• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /**
2  * MLP encoder
3  * Copyright (c) 2008 Ramiro Polla
4  * Copyright (c) 2016-2019 Jai Luthra
5  *
6  * This file is part of FFmpeg.
7  *
8  * FFmpeg is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU Lesser General Public
10  * License as published by the Free Software Foundation; either
11  * version 2.1 of the License, or (at your option) any later version.
12  *
13  * FFmpeg is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * Lesser General Public License for more details.
17  *
18  * You should have received a copy of the GNU Lesser General Public
19  * License along with FFmpeg; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21  */
22 
23 #include "avcodec.h"
24 #include "internal.h"
25 #include "put_bits.h"
26 #include "audio_frame_queue.h"
27 #include "libavutil/crc.h"
28 #include "libavutil/avstring.h"
29 #include "libavutil/samplefmt.h"
30 #include "mlp.h"
31 #include "lpc.h"
32 
33 #define MAJOR_HEADER_INTERVAL 16
34 
35 #define MLP_MIN_LPC_ORDER      1
36 #define MLP_MAX_LPC_ORDER      8
37 #define MLP_MIN_LPC_SHIFT      8
38 #define MLP_MAX_LPC_SHIFT     15
39 
40 typedef struct {
41     uint8_t         min_channel;         ///< The index of the first channel coded in this substream.
42     uint8_t         max_channel;         ///< The index of the last channel coded in this substream.
43     uint8_t         max_matrix_channel;  ///< The number of channels input into the rematrix stage.
44 
45     uint8_t         noise_shift;         ///< The left shift applied to random noise in 0x31ea substreams.
46     uint32_t        noisegen_seed;       ///< The current seed value for the pseudorandom noise generator(s).
47 
48     int             data_check_present;  ///< Set if the substream contains extra info to check the size of VLC blocks.
49 
50     int32_t         lossless_check_data; ///< XOR of all output samples
51 
52     uint8_t         max_huff_lsbs;       ///< largest huff_lsbs
53     uint8_t         max_output_bits;     ///< largest output bit-depth
54 } RestartHeader;
55 
56 typedef struct {
57     uint8_t         count;                  ///< number of matrices to apply
58 
59     uint8_t         outch[MAX_MATRICES];    ///< output channel for each matrix
60     int32_t         forco[MAX_MATRICES][MAX_CHANNELS+2];    ///< forward coefficients
61     int32_t         coeff[MAX_MATRICES][MAX_CHANNELS+2];    ///< decoding coefficients
62     uint8_t         fbits[MAX_CHANNELS];    ///< fraction bits
63 
64     int8_t          shift[MAX_CHANNELS];    ///< Left shift to apply to decoded PCM values to get final 24-bit output.
65 } MatrixParams;
66 
67 enum ParamFlags {
68     PARAMS_DEFAULT       = 0xff,
69     PARAM_PRESENCE_FLAGS = 1 << 8,
70     PARAM_BLOCKSIZE      = 1 << 7,
71     PARAM_MATRIX         = 1 << 6,
72     PARAM_OUTSHIFT       = 1 << 5,
73     PARAM_QUANTSTEP      = 1 << 4,
74     PARAM_FIR            = 1 << 3,
75     PARAM_IIR            = 1 << 2,
76     PARAM_HUFFOFFSET     = 1 << 1,
77     PARAM_PRESENT        = 1 << 0,
78 };
79 
80 typedef struct {
81     uint16_t        blocksize;                  ///< number of PCM samples in current audio block
82     uint8_t         quant_step_size[MAX_CHANNELS];  ///< left shift to apply to Huffman-decoded residuals
83 
84     MatrixParams    matrix_params;
85 
86     uint8_t         param_presence_flags;       ///< Bitmask of which parameter sets are conveyed in a decoding parameter block.
87 } DecodingParams;
88 
89 typedef struct BestOffset {
90     int32_t offset;
91     int bitcount;
92     int lsb_bits;
93     int32_t min;
94     int32_t max;
95 } BestOffset;
96 
97 #define HUFF_OFFSET_MIN    (-16384)
98 #define HUFF_OFFSET_MAX    ( 16383)
99 
100 /** Number of possible codebooks (counting "no codebooks") */
101 #define NUM_CODEBOOKS       4
102 
103 typedef struct {
104     AVCodecContext *avctx;
105 
106     int             num_substreams;         ///< Number of substreams contained within this stream.
107 
108     int             num_channels;   /**< Number of channels in major_scratch_buffer.
109                                      *   Normal channels + noise channels. */
110 
111     int             coded_sample_fmt [2];   ///< sample format encoded for MLP
112     int             coded_sample_rate[2];   ///< sample rate encoded for MLP
113     int             coded_peak_bitrate;     ///< peak bitrate for this major sync header
114 
115     int             flags;                  ///< major sync info flags
116 
117     /* channel_meaning */
118     int             substream_info;
119     int             fs;
120     int             wordlength;
121     int             channel_occupancy;
122     int             summary_info;
123 
124     int32_t        *inout_buffer;           ///< Pointer to data currently being read from lavc or written to bitstream.
125     int32_t        *major_inout_buffer;     ///< Buffer with all in/out data for one entire major frame interval.
126     int32_t        *write_buffer;           ///< Pointer to data currently being written to bitstream.
127     int32_t        *sample_buffer;          ///< Pointer to current access unit samples.
128     int32_t        *major_scratch_buffer;   ///< Scratch buffer big enough to fit all data for one entire major frame interval.
129     int32_t        *last_frame;             ///< Pointer to last frame with data to encode.
130 
131     int32_t        *lpc_sample_buffer;
132 
133     unsigned int    major_number_of_frames;
134     unsigned int    next_major_number_of_frames;
135 
136     unsigned int    major_frame_size;       ///< Number of samples in current major frame being encoded.
137     unsigned int    next_major_frame_size;  ///< Counter of number of samples for next major frame.
138 
139     int32_t        *lossless_check_data;    ///< Array with lossless_check_data for each access unit.
140 
141     unsigned int   *max_output_bits;        ///< largest output bit-depth
142     unsigned int   *frame_size;             ///< Array with number of samples/channel in each access unit.
143     unsigned int    frame_index;            ///< Index of current frame being encoded.
144 
145     unsigned int    one_sample_buffer_size; ///< Number of samples*channel for one access unit.
146 
147     unsigned int    max_restart_interval;   ///< Max interval of access units in between two major frames.
148     unsigned int    min_restart_interval;   ///< Min interval of access units in between two major frames.
149     unsigned int    restart_intervals;      ///< Number of possible major frame sizes.
150 
151     uint16_t        timestamp;              ///< Timestamp of current access unit.
152     uint16_t        dts;                    ///< Decoding timestamp of current access unit.
153 
154     uint8_t         channel_arrangement;    ///< channel arrangement for MLP streams
155 
156     uint8_t         ch_modifier_thd0;       ///< channel modifier for TrueHD stream 0
157     uint8_t         ch_modifier_thd1;       ///< channel modifier for TrueHD stream 1
158     uint8_t         ch_modifier_thd2;       ///< channel modifier for TrueHD stream 2
159 
160     unsigned int    seq_size  [MAJOR_HEADER_INTERVAL];
161     unsigned int    seq_offset[MAJOR_HEADER_INTERVAL];
162     unsigned int    sequence_size;
163 
164     ChannelParams  *channel_params;
165 
166     BestOffset      best_offset[MAJOR_HEADER_INTERVAL+1][MAX_CHANNELS][NUM_CODEBOOKS];
167 
168     DecodingParams *decoding_params;
169     RestartHeader   restart_header [MAX_SUBSTREAMS];
170 
171     ChannelParams   major_channel_params[MAJOR_HEADER_INTERVAL+1][MAX_CHANNELS];       ///< ChannelParams to be written to bitstream.
172     DecodingParams  major_decoding_params[MAJOR_HEADER_INTERVAL+1][MAX_SUBSTREAMS];    ///< DecodingParams to be written to bitstream.
173     int             major_params_changed[MAJOR_HEADER_INTERVAL+1][MAX_SUBSTREAMS];     ///< params_changed to be written to bitstream.
174 
175     unsigned int    major_cur_subblock_index;
176     unsigned int    major_filter_state_subblock;
177     unsigned int    major_number_of_subblocks;
178 
179     BestOffset    (*cur_best_offset)[NUM_CODEBOOKS];
180     ChannelParams  *cur_channel_params;
181     DecodingParams *cur_decoding_params;
182     RestartHeader  *cur_restart_header;
183 
184     AudioFrameQueue afq;
185 
186     /* Analysis stage. */
187     unsigned int    starting_frame_index;
188     unsigned int    number_of_frames;
189     unsigned int    number_of_samples;
190     unsigned int    number_of_subblocks;
191     unsigned int    seq_index;              ///< Sequence index for high compression levels.
192 
193     ChannelParams  *prev_channel_params;
194     DecodingParams *prev_decoding_params;
195 
196     ChannelParams  *seq_channel_params;
197     DecodingParams *seq_decoding_params;
198 
199     unsigned int    max_codebook_search;
200 
201     LPCContext      lpc_ctx;
202 } MLPEncodeContext;
203 
204 static ChannelParams   restart_channel_params[MAX_CHANNELS];
205 static DecodingParams  restart_decoding_params[MAX_SUBSTREAMS];
206 static BestOffset      restart_best_offset[NUM_CODEBOOKS] = {{0}};
207 
208 #define SYNC_MAJOR      0xf8726f
209 #define MAJOR_SYNC_INFO_SIGNATURE   0xB752
210 
211 #define SYNC_MLP        0xbb
212 #define SYNC_TRUEHD     0xba
213 
214 /* must be set for DVD-A */
215 #define FLAGS_DVDA      0x4000
216 /* FIFO delay must be constant */
217 #define FLAGS_CONST     0x8000
218 
219 #define SUBSTREAM_INFO_MAX_2_CHAN   0x01
220 #define SUBSTREAM_INFO_HIGH_RATE    0x02
221 #define SUBSTREAM_INFO_ALWAYS_SET   0x04
222 #define SUBSTREAM_INFO_2_SUBSTREAMS 0x08
223 
224 /****************************************************************************
225  ************ Functions that copy, clear, or compare parameters *************
226  ****************************************************************************/
227 
228 /** Compares two FilterParams structures and returns 1 if anything has
229  *  changed. Returns 0 if they are both equal.
230  */
compare_filter_params(const ChannelParams * prev_cp,const ChannelParams * cp,int filter)231 static int compare_filter_params(const ChannelParams *prev_cp, const ChannelParams *cp, int filter)
232 {
233     const FilterParams *prev = &prev_cp->filter_params[filter];
234     const FilterParams *fp = &cp->filter_params[filter];
235     int i;
236 
237     if (prev->order != fp->order)
238         return 1;
239 
240     if (!prev->order)
241         return 0;
242 
243     if (prev->shift != fp->shift)
244         return 1;
245 
246     for (i = 0; i < fp->order; i++)
247         if (prev_cp->coeff[filter][i] != cp->coeff[filter][i])
248             return 1;
249 
250     return 0;
251 }
252 
253 /** Compare two primitive matrices and returns 1 if anything has changed.
254  *  Returns 0 if they are both equal.
255  */
compare_matrix_params(MLPEncodeContext * ctx,const MatrixParams * prev,const MatrixParams * mp)256 static int compare_matrix_params(MLPEncodeContext *ctx, const MatrixParams *prev, const MatrixParams *mp)
257 {
258     RestartHeader *rh = ctx->cur_restart_header;
259     unsigned int channel, mat;
260 
261     if (prev->count != mp->count)
262         return 1;
263 
264     if (!prev->count)
265         return 0;
266 
267     for (channel = rh->min_channel; channel <= rh->max_channel; channel++)
268         if (prev->fbits[channel] != mp->fbits[channel])
269             return 1;
270 
271     for (mat = 0; mat < mp->count; mat++) {
272         if (prev->outch[mat] != mp->outch[mat])
273             return 1;
274 
275         for (channel = 0; channel < ctx->num_channels; channel++)
276             if (prev->coeff[mat][channel] != mp->coeff[mat][channel])
277                 return 1;
278     }
279 
280     return 0;
281 }
282 
283 /** Compares two DecodingParams and ChannelParams structures to decide if a
284  *  new decoding params header has to be written.
285  */
compare_decoding_params(MLPEncodeContext * ctx)286 static int compare_decoding_params(MLPEncodeContext *ctx)
287 {
288     DecodingParams *prev = ctx->prev_decoding_params;
289     DecodingParams *dp = ctx->cur_decoding_params;
290     MatrixParams *prev_mp = &prev->matrix_params;
291     MatrixParams *mp = &dp->matrix_params;
292     RestartHeader  *rh = ctx->cur_restart_header;
293     unsigned int ch;
294     int retval = 0;
295 
296     if (prev->param_presence_flags != dp->param_presence_flags)
297         retval |= PARAM_PRESENCE_FLAGS;
298 
299     if (prev->blocksize != dp->blocksize)
300         retval |= PARAM_BLOCKSIZE;
301 
302     if (compare_matrix_params(ctx, prev_mp, mp))
303         retval |= PARAM_MATRIX;
304 
305     for (ch = 0; ch <= rh->max_matrix_channel; ch++)
306         if (prev_mp->shift[ch] != mp->shift[ch]) {
307             retval |= PARAM_OUTSHIFT;
308             break;
309         }
310 
311     for (ch = 0; ch <= rh->max_channel; ch++)
312         if (prev->quant_step_size[ch] != dp->quant_step_size[ch]) {
313             retval |= PARAM_QUANTSTEP;
314             break;
315         }
316 
317     for (ch = rh->min_channel; ch <= rh->max_channel; ch++) {
318         ChannelParams *prev_cp = &ctx->prev_channel_params[ch];
319         ChannelParams *cp = &ctx->cur_channel_params[ch];
320 
321         if (!(retval & PARAM_FIR) &&
322             compare_filter_params(prev_cp, cp, FIR))
323             retval |= PARAM_FIR;
324 
325         if (!(retval & PARAM_IIR) &&
326             compare_filter_params(prev_cp, cp, IIR))
327             retval |= PARAM_IIR;
328 
329         if (prev_cp->huff_offset != cp->huff_offset)
330             retval |= PARAM_HUFFOFFSET;
331 
332         if (prev_cp->codebook    != cp->codebook  ||
333             prev_cp->huff_lsbs   != cp->huff_lsbs  )
334             retval |= 0x1;
335     }
336 
337     return retval;
338 }
339 
copy_filter_params(ChannelParams * dst_cp,ChannelParams * src_cp,int filter)340 static void copy_filter_params(ChannelParams *dst_cp, ChannelParams *src_cp, int filter)
341 {
342     FilterParams *dst = &dst_cp->filter_params[filter];
343     FilterParams *src = &src_cp->filter_params[filter];
344     unsigned int order;
345 
346     dst->order = src->order;
347 
348     if (dst->order) {
349         dst->shift = src->shift;
350 
351         dst->coeff_shift = src->coeff_shift;
352         dst->coeff_bits = src->coeff_bits;
353     }
354 
355     for (order = 0; order < dst->order; order++)
356         dst_cp->coeff[filter][order] = src_cp->coeff[filter][order];
357 }
358 
copy_matrix_params(MatrixParams * dst,MatrixParams * src)359 static void copy_matrix_params(MatrixParams *dst, MatrixParams *src)
360 {
361     dst->count = src->count;
362 
363     if (dst->count) {
364         unsigned int channel, count;
365 
366         for (channel = 0; channel < MAX_CHANNELS; channel++) {
367 
368             dst->fbits[channel] = src->fbits[channel];
369             dst->shift[channel] = src->shift[channel];
370 
371             for (count = 0; count < MAX_MATRICES; count++)
372                 dst->coeff[count][channel] = src->coeff[count][channel];
373         }
374 
375         for (count = 0; count < MAX_MATRICES; count++)
376             dst->outch[count] = src->outch[count];
377     }
378 }
379 
copy_restart_frame_params(MLPEncodeContext * ctx,unsigned int substr)380 static void copy_restart_frame_params(MLPEncodeContext *ctx,
381                                       unsigned int substr)
382 {
383     unsigned int index;
384 
385     for (index = 0; index < ctx->number_of_subblocks; index++) {
386         DecodingParams *dp = ctx->seq_decoding_params + index*(ctx->num_substreams) + substr;
387         unsigned int channel;
388 
389         copy_matrix_params(&dp->matrix_params, &ctx->cur_decoding_params->matrix_params);
390 
391         for (channel = 0; channel < ctx->avctx->channels; channel++) {
392             ChannelParams *cp = ctx->seq_channel_params + index*(ctx->avctx->channels) + channel;
393             unsigned int filter;
394 
395             dp->quant_step_size[channel] = ctx->cur_decoding_params->quant_step_size[channel];
396             dp->matrix_params.shift[channel] = ctx->cur_decoding_params->matrix_params.shift[channel];
397 
398             if (index)
399                 for (filter = 0; filter < NUM_FILTERS; filter++)
400                     copy_filter_params(cp, &ctx->cur_channel_params[channel], filter);
401         }
402     }
403 }
404 
405 /** Clears a DecodingParams struct the way it should be after a restart header. */
clear_decoding_params(MLPEncodeContext * ctx,DecodingParams decoding_params[MAX_SUBSTREAMS])406 static void clear_decoding_params(MLPEncodeContext *ctx, DecodingParams decoding_params[MAX_SUBSTREAMS])
407 {
408     unsigned int substr;
409 
410     for (substr = 0; substr < ctx->num_substreams; substr++) {
411         DecodingParams *dp = &decoding_params[substr];
412 
413         dp->param_presence_flags   = 0xff;
414         dp->blocksize              = 8;
415 
416         memset(&dp->matrix_params , 0, sizeof(MatrixParams       ));
417         memset(dp->quant_step_size, 0, sizeof(dp->quant_step_size));
418     }
419 }
420 
421 /** Clears a ChannelParams struct the way it should be after a restart header. */
clear_channel_params(MLPEncodeContext * ctx,ChannelParams channel_params[MAX_CHANNELS])422 static void clear_channel_params(MLPEncodeContext *ctx, ChannelParams channel_params[MAX_CHANNELS])
423 {
424     unsigned int channel;
425 
426     for (channel = 0; channel < ctx->avctx->channels; channel++) {
427         ChannelParams *cp = &channel_params[channel];
428 
429         memset(&cp->filter_params, 0, sizeof(cp->filter_params));
430 
431         /* Default audio coding is 24-bit raw PCM. */
432         cp->huff_offset      =  0;
433         cp->codebook         =  0;
434         cp->huff_lsbs        = 24;
435     }
436 }
437 
438 /** Sets default vales in our encoder for a DecodingParams struct. */
default_decoding_params(MLPEncodeContext * ctx,DecodingParams decoding_params[MAX_SUBSTREAMS])439 static void default_decoding_params(MLPEncodeContext *ctx,
440      DecodingParams decoding_params[MAX_SUBSTREAMS])
441 {
442     unsigned int substr;
443 
444     clear_decoding_params(ctx, decoding_params);
445 
446     for (substr = 0; substr < ctx->num_substreams; substr++) {
447         DecodingParams *dp = &decoding_params[substr];
448         uint8_t param_presence_flags = 0;
449 
450         param_presence_flags |= PARAM_BLOCKSIZE;
451         param_presence_flags |= PARAM_MATRIX;
452         param_presence_flags |= PARAM_OUTSHIFT;
453         param_presence_flags |= PARAM_QUANTSTEP;
454         param_presence_flags |= PARAM_FIR;
455 /*      param_presence_flags |= PARAM_IIR; */
456         param_presence_flags |= PARAM_HUFFOFFSET;
457         param_presence_flags |= PARAM_PRESENT;
458 
459         dp->param_presence_flags = param_presence_flags;
460     }
461 }
462 
463 /****************************************************************************/
464 
465 /** Calculates the smallest number of bits it takes to encode a given signed
466  *  value in two's complement.
467  */
number_sbits(int number)468 static int inline number_sbits(int number)
469 {
470     if (number < -1)
471         number++;
472 
473     return av_log2(FFABS(number)) + 1 + !!number;
474 }
475 
476 enum InputBitDepth {
477     BITS_16,
478     BITS_20,
479     BITS_24,
480 };
481 
mlp_peak_bitrate(int peak_bitrate,int sample_rate)482 static int mlp_peak_bitrate(int peak_bitrate, int sample_rate)
483 {
484     return ((peak_bitrate << 4) - 8) / sample_rate;
485 }
486 
mlp_encode_init(AVCodecContext * avctx)487 static av_cold int mlp_encode_init(AVCodecContext *avctx)
488 {
489     MLPEncodeContext *ctx = avctx->priv_data;
490     unsigned int substr, index;
491     unsigned int sum = 0;
492     unsigned int size;
493     int ret;
494 
495     ctx->avctx = avctx;
496 
497     switch (avctx->sample_rate) {
498     case 44100 << 0:
499         avctx->frame_size         = 40  << 0;
500         ctx->coded_sample_rate[0] = 0x08 + 0;
501         ctx->fs                   = 0x08 + 1;
502         break;
503     case 44100 << 1:
504         avctx->frame_size         = 40  << 1;
505         ctx->coded_sample_rate[0] = 0x08 + 1;
506         ctx->fs                   = 0x0C + 1;
507         break;
508     case 44100 << 2:
509         ctx->substream_info      |= SUBSTREAM_INFO_HIGH_RATE;
510         avctx->frame_size         = 40  << 2;
511         ctx->coded_sample_rate[0] = 0x08 + 2;
512         ctx->fs                   = 0x10 + 1;
513         break;
514     case 48000 << 0:
515         avctx->frame_size         = 40  << 0;
516         ctx->coded_sample_rate[0] = 0x00 + 0;
517         ctx->fs                   = 0x08 + 2;
518         break;
519     case 48000 << 1:
520         avctx->frame_size         = 40  << 1;
521         ctx->coded_sample_rate[0] = 0x00 + 1;
522         ctx->fs                   = 0x0C + 2;
523         break;
524     case 48000 << 2:
525         ctx->substream_info      |= SUBSTREAM_INFO_HIGH_RATE;
526         avctx->frame_size         = 40  << 2;
527         ctx->coded_sample_rate[0] = 0x00 + 2;
528         ctx->fs                   = 0x10 + 2;
529         break;
530     default:
531         av_log(avctx, AV_LOG_ERROR, "Unsupported sample rate %d. Supported "
532                             "sample rates are 44100, 88200, 176400, 48000, "
533                             "96000, and 192000.\n", avctx->sample_rate);
534         return AVERROR(EINVAL);
535     }
536     ctx->coded_sample_rate[1] = -1 & 0xf;
537 
538     /* TODO Keep count of bitrate and calculate real value. */
539     ctx->coded_peak_bitrate = mlp_peak_bitrate(9600000, avctx->sample_rate);
540 
541     /* TODO support more channels. */
542     if (avctx->channels > 2) {
543         av_log(avctx, AV_LOG_WARNING,
544                "Only mono and stereo are supported at the moment.\n");
545     }
546 
547     ctx->substream_info |= SUBSTREAM_INFO_ALWAYS_SET;
548     if (avctx->channels <= 2) {
549         ctx->substream_info |= SUBSTREAM_INFO_MAX_2_CHAN;
550     }
551 
552     switch (avctx->sample_fmt) {
553     case AV_SAMPLE_FMT_S16:
554         ctx->coded_sample_fmt[0] = BITS_16;
555         ctx->wordlength = 16;
556         avctx->bits_per_raw_sample = 16;
557         break;
558     /* TODO 20 bits: */
559     case AV_SAMPLE_FMT_S32:
560         ctx->coded_sample_fmt[0] = BITS_24;
561         ctx->wordlength = 24;
562         avctx->bits_per_raw_sample = 24;
563         break;
564     default:
565         av_log(avctx, AV_LOG_ERROR, "Sample format not supported. "
566                "Only 16- and 24-bit samples are supported.\n");
567         return AVERROR(EINVAL);
568     }
569     ctx->coded_sample_fmt[1] = -1 & 0xf;
570 
571     ctx->dts = -avctx->frame_size;
572 
573     ctx->num_channels = avctx->channels + 2; /* +2 noise channels */
574     ctx->one_sample_buffer_size = avctx->frame_size
575                                 * ctx->num_channels;
576     /* TODO Let user pass major header interval as parameter. */
577     ctx->max_restart_interval = MAJOR_HEADER_INTERVAL;
578 
579     ctx->max_codebook_search = 3;
580     ctx->min_restart_interval = MAJOR_HEADER_INTERVAL;
581     ctx->restart_intervals = ctx->max_restart_interval / ctx->min_restart_interval;
582 
583     /* TODO Let user pass parameters for LPC filter. */
584 
585     size = avctx->frame_size * ctx->max_restart_interval;
586 
587     ctx->lpc_sample_buffer = av_malloc_array(size, sizeof(int32_t));
588     if (!ctx->lpc_sample_buffer) {
589         av_log(avctx, AV_LOG_ERROR,
590                "Not enough memory for buffering samples.\n");
591         return AVERROR(ENOMEM);
592     }
593 
594     size = ctx->one_sample_buffer_size * ctx->max_restart_interval;
595 
596     ctx->major_scratch_buffer = av_malloc_array(size, sizeof(int32_t));
597     if (!ctx->major_scratch_buffer) {
598         av_log(avctx, AV_LOG_ERROR,
599                "Not enough memory for buffering samples.\n");
600         return AVERROR(ENOMEM);
601     }
602 
603     ctx->major_inout_buffer = av_malloc_array(size, sizeof(int32_t));
604     if (!ctx->major_inout_buffer) {
605         av_log(avctx, AV_LOG_ERROR,
606                "Not enough memory for buffering samples.\n");
607         return AVERROR(ENOMEM);
608     }
609 
610     ff_mlp_init_crc();
611 
612     ctx->num_substreams = 1; // TODO: change this after adding multi-channel support for TrueHD
613 
614     if (ctx->avctx->codec_id == AV_CODEC_ID_MLP) {
615         /* MLP */
616         switch(avctx->channel_layout) {
617         case AV_CH_LAYOUT_MONO:
618             ctx->channel_arrangement = 0; break;
619         case AV_CH_LAYOUT_STEREO:
620             ctx->channel_arrangement = 1; break;
621         case AV_CH_LAYOUT_2_1:
622             ctx->channel_arrangement = 2; break;
623         case AV_CH_LAYOUT_QUAD:
624             ctx->channel_arrangement = 3; break;
625         case AV_CH_LAYOUT_2POINT1:
626             ctx->channel_arrangement = 4; break;
627         case AV_CH_LAYOUT_SURROUND:
628             ctx->channel_arrangement = 7; break;
629         case AV_CH_LAYOUT_4POINT0:
630             ctx->channel_arrangement = 8; break;
631         case AV_CH_LAYOUT_5POINT0_BACK:
632             ctx->channel_arrangement = 9; break;
633         case AV_CH_LAYOUT_3POINT1:
634             ctx->channel_arrangement = 10; break;
635         case AV_CH_LAYOUT_4POINT1:
636             ctx->channel_arrangement = 11; break;
637         case AV_CH_LAYOUT_5POINT1_BACK:
638             ctx->channel_arrangement = 12; break;
639         default:
640             av_log(avctx, AV_LOG_ERROR, "Unsupported channel arrangement\n");
641             return AVERROR(EINVAL);
642         }
643         ctx->flags = FLAGS_DVDA;
644         ctx->channel_occupancy = ff_mlp_ch_info[ctx->channel_arrangement].channel_occupancy;
645         ctx->summary_info      = ff_mlp_ch_info[ctx->channel_arrangement].summary_info     ;
646     } else {
647         /* TrueHD */
648         switch(avctx->channel_layout) {
649         case AV_CH_LAYOUT_STEREO:
650             ctx->ch_modifier_thd0    = 0;
651             ctx->ch_modifier_thd1    = 0;
652             ctx->ch_modifier_thd2    = 0;
653             ctx->channel_arrangement = 1;
654             break;
655         case AV_CH_LAYOUT_5POINT0_BACK:
656             ctx->ch_modifier_thd0    = 1;
657             ctx->ch_modifier_thd1    = 1;
658             ctx->ch_modifier_thd2    = 1;
659             ctx->channel_arrangement = 11;
660             break;
661         case AV_CH_LAYOUT_5POINT1_BACK:
662             ctx->ch_modifier_thd0    = 2;
663             ctx->ch_modifier_thd1    = 1;
664             ctx->ch_modifier_thd2    = 2;
665             ctx->channel_arrangement = 15;
666             break;
667         default:
668             av_log(avctx, AV_LOG_ERROR, "Unsupported channel arrangement\n");
669             return AVERROR(EINVAL);
670         }
671         ctx->flags = 0;
672         ctx->channel_occupancy = 0;
673         ctx->summary_info = 0;
674     }
675 
676     size = sizeof(unsigned int) * ctx->max_restart_interval;
677 
678     ctx->frame_size = av_malloc(size);
679     if (!ctx->frame_size)
680         return AVERROR(ENOMEM);
681 
682     ctx->max_output_bits = av_malloc(size);
683     if (!ctx->max_output_bits)
684         return AVERROR(ENOMEM);
685 
686     size = sizeof(int32_t)
687          * ctx->num_substreams * ctx->max_restart_interval;
688 
689     ctx->lossless_check_data = av_malloc(size);
690     if (!ctx->lossless_check_data)
691         return AVERROR(ENOMEM);
692 
693     for (index = 0; index < ctx->restart_intervals; index++) {
694         ctx->seq_offset[index] = sum;
695         ctx->seq_size  [index] = ((index + 1) * ctx->min_restart_interval) + 1;
696         sum += ctx->seq_size[index];
697     }
698     ctx->sequence_size = sum;
699     size = sizeof(ChannelParams)
700          * ctx->restart_intervals * ctx->sequence_size * ctx->avctx->channels;
701     ctx->channel_params = av_malloc(size);
702     if (!ctx->channel_params) {
703         av_log(avctx, AV_LOG_ERROR,
704                "Not enough memory for analysis context.\n");
705         return AVERROR(ENOMEM);
706     }
707 
708     size = sizeof(DecodingParams)
709          * ctx->restart_intervals * ctx->sequence_size * ctx->num_substreams;
710     ctx->decoding_params = av_malloc(size);
711     if (!ctx->decoding_params) {
712         av_log(avctx, AV_LOG_ERROR,
713                "Not enough memory for analysis context.\n");
714         return AVERROR(ENOMEM);
715     }
716 
717     for (substr = 0; substr < ctx->num_substreams; substr++) {
718         RestartHeader  *rh = &ctx->restart_header [substr];
719 
720         /* TODO see if noisegen_seed is really worth it. */
721         rh->noisegen_seed      = 0;
722 
723         rh->min_channel        = 0;
724         rh->max_channel        = avctx->channels - 1;
725         /* FIXME: this works for 1 and 2 channels, but check for more */
726         rh->max_matrix_channel = rh->max_channel;
727     }
728 
729     clear_channel_params(ctx, restart_channel_params);
730     clear_decoding_params(ctx, restart_decoding_params);
731 
732     if ((ret = ff_lpc_init(&ctx->lpc_ctx, ctx->number_of_samples,
733                     MLP_MAX_LPC_ORDER, FF_LPC_TYPE_LEVINSON)) < 0) {
734         av_log(avctx, AV_LOG_ERROR,
735                "Not enough memory for LPC context.\n");
736         return ret;
737     }
738 
739     ff_af_queue_init(avctx, &ctx->afq);
740 
741     return 0;
742 }
743 
744 /****************************************************************************
745  ****************** Functions that write to the bitstream *******************
746  ****************************************************************************/
747 
748 /** Writes a major sync header to the bitstream. */
write_major_sync(MLPEncodeContext * ctx,uint8_t * buf,int buf_size)749 static void write_major_sync(MLPEncodeContext *ctx, uint8_t *buf, int buf_size)
750 {
751     PutBitContext pb;
752 
753     init_put_bits(&pb, buf, buf_size);
754 
755     put_bits(&pb, 24, SYNC_MAJOR               );
756 
757     if (ctx->avctx->codec_id == AV_CODEC_ID_MLP) {
758         put_bits(&pb,  8, SYNC_MLP                 );
759         put_bits(&pb,  4, ctx->coded_sample_fmt [0]);
760         put_bits(&pb,  4, ctx->coded_sample_fmt [1]);
761         put_bits(&pb,  4, ctx->coded_sample_rate[0]);
762         put_bits(&pb,  4, ctx->coded_sample_rate[1]);
763         put_bits(&pb,  4, 0                        ); /* ignored */
764         put_bits(&pb,  4, 0                        ); /* multi_channel_type */
765         put_bits(&pb,  3, 0                        ); /* ignored */
766         put_bits(&pb,  5, ctx->channel_arrangement );
767     } else if (ctx->avctx->codec_id == AV_CODEC_ID_TRUEHD) {
768         put_bits(&pb,  8, SYNC_TRUEHD              );
769         put_bits(&pb,  4, ctx->coded_sample_rate[0]);
770         put_bits(&pb,  4, 0                        ); /* ignored */
771         put_bits(&pb,  2, ctx->ch_modifier_thd0    );
772         put_bits(&pb,  2, ctx->ch_modifier_thd1    );
773         put_bits(&pb,  5, ctx->channel_arrangement );
774         put_bits(&pb,  2, ctx->ch_modifier_thd2    );
775         put_bits(&pb, 13, ctx->channel_arrangement );
776     }
777 
778     put_bits(&pb, 16, MAJOR_SYNC_INFO_SIGNATURE);
779     put_bits(&pb, 16, ctx->flags               );
780     put_bits(&pb, 16, 0                        ); /* ignored */
781     put_bits(&pb,  1, 1                        ); /* is_vbr */
782     put_bits(&pb, 15, ctx->coded_peak_bitrate  );
783     put_bits(&pb,  4, 1                        ); /* num_substreams */
784     put_bits(&pb,  4, 0x1                      ); /* ignored */
785 
786     /* channel_meaning */
787     put_bits(&pb,  8, ctx->substream_info      );
788     put_bits(&pb,  5, ctx->fs                  );
789     put_bits(&pb,  5, ctx->wordlength          );
790     put_bits(&pb,  6, ctx->channel_occupancy   );
791     put_bits(&pb,  3, 0                        ); /* ignored */
792     put_bits(&pb, 10, 0                        ); /* speaker_layout */
793     put_bits(&pb,  3, 0                        ); /* copy_protection */
794     put_bits(&pb, 16, 0x8080                   ); /* ignored */
795     put_bits(&pb,  7, 0                        ); /* ignored */
796     put_bits(&pb,  4, 0                        ); /* source_format */
797     put_bits(&pb,  5, ctx->summary_info        );
798 
799     flush_put_bits(&pb);
800 
801     AV_WL16(buf+26, ff_mlp_checksum16(buf, 26));
802 }
803 
804 /** Writes a restart header to the bitstream. Damaged streams can start being
805  *  decoded losslessly again after such a header and the subsequent decoding
806  *  params header.
807  */
write_restart_header(MLPEncodeContext * ctx,PutBitContext * pb)808 static void write_restart_header(MLPEncodeContext *ctx, PutBitContext *pb)
809 {
810     RestartHeader *rh = ctx->cur_restart_header;
811     uint8_t lossless_check = xor_32_to_8(rh->lossless_check_data);
812     unsigned int start_count = put_bits_count(pb);
813     PutBitContext tmpb;
814     uint8_t checksum;
815     unsigned int ch;
816 
817     put_bits(pb, 14, 0x31ea                ); /* TODO 0x31eb */
818     put_bits(pb, 16, ctx->timestamp        );
819     put_bits(pb,  4, rh->min_channel       );
820     put_bits(pb,  4, rh->max_channel       );
821     put_bits(pb,  4, rh->max_matrix_channel);
822     put_bits(pb,  4, rh->noise_shift       );
823     put_bits(pb, 23, rh->noisegen_seed     );
824     put_bits(pb,  4, 0                     ); /* TODO max_shift */
825     put_bits(pb,  5, rh->max_huff_lsbs     );
826     put_bits(pb,  5, rh->max_output_bits   );
827     put_bits(pb,  5, rh->max_output_bits   );
828     put_bits(pb,  1, rh->data_check_present);
829     put_bits(pb,  8, lossless_check        );
830     put_bits(pb, 16, 0                     ); /* ignored */
831 
832     for (ch = 0; ch <= rh->max_matrix_channel; ch++)
833         put_bits(pb, 6, ch);
834 
835     /* Data must be flushed for the checksum to be correct. */
836     tmpb = *pb;
837     flush_put_bits(&tmpb);
838 
839     checksum = ff_mlp_restart_checksum(pb->buf, put_bits_count(pb) - start_count);
840 
841     put_bits(pb,  8, checksum);
842 }
843 
844 /** Writes matrix params for all primitive matrices to the bitstream. */
write_matrix_params(MLPEncodeContext * ctx,PutBitContext * pb)845 static void write_matrix_params(MLPEncodeContext *ctx, PutBitContext *pb)
846 {
847     DecodingParams *dp = ctx->cur_decoding_params;
848     MatrixParams *mp = &dp->matrix_params;
849     unsigned int mat;
850 
851     put_bits(pb, 4, mp->count);
852 
853     for (mat = 0; mat < mp->count; mat++) {
854         unsigned int channel;
855 
856         put_bits(pb, 4, mp->outch[mat]); /* matrix_out_ch */
857         put_bits(pb, 4, mp->fbits[mat]);
858         put_bits(pb, 1, 0             ); /* lsb_bypass */
859 
860         for (channel = 0; channel < ctx->num_channels; channel++) {
861             int32_t coeff = mp->coeff[mat][channel];
862 
863             if (coeff) {
864                 put_bits(pb, 1, 1);
865 
866                 coeff >>= 14 - mp->fbits[mat];
867 
868                 put_sbits(pb, mp->fbits[mat] + 2, coeff);
869             } else {
870                 put_bits(pb, 1, 0);
871             }
872         }
873     }
874 }
875 
876 /** Writes filter parameters for one filter to the bitstream. */
write_filter_params(MLPEncodeContext * ctx,PutBitContext * pb,unsigned int channel,unsigned int filter)877 static void write_filter_params(MLPEncodeContext *ctx, PutBitContext *pb,
878                                 unsigned int channel, unsigned int filter)
879 {
880     FilterParams *fp = &ctx->cur_channel_params[channel].filter_params[filter];
881 
882     put_bits(pb, 4, fp->order);
883 
884     if (fp->order > 0) {
885         int i;
886         int32_t *fcoeff = ctx->cur_channel_params[channel].coeff[filter];
887 
888         put_bits(pb, 4, fp->shift      );
889         put_bits(pb, 5, fp->coeff_bits );
890         put_bits(pb, 3, fp->coeff_shift);
891 
892         for (i = 0; i < fp->order; i++) {
893             put_sbits(pb, fp->coeff_bits, fcoeff[i] >> fp->coeff_shift);
894         }
895 
896         /* TODO state data for IIR filter. */
897         put_bits(pb, 1, 0);
898     }
899 }
900 
901 /** Writes decoding parameters to the bitstream. These change very often,
902  *  usually at almost every frame.
903  */
write_decoding_params(MLPEncodeContext * ctx,PutBitContext * pb,int params_changed)904 static void write_decoding_params(MLPEncodeContext *ctx, PutBitContext *pb,
905                                   int params_changed)
906 {
907     DecodingParams *dp = ctx->cur_decoding_params;
908     RestartHeader  *rh = ctx->cur_restart_header;
909     MatrixParams *mp = &dp->matrix_params;
910     unsigned int ch;
911 
912     if (dp->param_presence_flags != PARAMS_DEFAULT &&
913         params_changed & PARAM_PRESENCE_FLAGS) {
914         put_bits(pb, 1, 1);
915         put_bits(pb, 8, dp->param_presence_flags);
916     } else {
917         put_bits(pb, 1, 0);
918     }
919 
920     if (dp->param_presence_flags & PARAM_BLOCKSIZE) {
921         if (params_changed       & PARAM_BLOCKSIZE) {
922             put_bits(pb, 1, 1);
923             put_bits(pb, 9, dp->blocksize);
924         } else {
925             put_bits(pb, 1, 0);
926         }
927     }
928 
929     if (dp->param_presence_flags & PARAM_MATRIX) {
930         if (params_changed       & PARAM_MATRIX) {
931             put_bits(pb, 1, 1);
932             write_matrix_params(ctx, pb);
933         } else {
934             put_bits(pb, 1, 0);
935         }
936     }
937 
938     if (dp->param_presence_flags & PARAM_OUTSHIFT) {
939         if (params_changed       & PARAM_OUTSHIFT) {
940             put_bits(pb, 1, 1);
941             for (ch = 0; ch <= rh->max_matrix_channel; ch++)
942                 put_sbits(pb, 4, mp->shift[ch]);
943         } else {
944             put_bits(pb, 1, 0);
945         }
946     }
947 
948     if (dp->param_presence_flags & PARAM_QUANTSTEP) {
949         if (params_changed       & PARAM_QUANTSTEP) {
950             put_bits(pb, 1, 1);
951             for (ch = 0; ch <= rh->max_channel; ch++)
952                 put_bits(pb, 4, dp->quant_step_size[ch]);
953         } else {
954             put_bits(pb, 1, 0);
955         }
956     }
957 
958     for (ch = rh->min_channel; ch <= rh->max_channel; ch++) {
959         ChannelParams *cp = &ctx->cur_channel_params[ch];
960 
961         if (dp->param_presence_flags & 0xF) {
962             put_bits(pb, 1, 1);
963 
964             if (dp->param_presence_flags & PARAM_FIR) {
965                 if (params_changed       & PARAM_FIR) {
966                     put_bits(pb, 1, 1);
967                     write_filter_params(ctx, pb, ch, FIR);
968                 } else {
969                     put_bits(pb, 1, 0);
970                 }
971             }
972 
973             if (dp->param_presence_flags & PARAM_IIR) {
974                 if (params_changed       & PARAM_IIR) {
975                     put_bits(pb, 1, 1);
976                     write_filter_params(ctx, pb, ch, IIR);
977                 } else {
978                     put_bits(pb, 1, 0);
979                 }
980             }
981 
982             if (dp->param_presence_flags & PARAM_HUFFOFFSET) {
983                 if (params_changed       & PARAM_HUFFOFFSET) {
984                     put_bits (pb,  1, 1);
985                     put_sbits(pb, 15, cp->huff_offset);
986                 } else {
987                     put_bits(pb, 1, 0);
988                 }
989             }
990             if (cp->codebook > 0 && cp->huff_lsbs > 24) {
991                 av_log(ctx->avctx, AV_LOG_ERROR, "Invalid Huff LSBs\n");
992             }
993 
994             put_bits(pb, 2, cp->codebook );
995             put_bits(pb, 5, cp->huff_lsbs);
996         } else {
997             put_bits(pb, 1, 0);
998         }
999     }
1000 }
1001 
1002 /** Writes the residuals to the bitstream. That is, the VLC codes from the
1003  *  codebooks (if any is used), and then the residual.
1004  */
write_block_data(MLPEncodeContext * ctx,PutBitContext * pb)1005 static void write_block_data(MLPEncodeContext *ctx, PutBitContext *pb)
1006 {
1007     DecodingParams *dp = ctx->cur_decoding_params;
1008     RestartHeader  *rh = ctx->cur_restart_header;
1009     int32_t *sample_buffer = ctx->write_buffer;
1010     int32_t sign_huff_offset[MAX_CHANNELS];
1011     int codebook_index      [MAX_CHANNELS];
1012     int lsb_bits            [MAX_CHANNELS];
1013     unsigned int i, ch;
1014 
1015     for (ch = rh->min_channel; ch <= rh->max_channel; ch++) {
1016         ChannelParams *cp = &ctx->cur_channel_params[ch];
1017         int sign_shift;
1018 
1019         lsb_bits        [ch] = cp->huff_lsbs - dp->quant_step_size[ch];
1020         codebook_index  [ch] = cp->codebook  - 1;
1021         sign_huff_offset[ch] = cp->huff_offset;
1022 
1023         sign_shift = lsb_bits[ch] + (cp->codebook ? 2 - cp->codebook : -1);
1024 
1025         if (cp->codebook > 0)
1026             sign_huff_offset[ch] -= 7 << lsb_bits[ch];
1027 
1028         /* Unsign if needed. */
1029         if (sign_shift >= 0)
1030             sign_huff_offset[ch] -= 1 << sign_shift;
1031     }
1032 
1033     for (i = 0; i < dp->blocksize; i++) {
1034         for (ch = rh->min_channel; ch <= rh->max_channel; ch++) {
1035             int32_t sample = *sample_buffer++ >> dp->quant_step_size[ch];
1036             sample -= sign_huff_offset[ch];
1037 
1038             if (codebook_index[ch] >= 0) {
1039                 int vlc = sample >> lsb_bits[ch];
1040                 put_bits(pb, ff_mlp_huffman_tables[codebook_index[ch]][vlc][1],
1041                              ff_mlp_huffman_tables[codebook_index[ch]][vlc][0]);
1042             }
1043 
1044             put_sbits(pb, lsb_bits[ch], sample);
1045         }
1046         sample_buffer += 2; /* noise channels */
1047     }
1048 
1049     ctx->write_buffer = sample_buffer;
1050 }
1051 
1052 /** Writes the substreams data to the bitstream. */
write_substrs(MLPEncodeContext * ctx,uint8_t * buf,int buf_size,int restart_frame,uint16_t substream_data_len[MAX_SUBSTREAMS])1053 static uint8_t *write_substrs(MLPEncodeContext *ctx, uint8_t *buf, int buf_size,
1054                               int restart_frame,
1055                               uint16_t substream_data_len[MAX_SUBSTREAMS])
1056 {
1057     int32_t *lossless_check_data = ctx->lossless_check_data;
1058     unsigned int substr;
1059     int end = 0;
1060 
1061     lossless_check_data += ctx->frame_index * ctx->num_substreams;
1062 
1063     for (substr = 0; substr < ctx->num_substreams; substr++) {
1064         unsigned int cur_subblock_index = ctx->major_cur_subblock_index;
1065         unsigned int num_subblocks = ctx->major_filter_state_subblock;
1066         unsigned int subblock;
1067         RestartHeader  *rh = &ctx->restart_header [substr];
1068         int substr_restart_frame = restart_frame;
1069         uint8_t parity, checksum;
1070         PutBitContext pb, tmpb;
1071         int params_changed;
1072 
1073         ctx->cur_restart_header = rh;
1074 
1075         init_put_bits(&pb, buf, buf_size);
1076 
1077         for (subblock = 0; subblock <= num_subblocks; subblock++) {
1078             unsigned int subblock_index;
1079 
1080             subblock_index = cur_subblock_index++;
1081 
1082             ctx->cur_decoding_params = &ctx->major_decoding_params[subblock_index][substr];
1083             ctx->cur_channel_params = ctx->major_channel_params[subblock_index];
1084 
1085             params_changed = ctx->major_params_changed[subblock_index][substr];
1086 
1087             if (substr_restart_frame || params_changed) {
1088                 put_bits(&pb, 1, 1);
1089 
1090                 if (substr_restart_frame) {
1091                     put_bits(&pb, 1, 1);
1092 
1093                     write_restart_header(ctx, &pb);
1094                     rh->lossless_check_data = 0;
1095                 } else {
1096                     put_bits(&pb, 1, 0);
1097                 }
1098 
1099                 write_decoding_params(ctx, &pb, params_changed);
1100             } else {
1101                 put_bits(&pb, 1, 0);
1102             }
1103 
1104             write_block_data(ctx, &pb);
1105 
1106             put_bits(&pb, 1, !substr_restart_frame);
1107 
1108             substr_restart_frame = 0;
1109         }
1110 
1111         put_bits(&pb, (-put_bits_count(&pb)) & 15, 0);
1112 
1113         rh->lossless_check_data ^= *lossless_check_data++;
1114 
1115         if (ctx->last_frame == ctx->inout_buffer) {
1116             /* TODO find a sample and implement shorten_by. */
1117             put_bits(&pb, 32, END_OF_STREAM);
1118         }
1119 
1120         /* Data must be flushed for the checksum and parity to be correct. */
1121         tmpb = pb;
1122         flush_put_bits(&tmpb);
1123 
1124         parity   = ff_mlp_calculate_parity(buf, put_bits_count(&pb) >> 3) ^ 0xa9;
1125         checksum = ff_mlp_checksum8       (buf, put_bits_count(&pb) >> 3);
1126 
1127         put_bits(&pb, 8, parity  );
1128         put_bits(&pb, 8, checksum);
1129 
1130         flush_put_bits(&pb);
1131 
1132         end += put_bits_count(&pb) >> 3;
1133         substream_data_len[substr] = end;
1134 
1135         buf += put_bits_count(&pb) >> 3;
1136     }
1137 
1138     ctx->major_cur_subblock_index += ctx->major_filter_state_subblock + 1;
1139     ctx->major_filter_state_subblock = 0;
1140 
1141     return buf;
1142 }
1143 
1144 /** Writes the access unit and substream headers to the bitstream. */
write_frame_headers(MLPEncodeContext * ctx,uint8_t * frame_header,uint8_t * substream_headers,unsigned int length,int restart_frame,uint16_t substream_data_len[MAX_SUBSTREAMS])1145 static void write_frame_headers(MLPEncodeContext *ctx, uint8_t *frame_header,
1146                                 uint8_t *substream_headers, unsigned int length,
1147                                 int restart_frame,
1148                                 uint16_t substream_data_len[MAX_SUBSTREAMS])
1149 {
1150     uint16_t access_unit_header = 0;
1151     uint16_t parity_nibble = 0;
1152     unsigned int substr;
1153 
1154     parity_nibble  = ctx->dts;
1155     parity_nibble ^= length;
1156 
1157     for (substr = 0; substr < ctx->num_substreams; substr++) {
1158         uint16_t substr_hdr = 0;
1159 
1160         substr_hdr |= (0 << 15); /* extraword */
1161         substr_hdr |= (!restart_frame << 14); /* !restart_frame */
1162         substr_hdr |= (1 << 13); /* checkdata */
1163         substr_hdr |= (0 << 12); /* ??? */
1164         substr_hdr |= (substream_data_len[substr] / 2) & 0x0FFF;
1165 
1166         AV_WB16(substream_headers, substr_hdr);
1167 
1168         parity_nibble ^= *substream_headers++;
1169         parity_nibble ^= *substream_headers++;
1170     }
1171 
1172     parity_nibble ^= parity_nibble >> 8;
1173     parity_nibble ^= parity_nibble >> 4;
1174     parity_nibble &= 0xF;
1175 
1176     access_unit_header |= (parity_nibble ^ 0xF) << 12;
1177     access_unit_header |= length & 0xFFF;
1178 
1179     AV_WB16(frame_header  , access_unit_header);
1180     AV_WB16(frame_header+2, ctx->dts          );
1181 }
1182 
1183 /** Writes an entire access unit to the bitstream. */
write_access_unit(MLPEncodeContext * ctx,uint8_t * buf,int buf_size,int restart_frame)1184 static unsigned int write_access_unit(MLPEncodeContext *ctx, uint8_t *buf,
1185                                       int buf_size, int restart_frame)
1186 {
1187     uint16_t substream_data_len[MAX_SUBSTREAMS];
1188     uint8_t *buf1, *buf0 = buf;
1189     unsigned int substr;
1190     int total_length;
1191 
1192     if (buf_size < 4)
1193         return AVERROR(EINVAL);
1194 
1195     /* Frame header will be written at the end. */
1196     buf      += 4;
1197     buf_size -= 4;
1198 
1199     if (restart_frame) {
1200         if (buf_size < 28)
1201             return AVERROR(EINVAL);
1202         write_major_sync(ctx, buf, buf_size);
1203         buf      += 28;
1204         buf_size -= 28;
1205     }
1206 
1207     buf1 = buf;
1208 
1209     /* Substream headers will be written at the end. */
1210     for (substr = 0; substr < ctx->num_substreams; substr++) {
1211         buf      += 2;
1212         buf_size -= 2;
1213     }
1214 
1215     buf = write_substrs(ctx, buf, buf_size, restart_frame, substream_data_len);
1216 
1217     total_length = buf - buf0;
1218 
1219     write_frame_headers(ctx, buf0, buf1, total_length / 2, restart_frame, substream_data_len);
1220 
1221     return total_length;
1222 }
1223 
1224 /****************************************************************************
1225  ****************** Functions that input data to context ********************
1226  ****************************************************************************/
1227 
1228 /** Inputs data from the samples passed by lavc into the context, shifts them
1229  *  appropriately depending on the bit-depth, and calculates the
1230  *  lossless_check_data that will be written to the restart header.
1231  */
input_data_internal(MLPEncodeContext * ctx,const uint8_t * samples,int is24)1232 static void input_data_internal(MLPEncodeContext *ctx, const uint8_t *samples,
1233                                 int is24)
1234 {
1235     int32_t *lossless_check_data = ctx->lossless_check_data;
1236     const int32_t *samples_32 = (const int32_t *) samples;
1237     const int16_t *samples_16 = (const int16_t *) samples;
1238     unsigned int substr;
1239 
1240     lossless_check_data += ctx->frame_index * ctx->num_substreams;
1241 
1242     for (substr = 0; substr < ctx->num_substreams; substr++) {
1243         RestartHeader  *rh = &ctx->restart_header [substr];
1244         int32_t *sample_buffer = ctx->inout_buffer;
1245         int32_t temp_lossless_check_data = 0;
1246         uint32_t greatest = 0;
1247         unsigned int channel;
1248         int i;
1249 
1250         for (i = 0; i < ctx->frame_size[ctx->frame_index]; i++) {
1251             for (channel = 0; channel <= rh->max_channel; channel++) {
1252                 uint32_t abs_sample;
1253                 int32_t sample;
1254 
1255                 sample = is24 ? *samples_32++ >> 8 : *samples_16++ * 256;
1256 
1257                 /* TODO Find out if number_sbits can be used for negative values. */
1258                 abs_sample = FFABS(sample);
1259                 if (greatest < abs_sample)
1260                     greatest = abs_sample;
1261 
1262                 temp_lossless_check_data ^= (sample & 0x00ffffff) << channel;
1263                 *sample_buffer++ = sample;
1264             }
1265 
1266             sample_buffer += 2; /* noise channels */
1267         }
1268 
1269         ctx->max_output_bits[ctx->frame_index] = number_sbits(greatest);
1270 
1271         *lossless_check_data++ = temp_lossless_check_data;
1272     }
1273 }
1274 
1275 /** Wrapper function for inputting data in two different bit-depths. */
input_data(MLPEncodeContext * ctx,void * samples)1276 static void input_data(MLPEncodeContext *ctx, void *samples)
1277 {
1278     if (ctx->avctx->sample_fmt == AV_SAMPLE_FMT_S32)
1279         input_data_internal(ctx, samples, 1);
1280     else
1281         input_data_internal(ctx, samples, 0);
1282 }
1283 
input_to_sample_buffer(MLPEncodeContext * ctx)1284 static void input_to_sample_buffer(MLPEncodeContext *ctx)
1285 {
1286     int32_t *sample_buffer = ctx->sample_buffer;
1287     unsigned int index;
1288 
1289     for (index = 0; index < ctx->number_of_frames; index++) {
1290         unsigned int cur_index = (ctx->starting_frame_index + index) % ctx->max_restart_interval;
1291         int32_t *input_buffer = ctx->inout_buffer + cur_index * ctx->one_sample_buffer_size;
1292         unsigned int i, channel;
1293 
1294         for (i = 0; i < ctx->frame_size[cur_index]; i++) {
1295             for (channel = 0; channel < ctx->avctx->channels; channel++)
1296                 *sample_buffer++ = *input_buffer++;
1297             sample_buffer += 2; /* noise_channels */
1298             input_buffer += 2; /* noise_channels */
1299         }
1300     }
1301 }
1302 
1303 /****************************************************************************
1304  ********* Functions that analyze the data and set the parameters ***********
1305  ****************************************************************************/
1306 
1307 /** Counts the number of trailing zeroes in a value */
number_trailing_zeroes(int32_t sample)1308 static int number_trailing_zeroes(int32_t sample)
1309 {
1310     int bits;
1311 
1312     for (bits = 0; bits < 24 && !(sample & (1<<bits)); bits++);
1313 
1314     /* All samples are 0. TODO Return previous quant_step_size to avoid
1315      * writing a new header. */
1316     if (bits == 24)
1317         return 0;
1318 
1319     return bits;
1320 }
1321 
1322 /** Determines how many bits are zero at the end of all samples so they can be
1323  *  shifted out.
1324  */
determine_quant_step_size(MLPEncodeContext * ctx)1325 static void determine_quant_step_size(MLPEncodeContext *ctx)
1326 {
1327     DecodingParams *dp = ctx->cur_decoding_params;
1328     RestartHeader  *rh = ctx->cur_restart_header;
1329     MatrixParams *mp = &dp->matrix_params;
1330     int32_t *sample_buffer = ctx->sample_buffer;
1331     int32_t sample_mask[MAX_CHANNELS];
1332     unsigned int channel;
1333     int i;
1334 
1335     memset(sample_mask, 0x00, sizeof(sample_mask));
1336 
1337     for (i = 0; i < ctx->number_of_samples; i++) {
1338         for (channel = 0; channel <= rh->max_channel; channel++)
1339             sample_mask[channel] |= *sample_buffer++;
1340 
1341         sample_buffer += 2; /* noise channels */
1342     }
1343 
1344     for (channel = 0; channel <= rh->max_channel; channel++)
1345         dp->quant_step_size[channel] = number_trailing_zeroes(sample_mask[channel]) - mp->shift[channel];
1346 }
1347 
1348 /** Determines the smallest number of bits needed to encode the filter
1349  *  coefficients, and if it's possible to right-shift their values without
1350  *  losing any precision.
1351  */
code_filter_coeffs(MLPEncodeContext * ctx,FilterParams * fp,int32_t * fcoeff)1352 static void code_filter_coeffs(MLPEncodeContext *ctx, FilterParams *fp, int32_t *fcoeff)
1353 {
1354     int min = INT_MAX, max = INT_MIN;
1355     int bits, shift;
1356     int coeff_mask = 0;
1357     int order;
1358 
1359     for (order = 0; order < fp->order; order++) {
1360         int coeff = fcoeff[order];
1361 
1362         if (coeff < min)
1363             min = coeff;
1364         if (coeff > max)
1365             max = coeff;
1366 
1367         coeff_mask |= coeff;
1368     }
1369 
1370     bits = FFMAX(number_sbits(min), number_sbits(max));
1371 
1372     for (shift = 0; shift < 7 && bits + shift < 16 && !(coeff_mask & (1<<shift)); shift++);
1373 
1374     fp->coeff_bits  = bits;
1375     fp->coeff_shift = shift;
1376 }
1377 
1378 /** Determines the best filter parameters for the given data and writes the
1379  *  necessary information to the context.
1380  *  TODO Add IIR filter predictor!
1381  */
set_filter_params(MLPEncodeContext * ctx,unsigned int channel,unsigned int filter,int clear_filter)1382 static void set_filter_params(MLPEncodeContext *ctx,
1383                               unsigned int channel, unsigned int filter,
1384                               int clear_filter)
1385 {
1386     ChannelParams *cp = &ctx->cur_channel_params[channel];
1387     FilterParams *fp = &cp->filter_params[filter];
1388 
1389     if ((filter == IIR && ctx->substream_info & SUBSTREAM_INFO_HIGH_RATE) ||
1390         clear_filter) {
1391         fp->order = 0;
1392     } else if (filter == IIR) {
1393         fp->order = 0;
1394     } else if (filter == FIR) {
1395         const int max_order = (ctx->substream_info & SUBSTREAM_INFO_HIGH_RATE)
1396                               ? 4 : MLP_MAX_LPC_ORDER;
1397         int32_t *sample_buffer = ctx->sample_buffer + channel;
1398         int32_t coefs[MAX_LPC_ORDER][MAX_LPC_ORDER];
1399         int32_t *lpc_samples = ctx->lpc_sample_buffer;
1400         int32_t *fcoeff = ctx->cur_channel_params[channel].coeff[filter];
1401         int shift[MLP_MAX_LPC_ORDER];
1402         unsigned int i;
1403         int order;
1404 
1405         for (i = 0; i < ctx->number_of_samples; i++) {
1406             *lpc_samples++ = *sample_buffer;
1407             sample_buffer += ctx->num_channels;
1408         }
1409 
1410         order = ff_lpc_calc_coefs(&ctx->lpc_ctx, ctx->lpc_sample_buffer,
1411                                   ctx->number_of_samples, MLP_MIN_LPC_ORDER,
1412                                   max_order, 11, coefs, shift, FF_LPC_TYPE_LEVINSON, 0,
1413                                   ORDER_METHOD_EST, MLP_MIN_LPC_SHIFT,
1414                                   MLP_MAX_LPC_SHIFT, MLP_MIN_LPC_SHIFT);
1415 
1416         fp->order = order;
1417         fp->shift = shift[order-1];
1418 
1419         for (i = 0; i < order; i++)
1420             fcoeff[i] = coefs[order-1][i];
1421 
1422         code_filter_coeffs(ctx, fp, fcoeff);
1423     }
1424 }
1425 
1426 /** Tries to determine a good prediction filter, and applies it to the samples
1427  *  buffer if the filter is good enough. Sets the filter data to be cleared if
1428  *  no good filter was found.
1429  */
determine_filters(MLPEncodeContext * ctx)1430 static void determine_filters(MLPEncodeContext *ctx)
1431 {
1432     RestartHeader *rh = ctx->cur_restart_header;
1433     int channel, filter;
1434 
1435     for (channel = rh->min_channel; channel <= rh->max_channel; channel++) {
1436         for (filter = 0; filter < NUM_FILTERS; filter++)
1437             set_filter_params(ctx, channel, filter, 0);
1438     }
1439 }
1440 
1441 enum MLPChMode {
1442     MLP_CHMODE_LEFT_RIGHT,
1443     MLP_CHMODE_LEFT_SIDE,
1444     MLP_CHMODE_RIGHT_SIDE,
1445     MLP_CHMODE_MID_SIDE,
1446 };
1447 
estimate_stereo_mode(MLPEncodeContext * ctx)1448 static enum MLPChMode estimate_stereo_mode(MLPEncodeContext *ctx)
1449 {
1450     uint64_t score[4], sum[4] = { 0, 0, 0, 0, };
1451     int32_t *right_ch = ctx->sample_buffer + 1;
1452     int32_t *left_ch  = ctx->sample_buffer;
1453     int i;
1454     enum MLPChMode best = 0;
1455 
1456     for(i = 2; i < ctx->number_of_samples; i++) {
1457         int32_t left  = left_ch [i * ctx->num_channels] - 2 * left_ch [(i - 1) * ctx->num_channels] + left_ch [(i - 2) * ctx->num_channels];
1458         int32_t right = right_ch[i * ctx->num_channels] - 2 * right_ch[(i - 1) * ctx->num_channels] + right_ch[(i - 2) * ctx->num_channels];
1459 
1460         sum[0] += FFABS( left        );
1461         sum[1] += FFABS(        right);
1462         sum[2] += FFABS((left + right) >> 1);
1463         sum[3] += FFABS( left - right);
1464     }
1465 
1466     score[MLP_CHMODE_LEFT_RIGHT] = sum[0] + sum[1];
1467     score[MLP_CHMODE_LEFT_SIDE]  = sum[0] + sum[3];
1468     score[MLP_CHMODE_RIGHT_SIDE] = sum[1] + sum[3];
1469     score[MLP_CHMODE_MID_SIDE]   = sum[2] + sum[3];
1470 
1471     for(i = 1; i < 3; i++)
1472         if(score[i] < score[best])
1473             best = i;
1474 
1475     return best;
1476 }
1477 
1478 /** Determines how many fractional bits are needed to encode matrix
1479  *  coefficients. Also shifts the coefficients to fit within 2.14 bits.
1480  */
code_matrix_coeffs(MLPEncodeContext * ctx,unsigned int mat)1481 static void code_matrix_coeffs(MLPEncodeContext *ctx, unsigned int mat)
1482 {
1483     DecodingParams *dp = ctx->cur_decoding_params;
1484     MatrixParams *mp = &dp->matrix_params;
1485     int32_t coeff_mask = 0;
1486     unsigned int channel;
1487     unsigned int bits;
1488 
1489     for (channel = 0; channel < ctx->num_channels; channel++) {
1490         int32_t coeff = mp->coeff[mat][channel];
1491         coeff_mask |= coeff;
1492     }
1493 
1494     for (bits = 0; bits < 14 && !(coeff_mask & (1<<bits)); bits++);
1495 
1496     mp->fbits   [mat] = 14 - bits;
1497 }
1498 
1499 /** Determines best coefficients to use for the lossless matrix. */
lossless_matrix_coeffs(MLPEncodeContext * ctx)1500 static void lossless_matrix_coeffs(MLPEncodeContext *ctx)
1501 {
1502     DecodingParams *dp = ctx->cur_decoding_params;
1503     MatrixParams *mp = &dp->matrix_params;
1504     unsigned int shift = 0;
1505     unsigned int channel;
1506     int mat;
1507     enum MLPChMode mode;
1508 
1509     /* No decorrelation for non-stereo. */
1510     if (ctx->num_channels - 2 != 2) {
1511         mp->count = 0;
1512         return;
1513     }
1514 
1515     mode = estimate_stereo_mode(ctx);
1516 
1517     switch(mode) {
1518         /* TODO: add matrix for MID_SIDE */
1519         case MLP_CHMODE_MID_SIDE:
1520         case MLP_CHMODE_LEFT_RIGHT:
1521             mp->count    = 0;
1522             break;
1523         case MLP_CHMODE_LEFT_SIDE:
1524             mp->count    = 1;
1525             mp->outch[0] = 1;
1526             mp->coeff[0][0] =  1 << 14; mp->coeff[0][1] = -(1 << 14);
1527             mp->coeff[0][2] =  0 << 14; mp->coeff[0][2] =   0 << 14;
1528             mp->forco[0][0] =  1 << 14; mp->forco[0][1] = -(1 << 14);
1529             mp->forco[0][2] =  0 << 14; mp->forco[0][2] =   0 << 14;
1530             break;
1531         case MLP_CHMODE_RIGHT_SIDE:
1532             mp->count    = 1;
1533             mp->outch[0] = 0;
1534             mp->coeff[0][0] =  1 << 14; mp->coeff[0][1] =   1 << 14;
1535             mp->coeff[0][2] =  0 << 14; mp->coeff[0][2] =   0 << 14;
1536             mp->forco[0][0] =  1 << 14; mp->forco[0][1] = -(1 << 14);
1537             mp->forco[0][2] =  0 << 14; mp->forco[0][2] =   0 << 14;
1538             break;
1539     }
1540 
1541     for (mat = 0; mat < mp->count; mat++)
1542         code_matrix_coeffs(ctx, mat);
1543 
1544     for (channel = 0; channel < ctx->num_channels; channel++)
1545         mp->shift[channel] = shift;
1546 }
1547 
1548 /** Min and max values that can be encoded with each codebook. The values for
1549  *  the third codebook take into account the fact that the sign shift for this
1550  *  codebook is outside the coded value, so it has one more bit of precision.
1551  *  It should actually be -7 -> 7, shifted down by 0.5.
1552  */
1553 static const int codebook_extremes[3][2] = {
1554     {-9, 8}, {-8, 7}, {-15, 14},
1555 };
1556 
1557 /** Determines the amount of bits needed to encode the samples using no
1558  *  codebooks and a specified offset.
1559  */
no_codebook_bits_offset(MLPEncodeContext * ctx,unsigned int channel,int16_t offset,int32_t min,int32_t max,BestOffset * bo)1560 static void no_codebook_bits_offset(MLPEncodeContext *ctx,
1561                                     unsigned int channel, int16_t offset,
1562                                     int32_t min, int32_t max,
1563                                     BestOffset *bo)
1564 {
1565     DecodingParams *dp = ctx->cur_decoding_params;
1566     int32_t unsign = 0;
1567     int lsb_bits;
1568 
1569     min -= offset;
1570     max -= offset;
1571 
1572     lsb_bits = FFMAX(number_sbits(min), number_sbits(max)) - 1;
1573 
1574     lsb_bits += !!lsb_bits;
1575 
1576     if (lsb_bits > 0)
1577         unsign = 1 << (lsb_bits - 1);
1578 
1579     bo->offset   = offset;
1580     bo->lsb_bits = lsb_bits;
1581     bo->bitcount = lsb_bits * dp->blocksize;
1582     bo->min      = offset - unsign + 1;
1583     bo->max      = offset + unsign;
1584 }
1585 
1586 /** Determines the least amount of bits needed to encode the samples using no
1587  *  codebooks.
1588  */
no_codebook_bits(MLPEncodeContext * ctx,unsigned int channel,int32_t min,int32_t max,BestOffset * bo)1589 static void no_codebook_bits(MLPEncodeContext *ctx,
1590                              unsigned int channel,
1591                              int32_t min, int32_t max,
1592                              BestOffset *bo)
1593 {
1594     DecodingParams *dp = ctx->cur_decoding_params;
1595     int16_t offset;
1596     int32_t unsign = 0;
1597     uint32_t diff;
1598     int lsb_bits;
1599 
1600     /* Set offset inside huffoffset's boundaries by adjusting extremes
1601      * so that more bits are used, thus shifting the offset. */
1602     if (min < HUFF_OFFSET_MIN)
1603         max = FFMAX(max, 2 * HUFF_OFFSET_MIN - min + 1);
1604     if (max > HUFF_OFFSET_MAX)
1605         min = FFMIN(min, 2 * HUFF_OFFSET_MAX - max - 1);
1606 
1607     /* Determine offset and minimum number of bits. */
1608     diff = max - min;
1609 
1610     lsb_bits = number_sbits(diff) - 1;
1611 
1612     if (lsb_bits > 0)
1613         unsign = 1 << (lsb_bits - 1);
1614 
1615     /* If all samples are the same (lsb_bits == 0), offset must be
1616      * adjusted because of sign_shift. */
1617     offset = min + diff / 2 + !!lsb_bits;
1618 
1619     bo->offset   = offset;
1620     bo->lsb_bits = lsb_bits;
1621     bo->bitcount = lsb_bits * dp->blocksize;
1622     bo->min      = max - unsign + 1;
1623     bo->max      = min + unsign;
1624 }
1625 
1626 /** Determines the least amount of bits needed to encode the samples using a
1627  *  given codebook and a given offset.
1628  */
codebook_bits_offset(MLPEncodeContext * ctx,unsigned int channel,int codebook,int32_t sample_min,int32_t sample_max,int16_t offset,BestOffset * bo)1629 static inline void codebook_bits_offset(MLPEncodeContext *ctx,
1630                                         unsigned int channel, int codebook,
1631                                         int32_t sample_min, int32_t sample_max,
1632                                         int16_t offset, BestOffset *bo)
1633 {
1634     int32_t codebook_min = codebook_extremes[codebook][0];
1635     int32_t codebook_max = codebook_extremes[codebook][1];
1636     int32_t *sample_buffer = ctx->sample_buffer + channel;
1637     DecodingParams *dp = ctx->cur_decoding_params;
1638     int codebook_offset  = 7 + (2 - codebook);
1639     int32_t unsign_offset = offset;
1640     int lsb_bits = 0, bitcount = 0;
1641     int offset_min = INT_MAX, offset_max = INT_MAX;
1642     int unsign, mask;
1643     int i;
1644 
1645     sample_min -= offset;
1646     sample_max -= offset;
1647 
1648     while (sample_min < codebook_min || sample_max > codebook_max) {
1649         lsb_bits++;
1650         sample_min >>= 1;
1651         sample_max >>= 1;
1652     }
1653 
1654     unsign = 1 << lsb_bits;
1655     mask   = unsign - 1;
1656 
1657     if (codebook == 2) {
1658         unsign_offset -= unsign;
1659         lsb_bits++;
1660     }
1661 
1662     for (i = 0; i < dp->blocksize; i++) {
1663         int32_t sample = *sample_buffer >> dp->quant_step_size[channel];
1664         int temp_min, temp_max;
1665 
1666         sample -= unsign_offset;
1667 
1668         temp_min = sample & mask;
1669         if (temp_min < offset_min)
1670             offset_min = temp_min;
1671 
1672         temp_max = unsign - temp_min - 1;
1673         if (temp_max < offset_max)
1674             offset_max = temp_max;
1675 
1676         sample >>= lsb_bits;
1677 
1678         bitcount += ff_mlp_huffman_tables[codebook][sample + codebook_offset][1];
1679 
1680         sample_buffer += ctx->num_channels;
1681     }
1682 
1683     bo->offset   = offset;
1684     bo->lsb_bits = lsb_bits;
1685     bo->bitcount = lsb_bits * dp->blocksize + bitcount;
1686     bo->min      = FFMAX(offset - offset_min, HUFF_OFFSET_MIN);
1687     bo->max      = FFMIN(offset + offset_max, HUFF_OFFSET_MAX);
1688 }
1689 
1690 /** Determines the least amount of bits needed to encode the samples using a
1691  *  given codebook. Searches for the best offset to minimize the bits.
1692  */
codebook_bits(MLPEncodeContext * ctx,unsigned int channel,int codebook,int offset,int32_t min,int32_t max,BestOffset * bo,int direction)1693 static inline void codebook_bits(MLPEncodeContext *ctx,
1694                                  unsigned int channel, int codebook,
1695                                  int offset, int32_t min, int32_t max,
1696                                  BestOffset *bo, int direction)
1697 {
1698     int previous_count = INT_MAX;
1699     int offset_min, offset_max;
1700     int is_greater = 0;
1701 
1702     offset_min = FFMAX(min, HUFF_OFFSET_MIN);
1703     offset_max = FFMIN(max, HUFF_OFFSET_MAX);
1704 
1705     while (offset <= offset_max && offset >= offset_min) {
1706         BestOffset temp_bo;
1707 
1708         codebook_bits_offset(ctx, channel, codebook,
1709                              min, max, offset,
1710                              &temp_bo);
1711 
1712         if (temp_bo.bitcount < previous_count) {
1713             if (temp_bo.bitcount < bo->bitcount)
1714                 *bo = temp_bo;
1715 
1716             is_greater = 0;
1717         } else if (++is_greater >= ctx->max_codebook_search)
1718             break;
1719 
1720         previous_count = temp_bo.bitcount;
1721 
1722         if (direction) {
1723             offset = temp_bo.max + 1;
1724         } else {
1725             offset = temp_bo.min - 1;
1726         }
1727     }
1728 }
1729 
1730 /** Determines the least amount of bits needed to encode the samples using
1731  *  any or no codebook.
1732  */
determine_bits(MLPEncodeContext * ctx)1733 static void determine_bits(MLPEncodeContext *ctx)
1734 {
1735     DecodingParams *dp = ctx->cur_decoding_params;
1736     RestartHeader  *rh = ctx->cur_restart_header;
1737     unsigned int channel;
1738 
1739     for (channel = 0; channel <= rh->max_channel; channel++) {
1740         ChannelParams *cp = &ctx->cur_channel_params[channel];
1741         int32_t *sample_buffer = ctx->sample_buffer + channel;
1742         int32_t min = INT32_MAX, max = INT32_MIN;
1743         int no_filters_used = !cp->filter_params[FIR].order;
1744         int average = 0;
1745         int offset = 0;
1746         int i;
1747 
1748         /* Determine extremes and average. */
1749         for (i = 0; i < dp->blocksize; i++) {
1750             int32_t sample = *sample_buffer >> dp->quant_step_size[channel];
1751             if (sample < min)
1752                 min = sample;
1753             if (sample > max)
1754                 max = sample;
1755             average += sample;
1756             sample_buffer += ctx->num_channels;
1757         }
1758         average /= dp->blocksize;
1759 
1760         /* If filtering is used, we always set the offset to zero, otherwise
1761          * we search for the offset that minimizes the bitcount. */
1762         if (no_filters_used) {
1763             no_codebook_bits(ctx, channel, min, max, &ctx->cur_best_offset[channel][0]);
1764             offset = av_clip(average, HUFF_OFFSET_MIN, HUFF_OFFSET_MAX);
1765         } else {
1766             no_codebook_bits_offset(ctx, channel, offset, min, max, &ctx->cur_best_offset[channel][0]);
1767         }
1768 
1769         for (i = 1; i < NUM_CODEBOOKS; i++) {
1770             BestOffset temp_bo = { 0, INT_MAX, 0, 0, 0, };
1771             int16_t offset_max;
1772 
1773             codebook_bits_offset(ctx, channel, i - 1,
1774                                  min, max, offset,
1775                                  &temp_bo);
1776 
1777             if (no_filters_used) {
1778                 offset_max = temp_bo.max;
1779 
1780                 codebook_bits(ctx, channel, i - 1, temp_bo.min - 1,
1781                             min, max, &temp_bo, 0);
1782                 codebook_bits(ctx, channel, i - 1, offset_max + 1,
1783                             min, max, &temp_bo, 1);
1784             }
1785 
1786             ctx->cur_best_offset[channel][i] = temp_bo;
1787         }
1788     }
1789 }
1790 
1791 /****************************************************************************
1792  *************** Functions that process the data in some way ****************
1793  ****************************************************************************/
1794 
1795 #define SAMPLE_MAX(bitdepth) ((1 << (bitdepth - 1)) - 1)
1796 #define SAMPLE_MIN(bitdepth) (~SAMPLE_MAX(bitdepth))
1797 
1798 #define MSB_MASK(bits)  (-(int)(1u << (bits)))
1799 
1800 /** Applies the filter to the current samples, and saves the residual back
1801  *  into the samples buffer. If the filter is too bad and overflows the
1802  *  maximum amount of bits allowed (24), the samples buffer is left as is and
1803  *  the function returns -1.
1804  */
apply_filter(MLPEncodeContext * ctx,unsigned int channel)1805 static int apply_filter(MLPEncodeContext *ctx, unsigned int channel)
1806 {
1807     FilterParams *fp[NUM_FILTERS] = { &ctx->cur_channel_params[channel].filter_params[FIR],
1808                                       &ctx->cur_channel_params[channel].filter_params[IIR], };
1809     int32_t *filter_state_buffer[NUM_FILTERS] = { NULL };
1810     int32_t mask = MSB_MASK(ctx->cur_decoding_params->quant_step_size[channel]);
1811     int32_t *sample_buffer = ctx->sample_buffer + channel;
1812     unsigned int number_of_samples = ctx->number_of_samples;
1813     unsigned int filter_shift = fp[FIR]->shift;
1814     int filter;
1815     int i, ret = 0;
1816 
1817     for (i = 0; i < NUM_FILTERS; i++) {
1818         unsigned int size = ctx->number_of_samples;
1819         filter_state_buffer[i] = av_malloc(size*sizeof(int32_t));
1820         if (!filter_state_buffer[i]) {
1821             av_log(ctx->avctx, AV_LOG_ERROR,
1822                    "Not enough memory for applying filters.\n");
1823             ret = AVERROR(ENOMEM);
1824             goto free_and_return;
1825         }
1826     }
1827 
1828     for (i = 0; i < 8; i++) {
1829         filter_state_buffer[FIR][i] = *sample_buffer;
1830         filter_state_buffer[IIR][i] = *sample_buffer;
1831 
1832         sample_buffer += ctx->num_channels;
1833     }
1834 
1835     for (i = 8; i < number_of_samples; i++) {
1836         int32_t sample = *sample_buffer;
1837         unsigned int order;
1838         int64_t accum = 0;
1839         int64_t residual;
1840 
1841         for (filter = 0; filter < NUM_FILTERS; filter++) {
1842             int32_t *fcoeff = ctx->cur_channel_params[channel].coeff[filter];
1843             for (order = 0; order < fp[filter]->order; order++)
1844                 accum += (int64_t)filter_state_buffer[filter][i - 1 - order] *
1845                          fcoeff[order];
1846         }
1847 
1848         accum  >>= filter_shift;
1849         residual = sample - (accum & mask);
1850 
1851         if (residual < SAMPLE_MIN(24) || residual > SAMPLE_MAX(24)) {
1852             ret = AVERROR_INVALIDDATA;
1853             goto free_and_return;
1854         }
1855 
1856         filter_state_buffer[FIR][i] = sample;
1857         filter_state_buffer[IIR][i] = (int32_t) residual;
1858 
1859         sample_buffer += ctx->num_channels;
1860     }
1861 
1862     sample_buffer = ctx->sample_buffer + channel;
1863     for (i = 0; i < number_of_samples; i++) {
1864         *sample_buffer = filter_state_buffer[IIR][i];
1865 
1866         sample_buffer += ctx->num_channels;
1867     }
1868 
1869 free_and_return:
1870     for (i = 0; i < NUM_FILTERS; i++) {
1871         av_freep(&filter_state_buffer[i]);
1872     }
1873 
1874     return ret;
1875 }
1876 
apply_filters(MLPEncodeContext * ctx)1877 static void apply_filters(MLPEncodeContext *ctx)
1878 {
1879     RestartHeader *rh = ctx->cur_restart_header;
1880     int channel;
1881 
1882     for (channel = rh->min_channel; channel <= rh->max_channel; channel++) {
1883         if (apply_filter(ctx, channel) < 0) {
1884             /* Filter is horribly wrong.
1885              * Clear filter params and update state. */
1886             set_filter_params(ctx, channel, FIR, 1);
1887             set_filter_params(ctx, channel, IIR, 1);
1888             apply_filter(ctx, channel);
1889         }
1890     }
1891 }
1892 
1893 /** Generates two noise channels worth of data. */
generate_2_noise_channels(MLPEncodeContext * ctx)1894 static void generate_2_noise_channels(MLPEncodeContext *ctx)
1895 {
1896     int32_t *sample_buffer = ctx->sample_buffer + ctx->num_channels - 2;
1897     RestartHeader *rh = ctx->cur_restart_header;
1898     unsigned int i;
1899     uint32_t seed = rh->noisegen_seed;
1900 
1901     for (i = 0; i < ctx->number_of_samples; i++) {
1902         uint16_t seed_shr7 = seed >> 7;
1903         *sample_buffer++ = ((int8_t)(seed >> 15)) * (1 << rh->noise_shift);
1904         *sample_buffer++ = ((int8_t) seed_shr7)   * (1 << rh->noise_shift);
1905 
1906         seed = (seed << 16) ^ seed_shr7 ^ (seed_shr7 << 5);
1907 
1908         sample_buffer += ctx->num_channels - 2;
1909     }
1910 
1911     rh->noisegen_seed = seed & ((1 << 24)-1);
1912 }
1913 
1914 /** Rematrixes all channels using chosen coefficients. */
rematrix_channels(MLPEncodeContext * ctx)1915 static void rematrix_channels(MLPEncodeContext *ctx)
1916 {
1917     DecodingParams *dp = ctx->cur_decoding_params;
1918     MatrixParams *mp = &dp->matrix_params;
1919     int32_t *sample_buffer = ctx->sample_buffer;
1920     unsigned int mat, i, maxchan;
1921 
1922     maxchan = ctx->num_channels;
1923 
1924     for (mat = 0; mat < mp->count; mat++) {
1925         unsigned int msb_mask_bits = (ctx->avctx->sample_fmt == AV_SAMPLE_FMT_S16 ? 8 : 0) - mp->shift[mat];
1926         int32_t mask = MSB_MASK(msb_mask_bits);
1927         unsigned int outch = mp->outch[mat];
1928 
1929         sample_buffer = ctx->sample_buffer;
1930         for (i = 0; i < ctx->number_of_samples; i++) {
1931             unsigned int src_ch;
1932             int64_t accum = 0;
1933 
1934             for (src_ch = 0; src_ch < maxchan; src_ch++) {
1935                 int32_t sample = *(sample_buffer + src_ch);
1936                 accum += (int64_t) sample * mp->forco[mat][src_ch];
1937             }
1938             sample_buffer[outch] = (accum >> 14) & mask;
1939 
1940             sample_buffer += ctx->num_channels;
1941         }
1942     }
1943 }
1944 
1945 /****************************************************************************
1946  **** Functions that deal with determining the best parameters and output ***
1947  ****************************************************************************/
1948 
1949 typedef struct {
1950     char    path[MAJOR_HEADER_INTERVAL + 2];
1951     int     cur_idx;
1952     int     bitcount;
1953 } PathCounter;
1954 
1955 #define CODEBOOK_CHANGE_BITS    21
1956 
clear_path_counter(PathCounter * path_counter)1957 static void clear_path_counter(PathCounter *path_counter)
1958 {
1959     memset(path_counter, 0, (NUM_CODEBOOKS + 1) * sizeof(*path_counter));
1960 }
1961 
compare_best_offset(BestOffset * prev,BestOffset * cur)1962 static int compare_best_offset(BestOffset *prev, BestOffset *cur)
1963 {
1964     if (prev->lsb_bits != cur->lsb_bits)
1965         return 1;
1966 
1967     return 0;
1968 }
1969 
best_codebook_path_cost(MLPEncodeContext * ctx,unsigned int channel,PathCounter * src,int cur_codebook)1970 static int best_codebook_path_cost(MLPEncodeContext *ctx, unsigned int channel,
1971                                    PathCounter *src, int cur_codebook)
1972 {
1973     int idx = src->cur_idx;
1974     BestOffset *cur_bo = ctx->best_offset[idx][channel],
1975               *prev_bo = idx ? ctx->best_offset[idx - 1][channel] : restart_best_offset;
1976     int bitcount = src->bitcount;
1977     int prev_codebook = src->path[idx];
1978 
1979     bitcount += cur_bo[cur_codebook].bitcount;
1980 
1981     if (prev_codebook != cur_codebook ||
1982         compare_best_offset(&prev_bo[prev_codebook], &cur_bo[cur_codebook]))
1983         bitcount += CODEBOOK_CHANGE_BITS;
1984 
1985     return bitcount;
1986 }
1987 
set_best_codebook(MLPEncodeContext * ctx)1988 static void set_best_codebook(MLPEncodeContext *ctx)
1989 {
1990     DecodingParams *dp = ctx->cur_decoding_params;
1991     RestartHeader *rh = ctx->cur_restart_header;
1992     unsigned int channel;
1993 
1994     for (channel = rh->min_channel; channel <= rh->max_channel; channel++) {
1995         BestOffset *cur_bo, *prev_bo = restart_best_offset;
1996         PathCounter path_counter[NUM_CODEBOOKS + 1];
1997         unsigned int best_codebook;
1998         unsigned int index;
1999         char *best_path;
2000 
2001         clear_path_counter(path_counter);
2002 
2003         for (index = 0; index < ctx->number_of_subblocks; index++) {
2004             unsigned int best_bitcount = INT_MAX;
2005             unsigned int codebook;
2006 
2007             cur_bo = ctx->best_offset[index][channel];
2008 
2009             for (codebook = 0; codebook < NUM_CODEBOOKS; codebook++) {
2010                 int prev_best_bitcount = INT_MAX;
2011                 int last_best;
2012 
2013                 for (last_best = 0; last_best < 2; last_best++) {
2014                     PathCounter *dst_path = &path_counter[codebook];
2015                     PathCounter *src_path;
2016                     int  temp_bitcount;
2017 
2018                     /* First test last path with same headers,
2019                      * then with last best. */
2020                     if (last_best) {
2021                         src_path = &path_counter[NUM_CODEBOOKS];
2022                     } else {
2023                         if (compare_best_offset(&prev_bo[codebook], &cur_bo[codebook]))
2024                             continue;
2025                         else
2026                             src_path = &path_counter[codebook];
2027                     }
2028 
2029                     temp_bitcount = best_codebook_path_cost(ctx, channel, src_path, codebook);
2030 
2031                     if (temp_bitcount < best_bitcount) {
2032                         best_bitcount = temp_bitcount;
2033                         best_codebook = codebook;
2034                     }
2035 
2036                     if (temp_bitcount < prev_best_bitcount) {
2037                         prev_best_bitcount = temp_bitcount;
2038                         if (src_path != dst_path)
2039                             memcpy(dst_path, src_path, sizeof(PathCounter));
2040                         if (dst_path->cur_idx < FF_ARRAY_ELEMS(dst_path->path) - 1)
2041                             dst_path->path[++dst_path->cur_idx] = codebook;
2042                         dst_path->bitcount = temp_bitcount;
2043                     }
2044                 }
2045             }
2046 
2047             prev_bo = cur_bo;
2048 
2049             memcpy(&path_counter[NUM_CODEBOOKS], &path_counter[best_codebook], sizeof(PathCounter));
2050         }
2051 
2052         best_path = path_counter[NUM_CODEBOOKS].path + 1;
2053 
2054         /* Update context. */
2055         for (index = 0; index < ctx->number_of_subblocks; index++) {
2056             ChannelParams *cp = ctx->seq_channel_params + index*(ctx->avctx->channels) + channel;
2057 
2058             best_codebook = *best_path++;
2059             cur_bo = &ctx->best_offset[index][channel][best_codebook];
2060 
2061             cp->huff_offset      = cur_bo->offset;
2062             cp->huff_lsbs        = cur_bo->lsb_bits + dp->quant_step_size[channel];
2063             cp->codebook         = best_codebook;
2064         }
2065     }
2066 }
2067 
2068 /** Analyzes all collected bitcounts and selects the best parameters for each
2069  *  individual access unit.
2070  *  TODO This is just a stub!
2071  */
set_major_params(MLPEncodeContext * ctx)2072 static void set_major_params(MLPEncodeContext *ctx)
2073 {
2074     RestartHeader *rh = ctx->cur_restart_header;
2075     unsigned int index;
2076     unsigned int substr;
2077     uint8_t max_huff_lsbs = 0;
2078     uint8_t max_output_bits = 0;
2079 
2080     for (substr = 0; substr < ctx->num_substreams; substr++) {
2081         DecodingParams *seq_dp = (DecodingParams *) ctx->decoding_params+
2082                                  (ctx->restart_intervals - 1)*(ctx->sequence_size)*(ctx->avctx->channels) +
2083                                  (ctx->seq_offset[ctx->restart_intervals - 1])*(ctx->avctx->channels);
2084 
2085         ChannelParams *seq_cp = (ChannelParams *) ctx->channel_params +
2086                                 (ctx->restart_intervals - 1)*(ctx->sequence_size)*(ctx->avctx->channels) +
2087                                 (ctx->seq_offset[ctx->restart_intervals - 1])*(ctx->avctx->channels);
2088         unsigned int channel;
2089         for (index = 0; index < ctx->seq_size[ctx->restart_intervals-1]; index++) {
2090             memcpy(&ctx->major_decoding_params[index][substr], seq_dp + index*(ctx->num_substreams) + substr, sizeof(DecodingParams));
2091             for (channel = 0; channel < ctx->avctx->channels; channel++) {
2092                 uint8_t huff_lsbs = (seq_cp + index*(ctx->avctx->channels) + channel)->huff_lsbs;
2093                 if (max_huff_lsbs < huff_lsbs)
2094                     max_huff_lsbs = huff_lsbs;
2095                 memcpy(&ctx->major_channel_params[index][channel],
2096                        (seq_cp + index*(ctx->avctx->channels) + channel),
2097                        sizeof(ChannelParams));
2098             }
2099         }
2100     }
2101 
2102     rh->max_huff_lsbs = max_huff_lsbs;
2103 
2104     for (index = 0; index < ctx->number_of_frames; index++)
2105         if (max_output_bits < ctx->max_output_bits[index])
2106             max_output_bits = ctx->max_output_bits[index];
2107     rh->max_output_bits = max_output_bits;
2108 
2109     for (substr = 0; substr < ctx->num_substreams; substr++) {
2110 
2111         ctx->cur_restart_header = &ctx->restart_header[substr];
2112 
2113         ctx->prev_decoding_params = &restart_decoding_params[substr];
2114         ctx->prev_channel_params = restart_channel_params;
2115 
2116         for (index = 0; index < MAJOR_HEADER_INTERVAL + 1; index++) {
2117                 ctx->cur_decoding_params = &ctx->major_decoding_params[index][substr];
2118                 ctx->cur_channel_params = ctx->major_channel_params[index];
2119 
2120                 ctx->major_params_changed[index][substr] = compare_decoding_params(ctx);
2121 
2122                 ctx->prev_decoding_params = ctx->cur_decoding_params;
2123                 ctx->prev_channel_params = ctx->cur_channel_params;
2124         }
2125     }
2126 
2127     ctx->major_number_of_subblocks = ctx->number_of_subblocks;
2128     ctx->major_filter_state_subblock = 1;
2129     ctx->major_cur_subblock_index = 0;
2130 }
2131 
analyze_sample_buffer(MLPEncodeContext * ctx)2132 static void analyze_sample_buffer(MLPEncodeContext *ctx)
2133 {
2134     ChannelParams *seq_cp = ctx->seq_channel_params;
2135     DecodingParams *seq_dp = ctx->seq_decoding_params;
2136     unsigned int index;
2137     unsigned int substr;
2138 
2139     for (substr = 0; substr < ctx->num_substreams; substr++) {
2140 
2141         ctx->cur_restart_header = &ctx->restart_header[substr];
2142         ctx->cur_decoding_params = seq_dp + 1*(ctx->num_substreams) + substr;
2143         ctx->cur_channel_params = seq_cp + 1*(ctx->avctx->channels);
2144 
2145         determine_quant_step_size(ctx);
2146         generate_2_noise_channels(ctx);
2147         lossless_matrix_coeffs   (ctx);
2148         rematrix_channels        (ctx);
2149         determine_filters        (ctx);
2150         apply_filters            (ctx);
2151 
2152         copy_restart_frame_params(ctx, substr);
2153 
2154         /* Copy frame_size from frames 0...max to decoding_params 1...max + 1
2155          * decoding_params[0] is for the filter state subblock.
2156          */
2157         for (index = 0; index < ctx->number_of_frames; index++) {
2158             DecodingParams *dp = seq_dp + (index + 1)*(ctx->num_substreams) + substr;
2159             dp->blocksize = ctx->frame_size[index];
2160         }
2161         /* The official encoder seems to always encode a filter state subblock
2162          * even if there are no filters. TODO check if it is possible to skip
2163          * the filter state subblock for no filters.
2164          */
2165         (seq_dp + substr)->blocksize  = 8;
2166         (seq_dp + 1*(ctx->num_substreams) + substr)->blocksize -= 8;
2167 
2168         for (index = 0; index < ctx->number_of_subblocks; index++) {
2169                 ctx->cur_decoding_params = seq_dp + index*(ctx->num_substreams) + substr;
2170                 ctx->cur_channel_params = seq_cp + index*(ctx->avctx->channels);
2171                 ctx->cur_best_offset = ctx->best_offset[index];
2172                 determine_bits(ctx);
2173                 ctx->sample_buffer += ctx->cur_decoding_params->blocksize * ctx->num_channels;
2174         }
2175 
2176         set_best_codebook(ctx);
2177     }
2178 }
2179 
process_major_frame(MLPEncodeContext * ctx)2180 static void process_major_frame(MLPEncodeContext *ctx)
2181 {
2182     unsigned int substr;
2183 
2184     ctx->sample_buffer = ctx->major_inout_buffer;
2185 
2186     ctx->starting_frame_index = 0;
2187     ctx->number_of_frames = ctx->major_number_of_frames;
2188     ctx->number_of_samples = ctx->major_frame_size;
2189 
2190     for (substr = 0; substr < ctx->num_substreams; substr++) {
2191         ctx->cur_restart_header = &ctx->restart_header[substr];
2192 
2193         ctx->cur_decoding_params = &ctx->major_decoding_params[1][substr];
2194         ctx->cur_channel_params = ctx->major_channel_params[1];
2195 
2196         generate_2_noise_channels(ctx);
2197         rematrix_channels        (ctx);
2198 
2199         apply_filters(ctx);
2200     }
2201 }
2202 
2203 /****************************************************************************/
2204 
mlp_encode_frame(AVCodecContext * avctx,AVPacket * avpkt,const AVFrame * frame,int * got_packet)2205 static int mlp_encode_frame(AVCodecContext *avctx, AVPacket *avpkt,
2206                             const AVFrame *frame, int *got_packet)
2207 {
2208     MLPEncodeContext *ctx = avctx->priv_data;
2209     unsigned int bytes_written = 0;
2210     int restart_frame, ret;
2211     uint8_t *data;
2212 
2213     if ((ret = ff_alloc_packet2(avctx, avpkt, 87500 * avctx->channels, 0)) < 0)
2214         return ret;
2215 
2216     /* add current frame to queue */
2217     if ((ret = ff_af_queue_add(&ctx->afq, frame)) < 0)
2218         return ret;
2219 
2220     data = frame->data[0];
2221 
2222     ctx->frame_index = avctx->frame_number % ctx->max_restart_interval;
2223 
2224     ctx->inout_buffer = ctx->major_inout_buffer
2225                       + ctx->frame_index * ctx->one_sample_buffer_size;
2226 
2227     if (ctx->last_frame == ctx->inout_buffer) {
2228         return 0;
2229     }
2230 
2231     ctx->sample_buffer = ctx->major_scratch_buffer
2232                        + ctx->frame_index * ctx->one_sample_buffer_size;
2233 
2234     ctx->write_buffer = ctx->inout_buffer;
2235 
2236     if (avctx->frame_number < ctx->max_restart_interval) {
2237         if (data) {
2238             goto input_and_return;
2239         } else {
2240             /* There are less frames than the requested major header interval.
2241              * Update the context to reflect this.
2242              */
2243             ctx->max_restart_interval = avctx->frame_number;
2244             ctx->frame_index = 0;
2245 
2246             ctx->sample_buffer = ctx->major_scratch_buffer;
2247             ctx->inout_buffer = ctx->major_inout_buffer;
2248         }
2249     }
2250 
2251     if (ctx->frame_size[ctx->frame_index] > MAX_BLOCKSIZE) {
2252         av_log(avctx, AV_LOG_ERROR, "Invalid frame size (%d > %d)\n",
2253                ctx->frame_size[ctx->frame_index], MAX_BLOCKSIZE);
2254         return AVERROR_INVALIDDATA;
2255     }
2256 
2257     restart_frame = !ctx->frame_index;
2258 
2259     if (restart_frame) {
2260         set_major_params(ctx);
2261         if (ctx->min_restart_interval != ctx->max_restart_interval)
2262             process_major_frame(ctx);
2263     }
2264 
2265     if (ctx->min_restart_interval == ctx->max_restart_interval)
2266         ctx->write_buffer = ctx->sample_buffer;
2267 
2268     bytes_written = write_access_unit(ctx, avpkt->data, avpkt->size, restart_frame);
2269 
2270     ctx->timestamp += ctx->frame_size[ctx->frame_index];
2271     ctx->dts       += ctx->frame_size[ctx->frame_index];
2272 
2273 input_and_return:
2274 
2275     if (data) {
2276         ctx->frame_size[ctx->frame_index] = avctx->frame_size;
2277         ctx->next_major_frame_size += avctx->frame_size;
2278         ctx->next_major_number_of_frames++;
2279         input_data(ctx, data);
2280     } else if (!ctx->last_frame) {
2281         ctx->last_frame = ctx->inout_buffer;
2282     }
2283 
2284     restart_frame = (ctx->frame_index + 1) % ctx->min_restart_interval;
2285 
2286     if (!restart_frame) {
2287         int seq_index;
2288 
2289         for (seq_index = 0;
2290              seq_index < ctx->restart_intervals && (seq_index * ctx->min_restart_interval) <= ctx->avctx->frame_number;
2291              seq_index++) {
2292             unsigned int number_of_samples = 0;
2293             unsigned int index;
2294 
2295             ctx->sample_buffer = ctx->major_scratch_buffer;
2296             ctx->inout_buffer = ctx->major_inout_buffer;
2297             ctx->seq_index = seq_index;
2298 
2299             ctx->starting_frame_index = (ctx->avctx->frame_number - (ctx->avctx->frame_number % ctx->min_restart_interval)
2300                                       - (seq_index * ctx->min_restart_interval)) % ctx->max_restart_interval;
2301             ctx->number_of_frames = ctx->next_major_number_of_frames;
2302             ctx->number_of_subblocks = ctx->next_major_number_of_frames + 1;
2303 
2304             ctx->seq_channel_params = (ChannelParams *) ctx->channel_params +
2305                                       (ctx->frame_index / ctx->min_restart_interval)*(ctx->sequence_size)*(ctx->avctx->channels) +
2306                                       (ctx->seq_offset[seq_index])*(ctx->avctx->channels);
2307 
2308             ctx->seq_decoding_params = (DecodingParams *) ctx->decoding_params +
2309                                        (ctx->frame_index / ctx->min_restart_interval)*(ctx->sequence_size)*(ctx->num_substreams) +
2310                                        (ctx->seq_offset[seq_index])*(ctx->num_substreams);
2311 
2312             for (index = 0; index < ctx->number_of_frames; index++) {
2313                 number_of_samples += ctx->frame_size[(ctx->starting_frame_index + index) % ctx->max_restart_interval];
2314             }
2315             ctx->number_of_samples = number_of_samples;
2316 
2317             for (index = 0; index < ctx->seq_size[seq_index]; index++) {
2318                 clear_channel_params(ctx, ctx->seq_channel_params + index*(ctx->avctx->channels));
2319                 default_decoding_params(ctx, ctx->seq_decoding_params + index*(ctx->num_substreams));
2320             }
2321 
2322             input_to_sample_buffer(ctx);
2323 
2324             analyze_sample_buffer(ctx);
2325         }
2326 
2327         if (ctx->frame_index == (ctx->max_restart_interval - 1)) {
2328             ctx->major_frame_size = ctx->next_major_frame_size;
2329             ctx->next_major_frame_size = 0;
2330             ctx->major_number_of_frames = ctx->next_major_number_of_frames;
2331             ctx->next_major_number_of_frames = 0;
2332 
2333             if (!ctx->major_frame_size)
2334                 goto no_data_left;
2335         }
2336     }
2337 
2338 no_data_left:
2339 
2340     ff_af_queue_remove(&ctx->afq, avctx->frame_size, &avpkt->pts,
2341                        &avpkt->duration);
2342     avpkt->size = bytes_written;
2343     *got_packet = 1;
2344     return 0;
2345 }
2346 
mlp_encode_close(AVCodecContext * avctx)2347 static av_cold int mlp_encode_close(AVCodecContext *avctx)
2348 {
2349     MLPEncodeContext *ctx = avctx->priv_data;
2350 
2351     ff_lpc_end(&ctx->lpc_ctx);
2352 
2353     av_freep(&ctx->lossless_check_data);
2354     av_freep(&ctx->major_scratch_buffer);
2355     av_freep(&ctx->major_inout_buffer);
2356     av_freep(&ctx->lpc_sample_buffer);
2357     av_freep(&ctx->decoding_params);
2358     av_freep(&ctx->channel_params);
2359     av_freep(&ctx->frame_size);
2360     av_freep(&ctx->max_output_bits);
2361     ff_af_queue_close(&ctx->afq);
2362 
2363     return 0;
2364 }
2365 
2366 #if CONFIG_MLP_ENCODER
2367 AVCodec ff_mlp_encoder = {
2368     .name                   ="mlp",
2369     .long_name              = NULL_IF_CONFIG_SMALL("MLP (Meridian Lossless Packing)"),
2370     .type                   = AVMEDIA_TYPE_AUDIO,
2371     .id                     = AV_CODEC_ID_MLP,
2372     .priv_data_size         = sizeof(MLPEncodeContext),
2373     .init                   = mlp_encode_init,
2374     .encode2                = mlp_encode_frame,
2375     .close                  = mlp_encode_close,
2376     .capabilities           = AV_CODEC_CAP_SMALL_LAST_FRAME | AV_CODEC_CAP_EXPERIMENTAL,
2377     .sample_fmts            = (const enum AVSampleFormat[]) {AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_NONE},
2378     .supported_samplerates  = (const int[]) {44100, 48000, 88200, 96000, 176400, 192000, 0},
2379     .channel_layouts        = ff_mlp_channel_layouts,
2380     .caps_internal          = FF_CODEC_CAP_INIT_CLEANUP,
2381 };
2382 #endif
2383 #if CONFIG_TRUEHD_ENCODER
2384 AVCodec ff_truehd_encoder = {
2385     .name                   ="truehd",
2386     .long_name              = NULL_IF_CONFIG_SMALL("TrueHD"),
2387     .type                   = AVMEDIA_TYPE_AUDIO,
2388     .id                     = AV_CODEC_ID_TRUEHD,
2389     .priv_data_size         = sizeof(MLPEncodeContext),
2390     .init                   = mlp_encode_init,
2391     .encode2                = mlp_encode_frame,
2392     .close                  = mlp_encode_close,
2393     .capabilities           = AV_CODEC_CAP_SMALL_LAST_FRAME | AV_CODEC_CAP_EXPERIMENTAL,
2394     .sample_fmts            = (const enum AVSampleFormat[]) {AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_NONE},
2395     .supported_samplerates  = (const int[]) {44100, 48000, 88200, 96000, 176400, 192000, 0},
2396     .channel_layouts        = (const uint64_t[]) {AV_CH_LAYOUT_STEREO, AV_CH_LAYOUT_5POINT0_BACK, AV_CH_LAYOUT_5POINT1_BACK, 0},
2397     .caps_internal          = FF_CODEC_CAP_INIT_CLEANUP,
2398 };
2399 #endif
2400