• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * DCA ADPCM engine
3  * Copyright (C) 2017 Daniil Cherednik
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
22 
23 #include "dcaadpcm.h"
24 #include "dcaenc.h"
25 #include "dca_core.h"
26 #include "mathops.h"
27 
28 typedef int32_t premultiplied_coeffs[10];
29 
30 //assume we have DCA_ADPCM_COEFFS values before x
calc_corr(const int32_t * x,int len,int j,int k)31 static inline int64_t calc_corr(const int32_t *x, int len, int j, int k)
32 {
33     int n;
34     int64_t s = 0;
35     for (n = 0; n < len; n++)
36         s += MUL64(x[n-j], x[n-k]);
37     return s;
38 }
39 
apply_filter(const int16_t a[DCA_ADPCM_COEFFS],const int64_t corr[15],const int32_t aa[10])40 static inline int64_t apply_filter(const int16_t a[DCA_ADPCM_COEFFS], const int64_t corr[15], const int32_t aa[10])
41 {
42     int64_t err = 0;
43     int64_t tmp = 0;
44 
45     err = corr[0];
46 
47     tmp += MUL64(a[0], corr[1]);
48     tmp += MUL64(a[1], corr[2]);
49     tmp += MUL64(a[2], corr[3]);
50     tmp += MUL64(a[3], corr[4]);
51 
52     tmp = norm__(tmp, 13);
53     tmp += tmp;
54 
55     err -= tmp;
56     tmp = 0;
57 
58     tmp += MUL64(corr[5], aa[0]);
59     tmp += MUL64(corr[6], aa[1]);
60     tmp += MUL64(corr[7], aa[2]);
61     tmp += MUL64(corr[8], aa[3]);
62 
63     tmp += MUL64(corr[9], aa[4]);
64     tmp += MUL64(corr[10], aa[5]);
65     tmp += MUL64(corr[11], aa[6]);
66 
67     tmp += MUL64(corr[12], aa[7]);
68     tmp += MUL64(corr[13], aa[8]);
69 
70     tmp += MUL64(corr[14], aa[9]);
71 
72     tmp = norm__(tmp, 26);
73 
74     err += tmp;
75 
76     return llabs(err);
77 }
78 
find_best_filter(const DCAADPCMEncContext * s,const int32_t * in,int len)79 static int64_t find_best_filter(const DCAADPCMEncContext *s, const int32_t *in, int len)
80 {
81     const premultiplied_coeffs *precalc_data = s->private_data;
82     int i, j, k = 0;
83     int vq = -1;
84     int64_t err;
85     int64_t min_err = 1ll << 62;
86     int64_t corr[15];
87 
88     for (i = 0; i <= DCA_ADPCM_COEFFS; i++)
89         for (j = i; j <= DCA_ADPCM_COEFFS; j++)
90             corr[k++] = calc_corr(in+4, len, i, j);
91 
92     for (i = 0; i < DCA_ADPCM_VQCODEBOOK_SZ; i++) {
93         err = apply_filter(ff_dca_adpcm_vb[i], corr, *precalc_data);
94         if (err < min_err) {
95             min_err = err;
96             vq = i;
97         }
98         precalc_data++;
99     }
100 
101     return vq;
102 }
103 
calc_prediction_gain(int pred_vq,const int32_t * in,int32_t * out,int len)104 static inline int64_t calc_prediction_gain(int pred_vq, const int32_t *in, int32_t *out, int len)
105 {
106     int i;
107     int32_t error;
108 
109     int64_t signal_energy = 0;
110     int64_t error_energy = 0;
111 
112     for (i = 0; i < len; i++) {
113         error = in[DCA_ADPCM_COEFFS + i] - ff_dcaadpcm_predict(pred_vq, in + i);
114         out[i] = error;
115         signal_energy += MUL64(in[DCA_ADPCM_COEFFS + i], in[DCA_ADPCM_COEFFS + i]);
116         error_energy += MUL64(error, error);
117     }
118 
119     if (!error_energy)
120         return -1;
121 
122     return signal_energy / error_energy;
123 }
124 
ff_dcaadpcm_subband_analysis(const DCAADPCMEncContext * s,const int32_t * in,int len,int * diff)125 int ff_dcaadpcm_subband_analysis(const DCAADPCMEncContext *s, const int32_t *in, int len, int *diff)
126 {
127     int pred_vq, i;
128     int32_t input_buffer[16 + DCA_ADPCM_COEFFS];
129     int32_t input_buffer2[16 + DCA_ADPCM_COEFFS];
130 
131     int32_t max = 0;
132     int shift_bits;
133     uint64_t pg = 0;
134 
135     for (i = 0; i < len + DCA_ADPCM_COEFFS; i++)
136         max |= FFABS(in[i]);
137 
138     // normalize input to simplify apply_filter
139     shift_bits = av_log2(max) - 11;
140 
141     for (i = 0; i < len + DCA_ADPCM_COEFFS; i++) {
142         input_buffer[i] = norm__(in[i], 7);
143         input_buffer2[i] = norm__(in[i], shift_bits);
144     }
145 
146     pred_vq = find_best_filter(s, input_buffer2, len);
147 
148     if (pred_vq < 0)
149         return -1;
150 
151     pg = calc_prediction_gain(pred_vq, input_buffer, diff, len);
152 
153     // Greater than 10db (10*log(10)) prediction gain to use ADPCM.
154     // TODO: Tune it.
155     if (pg < 10)
156         return -1;
157 
158     for (i = 0; i < len; i++)
159         diff[i] <<= 7;
160 
161     return pred_vq;
162 }
163 
precalc(premultiplied_coeffs * data)164 static void precalc(premultiplied_coeffs *data)
165 {
166     int i, j, k;
167 
168     for (i = 0; i < DCA_ADPCM_VQCODEBOOK_SZ; i++) {
169         int id = 0;
170         int32_t t = 0;
171         for (j = 0; j < DCA_ADPCM_COEFFS; j++) {
172             for (k = j; k < DCA_ADPCM_COEFFS; k++) {
173                 t = (int32_t)ff_dca_adpcm_vb[i][j] * (int32_t)ff_dca_adpcm_vb[i][k];
174                 if (j != k)
175                     t *= 2;
176                 (*data)[id++] = t;
177              }
178         }
179         data++;
180     }
181 }
182 
ff_dcaadpcm_do_real(int pred_vq_index,softfloat quant,int32_t scale_factor,int32_t step_size,const int32_t * prev_hist,const int32_t * in,int32_t * next_hist,int32_t * out,int len,int32_t peak)183 int ff_dcaadpcm_do_real(int pred_vq_index,
184                         softfloat quant, int32_t scale_factor, int32_t step_size,
185                         const int32_t *prev_hist, const int32_t *in, int32_t *next_hist, int32_t *out,
186                         int len, int32_t peak)
187 {
188     int i;
189     int64_t delta;
190     int32_t dequant_delta;
191     int32_t work_bufer[16 + DCA_ADPCM_COEFFS];
192 
193     memcpy(work_bufer, prev_hist, sizeof(int32_t) * DCA_ADPCM_COEFFS);
194 
195     for (i = 0; i < len; i++) {
196         work_bufer[DCA_ADPCM_COEFFS + i] = ff_dcaadpcm_predict(pred_vq_index, &work_bufer[i]);
197 
198         delta = (int64_t)in[i] - ((int64_t)work_bufer[DCA_ADPCM_COEFFS + i] << 7);
199 
200         out[i] = quantize_value(av_clip64(delta, -peak, peak), quant);
201 
202         ff_dca_core_dequantize(&dequant_delta, &out[i], step_size, scale_factor, 0, 1);
203 
204         work_bufer[DCA_ADPCM_COEFFS+i] += dequant_delta;
205     }
206 
207     memcpy(next_hist, &work_bufer[len], sizeof(int32_t) * DCA_ADPCM_COEFFS);
208 
209     return 0;
210 }
211 
ff_dcaadpcm_init(DCAADPCMEncContext * s)212 av_cold int ff_dcaadpcm_init(DCAADPCMEncContext *s)
213 {
214     if (!s)
215         return -1;
216 
217     s->private_data = av_malloc(sizeof(premultiplied_coeffs) * DCA_ADPCM_VQCODEBOOK_SZ);
218     if (!s->private_data)
219         return AVERROR(ENOMEM);
220 
221     precalc(s->private_data);
222     return 0;
223 }
224 
ff_dcaadpcm_free(DCAADPCMEncContext * s)225 av_cold void ff_dcaadpcm_free(DCAADPCMEncContext *s)
226 {
227     if (!s)
228         return;
229 
230     av_freep(&s->private_data);
231 }
232