1 /*
2 * Copyright (c) 2011 Pascal Getreuer
3 * Copyright (c) 2016 Paul B Mahol
4 *
5 * Redistribution and use in source and binary forms, with or without modification,
6 * are permitted provided that the following conditions are met:
7 *
8 * * Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * * Redistributions in binary form must reproduce the above
11 * copyright notice, this list of conditions and the following
12 * disclaimer in the documentation and/or other materials provided
13 * with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
16 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
17 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
18 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
19 * HOLDER BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
20 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
21 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
22 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
23 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
24 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
25 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 */
27
28 #include <float.h>
29
30 #include "libavutil/imgutils.h"
31 #include "libavutil/opt.h"
32 #include "libavutil/pixdesc.h"
33 #include "avfilter.h"
34 #include "formats.h"
35 #include "gblur.h"
36 #include "internal.h"
37 #include "video.h"
38
39 #define OFFSET(x) offsetof(GBlurContext, x)
40 #define FLAGS AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_RUNTIME_PARAM
41
42 static const AVOption gblur_options[] = {
43 { "sigma", "set sigma", OFFSET(sigma), AV_OPT_TYPE_FLOAT, {.dbl=0.5}, 0.0, 1024, FLAGS },
44 { "steps", "set number of steps", OFFSET(steps), AV_OPT_TYPE_INT, {.i64=1}, 1, 6, FLAGS },
45 { "planes", "set planes to filter", OFFSET(planes), AV_OPT_TYPE_INT, {.i64=0xF}, 0, 0xF, FLAGS },
46 { "sigmaV", "set vertical sigma", OFFSET(sigmaV), AV_OPT_TYPE_FLOAT, {.dbl=-1}, -1, 1024, FLAGS },
47 { NULL }
48 };
49
50 AVFILTER_DEFINE_CLASS(gblur);
51
52 typedef struct ThreadData {
53 int height;
54 int width;
55 } ThreadData;
56
postscale_c(float * buffer,int length,float postscale,float min,float max)57 static void postscale_c(float *buffer, int length,
58 float postscale, float min, float max)
59 {
60 for (int i = 0; i < length; i++) {
61 buffer[i] *= postscale;
62 buffer[i] = av_clipf(buffer[i], min, max);
63 }
64 }
65
horiz_slice_c(float * buffer,int width,int height,int steps,float nu,float bscale)66 static void horiz_slice_c(float *buffer, int width, int height, int steps,
67 float nu, float bscale)
68 {
69 int step, x, y;
70 float *ptr;
71 for (y = 0; y < height; y++) {
72 for (step = 0; step < steps; step++) {
73 ptr = buffer + width * y;
74 ptr[0] *= bscale;
75
76 /* Filter rightwards */
77 for (x = 1; x < width; x++)
78 ptr[x] += nu * ptr[x - 1];
79 ptr[x = width - 1] *= bscale;
80
81 /* Filter leftwards */
82 for (; x > 0; x--)
83 ptr[x - 1] += nu * ptr[x];
84 }
85 }
86 }
87
filter_horizontally(AVFilterContext * ctx,void * arg,int jobnr,int nb_jobs)88 static int filter_horizontally(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
89 {
90 GBlurContext *s = ctx->priv;
91 ThreadData *td = arg;
92 const int height = td->height;
93 const int width = td->width;
94 const int slice_start = (height * jobnr ) / nb_jobs;
95 const int slice_end = (height * (jobnr+1)) / nb_jobs;
96 const float boundaryscale = s->boundaryscale;
97 const int steps = s->steps;
98 const float nu = s->nu;
99 float *buffer = s->buffer;
100
101 s->horiz_slice(buffer + width * slice_start, width, slice_end - slice_start,
102 steps, nu, boundaryscale);
103 emms_c();
104 return 0;
105 }
106
do_vertical_columns(float * buffer,int width,int height,int column_begin,int column_end,int steps,float nu,float boundaryscale,int column_step)107 static void do_vertical_columns(float *buffer, int width, int height,
108 int column_begin, int column_end, int steps,
109 float nu, float boundaryscale, int column_step)
110 {
111 const int numpixels = width * height;
112 int i, x, k, step;
113 float *ptr;
114 for (x = column_begin; x < column_end;) {
115 for (step = 0; step < steps; step++) {
116 ptr = buffer + x;
117 for (k = 0; k < column_step; k++) {
118 ptr[k] *= boundaryscale;
119 }
120 /* Filter downwards */
121 for (i = width; i < numpixels; i += width) {
122 for (k = 0; k < column_step; k++) {
123 ptr[i + k] += nu * ptr[i - width + k];
124 }
125 }
126 i = numpixels - width;
127
128 for (k = 0; k < column_step; k++)
129 ptr[i + k] *= boundaryscale;
130
131 /* Filter upwards */
132 for (; i > 0; i -= width) {
133 for (k = 0; k < column_step; k++)
134 ptr[i - width + k] += nu * ptr[i + k];
135 }
136 }
137 x += column_step;
138 }
139 }
140
filter_vertically(AVFilterContext * ctx,void * arg,int jobnr,int nb_jobs)141 static int filter_vertically(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
142 {
143 GBlurContext *s = ctx->priv;
144 ThreadData *td = arg;
145 const int height = td->height;
146 const int width = td->width;
147 const int slice_start = (width * jobnr ) / nb_jobs;
148 const int slice_end = (width * (jobnr+1)) / nb_jobs;
149 const float boundaryscale = s->boundaryscaleV;
150 const int steps = s->steps;
151 const float nu = s->nuV;
152 float *buffer = s->buffer;
153 int aligned_end;
154
155 aligned_end = slice_start + (((slice_end - slice_start) >> 3) << 3);
156 /* Filter vertically along columns (process 8 columns in each step) */
157 do_vertical_columns(buffer, width, height, slice_start, aligned_end,
158 steps, nu, boundaryscale, 8);
159
160 /* Filter un-aligned columns one by one */
161 do_vertical_columns(buffer, width, height, aligned_end, slice_end,
162 steps, nu, boundaryscale, 1);
163 return 0;
164 }
165
filter_postscale(AVFilterContext * ctx,void * arg,int jobnr,int nb_jobs)166 static int filter_postscale(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
167 {
168 GBlurContext *s = ctx->priv;
169 ThreadData *td = arg;
170 const float max = s->flt ? FLT_MAX : (1 << s->depth) - 1;
171 const float min = s->flt ? -FLT_MAX : 0.f;
172 const int height = td->height;
173 const int width = td->width;
174 const int awidth = FFALIGN(width, 64);
175 const int slice_start = (height * jobnr ) / nb_jobs;
176 const int slice_end = (height * (jobnr+1)) / nb_jobs;
177 const float postscale = s->postscale * s->postscaleV;
178 const int slice_size = slice_end - slice_start;
179
180 s->postscale_slice(s->buffer + slice_start * awidth,
181 slice_size * awidth, postscale, min, max);
182
183 return 0;
184 }
185
gaussianiir2d(AVFilterContext * ctx,int plane)186 static void gaussianiir2d(AVFilterContext *ctx, int plane)
187 {
188 GBlurContext *s = ctx->priv;
189 const int width = s->planewidth[plane];
190 const int height = s->planeheight[plane];
191 const int nb_threads = ff_filter_get_nb_threads(ctx);
192 ThreadData td;
193
194 if (s->sigma <= 0 || s->steps < 0)
195 return;
196
197 td.width = width;
198 td.height = height;
199 ctx->internal->execute(ctx, filter_horizontally, &td, NULL, FFMIN(height, nb_threads));
200 ctx->internal->execute(ctx, filter_vertically, &td, NULL, FFMIN(width, nb_threads));
201 ctx->internal->execute(ctx, filter_postscale, &td, NULL, FFMIN(width * height, nb_threads));
202 }
203
query_formats(AVFilterContext * ctx)204 static int query_formats(AVFilterContext *ctx)
205 {
206 static const enum AVPixelFormat pix_fmts[] = {
207 AV_PIX_FMT_YUVA444P, AV_PIX_FMT_YUV444P, AV_PIX_FMT_YUV440P,
208 AV_PIX_FMT_YUVJ444P, AV_PIX_FMT_YUVJ440P,
209 AV_PIX_FMT_YUVA422P, AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUVA420P, AV_PIX_FMT_YUV420P,
210 AV_PIX_FMT_YUVJ422P, AV_PIX_FMT_YUVJ420P,
211 AV_PIX_FMT_YUVJ411P, AV_PIX_FMT_YUV411P, AV_PIX_FMT_YUV410P,
212 AV_PIX_FMT_YUV420P9, AV_PIX_FMT_YUV422P9, AV_PIX_FMT_YUV444P9,
213 AV_PIX_FMT_YUV420P10, AV_PIX_FMT_YUV422P10, AV_PIX_FMT_YUV444P10,
214 AV_PIX_FMT_YUV420P12, AV_PIX_FMT_YUV422P12, AV_PIX_FMT_YUV444P12, AV_PIX_FMT_YUV440P12,
215 AV_PIX_FMT_YUV420P14, AV_PIX_FMT_YUV422P14, AV_PIX_FMT_YUV444P14,
216 AV_PIX_FMT_YUV420P16, AV_PIX_FMT_YUV422P16, AV_PIX_FMT_YUV444P16,
217 AV_PIX_FMT_YUVA420P9, AV_PIX_FMT_YUVA422P9, AV_PIX_FMT_YUVA444P9,
218 AV_PIX_FMT_YUVA420P10, AV_PIX_FMT_YUVA422P10, AV_PIX_FMT_YUVA444P10,
219 AV_PIX_FMT_YUVA422P12, AV_PIX_FMT_YUVA444P12,
220 AV_PIX_FMT_YUVA420P16, AV_PIX_FMT_YUVA422P16, AV_PIX_FMT_YUVA444P16,
221 AV_PIX_FMT_GBRP, AV_PIX_FMT_GBRP9, AV_PIX_FMT_GBRP10,
222 AV_PIX_FMT_GBRP12, AV_PIX_FMT_GBRP14, AV_PIX_FMT_GBRP16,
223 AV_PIX_FMT_GBRAP, AV_PIX_FMT_GBRAP10, AV_PIX_FMT_GBRAP12, AV_PIX_FMT_GBRAP16,
224 AV_PIX_FMT_GRAY8, AV_PIX_FMT_GRAY9, AV_PIX_FMT_GRAY10, AV_PIX_FMT_GRAY12, AV_PIX_FMT_GRAY14, AV_PIX_FMT_GRAY16,
225 AV_PIX_FMT_GBRPF32, AV_PIX_FMT_GBRAPF32,
226 AV_PIX_FMT_GRAYF32,
227 AV_PIX_FMT_NONE
228 };
229
230 return ff_set_common_formats(ctx, ff_make_format_list(pix_fmts));
231 }
232
ff_gblur_init(GBlurContext * s)233 void ff_gblur_init(GBlurContext *s)
234 {
235 s->horiz_slice = horiz_slice_c;
236 s->postscale_slice = postscale_c;
237 if (ARCH_X86)
238 ff_gblur_init_x86(s);
239 }
240
config_input(AVFilterLink * inlink)241 static int config_input(AVFilterLink *inlink)
242 {
243 const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format);
244 GBlurContext *s = inlink->dst->priv;
245
246 s->depth = desc->comp[0].depth;
247 s->flt = !!(desc->flags & AV_PIX_FMT_FLAG_FLOAT);
248 s->planewidth[1] = s->planewidth[2] = AV_CEIL_RSHIFT(inlink->w, desc->log2_chroma_w);
249 s->planewidth[0] = s->planewidth[3] = inlink->w;
250 s->planeheight[1] = s->planeheight[2] = AV_CEIL_RSHIFT(inlink->h, desc->log2_chroma_h);
251 s->planeheight[0] = s->planeheight[3] = inlink->h;
252
253 s->nb_planes = av_pix_fmt_count_planes(inlink->format);
254
255 s->buffer = av_malloc_array(FFALIGN(inlink->w, 64), FFALIGN(inlink->h, 64) * sizeof(*s->buffer));
256 if (!s->buffer)
257 return AVERROR(ENOMEM);
258
259 if (s->sigmaV < 0) {
260 s->sigmaV = s->sigma;
261 }
262 ff_gblur_init(s);
263
264 return 0;
265 }
266
set_params(float sigma,int steps,float * postscale,float * boundaryscale,float * nu)267 static void set_params(float sigma, int steps, float *postscale, float *boundaryscale, float *nu)
268 {
269 double dnu, lambda;
270
271 lambda = (sigma * sigma) / (2.0 * steps);
272 dnu = (1.0 + 2.0 * lambda - sqrt(1.0 + 4.0 * lambda)) / (2.0 * lambda);
273 *postscale = pow(dnu / lambda, steps);
274 *boundaryscale = 1.0 / (1.0 - dnu);
275 *nu = (float)dnu;
276 }
277
filter_frame(AVFilterLink * inlink,AVFrame * in)278 static int filter_frame(AVFilterLink *inlink, AVFrame *in)
279 {
280 AVFilterContext *ctx = inlink->dst;
281 GBlurContext *s = ctx->priv;
282 AVFilterLink *outlink = ctx->outputs[0];
283 AVFrame *out;
284 int plane;
285
286 set_params(s->sigma, s->steps, &s->postscale, &s->boundaryscale, &s->nu);
287 set_params(s->sigmaV, s->steps, &s->postscaleV, &s->boundaryscaleV, &s->nuV);
288
289 if (av_frame_is_writable(in)) {
290 out = in;
291 } else {
292 out = ff_get_video_buffer(outlink, outlink->w, outlink->h);
293 if (!out) {
294 av_frame_free(&in);
295 return AVERROR(ENOMEM);
296 }
297 av_frame_copy_props(out, in);
298 }
299
300 for (plane = 0; plane < s->nb_planes; plane++) {
301 const int height = s->planeheight[plane];
302 const int width = s->planewidth[plane];
303 float *bptr = s->buffer;
304 const uint8_t *src = in->data[plane];
305 const uint16_t *src16 = (const uint16_t *)in->data[plane];
306 uint8_t *dst = out->data[plane];
307 uint16_t *dst16 = (uint16_t *)out->data[plane];
308 int y, x;
309
310 if (!s->sigma || !(s->planes & (1 << plane))) {
311 if (out != in)
312 av_image_copy_plane(out->data[plane], out->linesize[plane],
313 in->data[plane], in->linesize[plane],
314 width * ((s->depth + 7) / 8), height);
315 continue;
316 }
317
318 if (s->flt) {
319 av_image_copy_plane((uint8_t *)bptr, width * sizeof(float),
320 in->data[plane], in->linesize[plane],
321 width * sizeof(float), height);
322 } else if (s->depth == 8) {
323 for (y = 0; y < height; y++) {
324 for (x = 0; x < width; x++) {
325 bptr[x] = src[x];
326 }
327 bptr += width;
328 src += in->linesize[plane];
329 }
330 } else {
331 for (y = 0; y < height; y++) {
332 for (x = 0; x < width; x++) {
333 bptr[x] = src16[x];
334 }
335 bptr += width;
336 src16 += in->linesize[plane] / 2;
337 }
338 }
339
340 gaussianiir2d(ctx, plane);
341
342 bptr = s->buffer;
343 if (s->flt) {
344 av_image_copy_plane(out->data[plane], out->linesize[plane],
345 (uint8_t *)bptr, width * sizeof(float),
346 width * sizeof(float), height);
347 } else if (s->depth == 8) {
348 for (y = 0; y < height; y++) {
349 for (x = 0; x < width; x++) {
350 dst[x] = bptr[x];
351 }
352 bptr += width;
353 dst += out->linesize[plane];
354 }
355 } else {
356 for (y = 0; y < height; y++) {
357 for (x = 0; x < width; x++) {
358 dst16[x] = bptr[x];
359 }
360 bptr += width;
361 dst16 += out->linesize[plane] / 2;
362 }
363 }
364 }
365
366 if (out != in)
367 av_frame_free(&in);
368 return ff_filter_frame(outlink, out);
369 }
370
uninit(AVFilterContext * ctx)371 static av_cold void uninit(AVFilterContext *ctx)
372 {
373 GBlurContext *s = ctx->priv;
374
375 av_freep(&s->buffer);
376 }
377
378 static const AVFilterPad gblur_inputs[] = {
379 {
380 .name = "default",
381 .type = AVMEDIA_TYPE_VIDEO,
382 .config_props = config_input,
383 .filter_frame = filter_frame,
384 },
385 { NULL }
386 };
387
388 static const AVFilterPad gblur_outputs[] = {
389 {
390 .name = "default",
391 .type = AVMEDIA_TYPE_VIDEO,
392 },
393 { NULL }
394 };
395
396 AVFilter ff_vf_gblur = {
397 .name = "gblur",
398 .description = NULL_IF_CONFIG_SMALL("Apply Gaussian Blur filter."),
399 .priv_size = sizeof(GBlurContext),
400 .priv_class = &gblur_class,
401 .uninit = uninit,
402 .query_formats = query_formats,
403 .inputs = gblur_inputs,
404 .outputs = gblur_outputs,
405 .flags = AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC | AVFILTER_FLAG_SLICE_THREADS,
406 .process_command = ff_filter_process_command,
407 };
408