• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * LSP routines for ACELP-based codecs
3  *
4  * Copyright (c) 2007 Reynaldo H. Verdejo Pinochet (QCELP decoder)
5  * Copyright (c) 2008 Vladimir Voroshilov
6  *
7  * This file is part of FFmpeg.
8  *
9  * FFmpeg is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public
11  * License as published by the Free Software Foundation; either
12  * version 2.1 of the License, or (at your option) any later version.
13  *
14  * FFmpeg is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with FFmpeg; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22  */
23 
24 #include <inttypes.h>
25 
26 #include "avcodec.h"
27 #define FRAC_BITS 14
28 #include "mathops.h"
29 #include "lsp.h"
30 #include "libavcodec/mips/lsp_mips.h"
31 #include "libavutil/avassert.h"
32 
ff_acelp_reorder_lsf(int16_t * lsfq,int lsfq_min_distance,int lsfq_min,int lsfq_max,int lp_order)33 void ff_acelp_reorder_lsf(int16_t* lsfq, int lsfq_min_distance, int lsfq_min, int lsfq_max, int lp_order)
34 {
35     int i, j;
36 
37     /* sort lsfq in ascending order. float bubble algorithm,
38        O(n) if data already sorted, O(n^2) - otherwise */
39     for(i=0; i<lp_order-1; i++)
40         for(j=i; j>=0 && lsfq[j] > lsfq[j+1]; j--)
41             FFSWAP(int16_t, lsfq[j], lsfq[j+1]);
42 
43     for(i=0; i<lp_order; i++)
44     {
45         lsfq[i] = FFMAX(lsfq[i], lsfq_min);
46         lsfq_min = lsfq[i] + lsfq_min_distance;
47     }
48     lsfq[lp_order-1] = FFMIN(lsfq[lp_order-1], lsfq_max);//Is warning required ?
49 }
50 
ff_set_min_dist_lsf(float * lsf,double min_spacing,int size)51 void ff_set_min_dist_lsf(float *lsf, double min_spacing, int size)
52 {
53     int i;
54     float prev = 0.0;
55     for (i = 0; i < size; i++)
56         prev = lsf[i] = FFMAX(lsf[i], prev + min_spacing);
57 }
58 
59 
60 /* Cosine table: base_cos[i] = (1 << 15) * cos(i * PI / 64) */
61 static const int16_t tab_cos[65] =
62 {
63   32767,  32738,  32617,  32421,  32145,  31793,  31364,  30860,
64   30280,  29629,  28905,  28113,  27252,  26326,  25336,  24285,
65   23176,  22011,  20793,  19525,  18210,  16851,  15451,  14014,
66   12543,  11043,   9515,   7965,   6395,   4810,   3214,   1609,
67       1,  -1607,  -3211,  -4808,  -6393,  -7962,  -9513, -11040,
68  -12541, -14012, -15449, -16848, -18207, -19523, -20791, -22009,
69  -23174, -24283, -25334, -26324, -27250, -28111, -28904, -29627,
70  -30279, -30858, -31363, -31792, -32144, -32419, -32616, -32736, -32768,
71 };
72 
ff_cos(uint16_t arg)73 static int16_t ff_cos(uint16_t arg)
74 {
75     uint8_t offset= arg;
76     uint8_t ind = arg >> 8;
77 
78     av_assert2(arg <= 0x3fff);
79 
80     return tab_cos[ind] + (offset * (tab_cos[ind+1] - tab_cos[ind]) >> 8);
81 }
82 
ff_acelp_lsf2lsp(int16_t * lsp,const int16_t * lsf,int lp_order)83 void ff_acelp_lsf2lsp(int16_t *lsp, const int16_t *lsf, int lp_order)
84 {
85     int i;
86 
87     /* Convert LSF to LSP, lsp=cos(lsf) */
88     for(i=0; i<lp_order; i++)
89         // 20861 = 2.0 / PI in (0.15)
90         lsp[i] = ff_cos(lsf[i] * 20861 >> 15); // divide by PI and (0,13) -> (0,14)
91 }
92 
ff_acelp_lsf2lspd(double * lsp,const float * lsf,int lp_order)93 void ff_acelp_lsf2lspd(double *lsp, const float *lsf, int lp_order)
94 {
95     int i;
96 
97     for(i = 0; i < lp_order; i++)
98         lsp[i] = cos(2.0 * M_PI * lsf[i]);
99 }
100 
101 /**
102  * @brief decodes polynomial coefficients from LSP
103  * @param[out] f decoded polynomial coefficients (-0x20000000 <= (3.22) <= 0x1fffffff)
104  * @param lsp LSP coefficients (-0x8000 <= (0.15) <= 0x7fff)
105  */
lsp2poly(int * f,const int16_t * lsp,int lp_half_order)106 static void lsp2poly(int* f, const int16_t* lsp, int lp_half_order)
107 {
108     int i, j;
109 
110     f[0] = 0x400000;          // 1.0 in (3.22)
111     f[1] = -lsp[0] * 256;     // *2 and (0.15) -> (3.22)
112 
113     for(i=2; i<=lp_half_order; i++)
114     {
115         f[i] = f[i-2];
116         for(j=i; j>1; j--)
117             f[j] -= MULL(f[j-1], lsp[2*i-2], FRAC_BITS) - f[j-2];
118 
119         f[1] -= lsp[2*i-2] * 256;
120     }
121 }
122 
ff_acelp_lsp2lpc(int16_t * lp,const int16_t * lsp,int lp_half_order)123 void ff_acelp_lsp2lpc(int16_t* lp, const int16_t* lsp, int lp_half_order)
124 {
125     int i;
126     int f1[MAX_LP_HALF_ORDER+1]; // (3.22)
127     int f2[MAX_LP_HALF_ORDER+1]; // (3.22)
128 
129     lsp2poly(f1, lsp  , lp_half_order);
130     lsp2poly(f2, lsp+1, lp_half_order);
131 
132     /* 3.2.6 of G.729, Equations 25 and  26*/
133     lp[0] = 4096;
134     for(i=1; i<lp_half_order+1; i++)
135     {
136         int ff1 = f1[i] + f1[i-1]; // (3.22)
137         int ff2 = f2[i] - f2[i-1]; // (3.22)
138 
139         ff1 += 1 << 10; // for rounding
140         lp[i]    = (ff1 + ff2) >> 11; // divide by 2 and (3.22) -> (3.12)
141         lp[(lp_half_order << 1) + 1 - i] = (ff1 - ff2) >> 11; // divide by 2 and (3.22) -> (3.12)
142     }
143 }
144 
ff_amrwb_lsp2lpc(const double * lsp,float * lp,int lp_order)145 void ff_amrwb_lsp2lpc(const double *lsp, float *lp, int lp_order)
146 {
147     int lp_half_order = lp_order >> 1;
148     double buf[MAX_LP_HALF_ORDER + 1];
149     double pa[MAX_LP_HALF_ORDER + 1];
150     double *qa = buf + 1;
151     int i,j;
152 
153     qa[-1] = 0.0;
154 
155     ff_lsp2polyf(lsp    , pa, lp_half_order    );
156     ff_lsp2polyf(lsp + 1, qa, lp_half_order - 1);
157 
158     for (i = 1, j = lp_order - 1; i < lp_half_order; i++, j--) {
159         double paf =  pa[i]            * (1 + lsp[lp_order - 1]);
160         double qaf = (qa[i] - qa[i-2]) * (1 - lsp[lp_order - 1]);
161         lp[i-1]  = (paf + qaf) * 0.5;
162         lp[j-1]  = (paf - qaf) * 0.5;
163     }
164 
165     lp[lp_half_order - 1] = (1.0 + lsp[lp_order - 1]) *
166         pa[lp_half_order] * 0.5;
167 
168     lp[lp_order - 1] = lsp[lp_order - 1];
169 }
170 
ff_acelp_lp_decode(int16_t * lp_1st,int16_t * lp_2nd,const int16_t * lsp_2nd,const int16_t * lsp_prev,int lp_order)171 void ff_acelp_lp_decode(int16_t* lp_1st, int16_t* lp_2nd, const int16_t* lsp_2nd, const int16_t* lsp_prev, int lp_order)
172 {
173     int16_t lsp_1st[MAX_LP_ORDER]; // (0.15)
174     int i;
175 
176     /* LSP values for first subframe (3.2.5 of G.729, Equation 24)*/
177     for(i=0; i<lp_order; i++)
178 #ifdef G729_BITEXACT
179         lsp_1st[i] = (lsp_2nd[i] >> 1) + (lsp_prev[i] >> 1);
180 #else
181         lsp_1st[i] = (lsp_2nd[i] + lsp_prev[i]) >> 1;
182 #endif
183 
184     ff_acelp_lsp2lpc(lp_1st, lsp_1st, lp_order >> 1);
185 
186     /* LSP values for second subframe (3.2.5 of G.729)*/
187     ff_acelp_lsp2lpc(lp_2nd, lsp_2nd, lp_order >> 1);
188 }
189 
190 #ifndef ff_lsp2polyf
ff_lsp2polyf(const double * lsp,double * f,int lp_half_order)191 void ff_lsp2polyf(const double *lsp, double *f, int lp_half_order)
192 {
193     int i, j;
194 
195     f[0] = 1.0;
196     f[1] = -2 * lsp[0];
197     lsp -= 2;
198     for(i=2; i<=lp_half_order; i++)
199     {
200         double val = -2 * lsp[2*i];
201         f[i] = val * f[i-1] + 2*f[i-2];
202         for(j=i-1; j>1; j--)
203             f[j] += f[j-1] * val + f[j-2];
204         f[1] += val;
205     }
206 }
207 #endif /* ff_lsp2polyf */
208 
ff_acelp_lspd2lpc(const double * lsp,float * lpc,int lp_half_order)209 void ff_acelp_lspd2lpc(const double *lsp, float *lpc, int lp_half_order)
210 {
211     double pa[MAX_LP_HALF_ORDER+1], qa[MAX_LP_HALF_ORDER+1];
212     float *lpc2 = lpc + (lp_half_order << 1) - 1;
213 
214     av_assert2(lp_half_order <= MAX_LP_HALF_ORDER);
215 
216     ff_lsp2polyf(lsp,     pa, lp_half_order);
217     ff_lsp2polyf(lsp + 1, qa, lp_half_order);
218 
219     while (lp_half_order--) {
220         double paf = pa[lp_half_order+1] + pa[lp_half_order];
221         double qaf = qa[lp_half_order+1] - qa[lp_half_order];
222 
223         lpc [ lp_half_order] = 0.5*(paf+qaf);
224         lpc2[-lp_half_order] = 0.5*(paf-qaf);
225     }
226 }
227 
ff_sort_nearly_sorted_floats(float * vals,int len)228 void ff_sort_nearly_sorted_floats(float *vals, int len)
229 {
230     int i,j;
231 
232     for (i = 0; i < len - 1; i++)
233         for (j = i; j >= 0 && vals[j] > vals[j+1]; j--)
234             FFSWAP(float, vals[j], vals[j+1]);
235 }
236