1 /*
2 * HEVC video decoder
3 *
4 * Copyright (C) 2012 - 2013 Guillaume Martres
5 * Copyright (C) 2013 Anand Meher Kotra
6 *
7 * This file is part of FFmpeg.
8 *
9 * FFmpeg is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public
11 * License as published by the Free Software Foundation; either
12 * version 2.1 of the License, or (at your option) any later version.
13 *
14 * FFmpeg is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with FFmpeg; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22 */
23
24 #include "hevc.h"
25 #include "hevcdec.h"
26
27 static const uint8_t l0_l1_cand_idx[12][2] = {
28 { 0, 1, },
29 { 1, 0, },
30 { 0, 2, },
31 { 2, 0, },
32 { 1, 2, },
33 { 2, 1, },
34 { 0, 3, },
35 { 3, 0, },
36 { 1, 3, },
37 { 3, 1, },
38 { 2, 3, },
39 { 3, 2, },
40 };
41
ff_hevc_set_neighbour_available(HEVCContext * s,int x0,int y0,int nPbW,int nPbH)42 void ff_hevc_set_neighbour_available(HEVCContext *s, int x0, int y0,
43 int nPbW, int nPbH)
44 {
45 HEVCLocalContext *lc = s->HEVClc;
46 int x0b = av_mod_uintp2(x0, s->ps.sps->log2_ctb_size);
47 int y0b = av_mod_uintp2(y0, s->ps.sps->log2_ctb_size);
48
49 lc->na.cand_up = (lc->ctb_up_flag || y0b);
50 lc->na.cand_left = (lc->ctb_left_flag || x0b);
51 lc->na.cand_up_left = (x0b || y0b) ? lc->na.cand_left && lc->na.cand_up : lc->ctb_up_left_flag;
52 lc->na.cand_up_right_sap =
53 (x0b + nPbW == 1 << s->ps.sps->log2_ctb_size) ?
54 lc->ctb_up_right_flag && !y0b : lc->na.cand_up;
55 lc->na.cand_up_right =
56 lc->na.cand_up_right_sap
57 && (x0 + nPbW) < lc->end_of_tiles_x;
58 lc->na.cand_bottom_left = ((y0 + nPbH) >= lc->end_of_tiles_y) ? 0 : lc->na.cand_left;
59 }
60
61 /*
62 * 6.4.1 Derivation process for z-scan order block availability
63 */
z_scan_block_avail(HEVCContext * s,int xCurr,int yCurr,int xN,int yN)64 static av_always_inline int z_scan_block_avail(HEVCContext *s, int xCurr, int yCurr,
65 int xN, int yN)
66 {
67 #define MIN_TB_ADDR_ZS(x, y) \
68 s->ps.pps->min_tb_addr_zs[(y) * (s->ps.sps->tb_mask+2) + (x)]
69
70 int xCurr_ctb = xCurr >> s->ps.sps->log2_ctb_size;
71 int yCurr_ctb = yCurr >> s->ps.sps->log2_ctb_size;
72 int xN_ctb = xN >> s->ps.sps->log2_ctb_size;
73 int yN_ctb = yN >> s->ps.sps->log2_ctb_size;
74 if( yN_ctb < yCurr_ctb || xN_ctb < xCurr_ctb )
75 return 1;
76 else {
77 int Curr = MIN_TB_ADDR_ZS((xCurr >> s->ps.sps->log2_min_tb_size) & s->ps.sps->tb_mask,
78 (yCurr >> s->ps.sps->log2_min_tb_size) & s->ps.sps->tb_mask);
79 int N = MIN_TB_ADDR_ZS((xN >> s->ps.sps->log2_min_tb_size) & s->ps.sps->tb_mask,
80 (yN >> s->ps.sps->log2_min_tb_size) & s->ps.sps->tb_mask);
81 return N <= Curr;
82 }
83 }
84
85 //check if the two luma locations belong to the same motion estimation region
is_diff_mer(HEVCContext * s,int xN,int yN,int xP,int yP)86 static av_always_inline int is_diff_mer(HEVCContext *s, int xN, int yN, int xP, int yP)
87 {
88 uint8_t plevel = s->ps.pps->log2_parallel_merge_level;
89
90 return xN >> plevel == xP >> plevel &&
91 yN >> plevel == yP >> plevel;
92 }
93
94 #define MATCH_MV(x) (AV_RN32A(&A.x) == AV_RN32A(&B.x))
95 #define MATCH(x) (A.x == B.x)
96
97 // check if the mv's and refidx are the same between A and B
compare_mv_ref_idx(struct MvField A,struct MvField B)98 static av_always_inline int compare_mv_ref_idx(struct MvField A, struct MvField B)
99 {
100 int a_pf = A.pred_flag;
101 int b_pf = B.pred_flag;
102 if (a_pf == b_pf) {
103 if (a_pf == PF_BI) {
104 return MATCH(ref_idx[0]) && MATCH_MV(mv[0]) &&
105 MATCH(ref_idx[1]) && MATCH_MV(mv[1]);
106 } else if (a_pf == PF_L0) {
107 return MATCH(ref_idx[0]) && MATCH_MV(mv[0]);
108 } else if (a_pf == PF_L1) {
109 return MATCH(ref_idx[1]) && MATCH_MV(mv[1]);
110 }
111 }
112 return 0;
113 }
114
mv_scale(Mv * dst,Mv * src,int td,int tb)115 static av_always_inline void mv_scale(Mv *dst, Mv *src, int td, int tb)
116 {
117 int tx, scale_factor;
118
119 td = av_clip_int8(td);
120 tb = av_clip_int8(tb);
121 tx = (0x4000 + abs(td / 2)) / td;
122 scale_factor = av_clip_intp2((tb * tx + 32) >> 6, 12);
123 dst->x = av_clip_int16((scale_factor * src->x + 127 +
124 (scale_factor * src->x < 0)) >> 8);
125 dst->y = av_clip_int16((scale_factor * src->y + 127 +
126 (scale_factor * src->y < 0)) >> 8);
127 }
128
check_mvset(Mv * mvLXCol,Mv * mvCol,int colPic,int poc,RefPicList * refPicList,int X,int refIdxLx,RefPicList * refPicList_col,int listCol,int refidxCol)129 static int check_mvset(Mv *mvLXCol, Mv *mvCol,
130 int colPic, int poc,
131 RefPicList *refPicList, int X, int refIdxLx,
132 RefPicList *refPicList_col, int listCol, int refidxCol)
133 {
134 int cur_lt = refPicList[X].isLongTerm[refIdxLx];
135 int col_lt = refPicList_col[listCol].isLongTerm[refidxCol];
136 int col_poc_diff, cur_poc_diff;
137
138 if (cur_lt != col_lt) {
139 mvLXCol->x = 0;
140 mvLXCol->y = 0;
141 return 0;
142 }
143
144 col_poc_diff = colPic - refPicList_col[listCol].list[refidxCol];
145 cur_poc_diff = poc - refPicList[X].list[refIdxLx];
146
147 if (cur_lt || col_poc_diff == cur_poc_diff || !col_poc_diff) {
148 mvLXCol->x = mvCol->x;
149 mvLXCol->y = mvCol->y;
150 } else {
151 mv_scale(mvLXCol, mvCol, col_poc_diff, cur_poc_diff);
152 }
153 return 1;
154 }
155
156 #define CHECK_MVSET(l) \
157 check_mvset(mvLXCol, temp_col.mv + l, \
158 colPic, s->poc, \
159 refPicList, X, refIdxLx, \
160 refPicList_col, L ## l, temp_col.ref_idx[l])
161
162 // derive the motion vectors section 8.5.3.1.8
derive_temporal_colocated_mvs(HEVCContext * s,MvField temp_col,int refIdxLx,Mv * mvLXCol,int X,int colPic,RefPicList * refPicList_col)163 static int derive_temporal_colocated_mvs(HEVCContext *s, MvField temp_col,
164 int refIdxLx, Mv *mvLXCol, int X,
165 int colPic, RefPicList *refPicList_col)
166 {
167 RefPicList *refPicList = s->ref->refPicList;
168
169 if (temp_col.pred_flag == PF_INTRA)
170 return 0;
171
172 if (!(temp_col.pred_flag & PF_L0))
173 return CHECK_MVSET(1);
174 else if (temp_col.pred_flag == PF_L0)
175 return CHECK_MVSET(0);
176 else if (temp_col.pred_flag == PF_BI) {
177 int check_diffpicount = 0;
178 int i, j;
179 for (j = 0; j < 2; j++) {
180 for (i = 0; i < refPicList[j].nb_refs; i++) {
181 if (refPicList[j].list[i] > s->poc) {
182 check_diffpicount++;
183 break;
184 }
185 }
186 }
187 if (!check_diffpicount) {
188 if (X==0)
189 return CHECK_MVSET(0);
190 else
191 return CHECK_MVSET(1);
192 } else {
193 if (s->sh.collocated_list == L1)
194 return CHECK_MVSET(0);
195 else
196 return CHECK_MVSET(1);
197 }
198 }
199
200 return 0;
201 }
202
203 #define TAB_MVF(x, y) \
204 tab_mvf[(y) * min_pu_width + x]
205
206 #define TAB_MVF_PU(v) \
207 TAB_MVF(((x ## v) >> s->ps.sps->log2_min_pu_size), \
208 ((y ## v) >> s->ps.sps->log2_min_pu_size))
209
210 #define DERIVE_TEMPORAL_COLOCATED_MVS \
211 derive_temporal_colocated_mvs(s, temp_col, \
212 refIdxLx, mvLXCol, X, colPic, \
213 ff_hevc_get_ref_list(s, ref, x, y))
214
215 /*
216 * 8.5.3.1.7 temporal luma motion vector prediction
217 */
temporal_luma_motion_vector(HEVCContext * s,int x0,int y0,int nPbW,int nPbH,int refIdxLx,Mv * mvLXCol,int X)218 static int temporal_luma_motion_vector(HEVCContext *s, int x0, int y0,
219 int nPbW, int nPbH, int refIdxLx,
220 Mv *mvLXCol, int X)
221 {
222 MvField *tab_mvf;
223 MvField temp_col;
224 int x, y, x_pu, y_pu;
225 int min_pu_width = s->ps.sps->min_pu_width;
226 int availableFlagLXCol = 0;
227 int colPic;
228
229 HEVCFrame *ref = s->ref->collocated_ref;
230
231 if (!ref) {
232 memset(mvLXCol, 0, sizeof(*mvLXCol));
233 return 0;
234 }
235
236 tab_mvf = ref->tab_mvf;
237 colPic = ref->poc;
238
239 //bottom right collocated motion vector
240 x = x0 + nPbW;
241 y = y0 + nPbH;
242
243 if (tab_mvf &&
244 (y0 >> s->ps.sps->log2_ctb_size) == (y >> s->ps.sps->log2_ctb_size) &&
245 y < s->ps.sps->height &&
246 x < s->ps.sps->width) {
247 x &= ~15;
248 y &= ~15;
249 if (s->threads_type == FF_THREAD_FRAME)
250 ff_thread_await_progress(&ref->tf, y, 0);
251 x_pu = x >> s->ps.sps->log2_min_pu_size;
252 y_pu = y >> s->ps.sps->log2_min_pu_size;
253 temp_col = TAB_MVF(x_pu, y_pu);
254 availableFlagLXCol = DERIVE_TEMPORAL_COLOCATED_MVS;
255 }
256
257 // derive center collocated motion vector
258 if (tab_mvf && !availableFlagLXCol) {
259 x = x0 + (nPbW >> 1);
260 y = y0 + (nPbH >> 1);
261 x &= ~15;
262 y &= ~15;
263 if (s->threads_type == FF_THREAD_FRAME)
264 ff_thread_await_progress(&ref->tf, y, 0);
265 x_pu = x >> s->ps.sps->log2_min_pu_size;
266 y_pu = y >> s->ps.sps->log2_min_pu_size;
267 temp_col = TAB_MVF(x_pu, y_pu);
268 availableFlagLXCol = DERIVE_TEMPORAL_COLOCATED_MVS;
269 }
270 return availableFlagLXCol;
271 }
272
273 #define AVAILABLE(cand, v) \
274 (cand && !(TAB_MVF_PU(v).pred_flag == PF_INTRA))
275
276 #define PRED_BLOCK_AVAILABLE(v) \
277 z_scan_block_avail(s, x0, y0, x ## v, y ## v)
278
279 #define COMPARE_MV_REFIDX(a, b) \
280 compare_mv_ref_idx(TAB_MVF_PU(a), TAB_MVF_PU(b))
281
282 /*
283 * 8.5.3.1.2 Derivation process for spatial merging candidates
284 */
derive_spatial_merge_candidates(HEVCContext * s,int x0,int y0,int nPbW,int nPbH,int log2_cb_size,int singleMCLFlag,int part_idx,int merge_idx,struct MvField mergecandlist[])285 static void derive_spatial_merge_candidates(HEVCContext *s, int x0, int y0,
286 int nPbW, int nPbH,
287 int log2_cb_size,
288 int singleMCLFlag, int part_idx,
289 int merge_idx,
290 struct MvField mergecandlist[])
291 {
292 HEVCLocalContext *lc = s->HEVClc;
293 RefPicList *refPicList = s->ref->refPicList;
294 MvField *tab_mvf = s->ref->tab_mvf;
295
296 const int min_pu_width = s->ps.sps->min_pu_width;
297
298 const int cand_bottom_left = lc->na.cand_bottom_left;
299 const int cand_left = lc->na.cand_left;
300 const int cand_up_left = lc->na.cand_up_left;
301 const int cand_up = lc->na.cand_up;
302 const int cand_up_right = lc->na.cand_up_right_sap;
303
304 const int xA1 = x0 - 1;
305 const int yA1 = y0 + nPbH - 1;
306
307 const int xB1 = x0 + nPbW - 1;
308 const int yB1 = y0 - 1;
309
310 const int xB0 = x0 + nPbW;
311 const int yB0 = y0 - 1;
312
313 const int xA0 = x0 - 1;
314 const int yA0 = y0 + nPbH;
315
316 const int xB2 = x0 - 1;
317 const int yB2 = y0 - 1;
318
319 const int nb_refs = (s->sh.slice_type == HEVC_SLICE_P) ?
320 s->sh.nb_refs[0] : FFMIN(s->sh.nb_refs[0], s->sh.nb_refs[1]);
321
322 int zero_idx = 0;
323
324 int nb_merge_cand = 0;
325 int nb_orig_merge_cand = 0;
326
327 int is_available_a0;
328 int is_available_a1;
329 int is_available_b0;
330 int is_available_b1;
331 int is_available_b2;
332
333
334 if (!singleMCLFlag && part_idx == 1 &&
335 (lc->cu.part_mode == PART_Nx2N ||
336 lc->cu.part_mode == PART_nLx2N ||
337 lc->cu.part_mode == PART_nRx2N) ||
338 is_diff_mer(s, xA1, yA1, x0, y0)) {
339 is_available_a1 = 0;
340 } else {
341 is_available_a1 = AVAILABLE(cand_left, A1);
342 if (is_available_a1) {
343 mergecandlist[nb_merge_cand] = TAB_MVF_PU(A1);
344 if (merge_idx == 0)
345 return;
346 nb_merge_cand++;
347 }
348 }
349
350 if (!singleMCLFlag && part_idx == 1 &&
351 (lc->cu.part_mode == PART_2NxN ||
352 lc->cu.part_mode == PART_2NxnU ||
353 lc->cu.part_mode == PART_2NxnD) ||
354 is_diff_mer(s, xB1, yB1, x0, y0)) {
355 is_available_b1 = 0;
356 } else {
357 is_available_b1 = AVAILABLE(cand_up, B1);
358 if (is_available_b1 &&
359 !(is_available_a1 && COMPARE_MV_REFIDX(B1, A1))) {
360 mergecandlist[nb_merge_cand] = TAB_MVF_PU(B1);
361 if (merge_idx == nb_merge_cand)
362 return;
363 nb_merge_cand++;
364 }
365 }
366
367 // above right spatial merge candidate
368 is_available_b0 = AVAILABLE(cand_up_right, B0) &&
369 xB0 < s->ps.sps->width &&
370 PRED_BLOCK_AVAILABLE(B0) &&
371 !is_diff_mer(s, xB0, yB0, x0, y0);
372
373 if (is_available_b0 &&
374 !(is_available_b1 && COMPARE_MV_REFIDX(B0, B1))) {
375 mergecandlist[nb_merge_cand] = TAB_MVF_PU(B0);
376 if (merge_idx == nb_merge_cand)
377 return;
378 nb_merge_cand++;
379 }
380
381 // left bottom spatial merge candidate
382 is_available_a0 = AVAILABLE(cand_bottom_left, A0) &&
383 yA0 < s->ps.sps->height &&
384 PRED_BLOCK_AVAILABLE(A0) &&
385 !is_diff_mer(s, xA0, yA0, x0, y0);
386
387 if (is_available_a0 &&
388 !(is_available_a1 && COMPARE_MV_REFIDX(A0, A1))) {
389 mergecandlist[nb_merge_cand] = TAB_MVF_PU(A0);
390 if (merge_idx == nb_merge_cand)
391 return;
392 nb_merge_cand++;
393 }
394
395 // above left spatial merge candidate
396 is_available_b2 = AVAILABLE(cand_up_left, B2) &&
397 !is_diff_mer(s, xB2, yB2, x0, y0);
398
399 if (is_available_b2 &&
400 !(is_available_a1 && COMPARE_MV_REFIDX(B2, A1)) &&
401 !(is_available_b1 && COMPARE_MV_REFIDX(B2, B1)) &&
402 nb_merge_cand != 4) {
403 mergecandlist[nb_merge_cand] = TAB_MVF_PU(B2);
404 if (merge_idx == nb_merge_cand)
405 return;
406 nb_merge_cand++;
407 }
408
409 // temporal motion vector candidate
410 if (s->sh.slice_temporal_mvp_enabled_flag &&
411 nb_merge_cand < s->sh.max_num_merge_cand) {
412 Mv mv_l0_col = { 0 }, mv_l1_col = { 0 };
413 int available_l0 = temporal_luma_motion_vector(s, x0, y0, nPbW, nPbH,
414 0, &mv_l0_col, 0);
415 int available_l1 = (s->sh.slice_type == HEVC_SLICE_B) ?
416 temporal_luma_motion_vector(s, x0, y0, nPbW, nPbH,
417 0, &mv_l1_col, 1) : 0;
418
419 if (available_l0 || available_l1) {
420 mergecandlist[nb_merge_cand].pred_flag = available_l0 + (available_l1 << 1);
421 AV_ZERO16(mergecandlist[nb_merge_cand].ref_idx);
422 mergecandlist[nb_merge_cand].mv[0] = mv_l0_col;
423 mergecandlist[nb_merge_cand].mv[1] = mv_l1_col;
424
425 if (merge_idx == nb_merge_cand)
426 return;
427 nb_merge_cand++;
428 }
429 }
430
431 nb_orig_merge_cand = nb_merge_cand;
432
433 // combined bi-predictive merge candidates (applies for B slices)
434 if (s->sh.slice_type == HEVC_SLICE_B && nb_orig_merge_cand > 1 &&
435 nb_orig_merge_cand < s->sh.max_num_merge_cand) {
436 int comb_idx = 0;
437
438 for (comb_idx = 0; nb_merge_cand < s->sh.max_num_merge_cand &&
439 comb_idx < nb_orig_merge_cand * (nb_orig_merge_cand - 1); comb_idx++) {
440 int l0_cand_idx = l0_l1_cand_idx[comb_idx][0];
441 int l1_cand_idx = l0_l1_cand_idx[comb_idx][1];
442 MvField l0_cand = mergecandlist[l0_cand_idx];
443 MvField l1_cand = mergecandlist[l1_cand_idx];
444
445 if ((l0_cand.pred_flag & PF_L0) && (l1_cand.pred_flag & PF_L1) &&
446 (refPicList[0].list[l0_cand.ref_idx[0]] !=
447 refPicList[1].list[l1_cand.ref_idx[1]] ||
448 AV_RN32A(&l0_cand.mv[0]) != AV_RN32A(&l1_cand.mv[1]))) {
449 mergecandlist[nb_merge_cand].ref_idx[0] = l0_cand.ref_idx[0];
450 mergecandlist[nb_merge_cand].ref_idx[1] = l1_cand.ref_idx[1];
451 mergecandlist[nb_merge_cand].pred_flag = PF_BI;
452 AV_COPY32(&mergecandlist[nb_merge_cand].mv[0], &l0_cand.mv[0]);
453 AV_COPY32(&mergecandlist[nb_merge_cand].mv[1], &l1_cand.mv[1]);
454 if (merge_idx == nb_merge_cand)
455 return;
456 nb_merge_cand++;
457 }
458 }
459 }
460
461 // append Zero motion vector candidates
462 while (nb_merge_cand < s->sh.max_num_merge_cand) {
463 mergecandlist[nb_merge_cand].pred_flag = PF_L0 + ((s->sh.slice_type == HEVC_SLICE_B) << 1);
464 AV_ZERO32(mergecandlist[nb_merge_cand].mv + 0);
465 AV_ZERO32(mergecandlist[nb_merge_cand].mv + 1);
466 mergecandlist[nb_merge_cand].ref_idx[0] = zero_idx < nb_refs ? zero_idx : 0;
467 mergecandlist[nb_merge_cand].ref_idx[1] = zero_idx < nb_refs ? zero_idx : 0;
468
469 if (merge_idx == nb_merge_cand)
470 return;
471 nb_merge_cand++;
472 zero_idx++;
473 }
474 }
475
476 /*
477 * 8.5.3.1.1 Derivation process of luma Mvs for merge mode
478 */
ff_hevc_luma_mv_merge_mode(HEVCContext * s,int x0,int y0,int nPbW,int nPbH,int log2_cb_size,int part_idx,int merge_idx,MvField * mv)479 void ff_hevc_luma_mv_merge_mode(HEVCContext *s, int x0, int y0, int nPbW,
480 int nPbH, int log2_cb_size, int part_idx,
481 int merge_idx, MvField *mv)
482 {
483 int singleMCLFlag = 0;
484 int nCS = 1 << log2_cb_size;
485 MvField mergecand_list[MRG_MAX_NUM_CANDS];
486 int nPbW2 = nPbW;
487 int nPbH2 = nPbH;
488 HEVCLocalContext *lc = s->HEVClc;
489
490 if (s->ps.pps->log2_parallel_merge_level > 2 && nCS == 8) {
491 singleMCLFlag = 1;
492 x0 = lc->cu.x;
493 y0 = lc->cu.y;
494 nPbW = nCS;
495 nPbH = nCS;
496 part_idx = 0;
497 }
498
499 ff_hevc_set_neighbour_available(s, x0, y0, nPbW, nPbH);
500 derive_spatial_merge_candidates(s, x0, y0, nPbW, nPbH, log2_cb_size,
501 singleMCLFlag, part_idx,
502 merge_idx, mergecand_list);
503
504 if (mergecand_list[merge_idx].pred_flag == PF_BI &&
505 (nPbW2 + nPbH2) == 12) {
506 mergecand_list[merge_idx].pred_flag = PF_L0;
507 }
508
509 *mv = mergecand_list[merge_idx];
510 }
511
dist_scale(HEVCContext * s,Mv * mv,int min_pu_width,int x,int y,int elist,int ref_idx_curr,int ref_idx)512 static av_always_inline void dist_scale(HEVCContext *s, Mv *mv,
513 int min_pu_width, int x, int y,
514 int elist, int ref_idx_curr, int ref_idx)
515 {
516 RefPicList *refPicList = s->ref->refPicList;
517 MvField *tab_mvf = s->ref->tab_mvf;
518 int ref_pic_elist = refPicList[elist].list[TAB_MVF(x, y).ref_idx[elist]];
519 int ref_pic_curr = refPicList[ref_idx_curr].list[ref_idx];
520
521 if (ref_pic_elist != ref_pic_curr) {
522 int poc_diff = s->poc - ref_pic_elist;
523 if (!poc_diff)
524 poc_diff = 1;
525 mv_scale(mv, mv, poc_diff, s->poc - ref_pic_curr);
526 }
527 }
528
mv_mp_mode_mx(HEVCContext * s,int x,int y,int pred_flag_index,Mv * mv,int ref_idx_curr,int ref_idx)529 static int mv_mp_mode_mx(HEVCContext *s, int x, int y, int pred_flag_index,
530 Mv *mv, int ref_idx_curr, int ref_idx)
531 {
532 MvField *tab_mvf = s->ref->tab_mvf;
533 int min_pu_width = s->ps.sps->min_pu_width;
534
535 RefPicList *refPicList = s->ref->refPicList;
536
537 if (((TAB_MVF(x, y).pred_flag) & (1 << pred_flag_index)) &&
538 refPicList[pred_flag_index].list[TAB_MVF(x, y).ref_idx[pred_flag_index]] == refPicList[ref_idx_curr].list[ref_idx]) {
539 *mv = TAB_MVF(x, y).mv[pred_flag_index];
540 return 1;
541 }
542 return 0;
543 }
544
mv_mp_mode_mx_lt(HEVCContext * s,int x,int y,int pred_flag_index,Mv * mv,int ref_idx_curr,int ref_idx)545 static int mv_mp_mode_mx_lt(HEVCContext *s, int x, int y, int pred_flag_index,
546 Mv *mv, int ref_idx_curr, int ref_idx)
547 {
548 MvField *tab_mvf = s->ref->tab_mvf;
549 int min_pu_width = s->ps.sps->min_pu_width;
550
551 RefPicList *refPicList = s->ref->refPicList;
552
553 if ((TAB_MVF(x, y).pred_flag) & (1 << pred_flag_index)) {
554 int currIsLongTerm = refPicList[ref_idx_curr].isLongTerm[ref_idx];
555
556 int colIsLongTerm =
557 refPicList[pred_flag_index].isLongTerm[(TAB_MVF(x, y).ref_idx[pred_flag_index])];
558
559 if (colIsLongTerm == currIsLongTerm) {
560 *mv = TAB_MVF(x, y).mv[pred_flag_index];
561 if (!currIsLongTerm)
562 dist_scale(s, mv, min_pu_width, x, y,
563 pred_flag_index, ref_idx_curr, ref_idx);
564 return 1;
565 }
566 }
567 return 0;
568 }
569
570 #define MP_MX(v, pred, mx) \
571 mv_mp_mode_mx(s, \
572 (x ## v) >> s->ps.sps->log2_min_pu_size, \
573 (y ## v) >> s->ps.sps->log2_min_pu_size, \
574 pred, &mx, ref_idx_curr, ref_idx)
575
576 #define MP_MX_LT(v, pred, mx) \
577 mv_mp_mode_mx_lt(s, \
578 (x ## v) >> s->ps.sps->log2_min_pu_size, \
579 (y ## v) >> s->ps.sps->log2_min_pu_size, \
580 pred, &mx, ref_idx_curr, ref_idx)
581
ff_hevc_luma_mv_mvp_mode(HEVCContext * s,int x0,int y0,int nPbW,int nPbH,int log2_cb_size,int part_idx,int merge_idx,MvField * mv,int mvp_lx_flag,int LX)582 void ff_hevc_luma_mv_mvp_mode(HEVCContext *s, int x0, int y0, int nPbW,
583 int nPbH, int log2_cb_size, int part_idx,
584 int merge_idx, MvField *mv,
585 int mvp_lx_flag, int LX)
586 {
587 HEVCLocalContext *lc = s->HEVClc;
588 MvField *tab_mvf = s->ref->tab_mvf;
589 int isScaledFlag_L0 = 0;
590 int availableFlagLXA0 = 1;
591 int availableFlagLXB0 = 1;
592 int numMVPCandLX = 0;
593 int min_pu_width = s->ps.sps->min_pu_width;
594
595 int xA0, yA0;
596 int is_available_a0;
597 int xA1, yA1;
598 int is_available_a1;
599 int xB0, yB0;
600 int is_available_b0;
601 int xB1, yB1;
602 int is_available_b1;
603 int xB2, yB2;
604 int is_available_b2;
605
606 Mv mvpcand_list[2] = { { 0 } };
607 Mv mxA;
608 Mv mxB;
609 int ref_idx_curr;
610 int ref_idx = 0;
611 int pred_flag_index_l0;
612 int pred_flag_index_l1;
613
614 const int cand_bottom_left = lc->na.cand_bottom_left;
615 const int cand_left = lc->na.cand_left;
616 const int cand_up_left = lc->na.cand_up_left;
617 const int cand_up = lc->na.cand_up;
618 const int cand_up_right = lc->na.cand_up_right_sap;
619 ref_idx_curr = LX;
620 ref_idx = mv->ref_idx[LX];
621 pred_flag_index_l0 = LX;
622 pred_flag_index_l1 = !LX;
623
624 // left bottom spatial candidate
625 xA0 = x0 - 1;
626 yA0 = y0 + nPbH;
627
628 is_available_a0 = AVAILABLE(cand_bottom_left, A0) &&
629 yA0 < s->ps.sps->height &&
630 PRED_BLOCK_AVAILABLE(A0);
631
632 //left spatial merge candidate
633 xA1 = x0 - 1;
634 yA1 = y0 + nPbH - 1;
635
636 is_available_a1 = AVAILABLE(cand_left, A1);
637 if (is_available_a0 || is_available_a1)
638 isScaledFlag_L0 = 1;
639
640 if (is_available_a0) {
641 if (MP_MX(A0, pred_flag_index_l0, mxA)) {
642 goto b_candidates;
643 }
644 if (MP_MX(A0, pred_flag_index_l1, mxA)) {
645 goto b_candidates;
646 }
647 }
648
649 if (is_available_a1) {
650 if (MP_MX(A1, pred_flag_index_l0, mxA)) {
651 goto b_candidates;
652 }
653 if (MP_MX(A1, pred_flag_index_l1, mxA)) {
654 goto b_candidates;
655 }
656 }
657
658 if (is_available_a0) {
659 if (MP_MX_LT(A0, pred_flag_index_l0, mxA)) {
660 goto b_candidates;
661 }
662 if (MP_MX_LT(A0, pred_flag_index_l1, mxA)) {
663 goto b_candidates;
664 }
665 }
666
667 if (is_available_a1) {
668 if (MP_MX_LT(A1, pred_flag_index_l0, mxA)) {
669 goto b_candidates;
670 }
671 if (MP_MX_LT(A1, pred_flag_index_l1, mxA)) {
672 goto b_candidates;
673 }
674 }
675 availableFlagLXA0 = 0;
676
677 b_candidates:
678 // B candidates
679 // above right spatial merge candidate
680 xB0 = x0 + nPbW;
681 yB0 = y0 - 1;
682
683 is_available_b0 = AVAILABLE(cand_up_right, B0) &&
684 xB0 < s->ps.sps->width &&
685 PRED_BLOCK_AVAILABLE(B0);
686
687 // above spatial merge candidate
688 xB1 = x0 + nPbW - 1;
689 yB1 = y0 - 1;
690 is_available_b1 = AVAILABLE(cand_up, B1);
691
692 // above left spatial merge candidate
693 xB2 = x0 - 1;
694 yB2 = y0 - 1;
695 is_available_b2 = AVAILABLE(cand_up_left, B2);
696
697 // above right spatial merge candidate
698 if (is_available_b0) {
699 if (MP_MX(B0, pred_flag_index_l0, mxB)) {
700 goto scalef;
701 }
702 if (MP_MX(B0, pred_flag_index_l1, mxB)) {
703 goto scalef;
704 }
705 }
706
707 // above spatial merge candidate
708 if (is_available_b1) {
709 if (MP_MX(B1, pred_flag_index_l0, mxB)) {
710 goto scalef;
711 }
712 if (MP_MX(B1, pred_flag_index_l1, mxB)) {
713 goto scalef;
714 }
715 }
716
717 // above left spatial merge candidate
718 if (is_available_b2) {
719 if (MP_MX(B2, pred_flag_index_l0, mxB)) {
720 goto scalef;
721 }
722 if (MP_MX(B2, pred_flag_index_l1, mxB)) {
723 goto scalef;
724 }
725 }
726 availableFlagLXB0 = 0;
727
728 scalef:
729 if (!isScaledFlag_L0) {
730 if (availableFlagLXB0) {
731 availableFlagLXA0 = 1;
732 mxA = mxB;
733 }
734 availableFlagLXB0 = 0;
735
736 // XB0 and L1
737 if (is_available_b0) {
738 availableFlagLXB0 = MP_MX_LT(B0, pred_flag_index_l0, mxB);
739 if (!availableFlagLXB0)
740 availableFlagLXB0 = MP_MX_LT(B0, pred_flag_index_l1, mxB);
741 }
742
743 if (is_available_b1 && !availableFlagLXB0) {
744 availableFlagLXB0 = MP_MX_LT(B1, pred_flag_index_l0, mxB);
745 if (!availableFlagLXB0)
746 availableFlagLXB0 = MP_MX_LT(B1, pred_flag_index_l1, mxB);
747 }
748
749 if (is_available_b2 && !availableFlagLXB0) {
750 availableFlagLXB0 = MP_MX_LT(B2, pred_flag_index_l0, mxB);
751 if (!availableFlagLXB0)
752 availableFlagLXB0 = MP_MX_LT(B2, pred_flag_index_l1, mxB);
753 }
754 }
755
756 if (availableFlagLXA0)
757 mvpcand_list[numMVPCandLX++] = mxA;
758
759 if (availableFlagLXB0 && (!availableFlagLXA0 || mxA.x != mxB.x || mxA.y != mxB.y))
760 mvpcand_list[numMVPCandLX++] = mxB;
761
762 //temporal motion vector prediction candidate
763 if (numMVPCandLX < 2 && s->sh.slice_temporal_mvp_enabled_flag &&
764 mvp_lx_flag == numMVPCandLX) {
765 Mv mv_col;
766 int available_col = temporal_luma_motion_vector(s, x0, y0, nPbW,
767 nPbH, ref_idx,
768 &mv_col, LX);
769 if (available_col)
770 mvpcand_list[numMVPCandLX++] = mv_col;
771 }
772
773 mv->mv[LX] = mvpcand_list[mvp_lx_flag];
774 }
775