i_block_reservation_lock);
1472 	if (ext4_claim_free_clusters(sbi, 1, 0)) {
1473 		spin_unlock(&ei->i_block_reservation_lock);
1474 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1475 		return -ENOSPC;
1476 	}
1477 	ei->i_reserved_data_blocks++;
1478 	trace_ext4_da_reserve_space(inode);
1479 	spin_unlock(&ei->i_block_reservation_lock);
1480 
1481 	return 0;       /* success */
1482 }
1483 
ext4_da_release_space(struct inode * inode,int to_free)1484 void ext4_da_release_space(struct inode *inode, int to_free)
1485 {
1486 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1487 	struct ext4_inode_info *ei = EXT4_I(inode);
1488 
1489 	if (!to_free)
1490 		return;		/* Nothing to release, exit */
1491 
1492 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1493 
1494 	trace_ext4_da_release_space(inode, to_free);
1495 	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1496 		/*
1497 		 * if there aren't enough reserved blocks, then the
1498 		 * counter is messed up somewhere.  Since this
1499 		 * function is called from invalidate page, it's
1500 		 * harmless to return without any action.
1501 		 */
1502 		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1503 			 "ino %lu, to_free %d with only %d reserved "
1504 			 "data blocks", inode->i_ino, to_free,
1505 			 ei->i_reserved_data_blocks);
1506 		WARN_ON(1);
1507 		to_free = ei->i_reserved_data_blocks;
1508 	}
1509 	ei->i_reserved_data_blocks -= to_free;
1510 
1511 	/* update fs dirty data blocks counter */
1512 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1513 
1514 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1515 
1516 	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1517 }
1518 
1519 /*
1520  * Delayed allocation stuff
1521  */
1522 
1523 struct mpage_da_data {
1524 	struct inode *inode;
1525 	struct writeback_control *wbc;
1526 
1527 	pgoff_t first_page;	/* The first page to write */
1528 	pgoff_t next_page;	/* Current page to examine */
1529 	pgoff_t last_page;	/* Last page to examine */
1530 	/*
1531 	 * Extent to map - this can be after first_page because that can be
1532 	 * fully mapped. We somewhat abuse m_flags to store whether the extent
1533 	 * is delalloc or unwritten.
1534 	 */
1535 	struct ext4_map_blocks map;
1536 	struct ext4_io_submit io_submit;	/* IO submission data */
1537 	unsigned int do_map:1;
1538 	unsigned int scanned_until_end:1;
1539 };
1540 
mpage_release_unused_pages(struct mpage_da_data * mpd,bool invalidate)1541 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1542 				       bool invalidate)
1543 {
1544 	int nr_pages, i;
1545 	pgoff_t index, end;
1546 	struct pagevec pvec;
1547 	struct inode *inode = mpd->inode;
1548 	struct address_space *mapping = inode->i_mapping;
1549 
1550 	/* This is necessary when next_page == 0. */
1551 	if (mpd->first_page >= mpd->next_page)
1552 		return;
1553 
1554 	mpd->scanned_until_end = 0;
1555 	index = mpd->first_page;
1556 	end   = mpd->next_page - 1;
1557 	if (invalidate) {
1558 		ext4_lblk_t start, last;
1559 		start = index << (PAGE_SHIFT - inode->i_blkbits);
1560 		last = end << (PAGE_SHIFT - inode->i_blkbits);
1561 		ext4_es_remove_extent(inode, start, last - start + 1);
1562 	}
1563 
1564 	pagevec_init(&pvec);
1565 	while (index <= end) {
1566 		nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
1567 		if (nr_pages == 0)
1568 			break;
1569 		for (i = 0; i < nr_pages; i++) {
1570 			struct page *page = pvec.pages[i];
1571 
1572 			BUG_ON(!PageLocked(page));
1573 			BUG_ON(PageWriteback(page));
1574 			if (invalidate) {
1575 				if (page_mapped(page))
1576 					clear_page_dirty_for_io(page);
1577 				block_invalidatepage(page, 0, PAGE_SIZE);
1578 				ClearPageUptodate(page);
1579 			}
1580 			unlock_page(page);
1581 		}
1582 		pagevec_release(&pvec);
1583 	}
1584 }
1585 
ext4_print_free_blocks(struct inode * inode)1586 static void ext4_print_free_blocks(struct inode *inode)
1587 {
1588 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1589 	struct super_block *sb = inode->i_sb;
1590 	struct ext4_inode_info *ei = EXT4_I(inode);
1591 
1592 	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1593 	       EXT4_C2B(EXT4_SB(inode->i_sb),
1594 			ext4_count_free_clusters(sb)));
1595 	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1596 	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1597 	       (long long) EXT4_C2B(EXT4_SB(sb),
1598 		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1599 	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1600 	       (long long) EXT4_C2B(EXT4_SB(sb),
1601 		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1602 	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1603 	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1604 		 ei->i_reserved_data_blocks);
1605 	return;
1606 }
1607 
ext4_bh_delay_or_unwritten(handle_t * handle,struct buffer_head * bh)1608 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1609 {
1610 	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1611 }
1612 
1613 /*
1614  * ext4_insert_delayed_block - adds a delayed block to the extents status
1615  *                             tree, incrementing the reserved cluster/block
1616  *                             count or making a pending reservation
1617  *                             where needed
1618  *
1619  * @inode - file containing the newly added block
1620  * @lblk - logical block to be added
1621  *
1622  * Returns 0 on success, negative error code on failure.
1623  */
ext4_insert_delayed_block(struct inode * inode,ext4_lblk_t lblk)1624 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
1625 {
1626 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1627 	int ret;
1628 	bool allocated = false;
1629 	bool reserved = false;
1630 
1631 	/*
1632 	 * If the cluster containing lblk is shared with a delayed,
1633 	 * written, or unwritten extent in a bigalloc file system, it's
1634 	 * already been accounted for and does not need to be reserved.
1635 	 * A pending reservation must be made for the cluster if it's
1636 	 * shared with a written or unwritten extent and doesn't already
1637 	 * have one.  Written and unwritten extents can be purged from the
1638 	 * extents status tree if the system is under memory pressure, so
1639 	 * it's necessary to examine the extent tree if a search of the
1640 	 * extents status tree doesn't get a match.
1641 	 */
1642 	if (sbi->s_cluster_ratio == 1) {
1643 		ret = ext4_da_reserve_space(inode);
1644 		if (ret != 0)   /* ENOSPC */
1645 			goto errout;
1646 		reserved = true;
1647 	} else {   /* bigalloc */
1648 		if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
1649 			if (!ext4_es_scan_clu(inode,
1650 					      &ext4_es_is_mapped, lblk)) {
1651 				ret = ext4_clu_mapped(inode,
1652 						      EXT4_B2C(sbi, lblk));
1653 				if (ret < 0)
1654 					goto errout;
1655 				if (ret == 0) {
1656 					ret = ext4_da_reserve_space(inode);
1657 					if (ret != 0)   /* ENOSPC */
1658 						goto errout;
1659 					reserved = true;
1660 				} else {
1661 					allocated = true;
1662 				}
1663 			} else {
1664 				allocated = true;
1665 			}
1666 		}
1667 	}
1668 
1669 	ret = ext4_es_insert_delayed_block(inode, lblk, allocated);
1670 	if (ret && reserved)
1671 		ext4_da_release_space(inode, 1);
1672 
1673 errout:
1674 	return ret;
1675 }
1676 
1677 /*
1678  * This function is grabs code from the very beginning of
1679  * ext4_map_blocks, but assumes that the caller is from delayed write
1680  * time. This function looks up the requested blocks and sets the
1681  * buffer delay bit under the protection of i_data_sem.
1682  */
ext4_da_map_blocks(struct inode * inode,sector_t iblock,struct ext4_map_blocks * map,struct buffer_head * bh)1683 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1684 			      struct ext4_map_blocks *map,
1685 			      struct buffer_head *bh)
1686 {
1687 	struct extent_status es;
1688 	int retval;
1689 	sector_t invalid_block = ~((sector_t) 0xffff);
1690 #ifdef ES_AGGRESSIVE_TEST
1691 	struct ext4_map_blocks orig_map;
1692 
1693 	memcpy(&orig_map, map, sizeof(*map));
1694 #endif
1695 
1696 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1697 		invalid_block = ~0;
1698 
1699 	map->m_flags = 0;
1700 	ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len,
1701 		  (unsigned long) map->m_lblk);
1702 
1703 	/* Lookup extent status tree firstly */
1704 	if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) {
1705 		if (ext4_es_is_hole(&es)) {
1706 			retval = 0;
1707 			down_read(&EXT4_I(inode)->i_data_sem);
1708 			goto add_delayed;
1709 		}
1710 
1711 		/*
1712 		 * Delayed extent could be allocated by fallocate.
1713 		 * So we need to check it.
1714 		 */
1715 		if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1716 			map_bh(bh, inode->i_sb, invalid_block);
1717 			set_buffer_new(bh);
1718 			set_buffer_delay(bh);
1719 			return 0;
1720 		}
1721 
1722 		map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1723 		retval = es.es_len - (iblock - es.es_lblk);
1724 		if (retval > map->m_len)
1725 			retval = map->m_len;
1726 		map->m_len = retval;
1727 		if (ext4_es_is_written(&es))
1728 			map->m_flags |= EXT4_MAP_MAPPED;
1729 		else if (ext4_es_is_unwritten(&es))
1730 			map->m_flags |= EXT4_MAP_UNWRITTEN;
1731 		else
1732 			BUG();
1733 
1734 #ifdef ES_AGGRESSIVE_TEST
1735 		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1736 #endif
1737 		return retval;
1738 	}
1739 
1740 	/*
1741 	 * Try to see if we can get the block without requesting a new
1742 	 * file system block.
1743 	 */
1744 	down_read(&EXT4_I(inode)->i_data_sem);
1745 	if (ext4_has_inline_data(inode))
1746 		retval = 0;
1747 	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1748 		retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1749 	else
1750 		retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1751 
1752 add_delayed:
1753 	if (retval == 0) {
1754 		int ret;
1755 
1756 		/*
1757 		 * XXX: __block_prepare_write() unmaps passed block,
1758 		 * is it OK?
1759 		 */
1760 
1761 		ret = ext4_insert_delayed_block(inode, map->m_lblk);
1762 		if (ret != 0) {
1763 			retval = ret;
1764 			goto out_unlock;
1765 		}
1766 
1767 		map_bh(bh, inode->i_sb, invalid_block);
1768 		set_buffer_new(bh);
1769 		set_buffer_delay(bh);
1770 	} else if (retval > 0) {
1771 		int ret;
1772 		unsigned int status;
1773 
1774 		if (unlikely(retval != map->m_len)) {
1775 			ext4_warning(inode->i_sb,
1776 				     "ES len assertion failed for inode "
1777 				     "%lu: retval %d != map->m_len %d",
1778 				     inode->i_ino, retval, map->m_len);
1779 			WARN_ON(1);
1780 		}
1781 
1782 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1783 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1784 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1785 					    map->m_pblk, status);
1786 		if (ret != 0)
1787 			retval = ret;
1788 	}
1789 
1790 out_unlock:
1791 	up_read((&EXT4_I(inode)->i_data_sem));
1792 
1793 	return retval;
1794 }
1795 
1796 /*
1797  * This is a special get_block_t callback which is used by
1798  * ext4_da_write_begin().  It will either return mapped block or
1799  * reserve space for a single block.
1800  *
1801  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1802  * We also have b_blocknr = -1 and b_bdev initialized properly
1803  *
1804  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1805  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1806  * initialized properly.
1807  */
ext4_da_get_block_prep(struct inode * inode,sector_t iblock,struct buffer_head * bh,int create)1808 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1809 			   struct buffer_head *bh, int create)
1810 {
1811 	struct ext4_map_blocks map;
1812 	int ret = 0;
1813 
1814 	BUG_ON(create == 0);
1815 	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1816 
1817 	map.m_lblk = iblock;
1818 	map.m_len = 1;
1819 
1820 	/*
1821 	 * first, we need to know whether the block is allocated already
1822 	 * preallocated blocks are unmapped but should treated
1823 	 * the same as allocated blocks.
1824 	 */
1825 	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1826 	if (ret <= 0)
1827 		return ret;
1828 
1829 	map_bh(bh, inode->i_sb, map.m_pblk);
1830 	ext4_update_bh_state(bh, map.m_flags);
1831 
1832 	if (buffer_unwritten(bh)) {
1833 		/* A delayed write to unwritten bh should be marked
1834 		 * new and mapped.  Mapped ensures that we don't do
1835 		 * get_block multiple times when we write to the same
1836 		 * offset and new ensures that we do proper zero out
1837 		 * for partial write.
1838 		 */
1839 		set_buffer_new(bh);
1840 		set_buffer_mapped(bh);
1841 	}
1842 	return 0;
1843 }
1844 
bget_one(handle_t * handle,struct buffer_head * bh)1845 static int bget_one(handle_t *handle, struct buffer_head *bh)
1846 {
1847 	get_bh(bh);
1848 	return 0;
1849 }
1850 
bput_one(handle_t * handle,struct buffer_head * bh)1851 static int bput_one(handle_t *handle, struct buffer_head *bh)
1852 {
1853 	put_bh(bh);
1854 	return 0;
1855 }
1856 
__ext4_journalled_writepage(struct page * page,unsigned int len)1857 static int __ext4_journalled_writepage(struct page *page,
1858 				       unsigned int len)
1859 {
1860 	struct address_space *mapping = page->mapping;
1861 	struct inode *inode = mapping->host;
1862 	struct buffer_head *page_bufs = NULL;
1863 	handle_t *handle = NULL;
1864 	int ret = 0, err = 0;
1865 	int inline_data = ext4_has_inline_data(inode);
1866 	struct buffer_head *inode_bh = NULL;
1867 
1868 	ClearPageChecked(page);
1869 
1870 	if (inline_data) {
1871 		BUG_ON(page->index != 0);
1872 		BUG_ON(len > ext4_get_max_inline_size(inode));
1873 		inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1874 		if (inode_bh == NULL)
1875 			goto out;
1876 	} else {
1877 		page_bufs = page_buffers(page);
1878 		if (!page_bufs) {
1879 			BUG();
1880 			goto out;
1881 		}
1882 		ext4_walk_page_buffers(handle, page_bufs, 0, len,
1883 				       NULL, bget_one);
1884 	}
1885 	/*
1886 	 * We need to release the page lock before we start the
1887 	 * journal, so grab a reference so the page won't disappear
1888 	 * out from under us.
1889 	 */
1890 	get_page(page);
1891 	unlock_page(page);
1892 
1893 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1894 				    ext4_writepage_trans_blocks(inode));
1895 	if (IS_ERR(handle)) {
1896 		ret = PTR_ERR(handle);
1897 		put_page(page);
1898 		goto out_no_pagelock;
1899 	}
1900 	BUG_ON(!ext4_handle_valid(handle));
1901 
1902 	lock_page(page);
1903 	put_page(page);
1904 	if (page->mapping != mapping) {
1905 		/* The page got truncated from under us */
1906 		ext4_journal_stop(handle);
1907 		ret = 0;
1908 		goto out;
1909 	}
1910 
1911 	if (inline_data) {
1912 		ret = ext4_mark_inode_dirty(handle, inode);
1913 	} else {
1914 		ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1915 					     do_journal_get_write_access);
1916 
1917 		err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1918 					     write_end_fn);
1919 	}
1920 	if (ret == 0)
1921 		ret = err;
1922 	err = ext4_jbd2_inode_add_write(handle, inode, page_offset(page), len);
1923 	if (ret == 0)
1924 		ret = err;
1925 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1926 	err = ext4_journal_stop(handle);
1927 	if (!ret)
1928 		ret = err;
1929 
1930 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1931 out:
1932 	unlock_page(page);
1933 out_no_pagelock:
1934 	if (!inline_data && page_bufs)
1935 		ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1936 				       NULL, bput_one);
1937 	brelse(inode_bh);
1938 	return ret;
1939 }
1940 
cancel_page_dirty_status(struct page * page)1941 static void cancel_page_dirty_status(struct page *page)
1942 {
1943 	struct address_space *mapping = page_mapping(page);
1944 	unsigned long flags;
1945 
1946 	cancel_dirty_page(page);
1947 	xa_lock_irqsave(&mapping->i_pages, flags);
1948 	__xa_clear_mark(&mapping->i_pages, page_index(page),
1949 			PAGECACHE_TAG_DIRTY);
1950 	__xa_clear_mark(&mapping->i_pages, page_index(page),
1951 			PAGECACHE_TAG_TOWRITE);
1952 	xa_unlock_irqrestore(&mapping->i_pages, flags);
1953 }
1954 
1955 /*
1956  * Note that we don't need to start a transaction unless we're journaling data
1957  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1958  * need to file the inode to the transaction's list in ordered mode because if
1959  * we are writing back data added by write(), the inode is already there and if
1960  * we are writing back data modified via mmap(), no one guarantees in which
1961  * transaction the data will hit the disk. In case we are journaling data, we
1962  * cannot start transaction directly because transaction start ranks above page
1963  * lock so we have to do some magic.
1964  *
1965  * This function can get called via...
1966  *   - ext4_writepages after taking page lock (have journal handle)
1967  *   - journal_submit_inode_data_buffers (no journal handle)
1968  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1969  *   - grab_page_cache when doing write_begin (have journal handle)
1970  *
1971  * We don't do any block allocation in this function. If we have page with
1972  * multiple blocks we need to write those buffer_heads that are mapped. This
1973  * is important for mmaped based write. So if we do with blocksize 1K
1974  * truncate(f, 1024);
1975  * a = mmap(f, 0, 4096);
1976  * a[0] = 'a';
1977  * truncate(f, 4096);
1978  * we have in the page first buffer_head mapped via page_mkwrite call back
1979  * but other buffer_heads would be unmapped but dirty (dirty done via the
1980  * do_wp_page). So writepage should write the first block. If we modify
1981  * the mmap area beyond 1024 we will again get a page_fault and the
1982  * page_mkwrite callback will do the block allocation and mark the
1983  * buffer_heads mapped.
1984  *
1985  * We redirty the page if we have any buffer_heads that is either delay or
1986  * unwritten in the page.
1987  *
1988  * We can get recursively called as show below.
1989  *
1990  *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1991  *		ext4_writepage()
1992  *
1993  * But since we don't do any block allocation we should not deadlock.
1994  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1995  */
ext4_writepage(struct page * page,struct writeback_control * wbc)1996 static int ext4_writepage(struct page *page,
1997 			  struct writeback_control *wbc)
1998 {
1999 	int ret = 0;
2000 	loff_t size;
2001 	unsigned int len;
2002 	struct buffer_head *page_bufs = NULL;
2003 	struct inode *inode = page->mapping->host;
2004 	struct ext4_io_submit io_submit;
2005 	bool keep_towrite = false;
2006 
2007 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
2008 		inode->i_mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
2009 		unlock_page(page);
2010 		return -EIO;
2011 	}
2012 
2013 	if (WARN_ON(!page_has_buffers(page))) {
2014 		cancel_page_dirty_status(page);
2015 		unlock_page(page);
2016 		return 0;
2017 	}
2018 
2019 	trace_ext4_writepage(page);
2020 	size = i_size_read(inode);
2021 	if (page->index == size >> PAGE_SHIFT &&
2022 	    !ext4_verity_in_progress(inode))
2023 		len = size & ~PAGE_MASK;
2024 	else
2025 		len = PAGE_SIZE;
2026 
2027 	page_bufs = page_buffers(page);
2028 	/*
2029 	 * We cannot do block allocation or other extent handling in this
2030 	 * function. If there are buffers needing that, we have to redirty
2031 	 * the page. But we may reach here when we do a journal commit via
2032 	 * journal_submit_inode_data_buffers() and in that case we must write
2033 	 * allocated buffers to achieve data=ordered mode guarantees.
2034 	 *
2035 	 * Also, if there is only one buffer per page (the fs block
2036 	 * size == the page size), if one buffer needs block
2037 	 * allocation or needs to modify the extent tree to clear the
2038 	 * unwritten flag, we know that the page can't be written at
2039 	 * all, so we might as well refuse the write immediately.
2040 	 * Unfortunately if the block size != page size, we can't as
2041 	 * easily detect this case using ext4_walk_page_buffers(), but
2042 	 * for the extremely common case, this is an optimization that
2043 	 * skips a useless round trip through ext4_bio_write_page().
2044 	 */
2045 	if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2046 				   ext4_bh_delay_or_unwritten)) {
2047 		redirty_page_for_writepage(wbc, page);
2048 		if ((current->flags & PF_MEMALLOC) ||
2049 		    (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2050 			/*
2051 			 * For memory cleaning there's no point in writing only
2052 			 * some buffers. So just bail out. Warn if we came here
2053 			 * from direct reclaim.
2054 			 */
2055 			WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2056 							== PF_MEMALLOC);
2057 			unlock_page(page);
2058 			return 0;
2059 		}
2060 		keep_towrite = true;
2061 	}
2062 
2063 	if (PageChecked(page) && ext4_should_journal_data(inode))
2064 		/*
2065 		 * It's mmapped pagecache.  Add buffers and journal it.  There
2066 		 * doesn't seem much point in redirtying the page here.
2067 		 */
2068 		return __ext4_journalled_writepage(page, len);
2069 
2070 	ext4_io_submit_init(&io_submit, wbc);
2071 	io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2072 	if (!io_submit.io_end) {
2073 		redirty_page_for_writepage(wbc, page);
2074 		unlock_page(page);
2075 		return -ENOMEM;
2076 	}
2077 	ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2078 	ext4_io_submit(&io_submit);
2079 	/* Drop io_end reference we got from init */
2080 	ext4_put_io_end_defer(io_submit.io_end);
2081 	return ret;
2082 }
2083 
mpage_submit_page(struct mpage_da_data * mpd,struct page * page)2084 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2085 {
2086 	int len;
2087 	loff_t size;
2088 	int err;
2089 
2090 	BUG_ON(page->index != mpd->first_page);
2091 	clear_page_dirty_for_io(page);
2092 	/*
2093 	 * We have to be very careful here!  Nothing protects writeback path
2094 	 * against i_size changes and the page can be writeably mapped into
2095 	 * page tables. So an application can be growing i_size and writing
2096 	 * data through mmap while writeback runs. clear_page_dirty_for_io()
2097 	 * write-protects our page in page tables and the page cannot get
2098 	 * written to again until we release page lock. So only after
2099 	 * clear_page_dirty_for_io() we are safe to sample i_size for
2100 	 * ext4_bio_write_page() to zero-out tail of the written page. We rely
2101 	 * on the barrier provided by TestClearPageDirty in
2102 	 * clear_page_dirty_for_io() to make sure i_size is really sampled only
2103 	 * after page tables are updated.
2104 	 */
2105 	size = i_size_read(mpd->inode);
2106 	if (page->index == size >> PAGE_SHIFT &&
2107 	    !ext4_verity_in_progress(mpd->inode))
2108 		len = size & ~PAGE_MASK;
2109 	else
2110 		len = PAGE_SIZE;
2111 	err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2112 	if (!err)
2113 		mpd->wbc->nr_to_write--;
2114 	mpd->first_page++;
2115 
2116 	return err;
2117 }
2118 
2119 #define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay))
2120 
2121 /*
2122  * mballoc gives us at most this number of blocks...
2123  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2124  * The rest of mballoc seems to handle chunks up to full group size.
2125  */
2126 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2127 
2128 /*
2129  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2130  *
2131  * @mpd - extent of blocks
2132  * @lblk - logical number of the block in the file
2133  * @bh - buffer head we want to add to the extent
2134  *
2135  * The function is used to collect contig. blocks in the same state. If the
2136  * buffer doesn't require mapping for writeback and we haven't started the
2137  * extent of buffers to map yet, the function returns 'true' immediately - the
2138  * caller can write the buffer right away. Otherwise the function returns true
2139  * if the block has been added to the extent, false if the block couldn't be
2140  * added.
2141  */
mpage_add_bh_to_extent(struct mpage_da_data * mpd,ext4_lblk_t lblk,struct buffer_head * bh)2142 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2143 				   struct buffer_head *bh)
2144 {
2145 	struct ext4_map_blocks *map = &mpd->map;
2146 
2147 	/* Buffer that doesn't need mapping for writeback? */
2148 	if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2149 	    (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2150 		/* So far no extent to map => we write the buffer right away */
2151 		if (map->m_len == 0)
2152 			return true;
2153 		return false;
2154 	}
2155 
2156 	/* First block in the extent? */
2157 	if (map->m_len == 0) {
2158 		/* We cannot map unless handle is started... */
2159 		if (!mpd->do_map)
2160 			return false;
2161 		map->m_lblk = lblk;
2162 		map->m_len = 1;
2163 		map->m_flags = bh->b_state & BH_FLAGS;
2164 		return true;
2165 	}
2166 
2167 	/* Don't go larger than mballoc is willing to allocate */
2168 	if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2169 		return false;
2170 
2171 	/* Can we merge the block to our big extent? */
2172 	if (lblk == map->m_lblk + map->m_len &&
2173 	    (bh->b_state & BH_FLAGS) == map->m_flags) {
2174 		map->m_len++;
2175 		return true;
2176 	}
2177 	return false;
2178 }
2179 
2180 /*
2181  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2182  *
2183  * @mpd - extent of blocks for mapping
2184  * @head - the first buffer in the page
2185  * @bh - buffer we should start processing from
2186  * @lblk - logical number of the block in the file corresponding to @bh
2187  *
2188  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2189  * the page for IO if all buffers in this page were mapped and there's no
2190  * accumulated extent of buffers to map or add buffers in the page to the
2191  * extent of buffers to map. The function returns 1 if the caller can continue
2192  * by processing the next page, 0 if it should stop adding buffers to the
2193  * extent to map because we cannot extend it anymore. It can also return value
2194  * < 0 in case of error during IO submission.
2195  */
mpage_process_page_bufs(struct mpage_da_data * mpd,struct buffer_head * head,struct buffer_head * bh,ext4_lblk_t lblk)2196 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2197 				   struct buffer_head *head,
2198 				   struct buffer_head *bh,
2199 				   ext4_lblk_t lblk)
2200 {
2201 	struct inode *inode = mpd->inode;
2202 	int err;
2203 	ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2204 							>> inode->i_blkbits;
2205 
2206 	if (ext4_verity_in_progress(inode))
2207 		blocks = EXT_MAX_BLOCKS;
2208 
2209 	do {
2210 		BUG_ON(buffer_locked(bh));
2211 
2212 		if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2213 			/* Found extent to map? */
2214 			if (mpd->map.m_len)
2215 				return 0;
2216 			/* Buffer needs mapping and handle is not started? */
2217 			if (!mpd->do_map)
2218 				return 0;
2219 			/* Everything mapped so far and we hit EOF */
2220 			break;
2221 		}
2222 	} while (lblk++, (bh = bh->b_this_page) != head);
2223 	/* So far everything mapped? Submit the page for IO. */
2224 	if (mpd->map.m_len == 0) {
2225 		err = mpage_submit_page(mpd, head->b_page);
2226 		if (err < 0)
2227 			return err;
2228 	}
2229 	if (lblk >= blocks) {
2230 		mpd->scanned_until_end = 1;
2231 		return 0;
2232 	}
2233 	return 1;
2234 }
2235 
2236 /*
2237  * mpage_process_page - update page buffers corresponding to changed extent and
2238  *		       may submit fully mapped page for IO
2239  *
2240  * @mpd		- description of extent to map, on return next extent to map
2241  * @m_lblk	- logical block mapping.
2242  * @m_pblk	- corresponding physical mapping.
2243  * @map_bh	- determines on return whether this page requires any further
2244  *		  mapping or not.
2245  * Scan given page buffers corresponding to changed extent and update buffer
2246  * state according to new extent state.
2247  * We map delalloc buffers to their physical location, clear unwritten bits.
2248  * If the given page is not fully mapped, we update @map to the next extent in
2249  * the given page that needs mapping & return @map_bh as true.
2250  */
mpage_process_page(struct mpage_da_data * mpd,struct page * page,ext4_lblk_t * m_lblk,ext4_fsblk_t * m_pblk,bool * map_bh)2251 static int mpage_process_page(struct mpage_da_data *mpd, struct page *page,
2252 			      ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk,
2253 			      bool *map_bh)
2254 {
2255 	struct buffer_head *head, *bh;
2256 	ext4_io_end_t *io_end = mpd->io_submit.io_end;
2257 	ext4_lblk_t lblk = *m_lblk;
2258 	ext4_fsblk_t pblock = *m_pblk;
2259 	int err = 0;
2260 	int blkbits = mpd->inode->i_blkbits;
2261 	ssize_t io_end_size = 0;
2262 	struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end);
2263 
2264 	bh = head = page_buffers(page);
2265 	do {
2266 		if (lblk < mpd->map.m_lblk)
2267 			continue;
2268 		if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2269 			/*
2270 			 * Buffer after end of mapped extent.
2271 			 * Find next buffer in the page to map.
2272 			 */
2273 			mpd->map.m_len = 0;
2274 			mpd->map.m_flags = 0;
2275 			io_end_vec->size += io_end_size;
2276 			io_end_size = 0;
2277 
2278 			err = mpage_process_page_bufs(mpd, head, bh, lblk);
2279 			if (err > 0)
2280 				err = 0;
2281 			if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) {
2282 				io_end_vec = ext4_alloc_io_end_vec(io_end);
2283 				if (IS_ERR(io_end_vec)) {
2284 					err = PTR_ERR(io_end_vec);
2285 					goto out;
2286 				}
2287 				io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits;
2288 			}
2289 			*map_bh = true;
2290 			goto out;
2291 		}
2292 		if (buffer_delay(bh)) {
2293 			clear_buffer_delay(bh);
2294 			bh->b_blocknr = pblock++;
2295 		}
2296 		clear_buffer_unwritten(bh);
2297 		io_end_size += (1 << blkbits);
2298 	} while (lblk++, (bh = bh->b_this_page) != head);
2299 
2300 	io_end_vec->size += io_end_size;
2301 	io_end_size = 0;
2302 	*map_bh = false;
2303 out:
2304 	*m_lblk = lblk;
2305 	*m_pblk = pblock;
2306 	return err;
2307 }
2308 
2309 /*
2310  * mpage_map_buffers - update buffers corresponding to changed extent and
2311  *		       submit fully mapped pages for IO
2312  *
2313  * @mpd - description of extent to map, on return next extent to map
2314  *
2315  * Scan buffers corresponding to changed extent (we expect corresponding pages
2316  * to be already locked) and update buffer state according to new extent state.
2317  * We map delalloc buffers to their physical location, clear unwritten bits,
2318  * and mark buffers as uninit when we perform writes to unwritten extents
2319  * and do extent conversion after IO is finished. If the last page is not fully
2320  * mapped, we update @map to the next extent in the last page that needs
2321  * mapping. Otherwise we submit the page for IO.
2322  */
mpage_map_and_submit_buffers(struct mpage_da_data * mpd)2323 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2324 {
2325 	struct pagevec pvec;
2326 	int nr_pages, i;
2327 	struct inode *inode = mpd->inode;
2328 	int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2329 	pgoff_t start, end;
2330 	ext4_lblk_t lblk;
2331 	ext4_fsblk_t pblock;
2332 	int err;
2333 	bool map_bh = false;
2334 
2335 	start = mpd->map.m_lblk >> bpp_bits;
2336 	end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2337 	lblk = start << bpp_bits;
2338 	pblock = mpd->map.m_pblk;
2339 
2340 	pagevec_init(&pvec);
2341 	while (start <= end) {
2342 		nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
2343 						&start, end);
2344 		if (nr_pages == 0)
2345 			break;
2346 		for (i = 0; i < nr_pages; i++) {
2347 			struct page *page = pvec.pages[i];
2348 
2349 			err = mpage_process_page(mpd, page, &lblk, &pblock,
2350 						 &map_bh);
2351 			/*
2352 			 * If map_bh is true, means page may require further bh
2353 			 * mapping, or maybe the page was submitted for IO.
2354 			 * So we return to call further extent mapping.
2355 			 */
2356 			if (err < 0 || map_bh)
2357 				goto out;
2358 			/* Page fully mapped - let IO run! */
2359 			err = mpage_submit_page(mpd, page);
2360 			if (err < 0)
2361 				goto out;
2362 		}
2363 		pagevec_release(&pvec);
2364 	}
2365 	/* Extent fully mapped and matches with page boundary. We are done. */
2366 	mpd->map.m_len = 0;
2367 	mpd->map.m_flags = 0;
2368 	return 0;
2369 out:
2370 	pagevec_release(&pvec);
2371 	return err;
2372 }
2373 
mpage_map_one_extent(handle_t * handle,struct mpage_da_data * mpd)2374 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2375 {
2376 	struct inode *inode = mpd->inode;
2377 	struct ext4_map_blocks *map = &mpd->map;
2378 	int get_blocks_flags;
2379 	int err, dioread_nolock;
2380 
2381 	trace_ext4_da_write_pages_extent(inode, map);
2382 	/*
2383 	 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2384 	 * to convert an unwritten extent to be initialized (in the case
2385 	 * where we have written into one or more preallocated blocks).  It is
2386 	 * possible that we're going to need more metadata blocks than
2387 	 * previously reserved. However we must not fail because we're in
2388 	 * writeback and there is nothing we can do about it so it might result
2389 	 * in data loss.  So use reserved blocks to allocate metadata if
2390 	 * possible.
2391 	 *
2392 	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2393 	 * the blocks in question are delalloc blocks.  This indicates
2394 	 * that the blocks and quotas has already been checked when
2395 	 * the data was copied into the page cache.
2396 	 */
2397 	get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2398 			   EXT4_GET_BLOCKS_METADATA_NOFAIL |
2399 			   EXT4_GET_BLOCKS_IO_SUBMIT;
2400 	dioread_nolock = ext4_should_dioread_nolock(inode);
2401 	if (dioread_nolock)
2402 		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2403 	if (map->m_flags & BIT(BH_Delay))
2404 		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2405 
2406 	err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2407 	if (err < 0)
2408 		return err;
2409 	if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2410 		if (!mpd->io_submit.io_end->handle &&
2411 		    ext4_handle_valid(handle)) {
2412 			mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2413 			handle->h_rsv_handle = NULL;
2414 		}
2415 		ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2416 	}
2417 
2418 	BUG_ON(map->m_len == 0);
2419 	return 0;
2420 }
2421 
2422 /*
2423  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2424  *				 mpd->len and submit pages underlying it for IO
2425  *
2426  * @handle - handle for journal operations
2427  * @mpd - extent to map
2428  * @give_up_on_write - we set this to true iff there is a fatal error and there
2429  *                     is no hope of writing the data. The caller should discard
2430  *                     dirty pages to avoid infinite loops.
2431  *
2432  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2433  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2434  * them to initialized or split the described range from larger unwritten
2435  * extent. Note that we need not map all the described range since allocation
2436  * can return less blocks or the range is covered by more unwritten extents. We
2437  * cannot map more because we are limited by reserved transaction credits. On
2438  * the other hand we always make sure that the last touched page is fully
2439  * mapped so that it can be written out (and thus forward progress is
2440  * guaranteed). After mapping we submit all mapped pages for IO.
2441  */
mpage_map_and_submit_extent(handle_t * handle,struct mpage_da_data * mpd,bool * give_up_on_write)2442 static int mpage_map_and_submit_extent(handle_t *handle,
2443 				       struct mpage_da_data *mpd,
2444 				       bool *give_up_on_write)
2445 {
2446 	struct inode *inode = mpd->inode;
2447 	struct ext4_map_blocks *map = &mpd->map;
2448 	int err;
2449 	loff_t disksize;
2450 	int progress = 0;
2451 	ext4_io_end_t *io_end = mpd->io_submit.io_end;
2452 	struct ext4_io_end_vec *io_end_vec;
2453 
2454 	io_end_vec = ext4_alloc_io_end_vec(io_end);
2455 	if (IS_ERR(io_end_vec))
2456 		return PTR_ERR(io_end_vec);
2457 	io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits;
2458 	do {
2459 		err = mpage_map_one_extent(handle, mpd);
2460 		if (err < 0) {
2461 			struct super_block *sb = inode->i_sb;
2462 
2463 			if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2464 			    ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
2465 				goto invalidate_dirty_pages;
2466 			/*
2467 			 * Let the uper layers retry transient errors.
2468 			 * In the case of ENOSPC, if ext4_count_free_blocks()
2469 			 * is non-zero, a commit should free up blocks.
2470 			 */
2471 			if ((err == -ENOMEM) ||
2472 			    (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2473 				if (progress)
2474 					goto update_disksize;
2475 				return err;
2476 			}
2477 			ext4_msg(sb, KERN_CRIT,
2478 				 "Delayed block allocation failed for "
2479 				 "inode %lu at logical offset %llu with"
2480 				 " max blocks %u with error %d",
2481 				 inode->i_ino,
2482 				 (unsigned long long)map->m_lblk,
2483 				 (unsigned)map->m_len, -err);
2484 			ext4_msg(sb, KERN_CRIT,
2485 				 "This should not happen!! Data will "
2486 				 "be lost\n");
2487 			if (err == -ENOSPC)
2488 				ext4_print_free_blocks(inode);
2489 		invalidate_dirty_pages:
2490 			*give_up_on_write = true;
2491 			return err;
2492 		}
2493 		progress = 1;
2494 		/*
2495 		 * Update buffer state, submit mapped pages, and get us new
2496 		 * extent to map
2497 		 */
2498 		err = mpage_map_and_submit_buffers(mpd);
2499 		if (err < 0)
2500 			goto update_disksize;
2501 	} while (map->m_len);
2502 
2503 update_disksize:
2504 	/*
2505 	 * Update on-disk size after IO is submitted.  Races with
2506 	 * truncate are avoided by checking i_size under i_data_sem.
2507 	 */
2508 	disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2509 	if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
2510 		int err2;
2511 		loff_t i_size;
2512 
2513 		down_write(&EXT4_I(inode)->i_data_sem);
2514 		i_size = i_size_read(inode);
2515 		if (disksize > i_size)
2516 			disksize = i_size;
2517 		if (disksize > EXT4_I(inode)->i_disksize)
2518 			EXT4_I(inode)->i_disksize = disksize;
2519 		up_write(&EXT4_I(inode)->i_data_sem);
2520 		err2 = ext4_mark_inode_dirty(handle, inode);
2521 		if (err2) {
2522 			ext4_error_err(inode->i_sb, -err2,
2523 				       "Failed to mark inode %lu dirty",
2524 				       inode->i_ino);
2525 		}
2526 		if (!err)
2527 			err = err2;
2528 	}
2529 	return err;
2530 }
2531 
2532 /*
2533  * Calculate the total number of credits to reserve for one writepages
2534  * iteration. This is called from ext4_writepages(). We map an extent of
2535  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2536  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2537  * bpp - 1 blocks in bpp different extents.
2538  */
ext4_da_writepages_trans_blocks(struct inode * inode)2539 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2540 {
2541 	int bpp = ext4_journal_blocks_per_page(inode);
2542 
2543 	return ext4_meta_trans_blocks(inode,
2544 				MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2545 }
2546 
2547 /*
2548  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2549  * 				 and underlying extent to map
2550  *
2551  * @mpd - where to look for pages
2552  *
2553  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2554  * IO immediately. When we find a page which isn't mapped we start accumulating
2555  * extent of buffers underlying these pages that needs mapping (formed by
2556  * either delayed or unwritten buffers). We also lock the pages containing
2557  * these buffers. The extent found is returned in @mpd structure (starting at
2558  * mpd->lblk with length mpd->len blocks).
2559  *
2560  * Note that this function can attach bios to one io_end structure which are
2561  * neither logically nor physically contiguous. Although it may seem as an
2562  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2563  * case as we need to track IO to all buffers underlying a page in one io_end.
2564  */
mpage_prepare_extent_to_map(struct mpage_da_data * mpd)2565 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2566 {
2567 	struct address_space *mapping = mpd->inode->i_mapping;
2568 	struct pagevec pvec;
2569 	unsigned int nr_pages;
2570 	long left = mpd->wbc->nr_to_write;
2571 	pgoff_t index = mpd->first_page;
2572 	pgoff_t end = mpd->last_page;
2573 	xa_mark_t tag;
2574 	int i, err = 0;
2575 	int blkbits = mpd->inode->i_blkbits;
2576 	ext4_lblk_t lblk;
2577 	struct buffer_head *head;
2578 
2579 	if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2580 		tag = PAGECACHE_TAG_TOWRITE;
2581 	else
2582 		tag = PAGECACHE_TAG_DIRTY;
2583 
2584 	pagevec_init(&pvec);
2585 	mpd->map.m_len = 0;
2586 	mpd->next_page = index;
2587 	while (index <= end) {
2588 		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2589 				tag);
2590 		if (nr_pages == 0)
2591 			break;
2592 
2593 		for (i = 0; i < nr_pages; i++) {
2594 			struct page *page = pvec.pages[i];
2595 
2596 			/*
2597 			 * Accumulated enough dirty pages? This doesn't apply
2598 			 * to WB_SYNC_ALL mode. For integrity sync we have to
2599 			 * keep going because someone may be concurrently
2600 			 * dirtying pages, and we might have synced a lot of
2601 			 * newly appeared dirty pages, but have not synced all
2602 			 * of the old dirty pages.
2603 			 */
2604 			if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2605 				goto out;
2606 
2607 			/* If we can't merge this page, we are done. */
2608 			if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2609 				goto out;
2610 
2611 			lock_page(page);
2612 			/*
2613 			 * If the page is no longer dirty, or its mapping no
2614 			 * longer corresponds to inode we are writing (which
2615 			 * means it has been truncated or invalidated), or the
2616 			 * page is already under writeback and we are not doing
2617 			 * a data integrity writeback, skip the page
2618 			 */
2619 			if (!PageDirty(page) ||
2620 			    (PageWriteback(page) &&
2621 			     (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2622 			    unlikely(page->mapping != mapping)) {
2623 				unlock_page(page);
2624 				continue;
2625 			}
2626 
2627 			if (WARN_ON(!page_has_buffers(page))) {
2628 				cancel_page_dirty_status(page);
2629 				unlock_page(page);
2630 				continue;
2631 			}
2632 
2633 			wait_on_page_writeback(page);
2634 			BUG_ON(PageWriteback(page));
2635 
2636 			if (mpd->map.m_len == 0)
2637 				mpd->first_page = page->index;
2638 			mpd->next_page = page->index + 1;
2639 			/* Add all dirty buffers to mpd */
2640 			lblk = ((ext4_lblk_t)page->index) <<
2641 				(PAGE_SHIFT - blkbits);
2642 			head = page_buffers(page);
2643 			err = mpage_process_page_bufs(mpd, head, head, lblk);
2644 			if (err <= 0)
2645 				goto out;
2646 			err = 0;
2647 			left--;
2648 		}
2649 		pagevec_release(&pvec);
2650 		cond_resched();
2651 	}
2652 	mpd->scanned_until_end = 1;
2653 	return 0;
2654 out:
2655 	pagevec_release(&pvec);
2656 	return err;
2657 }
2658 
ext4_writepages(struct address_space * mapping,struct writeback_control * wbc)2659 static int ext4_writepages(struct address_space *mapping,
2660 			   struct writeback_control *wbc)
2661 {
2662 	pgoff_t	writeback_index = 0;
2663 	long nr_to_write = wbc->nr_to_write;
2664 	int range_whole = 0;
2665 	int cycled = 1;
2666 	handle_t *handle = NULL;
2667 	struct mpage_da_data mpd;
2668 	struct inode *inode = mapping->host;
2669 	int needed_blocks, rsv_blocks = 0, ret = 0;
2670 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2671 	struct blk_plug plug;
2672 	bool give_up_on_write = false;
2673 
2674 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2675 		return -EIO;
2676 
2677 	percpu_down_read(&sbi->s_writepages_rwsem);
2678 	trace_ext4_writepages(inode, wbc);
2679 
2680 	/*
2681 	 * No pages to write? This is mainly a kludge to avoid starting
2682 	 * a transaction for special inodes like journal inode on last iput()
2683 	 * because that could violate lock ordering on umount
2684 	 */
2685 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2686 		goto out_writepages;
2687 
2688 	if (ext4_should_journal_data(inode)) {
2689 		ret = generic_writepages(mapping, wbc);
2690 		goto out_writepages;
2691 	}
2692 
2693 	/*
2694 	 * If the filesystem has aborted, it is read-only, so return
2695 	 * right away instead of dumping stack traces later on that
2696 	 * will obscure the real source of the problem.  We test
2697 	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2698 	 * the latter could be true if the filesystem is mounted
2699 	 * read-only, and in that case, ext4_writepages should
2700 	 * *never* be called, so if that ever happens, we would want
2701 	 * the stack trace.
2702 	 */
2703 	if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2704 		     ext4_test_mount_flag(inode->i_sb, EXT4_MF_FS_ABORTED))) {
2705 		ret = -EROFS;
2706 		goto out_writepages;
2707 	}
2708 
2709 	/*
2710 	 * If we have inline data and arrive here, it means that
2711 	 * we will soon create the block for the 1st page, so
2712 	 * we'd better clear the inline data here.
2713 	 */
2714 	if (ext4_has_inline_data(inode)) {
2715 		/* Just inode will be modified... */
2716 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2717 		if (IS_ERR(handle)) {
2718 			ret = PTR_ERR(handle);
2719 			goto out_writepages;
2720 		}
2721 		BUG_ON(ext4_test_inode_state(inode,
2722 				EXT4_STATE_MAY_INLINE_DATA));
2723 		ext4_destroy_inline_data(handle, inode);
2724 		ext4_journal_stop(handle);
2725 	}
2726 
2727 	if (ext4_should_dioread_nolock(inode)) {
2728 		/*
2729 		 * We may need to convert up to one extent per block in
2730 		 * the page and we may dirty the inode.
2731 		 */
2732 		rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2733 						PAGE_SIZE >> inode->i_blkbits);
2734 	}
2735 
2736 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2737 		range_whole = 1;
2738 
2739 	if (wbc->range_cyclic) {
2740 		writeback_index = mapping->writeback_index;
2741 		if (writeback_index)
2742 			cycled = 0;
2743 		mpd.first_page = writeback_index;
2744 		mpd.last_page = -1;
2745 	} else {
2746 		mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2747 		mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2748 	}
2749 
2750 	mpd.inode = inode;
2751 	mpd.wbc = wbc;
2752 	ext4_io_submit_init(&mpd.io_submit, wbc);
2753 retry:
2754 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2755 		tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2756 	blk_start_plug(&plug);
2757 
2758 	/*
2759 	 * First writeback pages that don't need mapping - we can avoid
2760 	 * starting a transaction unnecessarily and also avoid being blocked
2761 	 * in the block layer on device congestion while having transaction
2762 	 * started.
2763 	 */
2764 	mpd.do_map = 0;
2765 	mpd.scanned_until_end = 0;
2766 	mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2767 	if (!mpd.io_submit.io_end) {
2768 		ret = -ENOMEM;
2769 		goto unplug;
2770 	}
2771 	ret = mpage_prepare_extent_to_map(&mpd);
2772 	/* Unlock pages we didn't use */
2773 	mpage_release_unused_pages(&mpd, false);
2774 	/* Submit prepared bio */
2775 	ext4_io_submit(&mpd.io_submit);
2776 	ext4_put_io_end_defer(mpd.io_submit.io_end);
2777 	mpd.io_submit.io_end = NULL;
2778 	if (ret < 0)
2779 		goto unplug;
2780 
2781 	while (!mpd.scanned_until_end && wbc->nr_to_write > 0) {
2782 		/* For each extent of pages we use new io_end */
2783 		mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2784 		if (!mpd.io_submit.io_end) {
2785 			ret = -ENOMEM;
2786 			break;
2787 		}
2788 
2789 		/*
2790 		 * We have two constraints: We find one extent to map and we
2791 		 * must always write out whole page (makes a difference when
2792 		 * blocksize < pagesize) so that we don't block on IO when we
2793 		 * try to write out the rest of the page. Journalled mode is
2794 		 * not supported by delalloc.
2795 		 */
2796 		BUG_ON(ext4_should_journal_data(inode));
2797 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2798 
2799 		/* start a new transaction */
2800 		handle = ext4_journal_start_with_reserve(inode,
2801 				EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2802 		if (IS_ERR(handle)) {
2803 			ret = PTR_ERR(handle);
2804 			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2805 			       "%ld pages, ino %lu; err %d", __func__,
2806 				wbc->nr_to_write, inode->i_ino, ret);
2807 			/* Release allocated io_end */
2808 			ext4_put_io_end(mpd.io_submit.io_end);
2809 			mpd.io_submit.io_end = NULL;
2810 			break;
2811 		}
2812 		mpd.do_map = 1;
2813 
2814 		trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2815 		ret = mpage_prepare_extent_to_map(&mpd);
2816 		if (!ret && mpd.map.m_len)
2817 			ret = mpage_map_and_submit_extent(handle, &mpd,
2818 					&give_up_on_write);
2819 		/*
2820 		 * Caution: If the handle is synchronous,
2821 		 * ext4_journal_stop() can wait for transaction commit
2822 		 * to finish which may depend on writeback of pages to
2823 		 * complete or on page lock to be released.  In that
2824 		 * case, we have to wait until after we have
2825 		 * submitted all the IO, released page locks we hold,
2826 		 * and dropped io_end reference (for extent conversion
2827 		 * to be able to complete) before stopping the handle.
2828 		 */
2829 		if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2830 			ext4_journal_stop(handle);
2831 			handle = NULL;
2832 			mpd.do_map = 0;
2833 		}
2834 		/* Unlock pages we didn't use */
2835 		mpage_release_unused_pages(&mpd, give_up_on_write);
2836 		/* Submit prepared bio */
2837 		ext4_io_submit(&mpd.io_submit);
2838 
2839 		/*
2840 		 * Drop our io_end reference we got from init. We have
2841 		 * to be careful and use deferred io_end finishing if
2842 		 * we are still holding the transaction as we can
2843 		 * release the last reference to io_end which may end
2844 		 * up doing unwritten extent conversion.
2845 		 */
2846 		if (handle) {
2847 			ext4_put_io_end_defer(mpd.io_submit.io_end);
2848 			ext4_journal_stop(handle);
2849 		} else
2850 			ext4_put_io_end(mpd.io_submit.io_end);
2851 		mpd.io_submit.io_end = NULL;
2852 
2853 		if (ret == -ENOSPC && sbi->s_journal) {
2854 			/*
2855 			 * Commit the transaction which would
2856 			 * free blocks released in the transaction
2857 			 * and try again
2858 			 */
2859 			jbd2_journal_force_commit_nested(sbi->s_journal);
2860 			ret = 0;
2861 			continue;
2862 		}
2863 		/* Fatal error - ENOMEM, EIO... */
2864 		if (ret)
2865 			break;
2866 	}
2867 unplug:
2868 	blk_finish_plug(&plug);
2869 	if (!ret && !cycled && wbc->nr_to_write > 0) {
2870 		cycled = 1;
2871 		mpd.last_page = writeback_index - 1;
2872 		mpd.first_page = 0;
2873 		goto retry;
2874 	}
2875 
2876 	/* Update index */
2877 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2878 		/*
2879 		 * Set the writeback_index so that range_cyclic
2880 		 * mode will write it back later
2881 		 */
2882 		mapping->writeback_index = mpd.first_page;
2883 
2884 out_writepages:
2885 	trace_ext4_writepages_result(inode, wbc, ret,
2886 				     nr_to_write - wbc->nr_to_write);
2887 	percpu_up_read(&sbi->s_writepages_rwsem);
2888 	return ret;
2889 }
2890 
ext4_dax_writepages(struct address_space * mapping,struct writeback_control * wbc)2891 static int ext4_dax_writepages(struct address_space *mapping,
2892 			       struct writeback_control *wbc)
2893 {
2894 	int ret;
2895 	long nr_to_write = wbc->nr_to_write;
2896 	struct inode *inode = mapping->host;
2897 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2898 
2899 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2900 		return -EIO;
2901 
2902 	percpu_down_read(&sbi->s_writepages_rwsem);
2903 	trace_ext4_writepages(inode, wbc);
2904 
2905 	ret = dax_writeback_mapping_range(mapping, sbi->s_daxdev, wbc);
2906 	trace_ext4_writepages_result(inode, wbc, ret,
2907 				     nr_to_write - wbc->nr_to_write);
2908 	percpu_up_read(&sbi->s_writepages_rwsem);
2909 	return ret;
2910 }
2911 
ext4_nonda_switch(struct super_block * sb)2912 static int ext4_nonda_switch(struct super_block *sb)
2913 {
2914 	s64 free_clusters, dirty_clusters;
2915 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2916 
2917 	/*
2918 	 * switch to non delalloc mode if we are running low
2919 	 * on free block. The free block accounting via percpu
2920 	 * counters can get slightly wrong with percpu_counter_batch getting
2921 	 * accumulated on each CPU without updating global counters
2922 	 * Delalloc need an accurate free block accounting. So switch
2923 	 * to non delalloc when we are near to error range.
2924 	 */
2925 	free_clusters =
2926 		percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2927 	dirty_clusters =
2928 		percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2929 	/*
2930 	 * Start pushing delalloc when 1/2 of free blocks are dirty.
2931 	 */
2932 	if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2933 		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2934 
2935 	if (2 * free_clusters < 3 * dirty_clusters ||
2936 	    free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2937 		/*
2938 		 * free block count is less than 150% of dirty blocks
2939 		 * or free blocks is less than watermark
2940 		 */
2941 		return 1;
2942 	}
2943 	return 0;
2944 }
2945 
ext4_da_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)2946 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2947 			       loff_t pos, unsigned len, unsigned flags,
2948 			       struct page **pagep, void **fsdata)
2949 {
2950 	int ret, retries = 0;
2951 	struct page *page;
2952 	pgoff_t index;
2953 	struct inode *inode = mapping->host;
2954 
2955 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2956 		return -EIO;
2957 
2958 	index = pos >> PAGE_SHIFT;
2959 
2960 	if (ext4_nonda_switch(inode->i_sb) || S_ISLNK(inode->i_mode) ||
2961 	    ext4_verity_in_progress(inode)) {
2962 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2963 		return ext4_write_begin(file, mapping, pos,
2964 					len, flags, pagep, fsdata);
2965 	}
2966 	*fsdata = (void *)0;
2967 	trace_ext4_da_write_begin(inode, pos, len, flags);
2968 
2969 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2970 		ret = ext4_da_write_inline_data_begin(mapping, inode,
2971 						      pos, len, flags,
2972 						      pagep, fsdata);
2973 		if (ret < 0)
2974 			return ret;
2975 		if (ret == 1)
2976 			return 0;
2977 	}
2978 
2979 retry:
2980 	page = grab_cache_page_write_begin(mapping, index, flags);
2981 	if (!page)
2982 		return -ENOMEM;
2983 
2984 	/* In case writeback began while the page was unlocked */
2985 	wait_for_stable_page(page);
2986 
2987 #ifdef CONFIG_FS_ENCRYPTION
2988 	ret = ext4_block_write_begin(page, pos, len,
2989 				     ext4_da_get_block_prep);
2990 #else
2991 	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2992 #endif
2993 	if (ret < 0) {
2994 		unlock_page(page);
2995 		put_page(page);
2996 		/*
2997 		 * block_write_begin may have instantiated a few blocks
2998 		 * outside i_size.  Trim these off again. Don't need
2999 		 * i_size_read because we hold inode lock.
3000 		 */
3001 		if (pos + len > inode->i_size)
3002 			ext4_truncate_failed_write(inode);
3003 
3004 		if (ret == -ENOSPC &&
3005 		    ext4_should_retry_alloc(inode->i_sb, &retries))
3006 			goto retry;
3007 		return ret;
3008 	}
3009 
3010 	*pagep = page;
3011 	return ret;
3012 }
3013 
3014 /*
3015  * Check if we should update i_disksize
3016  * when write to the end of file but not require block allocation
3017  */
ext4_da_should_update_i_disksize(struct page * page,unsigned long offset)3018 static int ext4_da_should_update_i_disksize(struct page *page,
3019 					    unsigned long offset)
3020 {
3021 	struct buffer_head *bh;
3022 	struct inode *inode = page->mapping->host;
3023 	unsigned int idx;
3024 	int i;
3025 
3026 	bh = page_buffers(page);
3027 	idx = offset >> inode->i_blkbits;
3028 
3029 	for (i = 0; i < idx; i++)
3030 		bh = bh->b_this_page;
3031 
3032 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3033 		return 0;
3034 	return 1;
3035 }
3036 
ext4_da_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)3037 static int ext4_da_write_end(struct file *file,
3038 			     struct address_space *mapping,
3039 			     loff_t pos, unsigned len, unsigned copied,
3040 			     struct page *page, void *fsdata)
3041 {
3042 	struct inode *inode = mapping->host;
3043 	loff_t new_i_size;
3044 	unsigned long start, end;
3045 	int write_mode = (int)(unsigned long)fsdata;
3046 
3047 	if (write_mode == FALL_BACK_TO_NONDELALLOC)
3048 		return ext4_write_end(file, mapping, pos,
3049 				      len, copied, page, fsdata);
3050 
3051 	trace_ext4_da_write_end(inode, pos, len, copied);
3052 
3053 	if (write_mode != CONVERT_INLINE_DATA &&
3054 	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3055 	    ext4_has_inline_data(inode))
3056 		return ext4_write_inline_data_end(inode, pos, len, copied, page);
3057 
3058 	start = pos & (PAGE_SIZE - 1);
3059 	end = start + copied - 1;
3060 
3061 	/*
3062 	 * Since we are holding inode lock, we are sure i_disksize <=
3063 	 * i_size. We also know that if i_disksize < i_size, there are
3064 	 * delalloc writes pending in the range upto i_size. If the end of
3065 	 * the current write is <= i_size, there's no need to touch
3066 	 * i_disksize since writeback will push i_disksize upto i_size
3067 	 * eventually. If the end of the current write is > i_size and
3068 	 * inside an allocated block (ext4_da_should_update_i_disksize()
3069 	 * check), we need to update i_disksize here as neither
3070 	 * ext4_writepage() nor certain ext4_writepages() paths not
3071 	 * allocating blocks update i_disksize.
3072 	 *
3073 	 * Note that we defer inode dirtying to generic_write_end() /
3074 	 * ext4_da_write_inline_data_end().
3075 	 */
3076 	new_i_size = pos + copied;
3077 	if (copied && new_i_size > inode->i_size &&
3078 	    ext4_da_should_update_i_disksize(page, end))
3079 		ext4_update_i_disksize(inode, new_i_size);
3080 
3081 	return generic_write_end(file, mapping, pos, len, copied, page, fsdata);
3082 }
3083 
3084 /*
3085  * Force all delayed allocation blocks to be allocated for a given inode.
3086  */
ext4_alloc_da_blocks(struct inode * inode)3087 int ext4_alloc_da_blocks(struct inode *inode)
3088 {
3089 	trace_ext4_alloc_da_blocks(inode);
3090 
3091 	if (!EXT4_I(inode)->i_reserved_data_blocks)
3092 		return 0;
3093 
3094 	/*
3095 	 * We do something simple for now.  The filemap_flush() will
3096 	 * also start triggering a write of the data blocks, which is
3097 	 * not strictly speaking necessary (and for users of
3098 	 * laptop_mode, not even desirable).  However, to do otherwise
3099 	 * would require replicating code paths in:
3100 	 *
3101 	 * ext4_writepages() ->
3102 	 *    write_cache_pages() ---> (via passed in callback function)
3103 	 *        __mpage_da_writepage() -->
3104 	 *           mpage_add_bh_to_extent()
3105 	 *           mpage_da_map_blocks()
3106 	 *
3107 	 * The problem is that write_cache_pages(), located in
3108 	 * mm/page-writeback.c, marks pages clean in preparation for
3109 	 * doing I/O, which is not desirable if we're not planning on
3110 	 * doing I/O at all.
3111 	 *
3112 	 * We could call write_cache_pages(), and then redirty all of
3113 	 * the pages by calling redirty_page_for_writepage() but that
3114 	 * would be ugly in the extreme.  So instead we would need to
3115 	 * replicate parts of the code in the above functions,
3116 	 * simplifying them because we wouldn't actually intend to
3117 	 * write out the pages, but rather only collect contiguous
3118 	 * logical block extents, call the multi-block allocator, and
3119 	 * then update the buffer heads with the block allocations.
3120 	 *
3121 	 * For now, though, we'll cheat by calling filemap_flush(),
3122 	 * which will map the blocks, and start the I/O, but not
3123 	 * actually wait for the I/O to complete.
3124 	 */
3125 	return filemap_flush(inode->i_mapping);
3126 }
3127 
3128 /*
3129  * bmap() is special.  It gets used by applications such as lilo and by
3130  * the swapper to find the on-disk block of a specific piece of data.
3131  *
3132  * Naturally, this is dangerous if the block concerned is still in the
3133  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3134  * filesystem and enables swap, then they may get a nasty shock when the
3135  * data getting swapped to that swapfile suddenly gets overwritten by
3136  * the original zero's written out previously to the journal and
3137  * awaiting writeback in the kernel's buffer cache.
3138  *
3139  * So, if we see any bmap calls here on a modified, data-journaled file,
3140  * take extra steps to flush any blocks which might be in the cache.
3141  */
ext4_bmap(struct address_space * mapping,sector_t block)3142 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3143 {
3144 	struct inode *inode = mapping->host;
3145 	journal_t *journal;
3146 	int err;
3147 
3148 	/*
3149 	 * We can get here for an inline file via the FIBMAP ioctl
3150 	 */
3151 	if (ext4_has_inline_data(inode))
3152 		return 0;
3153 
3154 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3155 			test_opt(inode->i_sb, DELALLOC)) {
3156 		/*
3157 		 * With delalloc we want to sync the file
3158 		 * so that we can make sure we allocate
3159 		 * blocks for file
3160 		 */
3161 		filemap_write_and_wait(mapping);
3162 	}
3163 
3164 	if (EXT4_JOURNAL(inode) &&
3165 	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3166 		/*
3167 		 * This is a REALLY heavyweight approach, but the use of
3168 		 * bmap on dirty files is expected to be extremely rare:
3169 		 * only if we run lilo or swapon on a freshly made file
3170 		 * do we expect this to happen.
3171 		 *
3172 		 * (bmap requires CAP_SYS_RAWIO so this does not
3173 		 * represent an unprivileged user DOS attack --- we'd be
3174 		 * in trouble if mortal users could trigger this path at
3175 		 * will.)
3176 		 *
3177 		 * NB. EXT4_STATE_JDATA is not set on files other than
3178 		 * regular files.  If somebody wants to bmap a directory
3179 		 * or symlink and gets confused because the buffer
3180 		 * hasn't yet been flushed to disk, they deserve
3181 		 * everything they get.
3182 		 */
3183 
3184 		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3185 		journal = EXT4_JOURNAL(inode);
3186 		jbd2_journal_lock_updates(journal);
3187 		err = jbd2_journal_flush(journal);
3188 		jbd2_journal_unlock_updates(journal);
3189 
3190 		if (err)
3191 			return 0;
3192 	}
3193 
3194 	return iomap_bmap(mapping, block, &ext4_iomap_ops);
3195 }
3196 
ext4_readpage(struct file * file,struct page * page)3197 static int ext4_readpage(struct file *file, struct page *page)
3198 {
3199 	int ret = -EAGAIN;
3200 	struct inode *inode = page->mapping->host;
3201 
3202 	trace_ext4_readpage(page);
3203 
3204 	if (ext4_has_inline_data(inode))
3205 		ret = ext4_readpage_inline(inode, page);
3206 
3207 	if (ret == -EAGAIN)
3208 		return ext4_mpage_readpages(inode, NULL, page);
3209 
3210 	return ret;
3211 }
3212 
ext4_readahead(struct readahead_control * rac)3213 static void ext4_readahead(struct readahead_control *rac)
3214 {
3215 	struct inode *inode = rac->mapping->host;
3216 
3217 	/* If the file has inline data, no need to do readahead. */
3218 	if (ext4_has_inline_data(inode))
3219 		return;
3220 
3221 	ext4_mpage_readpages(inode, rac, NULL);
3222 }
3223 
ext4_invalidatepage(struct page * page,unsigned int offset,unsigned int length)3224 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3225 				unsigned int length)
3226 {
3227 	trace_ext4_invalidatepage(page, offset, length);
3228 
3229 	/* No journalling happens on data buffers when this function is used */
3230 	WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3231 
3232 	block_invalidatepage(page, offset, length);
3233 }
3234 
__ext4_journalled_invalidatepage(struct page * page,unsigned int offset,unsigned int length)3235 static int __ext4_journalled_invalidatepage(struct page *page,
3236 					    unsigned int offset,
3237 					    unsigned int length)
3238 {
3239 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3240 
3241 	trace_ext4_journalled_invalidatepage(page, offset, length);
3242 
3243 	/*
3244 	 * If it's a full truncate we just forget about the pending dirtying
3245 	 */
3246 	if (offset == 0 && length == PAGE_SIZE)
3247 		ClearPageChecked(page);
3248 
3249 	return jbd2_journal_invalidatepage(journal, page, offset, length);
3250 }
3251 
3252 /* Wrapper for aops... */
ext4_journalled_invalidatepage(struct page * page,unsigned int offset,unsigned int length)3253 static void ext4_journalled_invalidatepage(struct page *page,
3254 					   unsigned int offset,
3255 					   unsigned int length)
3256 {
3257 	WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3258 }
3259 
ext4_releasepage(struct page * page,gfp_t wait)3260 static int ext4_releasepage(struct page *page, gfp_t wait)
3261 {
3262 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3263 
3264 	trace_ext4_releasepage(page);
3265 
3266 	/* Page has dirty journalled data -> cannot release */
3267 	if (PageChecked(page))
3268 		return 0;
3269 	if (journal)
3270 		return jbd2_journal_try_to_free_buffers(journal, page);
3271 	else
3272 		return try_to_free_buffers(page);
3273 }
3274 
ext4_inode_datasync_dirty(struct inode * inode)3275 static bool ext4_inode_datasync_dirty(struct inode *inode)
3276 {
3277 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3278 
3279 	if (journal) {
3280 		if (jbd2_transaction_committed(journal,
3281 			EXT4_I(inode)->i_datasync_tid))
3282 			return false;
3283 		if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT))
3284 			return !list_empty(&EXT4_I(inode)->i_fc_list);
3285 		return true;
3286 	}
3287 
3288 	/* Any metadata buffers to write? */
3289 	if (!list_empty(&inode->i_mapping->private_list))
3290 		return true;
3291 	return inode->i_state & I_DIRTY_DATASYNC;
3292 }
3293 
ext4_set_iomap(struct inode * inode,struct iomap * iomap,struct ext4_map_blocks * map,loff_t offset,loff_t length)3294 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap,
3295 			   struct ext4_map_blocks *map, loff_t offset,
3296 			   loff_t length)
3297 {
3298 	u8 blkbits = inode->i_blkbits;
3299 
3300 	/*
3301 	 * Writes that span EOF might trigger an I/O size update on completion,
3302 	 * so consider them to be dirty for the purpose of O_DSYNC, even if
3303 	 * there is no other metadata changes being made or are pending.
3304 	 */
3305 	iomap->flags = 0;
3306 	if (ext4_inode_datasync_dirty(inode) ||
3307 	    offset + length > i_size_read(inode))
3308 		iomap->flags |= IOMAP_F_DIRTY;
3309 
3310 	if (map->m_flags & EXT4_MAP_NEW)
3311 		iomap->flags |= IOMAP_F_NEW;
3312 
3313 	iomap->bdev = inode->i_sb->s_bdev;
3314 	iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
3315 	iomap->offset = (u64) map->m_lblk << blkbits;
3316 	iomap->length = (u64) map->m_len << blkbits;
3317 
3318 	if ((map->m_flags & EXT4_MAP_MAPPED) &&
3319 	    !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3320 		iomap->flags |= IOMAP_F_MERGED;
3321 
3322 	/*
3323 	 * Flags passed to ext4_map_blocks() for direct I/O writes can result
3324 	 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits
3325 	 * set. In order for any allocated unwritten extents to be converted
3326 	 * into written extents correctly within the ->end_io() handler, we
3327 	 * need to ensure that the iomap->type is set appropriately. Hence, the
3328 	 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has
3329 	 * been set first.
3330 	 */
3331 	if (map->m_flags & EXT4_MAP_UNWRITTEN) {
3332 		iomap->type = IOMAP_UNWRITTEN;
3333 		iomap->addr = (u64) map->m_pblk << blkbits;
3334 	} else if (map->m_flags & EXT4_MAP_MAPPED) {
3335 		iomap->type = IOMAP_MAPPED;
3336 		iomap->addr = (u64) map->m_pblk << blkbits;
3337 	} else {
3338 		iomap->type = IOMAP_HOLE;
3339 		iomap->addr = IOMAP_NULL_ADDR;
3340 	}
3341 }
3342 
ext4_iomap_alloc(struct inode * inode,struct ext4_map_blocks * map,unsigned int flags)3343 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map,
3344 			    unsigned int flags)
3345 {
3346 	handle_t *handle;
3347 	u8 blkbits = inode->i_blkbits;
3348 	int ret, dio_credits, m_flags = 0, retries = 0;
3349 
3350 	/*
3351 	 * Trim the mapping request to the maximum value that we can map at
3352 	 * once for direct I/O.
3353 	 */
3354 	if (map->m_len > DIO_MAX_BLOCKS)
3355 		map->m_len = DIO_MAX_BLOCKS;
3356 	dio_credits = ext4_chunk_trans_blocks(inode, map->m_len);
3357 
3358 retry:
3359 	/*
3360 	 * Either we allocate blocks and then don't get an unwritten extent, so
3361 	 * in that case we have reserved enough credits. Or, the blocks are
3362 	 * already allocated and unwritten. In that case, the extent conversion
3363 	 * fits into the credits as well.
3364 	 */
3365 	handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
3366 	if (IS_ERR(handle))
3367 		return PTR_ERR(handle);
3368 
3369 	/*
3370 	 * DAX and direct I/O are the only two operations that are currently
3371 	 * supported with IOMAP_WRITE.
3372 	 */
3373 	WARN_ON(!IS_DAX(inode) && !(flags & IOMAP_DIRECT));
3374 	if (IS_DAX(inode))
3375 		m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3376 	/*
3377 	 * We use i_size instead of i_disksize here because delalloc writeback
3378 	 * can complete at any point during the I/O and subsequently push the
3379 	 * i_disksize out to i_size. This could be beyond where direct I/O is
3380 	 * happening and thus expose allocated blocks to direct I/O reads.
3381 	 */
3382 	else if (((loff_t)map->m_lblk << blkbits) >= i_size_read(inode))
3383 		m_flags = EXT4_GET_BLOCKS_CREATE;
3384 	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3385 		m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT;
3386 
3387 	ret = ext4_map_blocks(handle, inode, map, m_flags);
3388 
3389 	/*
3390 	 * We cannot fill holes in indirect tree based inodes as that could
3391 	 * expose stale data in the case of a crash. Use the magic error code
3392 	 * to fallback to buffered I/O.
3393 	 */
3394 	if (!m_flags && !ret)
3395 		ret = -ENOTBLK;
3396 
3397 	ext4_journal_stop(handle);
3398 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3399 		goto retry;
3400 
3401 	return ret;
3402 }
3403 
3404 
ext4_iomap_begin(struct inode * inode,loff_t offset,loff_t length,unsigned flags,struct iomap * iomap,struct iomap * srcmap)3405 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3406 		unsigned flags, struct iomap *iomap, struct iomap *srcmap)
3407 {
3408 	int ret;
3409 	struct ext4_map_blocks map;
3410 	u8 blkbits = inode->i_blkbits;
3411 
3412 	if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3413 		return -EINVAL;
3414 
3415 	if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3416 		return -ERANGE;
3417 
3418 	/*
3419 	 * Calculate the first and last logical blocks respectively.
3420 	 */
3421 	map.m_lblk = offset >> blkbits;
3422 	map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3423 			  EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3424 
3425 	if (flags & IOMAP_WRITE) {
3426 		/*
3427 		 * We check here if the blocks are already allocated, then we
3428 		 * don't need to start a journal txn and we can directly return
3429 		 * the mapping information. This could boost performance
3430 		 * especially in multi-threaded overwrite requests.
3431 		 */
3432 		if (offset + length <= i_size_read(inode)) {
3433 			ret = ext4_map_blocks(NULL, inode, &map, 0);
3434 			if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED))
3435 				goto out;
3436 		}
3437 		ret = ext4_iomap_alloc(inode, &map, flags);
3438 	} else {
3439 		ret = ext4_map_blocks(NULL, inode, &map, 0);
3440 	}
3441 
3442 	if (ret < 0)
3443 		return ret;
3444 out:
3445 	ext4_set_iomap(inode, iomap, &map, offset, length);
3446 
3447 	return 0;
3448 }
3449 
ext4_iomap_overwrite_begin(struct inode * inode,loff_t offset,loff_t length,unsigned flags,struct iomap * iomap,struct iomap * srcmap)3450 static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset,
3451 		loff_t length, unsigned flags, struct iomap *iomap,
3452 		struct iomap *srcmap)
3453 {
3454 	int ret;
3455 
3456 	/*
3457 	 * Even for writes we don't need to allocate blocks, so just pretend
3458 	 * we are reading to save overhead of starting a transaction.
3459 	 */
3460 	flags &= ~IOMAP_WRITE;
3461 	ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap);
3462 	WARN_ON_ONCE(iomap->type != IOMAP_MAPPED);
3463 	return ret;
3464 }
3465 
ext4_iomap_end(struct inode * inode,loff_t offset,loff_t length,ssize_t written,unsigned flags,struct iomap * iomap)3466 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3467 			  ssize_t written, unsigned flags, struct iomap *iomap)
3468 {
3469 	/*
3470 	 * Check to see whether an error occurred while writing out the data to
3471 	 * the allocated blocks. If so, return the magic error code so that we
3472 	 * fallback to buffered I/O and attempt to complete the remainder of
3473 	 * the I/O. Any blocks that may have been allocated in preparation for
3474 	 * the direct I/O will be reused during buffered I/O.
3475 	 */
3476 	if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0)
3477 		return -ENOTBLK;
3478 
3479 	return 0;
3480 }
3481 
3482 const struct iomap_ops ext4_iomap_ops = {
3483 	.iomap_begin		= ext4_iomap_begin,
3484 	.iomap_end		= ext4_iomap_end,
3485 };
3486 
3487 const struct iomap_ops ext4_iomap_overwrite_ops = {
3488 	.iomap_begin		= ext4_iomap_overwrite_begin,
3489 	.iomap_end		= ext4_iomap_end,
3490 };
3491 
ext4_iomap_is_delalloc(struct inode * inode,struct ext4_map_blocks * map)3492 static bool ext4_iomap_is_delalloc(struct inode *inode,
3493 				   struct ext4_map_blocks *map)
3494 {
3495 	struct extent_status es;
3496 	ext4_lblk_t offset = 0, end = map->m_lblk + map->m_len - 1;
3497 
3498 	ext4_es_find_extent_range(inode, &ext4_es_is_delayed,
3499 				  map->m_lblk, end, &es);
3500 
3501 	if (!es.es_len || es.es_lblk > end)
3502 		return false;
3503 
3504 	if (es.es_lblk > map->m_lblk) {
3505 		map->m_len = es.es_lblk - map->m_lblk;
3506 		return false;
3507 	}
3508 
3509 	offset = map->m_lblk - es.es_lblk;
3510 	map->m_len = es.es_len - offset;
3511 
3512 	return true;
3513 }
3514 
ext4_iomap_begin_report(struct inode * inode,loff_t offset,loff_t length,unsigned int flags,struct iomap * iomap,struct iomap * srcmap)3515 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset,
3516 				   loff_t length, unsigned int flags,
3517 				   struct iomap *iomap, struct iomap *srcmap)
3518 {
3519 	int ret;
3520 	bool delalloc = false;
3521 	struct ext4_map_blocks map;
3522 	u8 blkbits = inode->i_blkbits;
3523 
3524 	if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3525 		return -EINVAL;
3526 
3527 	if (ext4_has_inline_data(inode)) {
3528 		ret = ext4_inline_data_iomap(inode, iomap);
3529 		if (ret != -EAGAIN) {
3530 			if (ret == 0 && offset >= iomap->length)
3531 				ret = -ENOENT;
3532 			return ret;
3533 		}
3534 	}
3535 
3536 	/*
3537 	 * Calculate the first and last logical block respectively.
3538 	 */
3539 	map.m_lblk = offset >> blkbits;
3540 	map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3541 			  EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3542 
3543 	/*
3544 	 * Fiemap callers may call for offset beyond s_bitmap_maxbytes.
3545 	 * So handle it here itself instead of querying ext4_map_blocks().
3546 	 * Since ext4_map_blocks() will warn about it and will return
3547 	 * -EIO error.
3548 	 */
3549 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
3550 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3551 
3552 		if (offset >= sbi->s_bitmap_maxbytes) {
3553 			map.m_flags = 0;
3554 			goto set_iomap;
3555 		}
3556 	}
3557 
3558 	ret = ext4_map_blocks(NULL, inode, &map, 0);
3559 	if (ret < 0)
3560 		return ret;
3561 	if (ret == 0)
3562 		delalloc = ext4_iomap_is_delalloc(inode, &map);
3563 
3564 set_iomap:
3565 	ext4_set_iomap(inode, iomap, &map, offset, length);
3566 	if (delalloc && iomap->type == IOMAP_HOLE)
3567 		iomap->type = IOMAP_DELALLOC;
3568 
3569 	return 0;
3570 }
3571 
3572 const struct iomap_ops ext4_iomap_report_ops = {
3573 	.iomap_begin = ext4_iomap_begin_report,
3574 };
3575 
3576 /*
3577  * Pages can be marked dirty completely asynchronously from ext4's journalling
3578  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3579  * much here because ->set_page_dirty is called under VFS locks.  The page is
3580  * not necessarily locked.
3581  *
3582  * We cannot just dirty the page and leave attached buffers clean, because the
3583  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3584  * or jbddirty because all the journalling code will explode.
3585  *
3586  * So what we do is to mark the page "pending dirty" and next time writepage
3587  * is called, propagate that into the buffers appropriately.
3588  */
ext4_journalled_set_page_dirty(struct page * page)3589 static int ext4_journalled_set_page_dirty(struct page *page)
3590 {
3591 	SetPageChecked(page);
3592 	return __set_page_dirty_nobuffers(page);
3593 }
3594 
ext4_set_page_dirty(struct page * page)3595 static int ext4_set_page_dirty(struct page *page)
3596 {
3597 	WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3598 	WARN_ON_ONCE(!page_has_buffers(page));
3599 	return __set_page_dirty_buffers(page);
3600 }
3601 
ext4_iomap_swap_activate(struct swap_info_struct * sis,struct file * file,sector_t * span)3602 static int ext4_iomap_swap_activate(struct swap_info_struct *sis,
3603 				    struct file *file, sector_t *span)
3604 {
3605 	return iomap_swapfile_activate(sis, file, span,
3606 				       &ext4_iomap_report_ops);
3607 }
3608 
3609 static const struct address_space_operations ext4_aops = {
3610 	.readpage		= ext4_readpage,
3611 	.readahead		= ext4_readahead,
3612 	.writepage		= ext4_writepage,
3613 	.writepages		= ext4_writepages,
3614 	.write_begin		= ext4_write_begin,
3615 	.write_end		= ext4_write_end,
3616 	.set_page_dirty		= ext4_set_page_dirty,
3617 	.bmap			= ext4_bmap,
3618 	.invalidatepage		= ext4_invalidatepage,
3619 	.releasepage		= ext4_releasepage,
3620 	.direct_IO		= noop_direct_IO,
3621 	.migratepage		= buffer_migrate_page,
3622 	.is_partially_uptodate  = block_is_partially_uptodate,
3623 	.error_remove_page	= generic_error_remove_page,
3624 	.swap_activate		= ext4_iomap_swap_activate,
3625 };
3626 
3627 static const struct address_space_operations ext4_journalled_aops = {
3628 	.readpage		= ext4_readpage,
3629 	.readahead		= ext4_readahead,
3630 	.writepage		= ext4_writepage,
3631 	.writepages		= ext4_writepages,
3632 	.write_begin		= ext4_write_begin,
3633 	.write_end		= ext4_journalled_write_end,
3634 	.set_page_dirty		= ext4_journalled_set_page_dirty,
3635 	.bmap			= ext4_bmap,
3636 	.invalidatepage		= ext4_journalled_invalidatepage,
3637 	.releasepage		= ext4_releasepage,
3638 	.direct_IO		= noop_direct_IO,
3639 	.is_partially_uptodate  = block_is_partially_uptodate,
3640 	.error_remove_page	= generic_error_remove_page,
3641 	.swap_activate		= ext4_iomap_swap_activate,
3642 };
3643 
3644 static const struct address_space_operations ext4_da_aops = {
3645 	.readpage		= ext4_readpage,
3646 	.readahead		= ext4_readahead,
3647 	.writepage		= ext4_writepage,
3648 	.writepages		= ext4_writepages,
3649 	.write_begin		= ext4_da_write_begin,
3650 	.write_end		= ext4_da_write_end,
3651 	.set_page_dirty		= ext4_set_page_dirty,
3652 	.bmap			= ext4_bmap,
3653 	.invalidatepage		= ext4_invalidatepage,
3654 	.releasepage		= ext4_releasepage,
3655 	.direct_IO		= noop_direct_IO,
3656 	.migratepage		= buffer_migrate_page,
3657 	.is_partially_uptodate  = block_is_partially_uptodate,
3658 	.error_remove_page	= generic_error_remove_page,
3659 	.swap_activate		= ext4_iomap_swap_activate,
3660 };
3661 
3662 static const struct address_space_operations ext4_dax_aops = {
3663 	.writepages		= ext4_dax_writepages,
3664 	.direct_IO		= noop_direct_IO,
3665 	.set_page_dirty		= noop_set_page_dirty,
3666 	.bmap			= ext4_bmap,
3667 	.invalidatepage		= noop_invalidatepage,
3668 	.swap_activate		= ext4_iomap_swap_activate,
3669 };
3670 
ext4_set_aops(struct inode * inode)3671 void ext4_set_aops(struct inode *inode)
3672 {
3673 	switch (ext4_inode_journal_mode(inode)) {
3674 	case EXT4_INODE_ORDERED_DATA_MODE:
3675 	case EXT4_INODE_WRITEBACK_DATA_MODE:
3676 		break;
3677 	case EXT4_INODE_JOURNAL_DATA_MODE:
3678 		inode->i_mapping->a_ops = &ext4_journalled_aops;
3679 		return;
3680 	default:
3681 		BUG();
3682 	}
3683 	if (IS_DAX(inode))
3684 		inode->i_mapping->a_ops = &ext4_dax_aops;
3685 	else if (test_opt(inode->i_sb, DELALLOC))
3686 		inode->i_mapping->a_ops = &ext4_da_aops;
3687 	else
3688 		inode->i_mapping->a_ops = &ext4_aops;
3689 }
3690 
__ext4_block_zero_page_range(handle_t * handle,struct address_space * mapping,loff_t from,loff_t length)3691 static int __ext4_block_zero_page_range(handle_t *handle,
3692 		struct address_space *mapping, loff_t from, loff_t length)
3693 {
3694 	ext4_fsblk_t index = from >> PAGE_SHIFT;
3695 	unsigned offset = from & (PAGE_SIZE-1);
3696 	unsigned blocksize, pos;
3697 	ext4_lblk_t iblock;
3698 	struct inode *inode = mapping->host;
3699 	struct buffer_head *bh;
3700 	struct page *page;
3701 	int err = 0;
3702 
3703 	page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3704 				   mapping_gfp_constraint(mapping, ~__GFP_FS));
3705 	if (!page)
3706 		return -ENOMEM;
3707 
3708 	blocksize = inode->i_sb->s_blocksize;
3709 
3710 	iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3711 
3712 	if (!page_has_buffers(page))
3713 		create_empty_buffers(page, blocksize, 0);
3714 
3715 	/* Find the buffer that contains "offset" */
3716 	bh = page_buffers(page);
3717 	pos = blocksize;
3718 	while (offset >= pos) {
3719 		bh = bh->b_this_page;
3720 		iblock++;
3721 		pos += blocksize;
3722 	}
3723 	if (buffer_freed(bh)) {
3724 		BUFFER_TRACE(bh, "freed: skip");
3725 		goto unlock;
3726 	}
3727 	if (!buffer_mapped(bh)) {
3728 		BUFFER_TRACE(bh, "unmapped");
3729 		ext4_get_block(inode, iblock, bh, 0);
3730 		/* unmapped? It's a hole - nothing to do */
3731 		if (!buffer_mapped(bh)) {
3732 			BUFFER_TRACE(bh, "still unmapped");
3733 			goto unlock;
3734 		}
3735 	}
3736 
3737 	/* Ok, it's mapped. Make sure it's up-to-date */
3738 	if (PageUptodate(page))
3739 		set_buffer_uptodate(bh);
3740 
3741 	if (!buffer_uptodate(bh)) {
3742 		err = ext4_read_bh_lock(bh, 0, true);
3743 		if (err)
3744 			goto unlock;
3745 		if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
3746 			/* We expect the key to be set. */
3747 			BUG_ON(!fscrypt_has_encryption_key(inode));
3748 			err = fscrypt_decrypt_pagecache_blocks(page, blocksize,
3749 							       bh_offset(bh));
3750 			if (err) {
3751 				clear_buffer_uptodate(bh);
3752 				goto unlock;
3753 			}
3754 		}
3755 	}
3756 	if (ext4_should_journal_data(inode)) {
3757 		BUFFER_TRACE(bh, "get write access");
3758 		err = ext4_journal_get_write_access(handle, bh);
3759 		if (err)
3760 			goto unlock;
3761 	}
3762 	zero_user(page, offset, length);
3763 	BUFFER_TRACE(bh, "zeroed end of block");
3764 
3765 	if (ext4_should_journal_data(inode)) {
3766 		err = ext4_handle_dirty_metadata(handle, inode, bh);
3767 	} else {
3768 		err = 0;
3769 		mark_buffer_dirty(bh);
3770 		if (ext4_should_order_data(inode))
3771 			err = ext4_jbd2_inode_add_write(handle, inode, from,
3772 					length);
3773 	}
3774 
3775 unlock:
3776 	unlock_page(page);
3777 	put_page(page);
3778 	return err;
3779 }
3780 
3781 /*
3782  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3783  * starting from file offset 'from'.  The range to be zero'd must
3784  * be contained with in one block.  If the specified range exceeds
3785  * the end of the block it will be shortened to end of the block
3786  * that cooresponds to 'from'
3787  */
ext4_block_zero_page_range(handle_t * handle,struct address_space * mapping,loff_t from,loff_t length)3788 static int ext4_block_zero_page_range(handle_t *handle,
3789 		struct address_space *mapping, loff_t from, loff_t length)
3790 {
3791 	struct inode *inode = mapping->host;
3792 	unsigned offset = from & (PAGE_SIZE-1);
3793 	unsigned blocksize = inode->i_sb->s_blocksize;
3794 	unsigned max = blocksize - (offset & (blocksize - 1));
3795 
3796 	/*
3797 	 * correct length if it does not fall between
3798 	 * 'from' and the end of the block
3799 	 */
3800 	if (length > max || length < 0)
3801 		length = max;
3802 
3803 	if (IS_DAX(inode)) {
3804 		return iomap_zero_range(inode, from, length, NULL,
3805 					&ext4_iomap_ops);
3806 	}
3807 	return __ext4_block_zero_page_range(handle, mapping, from, length);
3808 }
3809 
3810 /*
3811  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3812  * up to the end of the block which corresponds to `from'.
3813  * This required during truncate. We need to physically zero the tail end
3814  * of that block so it doesn't yield old data if the file is later grown.
3815  */
ext4_block_truncate_page(handle_t * handle,struct address_space * mapping,loff_t from)3816 static int ext4_block_truncate_page(handle_t *handle,
3817 		struct address_space *mapping, loff_t from)
3818 {
3819 	unsigned offset = from & (PAGE_SIZE-1);
3820 	unsigned length;
3821 	unsigned blocksize;
3822 	struct inode *inode = mapping->host;
3823 
3824 	/* If we are processing an encrypted inode during orphan list handling */
3825 	if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
3826 		return 0;
3827 
3828 	blocksize = inode->i_sb->s_blocksize;
3829 	length = blocksize - (offset & (blocksize - 1));
3830 
3831 	return ext4_block_zero_page_range(handle, mapping, from, length);
3832 }
3833 
ext4_zero_partial_blocks(handle_t * handle,struct inode * inode,loff_t lstart,loff_t length)3834 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3835 			     loff_t lstart, loff_t length)
3836 {
3837 	struct super_block *sb = inode->i_sb;
3838 	struct address_space *mapping = inode->i_mapping;
3839 	unsigned partial_start, partial_end;
3840 	ext4_fsblk_t start, end;
3841 	loff_t byte_end = (lstart + length - 1);
3842 	int err = 0;
3843 
3844 	partial_start = lstart & (sb->s_blocksize - 1);
3845 	partial_end = byte_end & (sb->s_blocksize - 1);
3846 
3847 	start = lstart >> sb->s_blocksize_bits;
3848 	end = byte_end >> sb->s_blocksize_bits;
3849 
3850 	/* Handle partial zero within the single block */
3851 	if (start == end &&
3852 	    (partial_start || (partial_end != sb->s_blocksize - 1))) {
3853 		err = ext4_block_zero_page_range(handle, mapping,
3854 						 lstart, length);
3855 		return err;
3856 	}
3857 	/* Handle partial zero out on the start of the range */
3858 	if (partial_start) {
3859 		err = ext4_block_zero_page_range(handle, mapping,
3860 						 lstart, sb->s_blocksize);
3861 		if (err)
3862 			return err;
3863 	}
3864 	/* Handle partial zero out on the end of the range */
3865 	if (partial_end != sb->s_blocksize - 1)
3866 		err = ext4_block_zero_page_range(handle, mapping,
3867 						 byte_end - partial_end,
3868 						 partial_end + 1);
3869 	return err;
3870 }
3871 
ext4_can_truncate(struct inode * inode)3872 int ext4_can_truncate(struct inode *inode)
3873 {
3874 	if (S_ISREG(inode->i_mode))
3875 		return 1;
3876 	if (S_ISDIR(inode->i_mode))
3877 		return 1;
3878 	if (S_ISLNK(inode->i_mode))
3879 		return !ext4_inode_is_fast_symlink(inode);
3880 	return 0;
3881 }
3882 
3883 /*
3884  * We have to make sure i_disksize gets properly updated before we truncate
3885  * page cache due to hole punching or zero range. Otherwise i_disksize update
3886  * can get lost as it may have been postponed to submission of writeback but
3887  * that will never happen after we truncate page cache.
3888  */
ext4_update_disksize_before_punch(struct inode * inode,loff_t offset,loff_t len)3889 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3890 				      loff_t len)
3891 {
3892 	handle_t *handle;
3893 	int ret;
3894 
3895 	loff_t size = i_size_read(inode);
3896 
3897 	WARN_ON(!inode_is_locked(inode));
3898 	if (offset > size || offset + len < size)
3899 		return 0;
3900 
3901 	if (EXT4_I(inode)->i_disksize >= size)
3902 		return 0;
3903 
3904 	handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3905 	if (IS_ERR(handle))
3906 		return PTR_ERR(handle);
3907 	ext4_update_i_disksize(inode, size);
3908 	ret = ext4_mark_inode_dirty(handle, inode);
3909 	ext4_journal_stop(handle);
3910 
3911 	return ret;
3912 }
3913 
ext4_wait_dax_page(struct ext4_inode_info * ei)3914 static void ext4_wait_dax_page(struct ext4_inode_info *ei)
3915 {
3916 	up_write(&ei->i_mmap_sem);
3917 	schedule();
3918 	down_write(&ei->i_mmap_sem);
3919 }
3920 
ext4_break_layouts(struct inode * inode)3921 int ext4_break_layouts(struct inode *inode)
3922 {
3923 	struct ext4_inode_info *ei = EXT4_I(inode);
3924 	struct page *page;
3925 	int error;
3926 
3927 	if (WARN_ON_ONCE(!rwsem_is_locked(&ei->i_mmap_sem)))
3928 		return -EINVAL;
3929 
3930 	do {
3931 		page = dax_layout_busy_page(inode->i_mapping);
3932 		if (!page)
3933 			return 0;
3934 
3935 		error = ___wait_var_event(&page->_refcount,
3936 				atomic_read(&page->_refcount) == 1,
3937 				TASK_INTERRUPTIBLE, 0, 0,
3938 				ext4_wait_dax_page(ei));
3939 	} while (error == 0);
3940 
3941 	return error;
3942 }
3943 
3944 /*
3945  * ext4_punch_hole: punches a hole in a file by releasing the blocks
3946  * associated with the given offset and length
3947  *
3948  * @inode:  File inode
3949  * @offset: The offset where the hole will begin
3950  * @len:    The length of the hole
3951  *
3952  * Returns: 0 on success or negative on failure
3953  */
3954 
ext4_punch_hole(struct inode * inode,loff_t offset,loff_t length)3955 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3956 {
3957 	struct super_block *sb = inode->i_sb;
3958 	ext4_lblk_t first_block, stop_block;
3959 	struct address_space *mapping = inode->i_mapping;
3960 	loff_t first_block_offset, last_block_offset;
3961 	handle_t *handle;
3962 	unsigned int credits;
3963 	int ret = 0, ret2 = 0;
3964 
3965 	trace_ext4_punch_hole(inode, offset, length, 0);
3966 
3967 	ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
3968 	if (ext4_has_inline_data(inode)) {
3969 		down_write(&EXT4_I(inode)->i_mmap_sem);
3970 		ret = ext4_convert_inline_data(inode);
3971 		up_write(&EXT4_I(inode)->i_mmap_sem);
3972 		if (ret)
3973 			return ret;
3974 	}
3975 
3976 	/*
3977 	 * Write out all dirty pages to avoid race conditions
3978 	 * Then release them.
3979 	 */
3980 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3981 		ret = filemap_write_and_wait_range(mapping, offset,
3982 						   offset + length - 1);
3983 		if (ret)
3984 			return ret;
3985 	}
3986 
3987 	inode_lock(inode);
3988 
3989 	/* No need to punch hole beyond i_size */
3990 	if (offset >= inode->i_size)
3991 		goto out_mutex;
3992 
3993 	/*
3994 	 * If the hole extends beyond i_size, set the hole
3995 	 * to end after the page that contains i_size
3996 	 */
3997 	if (offset + length > inode->i_size) {
3998 		length = inode->i_size +
3999 		   PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4000 		   offset;
4001 	}
4002 
4003 	if (offset & (sb->s_blocksize - 1) ||
4004 	    (offset + length) & (sb->s_blocksize - 1)) {
4005 		/*
4006 		 * Attach jinode to inode for jbd2 if we do any zeroing of
4007 		 * partial block
4008 		 */
4009 		ret = ext4_inode_attach_jinode(inode);
4010 		if (ret < 0)
4011 			goto out_mutex;
4012 
4013 	}
4014 
4015 	/* Wait all existing dio workers, newcomers will block on i_mutex */
4016 	inode_dio_wait(inode);
4017 
4018 	/*
4019 	 * Prevent page faults from reinstantiating pages we have released from
4020 	 * page cache.
4021 	 */
4022 	down_write(&EXT4_I(inode)->i_mmap_sem);
4023 
4024 	ret = ext4_break_layouts(inode);
4025 	if (ret)
4026 		goto out_dio;
4027 
4028 	first_block_offset = round_up(offset, sb->s_blocksize);
4029 	last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4030 
4031 	/* Now release the pages and zero block aligned part of pages*/
4032 	if (last_block_offset > first_block_offset) {
4033 		ret = ext4_update_disksize_before_punch(inode, offset, length);
4034 		if (ret)
4035 			goto out_dio;
4036 		truncate_pagecache_range(inode, first_block_offset,
4037 					 last_block_offset);
4038 	}
4039 
4040 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4041 		credits = ext4_writepage_trans_blocks(inode);
4042 	else
4043 		credits = ext4_blocks_for_truncate(inode);
4044 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4045 	if (IS_ERR(handle)) {
4046 		ret = PTR_ERR(handle);
4047 		ext4_std_error(sb, ret);
4048 		goto out_dio;
4049 	}
4050 
4051 	ret = ext4_zero_partial_blocks(handle, inode, offset,
4052 				       length);
4053 	if (ret)
4054 		goto out_stop;
4055 
4056 	first_block = (offset + sb->s_blocksize - 1) >>
4057 		EXT4_BLOCK_SIZE_BITS(sb);
4058 	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4059 
4060 	/* If there are blocks to remove, do it */
4061 	if (stop_block > first_block) {
4062 
4063 		down_write(&EXT4_I(inode)->i_data_sem);
4064 		ext4_discard_preallocations(inode, 0);
4065 
4066 		ret = ext4_es_remove_extent(inode, first_block,
4067 					    stop_block - first_block);
4068 		if (ret) {
4069 			up_write(&EXT4_I(inode)->i_data_sem);
4070 			goto out_stop;
4071 		}
4072 
4073 		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4074 			ret = ext4_ext_remove_space(inode, first_block,
4075 						    stop_block - 1);
4076 		else
4077 			ret = ext4_ind_remove_space(handle, inode, first_block,
4078 						    stop_block);
4079 
4080 		up_write(&EXT4_I(inode)->i_data_sem);
4081 	}
4082 	ext4_fc_track_range(handle, inode, first_block, stop_block);
4083 	if (IS_SYNC(inode))
4084 		ext4_handle_sync(handle);
4085 
4086 	inode->i_mtime = inode->i_ctime = current_time(inode);
4087 	ret2 = ext4_mark_inode_dirty(handle, inode);
4088 	if (unlikely(ret2))
4089 		ret = ret2;
4090 	if (ret >= 0)
4091 		ext4_update_inode_fsync_trans(handle, inode, 1);
4092 out_stop:
4093 	ext4_journal_stop(handle);
4094 out_dio:
4095 	up_write(&EXT4_I(inode)->i_mmap_sem);
4096 out_mutex:
4097 	inode_unlock(inode);
4098 	return ret;
4099 }
4100 
ext4_inode_attach_jinode(struct inode * inode)4101 int ext4_inode_attach_jinode(struct inode *inode)
4102 {
4103 	struct ext4_inode_info *ei = EXT4_I(inode);
4104 	struct jbd2_inode *jinode;
4105 
4106 	if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4107 		return 0;
4108 
4109 	jinode = jbd2_alloc_inode(GFP_KERNEL);
4110 	spin_lock(&inode->i_lock);
4111 	if (!ei->jinode) {
4112 		if (!jinode) {
4113 			spin_unlock(&inode->i_lock);
4114 			return -ENOMEM;
4115 		}
4116 		ei->jinode = jinode;
4117 		jbd2_journal_init_jbd_inode(ei->jinode, inode);
4118 		jinode = NULL;
4119 	}
4120 	spin_unlock(&inode->i_lock);
4121 	if (unlikely(jinode != NULL))
4122 		jbd2_free_inode(jinode);
4123 	return 0;
4124 }
4125 
4126 /*
4127  * ext4_truncate()
4128  *
4129  * We block out ext4_get_block() block instantiations across the entire
4130  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4131  * simultaneously on behalf of the same inode.
4132  *
4133  * As we work through the truncate and commit bits of it to the journal there
4134  * is one core, guiding principle: the file's tree must always be consistent on
4135  * disk.  We must be able to restart the truncate after a crash.
4136  *
4137  * The file's tree may be transiently inconsistent in memory (although it
4138  * probably isn't), but whenever we close off and commit a journal transaction,
4139  * the contents of (the filesystem + the journal) must be consistent and
4140  * restartable.  It's pretty simple, really: bottom up, right to left (although
4141  * left-to-right works OK too).
4142  *
4143  * Note that at recovery time, journal replay occurs *before* the restart of
4144  * truncate against the orphan inode list.
4145  *
4146  * The committed inode has the new, desired i_size (which is the same as
4147  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4148  * that this inode's truncate did not complete and it will again call
4149  * ext4_truncate() to have another go.  So there will be instantiated blocks
4150  * to the right of the truncation point in a crashed ext4 filesystem.  But
4151  * that's fine - as long as they are linked from the inode, the post-crash
4152  * ext4_truncate() run will find them and release them.
4153  */
ext4_truncate(struct inode * inode)4154 int ext4_truncate(struct inode *inode)
4155 {
4156 	struct ext4_inode_info *ei = EXT4_I(inode);
4157 	unsigned int credits;
4158 	int err = 0, err2;
4159 	handle_t *handle;
4160 	struct address_space *mapping = inode->i_mapping;
4161 
4162 	/*
4163 	 * There is a possibility that we're either freeing the inode
4164 	 * or it's a completely new inode. In those cases we might not
4165 	 * have i_mutex locked because it's not necessary.
4166 	 */
4167 	if (!(inode->i_state & (I_NEW|I_FREEING)))
4168 		WARN_ON(!inode_is_locked(inode));
4169 	trace_ext4_truncate_enter(inode);
4170 
4171 	if (!ext4_can_truncate(inode))
4172 		goto out_trace;
4173 
4174 	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4175 		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4176 
4177 	if (ext4_has_inline_data(inode)) {
4178 		int has_inline = 1;
4179 
4180 		err = ext4_inline_data_truncate(inode, &has_inline);
4181 		if (err || has_inline)
4182 			goto out_trace;
4183 	}
4184 
4185 	/* If we zero-out tail of the page, we have to create jinode for jbd2 */
4186 	if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4187 		if (ext4_inode_attach_jinode(inode) < 0)
4188 			goto out_trace;
4189 	}
4190 
4191 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4192 		credits = ext4_writepage_trans_blocks(inode);
4193 	else
4194 		credits = ext4_blocks_for_truncate(inode);
4195 
4196 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4197 	if (IS_ERR(handle)) {
4198 		err = PTR_ERR(handle);
4199 		goto out_trace;
4200 	}
4201 
4202 	if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4203 		ext4_block_truncate_page(handle, mapping, inode->i_size);
4204 
4205 	/*
4206 	 * We add the inode to the orphan list, so that if this
4207 	 * truncate spans multiple transactions, and we crash, we will
4208 	 * resume the truncate when the filesystem recovers.  It also
4209 	 * marks the inode dirty, to catch the new size.
4210 	 *
4211 	 * Implication: the file must always be in a sane, consistent
4212 	 * truncatable state while each transaction commits.
4213 	 */
4214 	err = ext4_orphan_add(handle, inode);
4215 	if (err)
4216 		goto out_stop;
4217 
4218 	down_write(&EXT4_I(inode)->i_data_sem);
4219 
4220 	ext4_discard_preallocations(inode, 0);
4221 
4222 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4223 		err = ext4_ext_truncate(handle, inode);
4224 	else
4225 		ext4_ind_truncate(handle, inode);
4226 
4227 	up_write(&ei->i_data_sem);
4228 	if (err)
4229 		goto out_stop;
4230 
4231 	if (IS_SYNC(inode))
4232 		ext4_handle_sync(handle);
4233 
4234 out_stop:
4235 	/*
4236 	 * If this was a simple ftruncate() and the file will remain alive,
4237 	 * then we need to clear up the orphan record which we created above.
4238 	 * However, if this was a real unlink then we were called by
4239 	 * ext4_evict_inode(), and we allow that function to clean up the
4240 	 * orphan info for us.
4241 	 */
4242 	if (inode->i_nlink)
4243 		ext4_orphan_del(handle, inode);
4244 
4245 	inode->i_mtime = inode->i_ctime = current_time(inode);
4246 	err2 = ext4_mark_inode_dirty(handle, inode);
4247 	if (unlikely(err2 && !err))
4248 		err = err2;
4249 	ext4_journal_stop(handle);
4250 
4251 out_trace:
4252 	trace_ext4_truncate_exit(inode);
4253 	return err;
4254 }
4255 
ext4_inode_peek_iversion(const struct inode * inode)4256 static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4257 {
4258 	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4259 		return inode_peek_iversion_raw(inode);
4260 	else
4261 		return inode_peek_iversion(inode);
4262 }
4263 
ext4_inode_blocks_set(struct ext4_inode * raw_inode,struct ext4_inode_info * ei)4264 static int ext4_inode_blocks_set(struct ext4_inode *raw_inode,
4265 				 struct ext4_inode_info *ei)
4266 {
4267 	struct inode *inode = &(ei->vfs_inode);
4268 	u64 i_blocks = READ_ONCE(inode->i_blocks);
4269 	struct super_block *sb = inode->i_sb;
4270 
4271 	if (i_blocks <= ~0U) {
4272 		/*
4273 		 * i_blocks can be represented in a 32 bit variable
4274 		 * as multiple of 512 bytes
4275 		 */
4276 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4277 		raw_inode->i_blocks_high = 0;
4278 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4279 		return 0;
4280 	}
4281 
4282 	/*
4283 	 * This should never happen since sb->s_maxbytes should not have
4284 	 * allowed this, sb->s_maxbytes was set according to the huge_file
4285 	 * feature in ext4_fill_super().
4286 	 */
4287 	if (!ext4_has_feature_huge_file(sb))
4288 		return -EFSCORRUPTED;
4289 
4290 	if (i_blocks <= 0xffffffffffffULL) {
4291 		/*
4292 		 * i_blocks can be represented in a 48 bit variable
4293 		 * as multiple of 512 bytes
4294 		 */
4295 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4296 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4297 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4298 	} else {
4299 		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4300 		/* i_block is stored in file system block size */
4301 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
4302 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4303 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4304 	}
4305 	return 0;
4306 }
4307 
ext4_fill_raw_inode(struct inode * inode,struct ext4_inode * raw_inode)4308 static int ext4_fill_raw_inode(struct inode *inode, struct ext4_inode *raw_inode)
4309 {
4310 	struct ext4_inode_info *ei = EXT4_I(inode);
4311 	uid_t i_uid;
4312 	gid_t i_gid;
4313 	projid_t i_projid;
4314 	int block;
4315 	int err;
4316 
4317 	err = ext4_inode_blocks_set(raw_inode, ei);
4318 
4319 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4320 	i_uid = i_uid_read(inode);
4321 	i_gid = i_gid_read(inode);
4322 	i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4323 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4324 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4325 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4326 		/*
4327 		 * Fix up interoperability with old kernels. Otherwise,
4328 		 * old inodes get re-used with the upper 16 bits of the
4329 		 * uid/gid intact.
4330 		 */
4331 		if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4332 			raw_inode->i_uid_high = 0;
4333 			raw_inode->i_gid_high = 0;
4334 		} else {
4335 			raw_inode->i_uid_high =
4336 				cpu_to_le16(high_16_bits(i_uid));
4337 			raw_inode->i_gid_high =
4338 				cpu_to_le16(high_16_bits(i_gid));
4339 		}
4340 	} else {
4341 		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4342 		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4343 		raw_inode->i_uid_high = 0;
4344 		raw_inode->i_gid_high = 0;
4345 	}
4346 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4347 
4348 	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4349 	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4350 	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4351 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4352 
4353 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4354 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4355 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4356 		raw_inode->i_file_acl_high =
4357 			cpu_to_le16(ei->i_file_acl >> 32);
4358 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4359 	ext4_isize_set(raw_inode, ei->i_disksize);
4360 
4361 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4362 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4363 		if (old_valid_dev(inode->i_rdev)) {
4364 			raw_inode->i_block[0] =
4365 				cpu_to_le32(old_encode_dev(inode->i_rdev));
4366 			raw_inode->i_block[1] = 0;
4367 		} else {
4368 			raw_inode->i_block[0] = 0;
4369 			raw_inode->i_block[1] =
4370 				cpu_to_le32(new_encode_dev(inode->i_rdev));
4371 			raw_inode->i_block[2] = 0;
4372 		}
4373 	} else if (!ext4_has_inline_data(inode)) {
4374 		for (block = 0; block < EXT4_N_BLOCKS; block++)
4375 			raw_inode->i_block[block] = ei->i_data[block];
4376 	}
4377 
4378 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4379 		u64 ivers = ext4_inode_peek_iversion(inode);
4380 
4381 		raw_inode->i_disk_version = cpu_to_le32(ivers);
4382 		if (ei->i_extra_isize) {
4383 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4384 				raw_inode->i_version_hi =
4385 					cpu_to_le32(ivers >> 32);
4386 			raw_inode->i_extra_isize =
4387 				cpu_to_le16(ei->i_extra_isize);
4388 		}
4389 	}
4390 
4391 	if (i_projid != EXT4_DEF_PROJID &&
4392 	    !ext4_has_feature_project(inode->i_sb))
4393 		err = err ?: -EFSCORRUPTED;
4394 
4395 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4396 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4397 		raw_inode->i_projid = cpu_to_le32(i_projid);
4398 
4399 	ext4_inode_csum_set(inode, raw_inode, ei);
4400 	return err;
4401 }
4402 
4403 /*
4404  * ext4_get_inode_loc returns with an extra refcount against the inode's
4405  * underlying buffer_head on success. If we pass 'inode' and it does not
4406  * have in-inode xattr, we have all inode data in memory that is needed
4407  * to recreate the on-disk version of this inode.
4408  */
__ext4_get_inode_loc(struct super_block * sb,unsigned long ino,struct inode * inode,struct ext4_iloc * iloc,ext4_fsblk_t * ret_block)4409 static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino,
4410 				struct inode *inode, struct ext4_iloc *iloc,
4411 				ext4_fsblk_t *ret_block)
4412 {
4413 	struct ext4_group_desc	*gdp;
4414 	struct buffer_head	*bh;
4415 	ext4_fsblk_t		block;
4416 	struct blk_plug		plug;
4417 	int			inodes_per_block, inode_offset;
4418 
4419 	iloc->bh = NULL;
4420 	if (ino < EXT4_ROOT_INO ||
4421 	    ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4422 		return -EFSCORRUPTED;
4423 
4424 	iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
4425 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4426 	if (!gdp)
4427 		return -EIO;
4428 
4429 	/*
4430 	 * Figure out the offset within the block group inode table
4431 	 */
4432 	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4433 	inode_offset = ((ino - 1) %
4434 			EXT4_INODES_PER_GROUP(sb));
4435 	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4436 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4437 
4438 	bh = sb_getblk(sb, block);
4439 	if (unlikely(!bh))
4440 		return -ENOMEM;
4441 	if (!buffer_uptodate(bh)) {
4442 		lock_buffer(bh);
4443 
4444 		if (ext4_buffer_uptodate(bh)) {
4445 			/* someone brought it uptodate while we waited */
4446 			unlock_buffer(bh);
4447 			goto has_buffer;
4448 		}
4449 
4450 		/*
4451 		 * If we have all information of the inode in memory and this
4452 		 * is the only valid inode in the block, we need not read the
4453 		 * block.
4454 		 */
4455 		if (inode && !ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4456 			struct buffer_head *bitmap_bh;
4457 			int i, start;
4458 
4459 			start = inode_offset & ~(inodes_per_block - 1);
4460 
4461 			/* Is the inode bitmap in cache? */
4462 			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4463 			if (unlikely(!bitmap_bh))
4464 				goto make_io;
4465 
4466 			/*
4467 			 * If the inode bitmap isn't in cache then the
4468 			 * optimisation may end up performing two reads instead
4469 			 * of one, so skip it.
4470 			 */
4471 			if (!buffer_uptodate(bitmap_bh)) {
4472 				brelse(bitmap_bh);
4473 				goto make_io;
4474 			}
4475 			for (i = start; i < start + inodes_per_block; i++) {
4476 				if (i == inode_offset)
4477 					continue;
4478 				if (ext4_test_bit(i, bitmap_bh->b_data))
4479 					break;
4480 			}
4481 			brelse(bitmap_bh);
4482 			if (i == start + inodes_per_block) {
4483 				struct ext4_inode *raw_inode =
4484 					(struct ext4_inode *) (bh->b_data + iloc->offset);
4485 
4486 				/* all other inodes are free, so skip I/O */
4487 				memset(bh->b_data, 0, bh->b_size);
4488 				if (!ext4_test_inode_state(inode, EXT4_STATE_NEW))
4489 					ext4_fill_raw_inode(inode, raw_inode);
4490 				set_buffer_uptodate(bh);
4491 				unlock_buffer(bh);
4492 				goto has_buffer;
4493 			}
4494 		}
4495 
4496 make_io:
4497 		/*
4498 		 * If we need to do any I/O, try to pre-readahead extra
4499 		 * blocks from the inode table.
4500 		 */
4501 		blk_start_plug(&plug);
4502 		if (EXT4_SB(sb)->s_inode_readahead_blks) {
4503 			ext4_fsblk_t b, end, table;
4504 			unsigned num;
4505 			__u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4506 
4507 			table = ext4_inode_table(sb, gdp);
4508 			/* s_inode_readahead_blks is always a power of 2 */
4509 			b = block & ~((ext4_fsblk_t) ra_blks - 1);
4510 			if (table > b)
4511 				b = table;
4512 			end = b + ra_blks;
4513 			num = EXT4_INODES_PER_GROUP(sb);
4514 			if (ext4_has_group_desc_csum(sb))
4515 				num -= ext4_itable_unused_count(sb, gdp);
4516 			table += num / inodes_per_block;
4517 			if (end > table)
4518 				end = table;
4519 			while (b <= end)
4520 				ext4_sb_breadahead_unmovable(sb, b++);
4521 		}
4522 
4523 		/*
4524 		 * There are other valid inodes in the buffer, this inode
4525 		 * has in-inode xattrs, or we don't have this inode in memory.
4526 		 * Read the block from disk.
4527 		 */
4528 		trace_ext4_load_inode(sb, ino);
4529 		ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL);
4530 		blk_finish_plug(&plug);
4531 		wait_on_buffer(bh);
4532 		ext4_simulate_fail_bh(sb, bh, EXT4_SIM_INODE_EIO);
4533 		if (!buffer_uptodate(bh)) {
4534 			if (ret_block)
4535 				*ret_block = block;
4536 			brelse(bh);
4537 			return -EIO;
4538 		}
4539 	}
4540 has_buffer:
4541 	iloc->bh = bh;
4542 	return 0;
4543 }
4544 
__ext4_get_inode_loc_noinmem(struct inode * inode,struct ext4_iloc * iloc)4545 static int __ext4_get_inode_loc_noinmem(struct inode *inode,
4546 					struct ext4_iloc *iloc)
4547 {
4548 	ext4_fsblk_t err_blk = 0;
4549 	int ret;
4550 
4551 	ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, NULL, iloc,
4552 					&err_blk);
4553 
4554 	if (ret == -EIO)
4555 		ext4_error_inode_block(inode, err_blk, EIO,
4556 					"unable to read itable block");
4557 
4558 	return ret;
4559 }
4560 
ext4_get_inode_loc(struct inode * inode,struct ext4_iloc * iloc)4561 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4562 {
4563 	ext4_fsblk_t err_blk = 0;
4564 	int ret;
4565 
4566 	ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, inode, iloc,
4567 					&err_blk);
4568 
4569 	if (ret == -EIO)
4570 		ext4_error_inode_block(inode, err_blk, EIO,
4571 					"unable to read itable block");
4572 
4573 	return ret;
4574 }
4575 
4576 
ext4_get_fc_inode_loc(struct super_block * sb,unsigned long ino,struct ext4_iloc * iloc)4577 int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino,
4578 			  struct ext4_iloc *iloc)
4579 {
4580 	return __ext4_get_inode_loc(sb, ino, NULL, iloc, NULL);
4581 }
4582 
ext4_should_enable_dax(struct inode * inode)4583 static bool ext4_should_enable_dax(struct inode *inode)
4584 {
4585 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4586 
4587 	if (test_opt2(inode->i_sb, DAX_NEVER))
4588 		return false;
4589 	if (!S_ISREG(inode->i_mode))
4590 		return false;
4591 	if (ext4_should_journal_data(inode))
4592 		return false;
4593 	if (ext4_has_inline_data(inode))
4594 		return false;
4595 	if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4596 		return false;
4597 	if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4598 		return false;
4599 	if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags))
4600 		return false;
4601 	if (test_opt(inode->i_sb, DAX_ALWAYS))
4602 		return true;
4603 
4604 	return ext4_test_inode_flag(inode, EXT4_INODE_DAX);
4605 }
4606 
ext4_set_inode_flags(struct inode * inode,bool init)4607 void ext4_set_inode_flags(struct inode *inode, bool init)
4608 {
4609 	unsigned int flags = EXT4_I(inode)->i_flags;
4610 	unsigned int new_fl = 0;
4611 
4612 	WARN_ON_ONCE(IS_DAX(inode) && init);
4613 
4614 	if (flags & EXT4_SYNC_FL)
4615 		new_fl |= S_SYNC;
4616 	if (flags & EXT4_APPEND_FL)
4617 		new_fl |= S_APPEND;
4618 	if (flags & EXT4_IMMUTABLE_FL)
4619 		new_fl |= S_IMMUTABLE;
4620 	if (flags & EXT4_NOATIME_FL)
4621 		new_fl |= S_NOATIME;
4622 	if (flags & EXT4_DIRSYNC_FL)
4623 		new_fl |= S_DIRSYNC;
4624 
4625 	/* Because of the way inode_set_flags() works we must preserve S_DAX
4626 	 * here if already set. */
4627 	new_fl |= (inode->i_flags & S_DAX);
4628 	if (init && ext4_should_enable_dax(inode))
4629 		new_fl |= S_DAX;
4630 
4631 	if (flags & EXT4_ENCRYPT_FL)
4632 		new_fl |= S_ENCRYPTED;
4633 	if (flags & EXT4_CASEFOLD_FL)
4634 		new_fl |= S_CASEFOLD;
4635 	if (flags & EXT4_VERITY_FL)
4636 		new_fl |= S_VERITY;
4637 	inode_set_flags(inode, new_fl,
4638 			S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4639 			S_ENCRYPTED|S_CASEFOLD|S_VERITY);
4640 }
4641 
ext4_inode_blocks(struct ext4_inode * raw_inode,struct ext4_inode_info * ei)4642 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4643 				  struct ext4_inode_info *ei)
4644 {
4645 	blkcnt_t i_blocks ;
4646 	struct inode *inode = &(ei->vfs_inode);
4647 	struct super_block *sb = inode->i_sb;
4648 
4649 	if (ext4_has_feature_huge_file(sb)) {
4650 		/* we are using combined 48 bit field */
4651 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4652 					le32_to_cpu(raw_inode->i_blocks_lo);
4653 		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4654 			/* i_blocks represent file system block size */
4655 			return i_blocks  << (inode->i_blkbits - 9);
4656 		} else {
4657 			return i_blocks;
4658 		}
4659 	} else {
4660 		return le32_to_cpu(raw_inode->i_blocks_lo);
4661 	}
4662 }
4663 
ext4_iget_extra_inode(struct inode * inode,struct ext4_inode * raw_inode,struct ext4_inode_info * ei)4664 static inline int ext4_iget_extra_inode(struct inode *inode,
4665 					 struct ext4_inode *raw_inode,
4666 					 struct ext4_inode_info *ei)
4667 {
4668 	__le32 *magic = (void *)raw_inode +
4669 			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4670 
4671 	if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4672 	    EXT4_INODE_SIZE(inode->i_sb) &&
4673 	    *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4674 		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4675 		return ext4_find_inline_data_nolock(inode);
4676 	} else
4677 		EXT4_I(inode)->i_inline_off = 0;
4678 	return 0;
4679 }
4680 
ext4_get_projid(struct inode * inode,kprojid_t * projid)4681 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4682 {
4683 	if (!ext4_has_feature_project(inode->i_sb))
4684 		return -EOPNOTSUPP;
4685 	*projid = EXT4_I(inode)->i_projid;
4686 	return 0;
4687 }
4688 
4689 /*
4690  * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4691  * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4692  * set.
4693  */
ext4_inode_set_iversion_queried(struct inode * inode,u64 val)4694 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4695 {
4696 	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4697 		inode_set_iversion_raw(inode, val);
4698 	else
4699 		inode_set_iversion_queried(inode, val);
4700 }
4701 
__ext4_iget(struct super_block * sb,unsigned long ino,ext4_iget_flags flags,const char * function,unsigned int line)4702 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4703 			  ext4_iget_flags flags, const char *function,
4704 			  unsigned int line)
4705 {
4706 	struct ext4_iloc iloc;
4707 	struct ext4_inode *raw_inode;
4708 	struct ext4_inode_info *ei;
4709 	struct inode *inode;
4710 	journal_t *journal = EXT4_SB(sb)->s_journal;
4711 	long ret;
4712 	loff_t size;
4713 	int block;
4714 	uid_t i_uid;
4715 	gid_t i_gid;
4716 	projid_t i_projid;
4717 
4718 	if ((!(flags & EXT4_IGET_SPECIAL) &&
4719 	     (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)) ||
4720 	    (ino < EXT4_ROOT_INO) ||
4721 	    (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))) {
4722 		if (flags & EXT4_IGET_HANDLE)
4723 			return ERR_PTR(-ESTALE);
4724 		__ext4_error(sb, function, line, false, EFSCORRUPTED, 0,
4725 			     "inode #%lu: comm %s: iget: illegal inode #",
4726 			     ino, current->comm);
4727 		return ERR_PTR(-EFSCORRUPTED);
4728 	}
4729 
4730 	inode = iget_locked(sb, ino);
4731 	if (!inode)
4732 		return ERR_PTR(-ENOMEM);
4733 	if (!(inode->i_state & I_NEW))
4734 		return inode;
4735 
4736 	ei = EXT4_I(inode);
4737 	iloc.bh = NULL;
4738 
4739 	ret = __ext4_get_inode_loc_noinmem(inode, &iloc);
4740 	if (ret < 0)
4741 		goto bad_inode;
4742 	raw_inode = ext4_raw_inode(&iloc);
4743 
4744 	if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) {
4745 		ext4_error_inode(inode, function, line, 0,
4746 				 "iget: root inode unallocated");
4747 		ret = -EFSCORRUPTED;
4748 		goto bad_inode;
4749 	}
4750 
4751 	if ((flags & EXT4_IGET_HANDLE) &&
4752 	    (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4753 		ret = -ESTALE;
4754 		goto bad_inode;
4755 	}
4756 
4757 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4758 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4759 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4760 			EXT4_INODE_SIZE(inode->i_sb) ||
4761 		    (ei->i_extra_isize & 3)) {
4762 			ext4_error_inode(inode, function, line, 0,
4763 					 "iget: bad extra_isize %u "
4764 					 "(inode size %u)",
4765 					 ei->i_extra_isize,
4766 					 EXT4_INODE_SIZE(inode->i_sb));
4767 			ret = -EFSCORRUPTED;
4768 			goto bad_inode;
4769 		}
4770 	} else
4771 		ei->i_extra_isize = 0;
4772 
4773 	/* Precompute checksum seed for inode metadata */
4774 	if (ext4_has_metadata_csum(sb)) {
4775 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4776 		__u32 csum;
4777 		__le32 inum = cpu_to_le32(inode->i_ino);
4778 		__le32 gen = raw_inode->i_generation;
4779 		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4780 				   sizeof(inum));
4781 		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4782 					      sizeof(gen));
4783 	}
4784 
4785 	if ((!ext4_inode_csum_verify(inode, raw_inode, ei) ||
4786 	    ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) &&
4787 	     (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) {
4788 		ext4_error_inode_err(inode, function, line, 0,
4789 				EFSBADCRC, "iget: checksum invalid");
4790 		ret = -EFSBADCRC;
4791 		goto bad_inode;
4792 	}
4793 
4794 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4795 	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4796 	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4797 	if (ext4_has_feature_project(sb) &&
4798 	    EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4799 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4800 		i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4801 	else
4802 		i_projid = EXT4_DEF_PROJID;
4803 
4804 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4805 		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4806 		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4807 	}
4808 	i_uid_write(inode, i_uid);
4809 	i_gid_write(inode, i_gid);
4810 	ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4811 	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4812 
4813 	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
4814 	ei->i_inline_off = 0;
4815 	ei->i_dir_start_lookup = 0;
4816 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4817 	/* We now have enough fields to check if the inode was active or not.
4818 	 * This is needed because nfsd might try to access dead inodes
4819 	 * the test is that same one that e2fsck uses
4820 	 * NeilBrown 1999oct15
4821 	 */
4822 	if (inode->i_nlink == 0) {
4823 		if ((inode->i_mode == 0 ||
4824 		     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4825 		    ino != EXT4_BOOT_LOADER_INO) {
4826 			/* this inode is deleted */
4827 			ret = -ESTALE;
4828 			goto bad_inode;
4829 		}
4830 		/* The only unlinked inodes we let through here have
4831 		 * valid i_mode and are being read by the orphan
4832 		 * recovery code: that's fine, we're about to complete
4833 		 * the process of deleting those.
4834 		 * OR it is the EXT4_BOOT_LOADER_INO which is
4835 		 * not initialized on a new filesystem. */
4836 	}
4837 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4838 	ext4_set_inode_flags(inode, true);
4839 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4840 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4841 	if (ext4_has_feature_64bit(sb))
4842 		ei->i_file_acl |=
4843 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4844 	inode->i_size = ext4_isize(sb, raw_inode);
4845 	if ((size = i_size_read(inode)) < 0) {
4846 		ext4_error_inode(inode, function, line, 0,
4847 				 "iget: bad i_size value: %lld", size);
4848 		ret = -EFSCORRUPTED;
4849 		goto bad_inode;
4850 	}
4851 	/*
4852 	 * If dir_index is not enabled but there's dir with INDEX flag set,
4853 	 * we'd normally treat htree data as empty space. But with metadata
4854 	 * checksumming that corrupts checksums so forbid that.
4855 	 */
4856 	if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) &&
4857 	    ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) {
4858 		ext4_error_inode(inode, function, line, 0,
4859 			 "iget: Dir with htree data on filesystem without dir_index feature.");
4860 		ret = -EFSCORRUPTED;
4861 		goto bad_inode;
4862 	}
4863 	ei->i_disksize = inode->i_size;
4864 #ifdef CONFIG_QUOTA
4865 	ei->i_reserved_quota = 0;
4866 #endif
4867 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4868 	ei->i_block_group = iloc.block_group;
4869 	ei->i_last_alloc_group = ~0;
4870 	/*
4871 	 * NOTE! The in-memory inode i_data array is in little-endian order
4872 	 * even on big-endian machines: we do NOT byteswap the block numbers!
4873 	 */
4874 	for (block = 0; block < EXT4_N_BLOCKS; block++)
4875 		ei->i_data[block] = raw_inode->i_block[block];
4876 	INIT_LIST_HEAD(&ei->i_orphan);
4877 	ext4_fc_init_inode(&ei->vfs_inode);
4878 
4879 	/*
4880 	 * Set transaction id's of transactions that have to be committed
4881 	 * to finish f[data]sync. We set them to currently running transaction
4882 	 * as we cannot be sure that the inode or some of its metadata isn't
4883 	 * part of the transaction - the inode could have been reclaimed and
4884 	 * now it is reread from disk.
4885 	 */
4886 	if (journal) {
4887 		transaction_t *transaction;
4888 		tid_t tid;
4889 
4890 		read_lock(&journal->j_state_lock);
4891 		if (journal->j_running_transaction)
4892 			transaction = journal->j_running_transaction;
4893 		else
4894 			transaction = journal->j_committing_transaction;
4895 		if (transaction)
4896 			tid = transaction->t_tid;
4897 		else
4898 			tid = journal->j_commit_sequence;
4899 		read_unlock(&journal->j_state_lock);
4900 		ei->i_sync_tid = tid;
4901 		ei->i_datasync_tid = tid;
4902 	}
4903 
4904 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4905 		if (ei->i_extra_isize == 0) {
4906 			/* The extra space is currently unused. Use it. */
4907 			BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4908 			ei->i_extra_isize = sizeof(struct ext4_inode) -
4909 					    EXT4_GOOD_OLD_INODE_SIZE;
4910 		} else {
4911 			ret = ext4_iget_extra_inode(inode, raw_inode, ei);
4912 			if (ret)
4913 				goto bad_inode;
4914 		}
4915 	}
4916 
4917 	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4918 	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4919 	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4920 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4921 
4922 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4923 		u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
4924 
4925 		if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4926 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4927 				ivers |=
4928 		    (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4929 		}
4930 		ext4_inode_set_iversion_queried(inode, ivers);
4931 	}
4932 
4933 	ret = 0;
4934 	if (ei->i_file_acl &&
4935 	    !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) {
4936 		ext4_error_inode(inode, function, line, 0,
4937 				 "iget: bad extended attribute block %llu",
4938 				 ei->i_file_acl);
4939 		ret = -EFSCORRUPTED;
4940 		goto bad_inode;
4941 	} else if (!ext4_has_inline_data(inode)) {
4942 		/* validate the block references in the inode */
4943 		if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) &&
4944 			(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4945 			(S_ISLNK(inode->i_mode) &&
4946 			!ext4_inode_is_fast_symlink(inode)))) {
4947 			if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4948 				ret = ext4_ext_check_inode(inode);
4949 			else
4950 				ret = ext4_ind_check_inode(inode);
4951 		}
4952 	}
4953 	if (ret)
4954 		goto bad_inode;
4955 
4956 	if (S_ISREG(inode->i_mode)) {
4957 		inode->i_op = &ext4_file_inode_operations;
4958 		inode->i_fop = &ext4_file_operations;
4959 		ext4_set_aops(inode);
4960 	} else if (S_ISDIR(inode->i_mode)) {
4961 		inode->i_op = &ext4_dir_inode_operations;
4962 		inode->i_fop = &ext4_dir_operations;
4963 	} else if (S_ISLNK(inode->i_mode)) {
4964 		/* VFS does not allow setting these so must be corruption */
4965 		if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
4966 			ext4_error_inode(inode, function, line, 0,
4967 					 "iget: immutable or append flags "
4968 					 "not allowed on symlinks");
4969 			ret = -EFSCORRUPTED;
4970 			goto bad_inode;
4971 		}
4972 		if (IS_ENCRYPTED(inode)) {
4973 			inode->i_op = &ext4_encrypted_symlink_inode_operations;
4974 			ext4_set_aops(inode);
4975 		} else if (ext4_inode_is_fast_symlink(inode)) {
4976 			inode->i_link = (char *)ei->i_data;
4977 			inode->i_op = &ext4_fast_symlink_inode_operations;
4978 			nd_terminate_link(ei->i_data, inode->i_size,
4979 				sizeof(ei->i_data) - 1);
4980 		} else {
4981 			inode->i_op = &ext4_symlink_inode_operations;
4982 			ext4_set_aops(inode);
4983 		}
4984 		inode_nohighmem(inode);
4985 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4986 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4987 		inode->i_op = &ext4_special_inode_operations;
4988 		if (raw_inode->i_block[0])
4989 			init_special_inode(inode, inode->i_mode,
4990 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4991 		else
4992 			init_special_inode(inode, inode->i_mode,
4993 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4994 	} else if (ino == EXT4_BOOT_LOADER_INO) {
4995 		make_bad_inode(inode);
4996 	} else {
4997 		ret = -EFSCORRUPTED;
4998 		ext4_error_inode(inode, function, line, 0,
4999 				 "iget: bogus i_mode (%o)", inode->i_mode);
5000 		goto bad_inode;
5001 	}
5002 	if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb))
5003 		ext4_error_inode(inode, function, line, 0,
5004 				 "casefold flag without casefold feature");
5005 	brelse(iloc.bh);
5006 
5007 	unlock_new_inode(inode);
5008 	return inode;
5009 
5010 bad_inode:
5011 	brelse(iloc.bh);
5012 	iget_failed(inode);
5013 	return ERR_PTR(ret);
5014 }
5015 
__ext4_update_other_inode_time(struct super_block * sb,unsigned long orig_ino,unsigned long ino,struct ext4_inode * raw_inode)5016 static void __ext4_update_other_inode_time(struct super_block *sb,
5017 					   unsigned long orig_ino,
5018 					   unsigned long ino,
5019 					   struct ext4_inode *raw_inode)
5020 {
5021 	struct inode *inode;
5022 
5023 	inode = find_inode_by_ino_rcu(sb, ino);
5024 	if (!inode)
5025 		return;
5026 
5027 	if ((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
5028 			       I_DIRTY_INODE)) ||
5029 	    ((inode->i_state & I_DIRTY_TIME) == 0))
5030 		return;
5031 
5032 	spin_lock(&inode->i_lock);
5033 	if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
5034 				I_DIRTY_INODE)) == 0) &&
5035 	    (inode->i_state & I_DIRTY_TIME)) {
5036 		struct ext4_inode_info	*ei = EXT4_I(inode);
5037 
5038 		inode->i_state &= ~I_DIRTY_TIME;
5039 		spin_unlock(&inode->i_lock);
5040 
5041 		spin_lock(&ei->i_raw_lock);
5042 		EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5043 		EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5044 		EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5045 		ext4_inode_csum_set(inode, raw_inode, ei);
5046 		spin_unlock(&ei->i_raw_lock);
5047 		trace_ext4_other_inode_update_time(inode, orig_ino);
5048 		return;
5049 	}
5050 	spin_unlock(&inode->i_lock);
5051 }
5052 
5053 /*
5054  * Opportunistically update the other time fields for other inodes in
5055  * the same inode table block.
5056  */
ext4_update_other_inodes_time(struct super_block * sb,unsigned long orig_ino,char * buf)5057 static void ext4_update_other_inodes_time(struct super_block *sb,
5058 					  unsigned long orig_ino, char *buf)
5059 {
5060 	unsigned long ino;
5061 	int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5062 	int inode_size = EXT4_INODE_SIZE(sb);
5063 
5064 	/*
5065 	 * Calculate the first inode in the inode table block.  Inode
5066 	 * numbers are one-based.  That is, the first inode in a block
5067 	 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5068 	 */
5069 	ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5070 	rcu_read_lock();
5071 	for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5072 		if (ino == orig_ino)
5073 			continue;
5074 		__ext4_update_other_inode_time(sb, orig_ino, ino,
5075 					       (struct ext4_inode *)buf);
5076 	}
5077 	rcu_read_unlock();
5078 }
5079 
5080 /*
5081  * Post the struct inode info into an on-disk inode location in the
5082  * buffer-cache.  This gobbles the caller's reference to the
5083  * buffer_head in the inode location struct.
5084  *
5085  * The caller must have write access to iloc->bh.
5086  */
ext4_do_update_inode(handle_t * handle,struct inode * inode,struct ext4_iloc * iloc)5087 static int ext4_do_update_inode(handle_t *handle,
5088 				struct inode *inode,
5089 				struct ext4_iloc *iloc)
5090 {
5091 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5092 	struct ext4_inode_info *ei = EXT4_I(inode);
5093 	struct buffer_head *bh = iloc->bh;
5094 	struct super_block *sb = inode->i_sb;
5095 	int err;
5096 	int need_datasync = 0, set_large_file = 0;
5097 
5098 	spin_lock(&ei->i_raw_lock);
5099 
5100 	/*
5101 	 * For fields not tracked in the in-memory inode, initialise them
5102 	 * to zero for new inodes.
5103 	 */
5104 	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5105 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5106 
5107 	if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode))
5108 		need_datasync = 1;
5109 	if (ei->i_disksize > 0x7fffffffULL) {
5110 		if (!ext4_has_feature_large_file(sb) ||
5111 		    EXT4_SB(sb)->s_es->s_rev_level == cpu_to_le32(EXT4_GOOD_OLD_REV))
5112 			set_large_file = 1;
5113 	}
5114 
5115 	err = ext4_fill_raw_inode(inode, raw_inode);
5116 	spin_unlock(&ei->i_raw_lock);
5117 	if (err) {
5118 		EXT4_ERROR_INODE(inode, "corrupted inode contents");
5119 		goto out_brelse;
5120 	}
5121 
5122 	if (inode->i_sb->s_flags & SB_LAZYTIME)
5123 		ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5124 					      bh->b_data);
5125 
5126 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5127 	err = ext4_handle_dirty_metadata(handle, NULL, bh);
5128 	if (err)
5129 		goto out_error;
5130 	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5131 	if (set_large_file) {
5132 		BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5133 		err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5134 		if (err)
5135 			goto out_error;
5136 		lock_buffer(EXT4_SB(sb)->s_sbh);
5137 		ext4_set_feature_large_file(sb);
5138 		ext4_superblock_csum_set(sb);
5139 		unlock_buffer(EXT4_SB(sb)->s_sbh);
5140 		ext4_handle_sync(handle);
5141 		err = ext4_handle_dirty_metadata(handle, NULL,
5142 						 EXT4_SB(sb)->s_sbh);
5143 	}
5144 	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5145 out_error:
5146 	ext4_std_error(inode->i_sb, err);
5147 out_brelse:
5148 	brelse(bh);
5149 	return err;
5150 }
5151 
5152 /*
5153  * ext4_write_inode()
5154  *
5155  * We are called from a few places:
5156  *
5157  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5158  *   Here, there will be no transaction running. We wait for any running
5159  *   transaction to commit.
5160  *
5161  * - Within flush work (sys_sync(), kupdate and such).
5162  *   We wait on commit, if told to.
5163  *
5164  * - Within iput_final() -> write_inode_now()
5165  *   We wait on commit, if told to.
5166  *
5167  * In all cases it is actually safe for us to return without doing anything,
5168  * because the inode has been copied into a raw inode buffer in
5169  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5170  * writeback.
5171  *
5172  * Note that we are absolutely dependent upon all inode dirtiers doing the
5173  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5174  * which we are interested.
5175  *
5176  * It would be a bug for them to not do this.  The code:
5177  *
5178  *	mark_inode_dirty(inode)
5179  *	stuff();
5180  *	inode->i_size = expr;
5181  *
5182  * is in error because write_inode() could occur while `stuff()' is running,
5183  * and the new i_size will be lost.  Plus the inode will no longer be on the
5184  * superblock's dirty inode list.
5185  */
ext4_write_inode(struct inode * inode,struct writeback_control * wbc)5186 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5187 {
5188 	int err;
5189 
5190 	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) ||
5191 	    sb_rdonly(inode->i_sb))
5192 		return 0;
5193 
5194 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5195 		return -EIO;
5196 
5197 	if (EXT4_SB(inode->i_sb)->s_journal) {
5198 		if (ext4_journal_current_handle()) {
5199 			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5200 			dump_stack();
5201 			return -EIO;
5202 		}
5203 
5204 		/*
5205 		 * No need to force transaction in WB_SYNC_NONE mode. Also
5206 		 * ext4_sync_fs() will force the commit after everything is
5207 		 * written.
5208 		 */
5209 		if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5210 			return 0;
5211 
5212 		err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal,
5213 						EXT4_I(inode)->i_sync_tid);
5214 	} else {
5215 		struct ext4_iloc iloc;
5216 
5217 		err = __ext4_get_inode_loc_noinmem(inode, &iloc);
5218 		if (err)
5219 			return err;
5220 		/*
5221 		 * sync(2) will flush the whole buffer cache. No need to do
5222 		 * it here separately for each inode.
5223 		 */
5224 		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5225 			sync_dirty_buffer(iloc.bh);
5226 		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5227 			ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO,
5228 					       "IO error syncing inode");
5229 			err = -EIO;
5230 		}
5231 		brelse(iloc.bh);
5232 	}
5233 	return err;
5234 }
5235 
5236 /*
5237  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5238  * buffers that are attached to a page stradding i_size and are undergoing
5239  * commit. In that case we have to wait for commit to finish and try again.
5240  */
ext4_wait_for_tail_page_commit(struct inode * inode)5241 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5242 {
5243 	struct page *page;
5244 	unsigned offset;
5245 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5246 	tid_t commit_tid = 0;
5247 	int ret;
5248 
5249 	offset = inode->i_size & (PAGE_SIZE - 1);
5250 	/*
5251 	 * If the page is fully truncated, we don't need to wait for any commit
5252 	 * (and we even should not as __ext4_journalled_invalidatepage() may
5253 	 * strip all buffers from the page but keep the page dirty which can then
5254 	 * confuse e.g. concurrent ext4_writepage() seeing dirty page without
5255 	 * buffers). Also we don't need to wait for any commit if all buffers in
5256 	 * the page remain valid. This is most beneficial for the common case of
5257 	 * blocksize == PAGESIZE.
5258 	 */
5259 	if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5260 		return;
5261 	while (1) {
5262 		page = find_lock_page(inode->i_mapping,
5263 				      inode->i_size >> PAGE_SHIFT);
5264 		if (!page)
5265 			return;
5266 		ret = __ext4_journalled_invalidatepage(page, offset,
5267 						PAGE_SIZE - offset);
5268 		unlock_page(page);
5269 		put_page(page);
5270 		if (ret != -EBUSY)
5271 			return;
5272 		commit_tid = 0;
5273 		read_lock(&journal->j_state_lock);
5274 		if (journal->j_committing_transaction)
5275 			commit_tid = journal->j_committing_transaction->t_tid;
5276 		read_unlock(&journal->j_state_lock);
5277 		if (commit_tid)
5278 			jbd2_log_wait_commit(journal, commit_tid);
5279 	}
5280 }
5281 
5282 /*
5283  * ext4_setattr()
5284  *
5285  * Called from notify_change.
5286  *
5287  * We want to trap VFS attempts to truncate the file as soon as
5288  * possible.  In particular, we want to make sure that when the VFS
5289  * shrinks i_size, we put the inode on the orphan list and modify
5290  * i_disksize immediately, so that during the subsequent flushing of
5291  * dirty pages and freeing of disk blocks, we can guarantee that any
5292  * commit will leave the blocks being flushed in an unused state on
5293  * disk.  (On recovery, the inode will get truncated and the blocks will
5294  * be freed, so we have a strong guarantee that no future commit will
5295  * leave these blocks visible to the user.)
5296  *
5297  * Another thing we have to assure is that if we are in ordered mode
5298  * and inode is still attached to the committing transaction, we must
5299  * we start writeout of all the dirty pages which are being truncated.
5300  * This way we are sure that all the data written in the previous
5301  * transaction are already on disk (truncate waits for pages under
5302  * writeback).
5303  *
5304  * Called with inode->i_mutex down.
5305  */
ext4_setattr(struct dentry * dentry,struct iattr * attr)5306 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5307 {
5308 	struct inode *inode = d_inode(dentry);
5309 	int error, rc = 0;
5310 	int orphan = 0;
5311 	const unsigned int ia_valid = attr->ia_valid;
5312 
5313 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5314 		return -EIO;
5315 
5316 	if (unlikely(IS_IMMUTABLE(inode)))
5317 		return -EPERM;
5318 
5319 	if (unlikely(IS_APPEND(inode) &&
5320 		     (ia_valid & (ATTR_MODE | ATTR_UID |
5321 				  ATTR_GID | ATTR_TIMES_SET))))
5322 		return -EPERM;
5323 
5324 	error = setattr_prepare(dentry, attr);
5325 	if (error)
5326 		return error;
5327 
5328 	error = fscrypt_prepare_setattr(dentry, attr);
5329 	if (error)
5330 		return error;
5331 
5332 	error = fsverity_prepare_setattr(dentry, attr);
5333 	if (error)
5334 		return error;
5335 
5336 	if (is_quota_modification(inode, attr)) {
5337 		error = dquot_initialize(inode);
5338 		if (error)
5339 			return error;
5340 	}
5341 	ext4_fc_start_update(inode);
5342 	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5343 	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5344 		handle_t *handle;
5345 
5346 		/* (user+group)*(old+new) structure, inode write (sb,
5347 		 * inode block, ? - but truncate inode update has it) */
5348 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5349 			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5350 			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5351 		if (IS_ERR(handle)) {
5352 			error = PTR_ERR(handle);
5353 			goto err_out;
5354 		}
5355 
5356 		/* dquot_transfer() calls back ext4_get_inode_usage() which
5357 		 * counts xattr inode references.
5358 		 */
5359 		down_read(&EXT4_I(inode)->xattr_sem);
5360 		error = dquot_transfer(inode, attr);
5361 		up_read(&EXT4_I(inode)->xattr_sem);
5362 
5363 		if (error) {
5364 			ext4_journal_stop(handle);
5365 			ext4_fc_stop_update(inode);
5366 			return error;
5367 		}
5368 		/* Update corresponding info in inode so that everything is in
5369 		 * one transaction */
5370 		if (attr->ia_valid & ATTR_UID)
5371 			inode->i_uid = attr->ia_uid;
5372 		if (attr->ia_valid & ATTR_GID)
5373 			inode->i_gid = attr->ia_gid;
5374 		error = ext4_mark_inode_dirty(handle, inode);
5375 		ext4_journal_stop(handle);
5376 		if (unlikely(error)) {
5377 			ext4_fc_stop_update(inode);
5378 			return error;
5379 		}
5380 	}
5381 
5382 	if (attr->ia_valid & ATTR_SIZE) {
5383 		handle_t *handle;
5384 		loff_t oldsize = inode->i_size;
5385 		int shrink = (attr->ia_size < inode->i_size);
5386 
5387 		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5388 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5389 
5390 			if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5391 				ext4_fc_stop_update(inode);
5392 				return -EFBIG;
5393 			}
5394 		}
5395 		if (!S_ISREG(inode->i_mode)) {
5396 			ext4_fc_stop_update(inode);
5397 			return -EINVAL;
5398 		}
5399 
5400 		if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5401 			inode_inc_iversion(inode);
5402 
5403 		if (shrink) {
5404 			if (ext4_should_order_data(inode)) {
5405 				error = ext4_begin_ordered_truncate(inode,
5406 							    attr->ia_size);
5407 				if (error)
5408 					goto err_out;
5409 			}
5410 			/*
5411 			 * Blocks are going to be removed from the inode. Wait
5412 			 * for dio in flight.
5413 			 */
5414 			inode_dio_wait(inode);
5415 		}
5416 
5417 		down_write(&EXT4_I(inode)->i_mmap_sem);
5418 
5419 		rc = ext4_break_layouts(inode);
5420 		if (rc) {
5421 			up_write(&EXT4_I(inode)->i_mmap_sem);
5422 			goto err_out;
5423 		}
5424 
5425 		if (attr->ia_size != inode->i_size) {
5426 			handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5427 			if (IS_ERR(handle)) {
5428 				error = PTR_ERR(handle);
5429 				goto out_mmap_sem;
5430 			}
5431 			if (ext4_handle_valid(handle) && shrink) {
5432 				error = ext4_orphan_add(handle, inode);
5433 				orphan = 1;
5434 			}
5435 			/*
5436 			 * Update c/mtime on truncate up, ext4_truncate() will
5437 			 * update c/mtime in shrink case below
5438 			 */
5439 			if (!shrink) {
5440 				inode->i_mtime = current_time(inode);
5441 				inode->i_ctime = inode->i_mtime;
5442 			}
5443 
5444 			if (shrink)
5445 				ext4_fc_track_range(handle, inode,
5446 					(attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5447 					inode->i_sb->s_blocksize_bits,
5448 					EXT_MAX_BLOCKS - 1);
5449 			else
5450 				ext4_fc_track_range(
5451 					handle, inode,
5452 					(oldsize > 0 ? oldsize - 1 : oldsize) >>
5453 					inode->i_sb->s_blocksize_bits,
5454 					(attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5455 					inode->i_sb->s_blocksize_bits);
5456 
5457 			down_write(&EXT4_I(inode)->i_data_sem);
5458 			EXT4_I(inode)->i_disksize = attr->ia_size;
5459 			rc = ext4_mark_inode_dirty(handle, inode);
5460 			if (!error)
5461 				error = rc;
5462 			/*
5463 			 * We have to update i_size under i_data_sem together
5464 			 * with i_disksize to avoid races with writeback code
5465 			 * running ext4_wb_update_i_disksize().
5466 			 */
5467 			if (!error)
5468 				i_size_write(inode, attr->ia_size);
5469 			up_write(&EXT4_I(inode)->i_data_sem);
5470 			ext4_journal_stop(handle);
5471 			if (error)
5472 				goto out_mmap_sem;
5473 			if (!shrink) {
5474 				pagecache_isize_extended(inode, oldsize,
5475 							 inode->i_size);
5476 			} else if (ext4_should_journal_data(inode)) {
5477 				ext4_wait_for_tail_page_commit(inode);
5478 			}
5479 		}
5480 
5481 		/*
5482 		 * Truncate pagecache after we've waited for commit
5483 		 * in data=journal mode to make pages freeable.
5484 		 */
5485 		truncate_pagecache(inode, inode->i_size);
5486 		/*
5487 		 * Call ext4_truncate() even if i_size didn't change to
5488 		 * truncate possible preallocated blocks.
5489 		 */
5490 		if (attr->ia_size <= oldsize) {
5491 			rc = ext4_truncate(inode);
5492 			if (rc)
5493 				error = rc;
5494 		}
5495 out_mmap_sem:
5496 		up_write(&EXT4_I(inode)->i_mmap_sem);
5497 	}
5498 
5499 	if (!error) {
5500 		setattr_copy(inode, attr);
5501 		mark_inode_dirty(inode);
5502 	}
5503 
5504 	/*
5505 	 * If the call to ext4_truncate failed to get a transaction handle at
5506 	 * all, we need to clean up the in-core orphan list manually.
5507 	 */
5508 	if (orphan && inode->i_nlink)
5509 		ext4_orphan_del(NULL, inode);
5510 
5511 	if (!error && (ia_valid & ATTR_MODE))
5512 		rc = posix_acl_chmod(inode, inode->i_mode);
5513 
5514 err_out:
5515 	if  (error)
5516 		ext4_std_error(inode->i_sb, error);
5517 	if (!error)
5518 		error = rc;
5519 	ext4_fc_stop_update(inode);
5520 	return error;
5521 }
5522 
ext4_getattr(const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)5523 int ext4_getattr(const struct path *path, struct kstat *stat,
5524 		 u32 request_mask, unsigned int query_flags)
5525 {
5526 	struct inode *inode = d_inode(path->dentry);
5527 	struct ext4_inode *raw_inode;
5528 	struct ext4_inode_info *ei = EXT4_I(inode);
5529 	unsigned int flags;
5530 
5531 	if ((request_mask & STATX_BTIME) &&
5532 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5533 		stat->result_mask |= STATX_BTIME;
5534 		stat->btime.tv_sec = ei->i_crtime.tv_sec;
5535 		stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5536 	}
5537 
5538 	flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5539 	if (flags & EXT4_APPEND_FL)
5540 		stat->attributes |= STATX_ATTR_APPEND;
5541 	if (flags & EXT4_COMPR_FL)
5542 		stat->attributes |= STATX_ATTR_COMPRESSED;
5543 	if (flags & EXT4_ENCRYPT_FL)
5544 		stat->attributes |= STATX_ATTR_ENCRYPTED;
5545 	if (flags & EXT4_IMMUTABLE_FL)
5546 		stat->attributes |= STATX_ATTR_IMMUTABLE;
5547 	if (flags & EXT4_NODUMP_FL)
5548 		stat->attributes |= STATX_ATTR_NODUMP;
5549 	if (flags & EXT4_VERITY_FL)
5550 		stat->attributes |= STATX_ATTR_VERITY;
5551 
5552 	stat->attributes_mask |= (STATX_ATTR_APPEND |
5553 				  STATX_ATTR_COMPRESSED |
5554 				  STATX_ATTR_ENCRYPTED |
5555 				  STATX_ATTR_IMMUTABLE |
5556 				  STATX_ATTR_NODUMP |
5557 				  STATX_ATTR_VERITY);
5558 
5559 	generic_fillattr(inode, stat);
5560 	return 0;
5561 }
5562 
ext4_file_getattr(const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)5563 int ext4_file_getattr(const struct path *path, struct kstat *stat,
5564 		      u32 request_mask, unsigned int query_flags)
5565 {
5566 	struct inode *inode = d_inode(path->dentry);
5567 	u64 delalloc_blocks;
5568 
5569 	ext4_getattr(path, stat, request_mask, query_flags);
5570 
5571 	/*
5572 	 * If there is inline data in the inode, the inode will normally not
5573 	 * have data blocks allocated (it may have an external xattr block).
5574 	 * Report at least one sector for such files, so tools like tar, rsync,
5575 	 * others don't incorrectly think the file is completely sparse.
5576 	 */
5577 	if (unlikely(ext4_has_inline_data(inode)))
5578 		stat->blocks += (stat->size + 511) >> 9;
5579 
5580 	/*
5581 	 * We can't update i_blocks if the block allocation is delayed
5582 	 * otherwise in the case of system crash before the real block
5583 	 * allocation is done, we will have i_blocks inconsistent with
5584 	 * on-disk file blocks.
5585 	 * We always keep i_blocks updated together with real
5586 	 * allocation. But to not confuse with user, stat
5587 	 * will return the blocks that include the delayed allocation
5588 	 * blocks for this file.
5589 	 */
5590 	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5591 				   EXT4_I(inode)->i_reserved_data_blocks);
5592 	stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5593 	return 0;
5594 }
5595 
ext4_index_trans_blocks(struct inode * inode,int lblocks,int pextents)5596 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5597 				   int pextents)
5598 {
5599 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5600 		return ext4_ind_trans_blocks(inode, lblocks);
5601 	return ext4_ext_index_trans_blocks(inode, pextents);
5602 }
5603 
5604 /*
5605  * Account for index blocks, block groups bitmaps and block group
5606  * descriptor blocks if modify datablocks and index blocks
5607  * worse case, the indexs blocks spread over different block groups
5608  *
5609  * If datablocks are discontiguous, they are possible to spread over
5610  * different block groups too. If they are contiguous, with flexbg,
5611  * they could still across block group boundary.
5612  *
5613  * Also account for superblock, inode, quota and xattr blocks
5614  */
ext4_meta_trans_blocks(struct inode * inode,int lblocks,int pextents)5615 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5616 				  int pextents)
5617 {
5618 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5619 	int gdpblocks;
5620 	int idxblocks;
5621 	int ret = 0;
5622 
5623 	/*
5624 	 * How many index blocks need to touch to map @lblocks logical blocks
5625 	 * to @pextents physical extents?
5626 	 */
5627 	idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5628 
5629 	ret = idxblocks;
5630 
5631 	/*
5632 	 * Now let's see how many group bitmaps and group descriptors need
5633 	 * to account
5634 	 */
5635 	groups = idxblocks + pextents;
5636 	gdpblocks = groups;
5637 	if (groups > ngroups)
5638 		groups = ngroups;
5639 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5640 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5641 
5642 	/* bitmaps and block group descriptor blocks */
5643 	ret += groups + gdpblocks;
5644 
5645 	/* Blocks for super block, inode, quota and xattr blocks */
5646 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5647 
5648 	return ret;
5649 }
5650 
5651 /*
5652  * Calculate the total number of credits to reserve to fit
5653  * the modification of a single pages into a single transaction,
5654  * which may include multiple chunks of block allocations.
5655  *
5656  * This could be called via ext4_write_begin()
5657  *
5658  * We need to consider the worse case, when
5659  * one new block per extent.
5660  */
ext4_writepage_trans_blocks(struct inode * inode)5661 int ext4_writepage_trans_blocks(struct inode *inode)
5662 {
5663 	int bpp = ext4_journal_blocks_per_page(inode);
5664 	int ret;
5665 
5666 	ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5667 
5668 	/* Account for data blocks for journalled mode */
5669 	if (ext4_should_journal_data(inode))
5670 		ret += bpp;
5671 	return ret;
5672 }
5673 
5674 /*
5675  * Calculate the journal credits for a chunk of data modification.
5676  *
5677  * This is called from DIO, fallocate or whoever calling
5678  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5679  *
5680  * journal buffers for data blocks are not included here, as DIO
5681  * and fallocate do no need to journal data buffers.
5682  */
ext4_chunk_trans_blocks(struct inode * inode,int nrblocks)5683 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5684 {
5685 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
5686 }
5687 
5688 /*
5689  * The caller must have previously called ext4_reserve_inode_write().
5690  * Give this, we know that the caller already has write access to iloc->bh.
5691  */
ext4_mark_iloc_dirty(handle_t * handle,struct inode * inode,struct ext4_iloc * iloc)5692 int ext4_mark_iloc_dirty(handle_t *handle,
5693 			 struct inode *inode, struct ext4_iloc *iloc)
5694 {
5695 	int err = 0;
5696 
5697 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
5698 		put_bh(iloc->bh);
5699 		return -EIO;
5700 	}
5701 	ext4_fc_track_inode(handle, inode);
5702 
5703 	if (IS_I_VERSION(inode))
5704 		inode_inc_iversion(inode);
5705 
5706 	/* the do_update_inode consumes one bh->b_count */
5707 	get_bh(iloc->bh);
5708 
5709 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5710 	err = ext4_do_update_inode(handle, inode, iloc);
5711 	put_bh(iloc->bh);
5712 	return err;
5713 }
5714 
5715 /*
5716  * On success, We end up with an outstanding reference count against
5717  * iloc->bh.  This _must_ be cleaned up later.
5718  */
5719 
5720 int
ext4_reserve_inode_write(handle_t * handle,struct inode * inode,struct ext4_iloc * iloc)5721 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5722 			 struct ext4_iloc *iloc)
5723 {
5724 	int err;
5725 
5726 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5727 		return -EIO;
5728 
5729 	err = ext4_get_inode_loc(inode, iloc);
5730 	if (!err) {
5731 		BUFFER_TRACE(iloc->bh, "get_write_access");
5732 		err = ext4_journal_get_write_access(handle, iloc->bh);
5733 		if (err) {
5734 			brelse(iloc->bh);
5735 			iloc->bh = NULL;
5736 		}
5737 	}
5738 	ext4_std_error(inode->i_sb, err);
5739 	return err;
5740 }
5741 
__ext4_expand_extra_isize(struct inode * inode,unsigned int new_extra_isize,struct ext4_iloc * iloc,handle_t * handle,int * no_expand)5742 static int __ext4_expand_extra_isize(struct inode *inode,
5743 				     unsigned int new_extra_isize,
5744 				     struct ext4_iloc *iloc,
5745 				     handle_t *handle, int *no_expand)
5746 {
5747 	struct ext4_inode *raw_inode;
5748 	struct ext4_xattr_ibody_header *header;
5749 	unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
5750 	struct ext4_inode_info *ei = EXT4_I(inode);
5751 	int error;
5752 
5753 	/* this was checked at iget time, but double check for good measure */
5754 	if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
5755 	    (ei->i_extra_isize & 3)) {
5756 		EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
5757 				 ei->i_extra_isize,
5758 				 EXT4_INODE_SIZE(inode->i_sb));
5759 		return -EFSCORRUPTED;
5760 	}
5761 	if ((new_extra_isize < ei->i_extra_isize) ||
5762 	    (new_extra_isize < 4) ||
5763 	    (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
5764 		return -EINVAL;	/* Should never happen */
5765 
5766 	raw_inode = ext4_raw_inode(iloc);
5767 
5768 	header = IHDR(inode, raw_inode);
5769 
5770 	/* No extended attributes present */
5771 	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5772 	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5773 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5774 		       EXT4_I(inode)->i_extra_isize, 0,
5775 		       new_extra_isize - EXT4_I(inode)->i_extra_isize);
5776 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
5777 		return 0;
5778 	}
5779 
5780 	/* try to expand with EAs present */
5781 	error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5782 					   raw_inode, handle);
5783 	if (error) {
5784 		/*
5785 		 * Inode size expansion failed; don't try again
5786 		 */
5787 		*no_expand = 1;
5788 	}
5789 
5790 	return error;
5791 }
5792 
5793 /*
5794  * Expand an inode by new_extra_isize bytes.
5795  * Returns 0 on success or negative error number on failure.
5796  */
ext4_try_to_expand_extra_isize(struct inode * inode,unsigned int new_extra_isize,struct ext4_iloc iloc,handle_t * handle)5797 static int ext4_try_to_expand_extra_isize(struct inode *inode,
5798 					  unsigned int new_extra_isize,
5799 					  struct ext4_iloc iloc,
5800 					  handle_t *handle)
5801 {
5802 	int no_expand;
5803 	int error;
5804 
5805 	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5806 		return -EOVERFLOW;
5807 
5808 	/*
5809 	 * In nojournal mode, we can immediately attempt to expand
5810 	 * the inode.  When journaled, we first need to obtain extra
5811 	 * buffer credits since we may write into the EA block
5812 	 * with this same handle. If journal_extend fails, then it will
5813 	 * only result in a minor loss of functionality for that inode.
5814 	 * If this is felt to be critical, then e2fsck should be run to
5815 	 * force a large enough s_min_extra_isize.
5816 	 */
5817 	if (ext4_journal_extend(handle,
5818 				EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0)
5819 		return -ENOSPC;
5820 
5821 	if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5822 		return -EBUSY;
5823 
5824 	error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5825 					  handle, &no_expand);
5826 	ext4_write_unlock_xattr(inode, &no_expand);
5827 
5828 	return error;
5829 }
5830 
ext4_expand_extra_isize(struct inode * inode,unsigned int new_extra_isize,struct ext4_iloc * iloc)5831 int ext4_expand_extra_isize(struct inode *inode,
5832 			    unsigned int new_extra_isize,
5833 			    struct ext4_iloc *iloc)
5834 {
5835 	handle_t *handle;
5836 	int no_expand;
5837 	int error, rc;
5838 
5839 	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5840 		brelse(iloc->bh);
5841 		return -EOVERFLOW;
5842 	}
5843 
5844 	handle = ext4_journal_start(inode, EXT4_HT_INODE,
5845 				    EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5846 	if (IS_ERR(handle)) {
5847 		error = PTR_ERR(handle);
5848 		brelse(iloc->bh);
5849 		return error;
5850 	}
5851 
5852 	ext4_write_lock_xattr(inode, &no_expand);
5853 
5854 	BUFFER_TRACE(iloc->bh, "get_write_access");
5855 	error = ext4_journal_get_write_access(handle, iloc->bh);
5856 	if (error) {
5857 		brelse(iloc->bh);
5858 		goto out_unlock;
5859 	}
5860 
5861 	error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5862 					  handle, &no_expand);
5863 
5864 	rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5865 	if (!error)
5866 		error = rc;
5867 
5868 out_unlock:
5869 	ext4_write_unlock_xattr(inode, &no_expand);
5870 	ext4_journal_stop(handle);
5871 	return error;
5872 }
5873 
5874 /*
5875  * What we do here is to mark the in-core inode as clean with respect to inode
5876  * dirtiness (it may still be data-dirty).
5877  * This means that the in-core inode may be reaped by prune_icache
5878  * without having to perform any I/O.  This is a very good thing,
5879  * because *any* task may call prune_icache - even ones which
5880  * have a transaction open against a different journal.
5881  *
5882  * Is this cheating?  Not really.  Sure, we haven't written the
5883  * inode out, but prune_icache isn't a user-visible syncing function.
5884  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5885  * we start and wait on commits.
5886  */
__ext4_mark_inode_dirty(handle_t * handle,struct inode * inode,const char * func,unsigned int line)5887 int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode,
5888 				const char *func, unsigned int line)
5889 {
5890 	struct ext4_iloc iloc;
5891 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5892 	int err;
5893 
5894 	might_sleep();
5895 	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5896 	err = ext4_reserve_inode_write(handle, inode, &iloc);
5897 	if (err)
5898 		goto out;
5899 
5900 	if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
5901 		ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
5902 					       iloc, handle);
5903 
5904 	err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5905 out:
5906 	if (unlikely(err))
5907 		ext4_error_inode_err(inode, func, line, 0, err,
5908 					"mark_inode_dirty error");
5909 	return err;
5910 }
5911 
5912 /*
5913  * ext4_dirty_inode() is called from __mark_inode_dirty()
5914  *
5915  * We're really interested in the case where a file is being extended.
5916  * i_size has been changed by generic_commit_write() and we thus need
5917  * to include the updated inode in the current transaction.
5918  *
5919  * Also, dquot_alloc_block() will always dirty the inode when blocks
5920  * are allocated to the file.
5921  *
5922  * If the inode is marked synchronous, we don't honour that here - doing
5923  * so would cause a commit on atime updates, which we don't bother doing.
5924  * We handle synchronous inodes at the highest possible level.
5925  *
5926  * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
5927  * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5928  * to copy into the on-disk inode structure are the timestamp files.
5929  */
ext4_dirty_inode(struct inode * inode,int flags)5930 void ext4_dirty_inode(struct inode *inode, int flags)
5931 {
5932 	handle_t *handle;
5933 
5934 	if (flags == I_DIRTY_TIME)
5935 		return;
5936 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5937 	if (IS_ERR(handle))
5938 		goto out;
5939 
5940 	ext4_mark_inode_dirty(handle, inode);
5941 
5942 	ext4_journal_stop(handle);
5943 out:
5944 	return;
5945 }
5946 
ext4_change_inode_journal_flag(struct inode * inode,int val)5947 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5948 {
5949 	journal_t *journal;
5950 	handle_t *handle;
5951 	int err;
5952 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5953 
5954 	/*
5955 	 * We have to be very careful here: changing a data block's
5956 	 * journaling status dynamically is dangerous.  If we write a
5957 	 * data block to the journal, change the status and then delete
5958 	 * that block, we risk forgetting to revoke the old log record
5959 	 * from the journal and so a subsequent replay can corrupt data.
5960 	 * So, first we make sure that the journal is empty and that
5961 	 * nobody is changing anything.
5962 	 */
5963 
5964 	journal = EXT4_JOURNAL(inode);
5965 	if (!journal)
5966 		return 0;
5967 	if (is_journal_aborted(journal))
5968 		return -EROFS;
5969 
5970 	/* Wait for all existing dio workers */
5971 	inode_dio_wait(inode);
5972 
5973 	/*
5974 	 * Before flushing the journal and switching inode's aops, we have
5975 	 * to flush all dirty data the inode has. There can be outstanding
5976 	 * delayed allocations, there can be unwritten extents created by
5977 	 * fallocate or buffered writes in dioread_nolock mode covered by
5978 	 * dirty data which can be converted only after flushing the dirty
5979 	 * data (and journalled aops don't know how to handle these cases).
5980 	 */
5981 	if (val) {
5982 		down_write(&EXT4_I(inode)->i_mmap_sem);
5983 		err = filemap_write_and_wait(inode->i_mapping);
5984 		if (err < 0) {
5985 			up_write(&EXT4_I(inode)->i_mmap_sem);
5986 			return err;
5987 		}
5988 	}
5989 
5990 	percpu_down_write(&sbi->s_writepages_rwsem);
5991 	jbd2_journal_lock_updates(journal);
5992 
5993 	/*
5994 	 * OK, there are no updates running now, and all cached data is
5995 	 * synced to disk.  We are now in a completely consistent state
5996 	 * which doesn't have anything in the journal, and we know that
5997 	 * no filesystem updates are running, so it is safe to modify
5998 	 * the inode's in-core data-journaling state flag now.
5999 	 */
6000 
6001 	if (val)
6002 		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6003 	else {
6004 		err = jbd2_journal_flush(journal);
6005 		if (err < 0) {
6006 			jbd2_journal_unlock_updates(journal);
6007 			percpu_up_write(&sbi->s_writepages_rwsem);
6008 			return err;
6009 		}
6010 		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6011 	}
6012 	ext4_set_aops(inode);
6013 
6014 	jbd2_journal_unlock_updates(journal);
6015 	percpu_up_write(&sbi->s_writepages_rwsem);
6016 
6017 	if (val)
6018 		up_write(&EXT4_I(inode)->i_mmap_sem);
6019 
6020 	/* Finally we can mark the inode as dirty. */
6021 
6022 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6023 	if (IS_ERR(handle))
6024 		return PTR_ERR(handle);
6025 
6026 	ext4_fc_mark_ineligible(inode->i_sb,
6027 		EXT4_FC_REASON_JOURNAL_FLAG_CHANGE);
6028 	err = ext4_mark_inode_dirty(handle, inode);
6029 	ext4_handle_sync(handle);
6030 	ext4_journal_stop(handle);
6031 	ext4_std_error(inode->i_sb, err);
6032 
6033 	return err;
6034 }
6035 
ext4_bh_unmapped(handle_t * handle,struct buffer_head * bh)6036 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
6037 {
6038 	return !buffer_mapped(bh);
6039 }
6040 
ext4_page_mkwrite(struct vm_fault * vmf)6041 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
6042 {
6043 	struct vm_area_struct *vma = vmf->vma;
6044 	struct page *page = vmf->page;
6045 	loff_t size;
6046 	unsigned long len;
6047 	int err;
6048 	vm_fault_t ret;
6049 	struct file *file = vma->vm_file;
6050 	struct inode *inode = file_inode(file);
6051 	struct address_space *mapping = inode->i_mapping;
6052 	handle_t *handle;
6053 	get_block_t *get_block;
6054 	int retries = 0;
6055 
6056 	if (unlikely(IS_IMMUTABLE(inode)))
6057 		return VM_FAULT_SIGBUS;
6058 
6059 	sb_start_pagefault(inode->i_sb);
6060 	file_update_time(vma->vm_file);
6061 
6062 	down_read(&EXT4_I(inode)->i_mmap_sem);
6063 
6064 	err = ext4_convert_inline_data(inode);
6065 	if (err)
6066 		goto out_ret;
6067 
6068 	/*
6069 	 * On data journalling we skip straight to the transaction handle:
6070 	 * there's no delalloc; page truncated will be checked later; the
6071 	 * early return w/ all buffers mapped (calculates size/len) can't
6072 	 * be used; and there's no dioread_nolock, so only ext4_get_block.
6073 	 */
6074 	if (ext4_should_journal_data(inode))
6075 		goto retry_alloc;
6076 
6077 	/* Delalloc case is easy... */
6078 	if (test_opt(inode->i_sb, DELALLOC) &&
6079 	    !ext4_nonda_switch(inode->i_sb)) {
6080 		do {
6081 			err = block_page_mkwrite(vma, vmf,
6082 						   ext4_da_get_block_prep);
6083 		} while (err == -ENOSPC &&
6084 		       ext4_should_retry_alloc(inode->i_sb, &retries));
6085 		goto out_ret;
6086 	}
6087 
6088 	lock_page(page);
6089 	size = i_size_read(inode);
6090 	/* Page got truncated from under us? */
6091 	if (page->mapping != mapping || page_offset(page) > size) {
6092 		unlock_page(page);
6093 		ret = VM_FAULT_NOPAGE;
6094 		goto out;
6095 	}
6096 
6097 	if (page->index == size >> PAGE_SHIFT)
6098 		len = size & ~PAGE_MASK;
6099 	else
6100 		len = PAGE_SIZE;
6101 	/*
6102 	 * Return if we have all the buffers mapped. This avoids the need to do
6103 	 * journal_start/journal_stop which can block and take a long time
6104 	 *
6105 	 * This cannot be done for data journalling, as we have to add the
6106 	 * inode to the transaction's list to writeprotect pages on commit.
6107 	 */
6108 	if (page_has_buffers(page)) {
6109 		if (!ext4_walk_page_buffers(NULL, page_buffers(page),
6110 					    0, len, NULL,
6111 					    ext4_bh_unmapped)) {
6112 			/* Wait so that we don't change page under IO */
6113 			wait_for_stable_page(page);
6114 			ret = VM_FAULT_LOCKED;
6115 			goto out;
6116 		}
6117 	}
6118 	unlock_page(page);
6119 	/* OK, we need to fill the hole... */
6120 	if (ext4_should_dioread_nolock(inode))
6121 		get_block = ext4_get_block_unwritten;
6122 	else
6123 		get_block = ext4_get_block;
6124 retry_alloc:
6125 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6126 				    ext4_writepage_trans_blocks(inode));
6127 	if (IS_ERR(handle)) {
6128 		ret = VM_FAULT_SIGBUS;
6129 		goto out;
6130 	}
6131 	/*
6132 	 * Data journalling can't use block_page_mkwrite() because it
6133 	 * will set_buffer_dirty() before do_journal_get_write_access()
6134 	 * thus might hit warning messages for dirty metadata buffers.
6135 	 */
6136 	if (!ext4_should_journal_data(inode)) {
6137 		err = block_page_mkwrite(vma, vmf, get_block);
6138 	} else {
6139 		lock_page(page);
6140 		size = i_size_read(inode);
6141 		/* Page got truncated from under us? */
6142 		if (page->mapping != mapping || page_offset(page) > size) {
6143 			ret = VM_FAULT_NOPAGE;
6144 			goto out_error;
6145 		}
6146 
6147 		if (page->index == size >> PAGE_SHIFT)
6148 			len = size & ~PAGE_MASK;
6149 		else
6150 			len = PAGE_SIZE;
6151 
6152 		err = __block_write_begin(page, 0, len, ext4_get_block);
6153 		if (!err) {
6154 			ret = VM_FAULT_SIGBUS;
6155 			if (ext4_walk_page_buffers(handle, page_buffers(page),
6156 					0, len, NULL, do_journal_get_write_access))
6157 				goto out_error;
6158 			if (ext4_walk_page_buffers(handle, page_buffers(page),
6159 					0, len, NULL, write_end_fn))
6160 				goto out_error;
6161 			if (ext4_jbd2_inode_add_write(handle, inode,
6162 						      page_offset(page), len))
6163 				goto out_error;
6164 			ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6165 		} else {
6166 			unlock_page(page);
6167 		}
6168 	}
6169 	ext4_journal_stop(handle);
6170 	if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6171 		goto retry_alloc;
6172 out_ret:
6173 	ret = block_page_mkwrite_return(err);
6174 out:
6175 	up_read(&EXT4_I(inode)->i_mmap_sem);
6176 	sb_end_pagefault(inode->i_sb);
6177 	return ret;
6178 out_error:
6179 	unlock_page(page);
6180 	ext4_journal_stop(handle);
6181 	goto out;
6182 }
6183 
ext4_filemap_fault(struct vm_fault * vmf)6184 vm_fault_t ext4_filemap_fault(struct vm_fault *vmf)
6185 {
6186 	struct inode *inode = file_inode(vmf->vma->vm_file);
6187 	vm_fault_t ret;
6188 
6189 	down_read(&EXT4_I(inode)->i_mmap_sem);
6190 	ret = filemap_fault(vmf);
6191 	up_read(&EXT4_I(inode)->i_mmap_sem);
6192 
6193 	return ret;
6194 }
6195