• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/mmap.c
4  *
5  * Written by obz.
6  *
7  * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/backing-dev.h>
15 #include <linux/mm.h>
16 #include <linux/mm_inline.h>
17 #include <linux/vmacache.h>
18 #include <linux/shm.h>
19 #include <linux/mman.h>
20 #include <linux/pagemap.h>
21 #include <linux/swap.h>
22 #include <linux/syscalls.h>
23 #include <linux/capability.h>
24 #include <linux/init.h>
25 #include <linux/file.h>
26 #include <linux/fs.h>
27 #include <linux/personality.h>
28 #include <linux/security.h>
29 #include <linux/hugetlb.h>
30 #include <linux/shmem_fs.h>
31 #include <linux/profile.h>
32 #include <linux/export.h>
33 #include <linux/mount.h>
34 #include <linux/mempolicy.h>
35 #include <linux/rmap.h>
36 #include <linux/mmu_notifier.h>
37 #include <linux/mmdebug.h>
38 #include <linux/perf_event.h>
39 #include <linux/audit.h>
40 #include <linux/khugepaged.h>
41 #include <linux/uprobes.h>
42 #include <linux/rbtree_augmented.h>
43 #include <linux/notifier.h>
44 #include <linux/memory.h>
45 #include <linux/printk.h>
46 #include <linux/userfaultfd_k.h>
47 #include <linux/moduleparam.h>
48 #include <linux/pkeys.h>
49 #include <linux/oom.h>
50 #include <linux/sched/mm.h>
51 
52 #include <linux/uaccess.h>
53 #include <asm/cacheflush.h>
54 #include <asm/tlb.h>
55 #include <asm/mmu_context.h>
56 
57 #define CREATE_TRACE_POINTS
58 #include <trace/events/mmap.h>
59 
60 #undef CREATE_TRACE_POINTS
61 #include <trace/hooks/mm.h>
62 
63 #include "internal.h"
64 
65 #ifndef arch_mmap_check
66 #define arch_mmap_check(addr, len, flags)	(0)
67 #endif
68 
69 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
70 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
71 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
72 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
73 #endif
74 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
75 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
76 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
77 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
78 #endif
79 
80 static bool ignore_rlimit_data;
81 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
82 
83 static void unmap_region(struct mm_struct *mm,
84 		struct vm_area_struct *vma, struct vm_area_struct *prev,
85 		unsigned long start, unsigned long end);
86 
87 /* description of effects of mapping type and prot in current implementation.
88  * this is due to the limited x86 page protection hardware.  The expected
89  * behavior is in parens:
90  *
91  * map_type	prot
92  *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
93  * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
94  *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
95  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
96  *
97  * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
98  *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
99  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
100  */
101 pgprot_t protection_map[16] __ro_after_init = {
102 	__P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
103 	__S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
104 };
105 
106 #ifndef CONFIG_ARCH_HAS_FILTER_PGPROT
arch_filter_pgprot(pgprot_t prot)107 static inline pgprot_t arch_filter_pgprot(pgprot_t prot)
108 {
109 	return prot;
110 }
111 #endif
112 
vm_get_page_prot(unsigned long vm_flags)113 pgprot_t vm_get_page_prot(unsigned long vm_flags)
114 {
115 	pgprot_t ret = __pgprot(pgprot_val(protection_map[vm_flags &
116 				(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
117 			pgprot_val(arch_vm_get_page_prot(vm_flags)));
118 
119 	return arch_filter_pgprot(ret);
120 }
121 EXPORT_SYMBOL(vm_get_page_prot);
122 
vm_pgprot_modify(pgprot_t oldprot,unsigned long vm_flags)123 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
124 {
125 	return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
126 }
127 
128 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
vma_set_page_prot(struct vm_area_struct * vma)129 void vma_set_page_prot(struct vm_area_struct *vma)
130 {
131 	unsigned long vm_flags = vma->vm_flags;
132 	pgprot_t vm_page_prot;
133 
134 	vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
135 	if (vma_wants_writenotify(vma, vm_page_prot)) {
136 		vm_flags &= ~VM_SHARED;
137 		vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
138 	}
139 	/* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */
140 	WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
141 }
142 
143 /*
144  * Requires inode->i_mapping->i_mmap_rwsem
145  */
__remove_shared_vm_struct(struct vm_area_struct * vma,struct file * file,struct address_space * mapping)146 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
147 		struct file *file, struct address_space *mapping)
148 {
149 	if (vma->vm_flags & VM_DENYWRITE)
150 		allow_write_access(file);
151 	if (vma->vm_flags & VM_SHARED)
152 		mapping_unmap_writable(mapping);
153 
154 	flush_dcache_mmap_lock(mapping);
155 	vma_interval_tree_remove(vma, &mapping->i_mmap);
156 	flush_dcache_mmap_unlock(mapping);
157 }
158 
159 /*
160  * Unlink a file-based vm structure from its interval tree, to hide
161  * vma from rmap and vmtruncate before freeing its page tables.
162  */
unlink_file_vma(struct vm_area_struct * vma)163 void unlink_file_vma(struct vm_area_struct *vma)
164 {
165 	struct file *file = vma->vm_file;
166 
167 	if (file) {
168 		struct address_space *mapping = file->f_mapping;
169 		i_mmap_lock_write(mapping);
170 		__remove_shared_vm_struct(vma, file, mapping);
171 		i_mmap_unlock_write(mapping);
172 	}
173 }
174 
175 /*
176  * Close a vm structure and free it, returning the next.
177  */
remove_vma(struct vm_area_struct * vma)178 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
179 {
180 	struct vm_area_struct *next = vma->vm_next;
181 
182 	might_sleep();
183 	if (vma->vm_ops && vma->vm_ops->close)
184 		vma->vm_ops->close(vma);
185 	if (vma->vm_file)
186 		fput(vma->vm_file);
187 	mpol_put(vma_policy(vma));
188 	vm_area_free(vma);
189 	return next;
190 }
191 
192 static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags,
193 		struct list_head *uf);
SYSCALL_DEFINE1(brk,unsigned long,brk)194 SYSCALL_DEFINE1(brk, unsigned long, brk)
195 {
196 	unsigned long retval;
197 	unsigned long newbrk, oldbrk, origbrk;
198 	struct mm_struct *mm = current->mm;
199 	struct vm_area_struct *next;
200 	unsigned long min_brk;
201 	bool populate;
202 	bool downgraded = false;
203 	LIST_HEAD(uf);
204 
205 	if (mmap_write_lock_killable(mm))
206 		return -EINTR;
207 
208 	origbrk = mm->brk;
209 
210 #ifdef CONFIG_COMPAT_BRK
211 	/*
212 	 * CONFIG_COMPAT_BRK can still be overridden by setting
213 	 * randomize_va_space to 2, which will still cause mm->start_brk
214 	 * to be arbitrarily shifted
215 	 */
216 	if (current->brk_randomized)
217 		min_brk = mm->start_brk;
218 	else
219 		min_brk = mm->end_data;
220 #else
221 	min_brk = mm->start_brk;
222 #endif
223 	if (brk < min_brk)
224 		goto out;
225 
226 	/*
227 	 * Check against rlimit here. If this check is done later after the test
228 	 * of oldbrk with newbrk then it can escape the test and let the data
229 	 * segment grow beyond its set limit the in case where the limit is
230 	 * not page aligned -Ram Gupta
231 	 */
232 	if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
233 			      mm->end_data, mm->start_data))
234 		goto out;
235 
236 	newbrk = PAGE_ALIGN(brk);
237 	oldbrk = PAGE_ALIGN(mm->brk);
238 	if (oldbrk == newbrk) {
239 		mm->brk = brk;
240 		goto success;
241 	}
242 
243 	/*
244 	 * Always allow shrinking brk.
245 	 * __do_munmap() may downgrade mmap_lock to read.
246 	 */
247 	if (brk <= mm->brk) {
248 		int ret;
249 
250 		/*
251 		 * mm->brk must to be protected by write mmap_lock so update it
252 		 * before downgrading mmap_lock. When __do_munmap() fails,
253 		 * mm->brk will be restored from origbrk.
254 		 */
255 		mm->brk = brk;
256 		ret = __do_munmap(mm, newbrk, oldbrk-newbrk, &uf, true);
257 		if (ret < 0) {
258 			mm->brk = origbrk;
259 			goto out;
260 		} else if (ret == 1) {
261 			downgraded = true;
262 		}
263 		goto success;
264 	}
265 
266 	/* Check against existing mmap mappings. */
267 	next = find_vma(mm, oldbrk);
268 	if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
269 		goto out;
270 
271 	/* Ok, looks good - let it rip. */
272 	if (do_brk_flags(oldbrk, newbrk-oldbrk, 0, &uf) < 0)
273 		goto out;
274 	mm->brk = brk;
275 
276 success:
277 	populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
278 	if (downgraded)
279 		mmap_read_unlock(mm);
280 	else
281 		mmap_write_unlock(mm);
282 	userfaultfd_unmap_complete(mm, &uf);
283 	if (populate)
284 		mm_populate(oldbrk, newbrk - oldbrk);
285 	return brk;
286 
287 out:
288 	retval = origbrk;
289 	mmap_write_unlock(mm);
290 	return retval;
291 }
292 
vma_compute_gap(struct vm_area_struct * vma)293 static inline unsigned long vma_compute_gap(struct vm_area_struct *vma)
294 {
295 	unsigned long gap, prev_end;
296 
297 	/*
298 	 * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we
299 	 * allow two stack_guard_gaps between them here, and when choosing
300 	 * an unmapped area; whereas when expanding we only require one.
301 	 * That's a little inconsistent, but keeps the code here simpler.
302 	 */
303 	gap = vm_start_gap(vma);
304 	if (vma->vm_prev) {
305 		prev_end = vm_end_gap(vma->vm_prev);
306 		if (gap > prev_end)
307 			gap -= prev_end;
308 		else
309 			gap = 0;
310 	}
311 	return gap;
312 }
313 
314 #ifdef CONFIG_DEBUG_VM_RB
vma_compute_subtree_gap(struct vm_area_struct * vma)315 static unsigned long vma_compute_subtree_gap(struct vm_area_struct *vma)
316 {
317 	unsigned long max = vma_compute_gap(vma), subtree_gap;
318 	if (vma->vm_rb.rb_left) {
319 		subtree_gap = rb_entry(vma->vm_rb.rb_left,
320 				struct vm_area_struct, vm_rb)->rb_subtree_gap;
321 		if (subtree_gap > max)
322 			max = subtree_gap;
323 	}
324 	if (vma->vm_rb.rb_right) {
325 		subtree_gap = rb_entry(vma->vm_rb.rb_right,
326 				struct vm_area_struct, vm_rb)->rb_subtree_gap;
327 		if (subtree_gap > max)
328 			max = subtree_gap;
329 	}
330 	return max;
331 }
332 
browse_rb(struct mm_struct * mm)333 static int browse_rb(struct mm_struct *mm)
334 {
335 	struct rb_root *root = &mm->mm_rb;
336 	int i = 0, j, bug = 0;
337 	struct rb_node *nd, *pn = NULL;
338 	unsigned long prev = 0, pend = 0;
339 
340 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
341 		struct vm_area_struct *vma;
342 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
343 		if (vma->vm_start < prev) {
344 			pr_emerg("vm_start %lx < prev %lx\n",
345 				  vma->vm_start, prev);
346 			bug = 1;
347 		}
348 		if (vma->vm_start < pend) {
349 			pr_emerg("vm_start %lx < pend %lx\n",
350 				  vma->vm_start, pend);
351 			bug = 1;
352 		}
353 		if (vma->vm_start > vma->vm_end) {
354 			pr_emerg("vm_start %lx > vm_end %lx\n",
355 				  vma->vm_start, vma->vm_end);
356 			bug = 1;
357 		}
358 		spin_lock(&mm->page_table_lock);
359 		if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
360 			pr_emerg("free gap %lx, correct %lx\n",
361 			       vma->rb_subtree_gap,
362 			       vma_compute_subtree_gap(vma));
363 			bug = 1;
364 		}
365 		spin_unlock(&mm->page_table_lock);
366 		i++;
367 		pn = nd;
368 		prev = vma->vm_start;
369 		pend = vma->vm_end;
370 	}
371 	j = 0;
372 	for (nd = pn; nd; nd = rb_prev(nd))
373 		j++;
374 	if (i != j) {
375 		pr_emerg("backwards %d, forwards %d\n", j, i);
376 		bug = 1;
377 	}
378 	return bug ? -1 : i;
379 }
380 
validate_mm_rb(struct rb_root * root,struct vm_area_struct * ignore)381 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
382 {
383 	struct rb_node *nd;
384 
385 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
386 		struct vm_area_struct *vma;
387 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
388 		VM_BUG_ON_VMA(vma != ignore &&
389 			vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
390 			vma);
391 	}
392 }
393 
validate_mm(struct mm_struct * mm)394 static void validate_mm(struct mm_struct *mm)
395 {
396 	int bug = 0;
397 	int i = 0;
398 	unsigned long highest_address = 0;
399 	struct vm_area_struct *vma = mm->mmap;
400 
401 	while (vma) {
402 		struct anon_vma *anon_vma = vma->anon_vma;
403 		struct anon_vma_chain *avc;
404 
405 		if (anon_vma) {
406 			anon_vma_lock_read(anon_vma);
407 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
408 				anon_vma_interval_tree_verify(avc);
409 			anon_vma_unlock_read(anon_vma);
410 		}
411 
412 		highest_address = vm_end_gap(vma);
413 		vma = vma->vm_next;
414 		i++;
415 	}
416 	if (i != mm->map_count) {
417 		pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
418 		bug = 1;
419 	}
420 	if (highest_address != mm->highest_vm_end) {
421 		pr_emerg("mm->highest_vm_end %lx, found %lx\n",
422 			  mm->highest_vm_end, highest_address);
423 		bug = 1;
424 	}
425 	i = browse_rb(mm);
426 	if (i != mm->map_count) {
427 		if (i != -1)
428 			pr_emerg("map_count %d rb %d\n", mm->map_count, i);
429 		bug = 1;
430 	}
431 	VM_BUG_ON_MM(bug, mm);
432 }
433 #else
434 #define validate_mm_rb(root, ignore) do { } while (0)
435 #define validate_mm(mm) do { } while (0)
436 #endif
437 
RB_DECLARE_CALLBACKS_MAX(static,vma_gap_callbacks,struct vm_area_struct,vm_rb,unsigned long,rb_subtree_gap,vma_compute_gap)438 RB_DECLARE_CALLBACKS_MAX(static, vma_gap_callbacks,
439 			 struct vm_area_struct, vm_rb,
440 			 unsigned long, rb_subtree_gap, vma_compute_gap)
441 
442 /*
443  * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
444  * vma->vm_prev->vm_end values changed, without modifying the vma's position
445  * in the rbtree.
446  */
447 static void vma_gap_update(struct vm_area_struct *vma)
448 {
449 	/*
450 	 * As it turns out, RB_DECLARE_CALLBACKS_MAX() already created
451 	 * a callback function that does exactly what we want.
452 	 */
453 	vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
454 }
455 
vma_rb_insert(struct vm_area_struct * vma,struct rb_root * root)456 static inline void vma_rb_insert(struct vm_area_struct *vma,
457 				 struct rb_root *root)
458 {
459 	/* All rb_subtree_gap values must be consistent prior to insertion */
460 	validate_mm_rb(root, NULL);
461 
462 	rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
463 }
464 
__vma_rb_erase(struct vm_area_struct * vma,struct rb_root * root)465 static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
466 {
467 	/*
468 	 * Note rb_erase_augmented is a fairly large inline function,
469 	 * so make sure we instantiate it only once with our desired
470 	 * augmented rbtree callbacks.
471 	 */
472 	rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
473 }
474 
vma_rb_erase_ignore(struct vm_area_struct * vma,struct rb_root * root,struct vm_area_struct * ignore)475 static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma,
476 						struct rb_root *root,
477 						struct vm_area_struct *ignore)
478 {
479 	/*
480 	 * All rb_subtree_gap values must be consistent prior to erase,
481 	 * with the possible exception of
482 	 *
483 	 * a. the "next" vma being erased if next->vm_start was reduced in
484 	 *    __vma_adjust() -> __vma_unlink()
485 	 * b. the vma being erased in detach_vmas_to_be_unmapped() ->
486 	 *    vma_rb_erase()
487 	 */
488 	validate_mm_rb(root, ignore);
489 
490 	__vma_rb_erase(vma, root);
491 }
492 
vma_rb_erase(struct vm_area_struct * vma,struct rb_root * root)493 static __always_inline void vma_rb_erase(struct vm_area_struct *vma,
494 					 struct rb_root *root)
495 {
496 	vma_rb_erase_ignore(vma, root, vma);
497 }
498 
499 /*
500  * vma has some anon_vma assigned, and is already inserted on that
501  * anon_vma's interval trees.
502  *
503  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
504  * vma must be removed from the anon_vma's interval trees using
505  * anon_vma_interval_tree_pre_update_vma().
506  *
507  * After the update, the vma will be reinserted using
508  * anon_vma_interval_tree_post_update_vma().
509  *
510  * The entire update must be protected by exclusive mmap_lock and by
511  * the root anon_vma's mutex.
512  */
513 static inline void
anon_vma_interval_tree_pre_update_vma(struct vm_area_struct * vma)514 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
515 {
516 	struct anon_vma_chain *avc;
517 
518 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
519 		anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
520 }
521 
522 static inline void
anon_vma_interval_tree_post_update_vma(struct vm_area_struct * vma)523 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
524 {
525 	struct anon_vma_chain *avc;
526 
527 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
528 		anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
529 }
530 
find_vma_links(struct mm_struct * mm,unsigned long addr,unsigned long end,struct vm_area_struct ** pprev,struct rb_node *** rb_link,struct rb_node ** rb_parent)531 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
532 		unsigned long end, struct vm_area_struct **pprev,
533 		struct rb_node ***rb_link, struct rb_node **rb_parent)
534 {
535 	struct rb_node **__rb_link, *__rb_parent, *rb_prev;
536 
537 	__rb_link = &mm->mm_rb.rb_node;
538 	rb_prev = __rb_parent = NULL;
539 
540 	while (*__rb_link) {
541 		struct vm_area_struct *vma_tmp;
542 
543 		__rb_parent = *__rb_link;
544 		vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
545 
546 		if (vma_tmp->vm_end > addr) {
547 			/* Fail if an existing vma overlaps the area */
548 			if (vma_tmp->vm_start < end)
549 				return -ENOMEM;
550 			__rb_link = &__rb_parent->rb_left;
551 		} else {
552 			rb_prev = __rb_parent;
553 			__rb_link = &__rb_parent->rb_right;
554 		}
555 	}
556 
557 	*pprev = NULL;
558 	if (rb_prev)
559 		*pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
560 	*rb_link = __rb_link;
561 	*rb_parent = __rb_parent;
562 	return 0;
563 }
564 
565 /*
566  * vma_next() - Get the next VMA.
567  * @mm: The mm_struct.
568  * @vma: The current vma.
569  *
570  * If @vma is NULL, return the first vma in the mm.
571  *
572  * Returns: The next VMA after @vma.
573  */
vma_next(struct mm_struct * mm,struct vm_area_struct * vma)574 static inline struct vm_area_struct *vma_next(struct mm_struct *mm,
575 					 struct vm_area_struct *vma)
576 {
577 	if (!vma)
578 		return mm->mmap;
579 
580 	return vma->vm_next;
581 }
582 
583 /*
584  * munmap_vma_range() - munmap VMAs that overlap a range.
585  * @mm: The mm struct
586  * @start: The start of the range.
587  * @len: The length of the range.
588  * @pprev: pointer to the pointer that will be set to previous vm_area_struct
589  * @rb_link: the rb_node
590  * @rb_parent: the parent rb_node
591  *
592  * Find all the vm_area_struct that overlap from @start to
593  * @end and munmap them.  Set @pprev to the previous vm_area_struct.
594  *
595  * Returns: -ENOMEM on munmap failure or 0 on success.
596  */
597 static inline int
munmap_vma_range(struct mm_struct * mm,unsigned long start,unsigned long len,struct vm_area_struct ** pprev,struct rb_node *** link,struct rb_node ** parent,struct list_head * uf)598 munmap_vma_range(struct mm_struct *mm, unsigned long start, unsigned long len,
599 		 struct vm_area_struct **pprev, struct rb_node ***link,
600 		 struct rb_node **parent, struct list_head *uf)
601 {
602 
603 	while (find_vma_links(mm, start, start + len, pprev, link, parent))
604 		if (do_munmap(mm, start, len, uf))
605 			return -ENOMEM;
606 
607 	return 0;
608 }
count_vma_pages_range(struct mm_struct * mm,unsigned long addr,unsigned long end)609 static unsigned long count_vma_pages_range(struct mm_struct *mm,
610 		unsigned long addr, unsigned long end)
611 {
612 	unsigned long nr_pages = 0;
613 	struct vm_area_struct *vma;
614 
615 	/* Find first overlaping mapping */
616 	vma = find_vma_intersection(mm, addr, end);
617 	if (!vma)
618 		return 0;
619 
620 	nr_pages = (min(end, vma->vm_end) -
621 		max(addr, vma->vm_start)) >> PAGE_SHIFT;
622 
623 	/* Iterate over the rest of the overlaps */
624 	for (vma = vma->vm_next; vma; vma = vma->vm_next) {
625 		unsigned long overlap_len;
626 
627 		if (vma->vm_start > end)
628 			break;
629 
630 		overlap_len = min(end, vma->vm_end) - vma->vm_start;
631 		nr_pages += overlap_len >> PAGE_SHIFT;
632 	}
633 
634 	return nr_pages;
635 }
636 
__vma_link_rb(struct mm_struct * mm,struct vm_area_struct * vma,struct rb_node ** rb_link,struct rb_node * rb_parent)637 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
638 		struct rb_node **rb_link, struct rb_node *rb_parent)
639 {
640 	/* Update tracking information for the gap following the new vma. */
641 	if (vma->vm_next)
642 		vma_gap_update(vma->vm_next);
643 	else
644 		mm->highest_vm_end = vm_end_gap(vma);
645 
646 	/*
647 	 * vma->vm_prev wasn't known when we followed the rbtree to find the
648 	 * correct insertion point for that vma. As a result, we could not
649 	 * update the vma vm_rb parents rb_subtree_gap values on the way down.
650 	 * So, we first insert the vma with a zero rb_subtree_gap value
651 	 * (to be consistent with what we did on the way down), and then
652 	 * immediately update the gap to the correct value. Finally we
653 	 * rebalance the rbtree after all augmented values have been set.
654 	 */
655 	rb_link_node(&vma->vm_rb, rb_parent, rb_link);
656 	vma->rb_subtree_gap = 0;
657 	vma_gap_update(vma);
658 	vma_rb_insert(vma, &mm->mm_rb);
659 }
660 
__vma_link_file(struct vm_area_struct * vma)661 static void __vma_link_file(struct vm_area_struct *vma)
662 {
663 	struct file *file;
664 
665 	file = vma->vm_file;
666 	if (file) {
667 		struct address_space *mapping = file->f_mapping;
668 
669 		if (vma->vm_flags & VM_DENYWRITE)
670 			put_write_access(file_inode(file));
671 		if (vma->vm_flags & VM_SHARED)
672 			mapping_allow_writable(mapping);
673 
674 		flush_dcache_mmap_lock(mapping);
675 		vma_interval_tree_insert(vma, &mapping->i_mmap);
676 		flush_dcache_mmap_unlock(mapping);
677 	}
678 }
679 
680 static void
__vma_link(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev,struct rb_node ** rb_link,struct rb_node * rb_parent)681 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
682 	struct vm_area_struct *prev, struct rb_node **rb_link,
683 	struct rb_node *rb_parent)
684 {
685 	__vma_link_list(mm, vma, prev);
686 	__vma_link_rb(mm, vma, rb_link, rb_parent);
687 }
688 
vma_link(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev,struct rb_node ** rb_link,struct rb_node * rb_parent)689 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
690 			struct vm_area_struct *prev, struct rb_node **rb_link,
691 			struct rb_node *rb_parent)
692 {
693 	struct address_space *mapping = NULL;
694 
695 	if (vma->vm_file) {
696 		mapping = vma->vm_file->f_mapping;
697 		i_mmap_lock_write(mapping);
698 	}
699 
700 	__vma_link(mm, vma, prev, rb_link, rb_parent);
701 	__vma_link_file(vma);
702 
703 	if (mapping)
704 		i_mmap_unlock_write(mapping);
705 
706 	mm->map_count++;
707 	validate_mm(mm);
708 }
709 
710 /*
711  * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
712  * mm's list and rbtree.  It has already been inserted into the interval tree.
713  */
__insert_vm_struct(struct mm_struct * mm,struct vm_area_struct * vma)714 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
715 {
716 	struct vm_area_struct *prev;
717 	struct rb_node **rb_link, *rb_parent;
718 
719 	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
720 			   &prev, &rb_link, &rb_parent))
721 		BUG();
722 	__vma_link(mm, vma, prev, rb_link, rb_parent);
723 	mm->map_count++;
724 }
725 
__vma_unlink(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * ignore)726 static __always_inline void __vma_unlink(struct mm_struct *mm,
727 						struct vm_area_struct *vma,
728 						struct vm_area_struct *ignore)
729 {
730 	vma_rb_erase_ignore(vma, &mm->mm_rb, ignore);
731 	__vma_unlink_list(mm, vma);
732 	/* Kill the cache */
733 	vmacache_invalidate(mm);
734 }
735 
736 /*
737  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
738  * is already present in an i_mmap tree without adjusting the tree.
739  * The following helper function should be used when such adjustments
740  * are necessary.  The "insert" vma (if any) is to be inserted
741  * before we drop the necessary locks.
742  */
__vma_adjust(struct vm_area_struct * vma,unsigned long start,unsigned long end,pgoff_t pgoff,struct vm_area_struct * insert,struct vm_area_struct * expand)743 int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
744 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
745 	struct vm_area_struct *expand)
746 {
747 	struct mm_struct *mm = vma->vm_mm;
748 	struct vm_area_struct *next = vma->vm_next, *orig_vma = vma;
749 	struct address_space *mapping = NULL;
750 	struct rb_root_cached *root = NULL;
751 	struct anon_vma *anon_vma = NULL;
752 	struct file *file = vma->vm_file;
753 	bool start_changed = false, end_changed = false;
754 	long adjust_next = 0;
755 	int remove_next = 0;
756 
757 	if (next && !insert) {
758 		struct vm_area_struct *exporter = NULL, *importer = NULL;
759 
760 		if (end >= next->vm_end) {
761 			/*
762 			 * vma expands, overlapping all the next, and
763 			 * perhaps the one after too (mprotect case 6).
764 			 * The only other cases that gets here are
765 			 * case 1, case 7 and case 8.
766 			 */
767 			if (next == expand) {
768 				/*
769 				 * The only case where we don't expand "vma"
770 				 * and we expand "next" instead is case 8.
771 				 */
772 				VM_WARN_ON(end != next->vm_end);
773 				/*
774 				 * remove_next == 3 means we're
775 				 * removing "vma" and that to do so we
776 				 * swapped "vma" and "next".
777 				 */
778 				remove_next = 3;
779 				VM_WARN_ON(file != next->vm_file);
780 				swap(vma, next);
781 			} else {
782 				VM_WARN_ON(expand != vma);
783 				/*
784 				 * case 1, 6, 7, remove_next == 2 is case 6,
785 				 * remove_next == 1 is case 1 or 7.
786 				 */
787 				remove_next = 1 + (end > next->vm_end);
788 				VM_WARN_ON(remove_next == 2 &&
789 					   end != next->vm_next->vm_end);
790 				/* trim end to next, for case 6 first pass */
791 				end = next->vm_end;
792 			}
793 
794 			exporter = next;
795 			importer = vma;
796 
797 			/*
798 			 * If next doesn't have anon_vma, import from vma after
799 			 * next, if the vma overlaps with it.
800 			 */
801 			if (remove_next == 2 && !next->anon_vma)
802 				exporter = next->vm_next;
803 
804 		} else if (end > next->vm_start) {
805 			/*
806 			 * vma expands, overlapping part of the next:
807 			 * mprotect case 5 shifting the boundary up.
808 			 */
809 			adjust_next = (end - next->vm_start);
810 			exporter = next;
811 			importer = vma;
812 			VM_WARN_ON(expand != importer);
813 		} else if (end < vma->vm_end) {
814 			/*
815 			 * vma shrinks, and !insert tells it's not
816 			 * split_vma inserting another: so it must be
817 			 * mprotect case 4 shifting the boundary down.
818 			 */
819 			adjust_next = -(vma->vm_end - end);
820 			exporter = vma;
821 			importer = next;
822 			VM_WARN_ON(expand != importer);
823 		}
824 
825 		/*
826 		 * Easily overlooked: when mprotect shifts the boundary,
827 		 * make sure the expanding vma has anon_vma set if the
828 		 * shrinking vma had, to cover any anon pages imported.
829 		 */
830 		if (exporter && exporter->anon_vma && !importer->anon_vma) {
831 			int error;
832 
833 			importer->anon_vma = exporter->anon_vma;
834 			error = anon_vma_clone(importer, exporter);
835 			if (error)
836 				return error;
837 		}
838 	}
839 again:
840 	vma_adjust_trans_huge(orig_vma, start, end, adjust_next);
841 
842 	if (file) {
843 		mapping = file->f_mapping;
844 		root = &mapping->i_mmap;
845 		uprobe_munmap(vma, vma->vm_start, vma->vm_end);
846 
847 		if (adjust_next)
848 			uprobe_munmap(next, next->vm_start, next->vm_end);
849 
850 		i_mmap_lock_write(mapping);
851 		if (insert) {
852 			/*
853 			 * Put into interval tree now, so instantiated pages
854 			 * are visible to arm/parisc __flush_dcache_page
855 			 * throughout; but we cannot insert into address
856 			 * space until vma start or end is updated.
857 			 */
858 			__vma_link_file(insert);
859 		}
860 	}
861 
862 	anon_vma = vma->anon_vma;
863 	if (!anon_vma && adjust_next)
864 		anon_vma = next->anon_vma;
865 	if (anon_vma) {
866 		VM_WARN_ON(adjust_next && next->anon_vma &&
867 			   anon_vma != next->anon_vma);
868 		anon_vma_lock_write(anon_vma);
869 		anon_vma_interval_tree_pre_update_vma(vma);
870 		if (adjust_next)
871 			anon_vma_interval_tree_pre_update_vma(next);
872 	}
873 
874 	if (file) {
875 		flush_dcache_mmap_lock(mapping);
876 		vma_interval_tree_remove(vma, root);
877 		if (adjust_next)
878 			vma_interval_tree_remove(next, root);
879 	}
880 
881 	if (start != vma->vm_start) {
882 		vma->vm_start = start;
883 		start_changed = true;
884 	}
885 	if (end != vma->vm_end) {
886 		vma->vm_end = end;
887 		end_changed = true;
888 	}
889 	vma->vm_pgoff = pgoff;
890 	if (adjust_next) {
891 		next->vm_start += adjust_next;
892 		next->vm_pgoff += adjust_next >> PAGE_SHIFT;
893 	}
894 
895 	if (file) {
896 		if (adjust_next)
897 			vma_interval_tree_insert(next, root);
898 		vma_interval_tree_insert(vma, root);
899 		flush_dcache_mmap_unlock(mapping);
900 	}
901 
902 	if (remove_next) {
903 		/*
904 		 * vma_merge has merged next into vma, and needs
905 		 * us to remove next before dropping the locks.
906 		 */
907 		if (remove_next != 3)
908 			__vma_unlink(mm, next, next);
909 		else
910 			/*
911 			 * vma is not before next if they've been
912 			 * swapped.
913 			 *
914 			 * pre-swap() next->vm_start was reduced so
915 			 * tell validate_mm_rb to ignore pre-swap()
916 			 * "next" (which is stored in post-swap()
917 			 * "vma").
918 			 */
919 			__vma_unlink(mm, next, vma);
920 		if (file)
921 			__remove_shared_vm_struct(next, file, mapping);
922 	} else if (insert) {
923 		/*
924 		 * split_vma has split insert from vma, and needs
925 		 * us to insert it before dropping the locks
926 		 * (it may either follow vma or precede it).
927 		 */
928 		__insert_vm_struct(mm, insert);
929 	} else {
930 		if (start_changed)
931 			vma_gap_update(vma);
932 		if (end_changed) {
933 			if (!next)
934 				mm->highest_vm_end = vm_end_gap(vma);
935 			else if (!adjust_next)
936 				vma_gap_update(next);
937 		}
938 	}
939 
940 	if (anon_vma) {
941 		anon_vma_interval_tree_post_update_vma(vma);
942 		if (adjust_next)
943 			anon_vma_interval_tree_post_update_vma(next);
944 		anon_vma_unlock_write(anon_vma);
945 	}
946 
947 	if (file) {
948 		i_mmap_unlock_write(mapping);
949 		uprobe_mmap(vma);
950 
951 		if (adjust_next)
952 			uprobe_mmap(next);
953 	}
954 
955 	if (remove_next) {
956 		if (file) {
957 			uprobe_munmap(next, next->vm_start, next->vm_end);
958 			fput(file);
959 		}
960 		if (next->anon_vma)
961 			anon_vma_merge(vma, next);
962 		mm->map_count--;
963 		mpol_put(vma_policy(next));
964 		vm_area_free(next);
965 		/*
966 		 * In mprotect's case 6 (see comments on vma_merge),
967 		 * we must remove another next too. It would clutter
968 		 * up the code too much to do both in one go.
969 		 */
970 		if (remove_next != 3) {
971 			/*
972 			 * If "next" was removed and vma->vm_end was
973 			 * expanded (up) over it, in turn
974 			 * "next->vm_prev->vm_end" changed and the
975 			 * "vma->vm_next" gap must be updated.
976 			 */
977 			next = vma->vm_next;
978 		} else {
979 			/*
980 			 * For the scope of the comment "next" and
981 			 * "vma" considered pre-swap(): if "vma" was
982 			 * removed, next->vm_start was expanded (down)
983 			 * over it and the "next" gap must be updated.
984 			 * Because of the swap() the post-swap() "vma"
985 			 * actually points to pre-swap() "next"
986 			 * (post-swap() "next" as opposed is now a
987 			 * dangling pointer).
988 			 */
989 			next = vma;
990 		}
991 		if (remove_next == 2) {
992 			remove_next = 1;
993 			end = next->vm_end;
994 			goto again;
995 		}
996 		else if (next)
997 			vma_gap_update(next);
998 		else {
999 			/*
1000 			 * If remove_next == 2 we obviously can't
1001 			 * reach this path.
1002 			 *
1003 			 * If remove_next == 3 we can't reach this
1004 			 * path because pre-swap() next is always not
1005 			 * NULL. pre-swap() "next" is not being
1006 			 * removed and its next->vm_end is not altered
1007 			 * (and furthermore "end" already matches
1008 			 * next->vm_end in remove_next == 3).
1009 			 *
1010 			 * We reach this only in the remove_next == 1
1011 			 * case if the "next" vma that was removed was
1012 			 * the highest vma of the mm. However in such
1013 			 * case next->vm_end == "end" and the extended
1014 			 * "vma" has vma->vm_end == next->vm_end so
1015 			 * mm->highest_vm_end doesn't need any update
1016 			 * in remove_next == 1 case.
1017 			 */
1018 			VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma));
1019 		}
1020 	}
1021 	if (insert && file)
1022 		uprobe_mmap(insert);
1023 
1024 	validate_mm(mm);
1025 
1026 	return 0;
1027 }
1028 
1029 /*
1030  * If the vma has a ->close operation then the driver probably needs to release
1031  * per-vma resources, so we don't attempt to merge those.
1032  */
is_mergeable_vma(struct vm_area_struct * vma,struct file * file,unsigned long vm_flags,struct vm_userfaultfd_ctx vm_userfaultfd_ctx,struct anon_vma_name * anon_name)1033 static inline int is_mergeable_vma(struct vm_area_struct *vma,
1034 				struct file *file, unsigned long vm_flags,
1035 				struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
1036 				struct anon_vma_name *anon_name)
1037 {
1038 	/*
1039 	 * VM_SOFTDIRTY should not prevent from VMA merging, if we
1040 	 * match the flags but dirty bit -- the caller should mark
1041 	 * merged VMA as dirty. If dirty bit won't be excluded from
1042 	 * comparison, we increase pressure on the memory system forcing
1043 	 * the kernel to generate new VMAs when old one could be
1044 	 * extended instead.
1045 	 */
1046 	if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
1047 		return 0;
1048 	if (vma->vm_file != file)
1049 		return 0;
1050 	if (vma->vm_ops && vma->vm_ops->close)
1051 		return 0;
1052 	if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
1053 		return 0;
1054 	if (!anon_vma_name_eq(anon_vma_name(vma), anon_name))
1055 		return 0;
1056 	return 1;
1057 }
1058 
is_mergeable_anon_vma(struct anon_vma * anon_vma1,struct anon_vma * anon_vma2,struct vm_area_struct * vma)1059 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
1060 					struct anon_vma *anon_vma2,
1061 					struct vm_area_struct *vma)
1062 {
1063 	/*
1064 	 * The list_is_singular() test is to avoid merging VMA cloned from
1065 	 * parents. This can improve scalability caused by anon_vma lock.
1066 	 */
1067 	if ((!anon_vma1 || !anon_vma2) && (!vma ||
1068 		list_is_singular(&vma->anon_vma_chain)))
1069 		return 1;
1070 	return anon_vma1 == anon_vma2;
1071 }
1072 
1073 /*
1074  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1075  * in front of (at a lower virtual address and file offset than) the vma.
1076  *
1077  * We cannot merge two vmas if they have differently assigned (non-NULL)
1078  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1079  *
1080  * We don't check here for the merged mmap wrapping around the end of pagecache
1081  * indices (16TB on ia32) because do_mmap() does not permit mmap's which
1082  * wrap, nor mmaps which cover the final page at index -1UL.
1083  */
1084 static int
can_vma_merge_before(struct vm_area_struct * vma,unsigned long vm_flags,struct anon_vma * anon_vma,struct file * file,pgoff_t vm_pgoff,struct vm_userfaultfd_ctx vm_userfaultfd_ctx,struct anon_vma_name * anon_name)1085 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
1086 		     struct anon_vma *anon_vma, struct file *file,
1087 		     pgoff_t vm_pgoff,
1088 		     struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
1089 		     struct anon_vma_name *anon_name)
1090 {
1091 	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name) &&
1092 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1093 		if (vma->vm_pgoff == vm_pgoff)
1094 			return 1;
1095 	}
1096 	return 0;
1097 }
1098 
1099 /*
1100  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1101  * beyond (at a higher virtual address and file offset than) the vma.
1102  *
1103  * We cannot merge two vmas if they have differently assigned (non-NULL)
1104  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1105  */
1106 static int
can_vma_merge_after(struct vm_area_struct * vma,unsigned long vm_flags,struct anon_vma * anon_vma,struct file * file,pgoff_t vm_pgoff,struct vm_userfaultfd_ctx vm_userfaultfd_ctx,struct anon_vma_name * anon_name)1107 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1108 		    struct anon_vma *anon_vma, struct file *file,
1109 		    pgoff_t vm_pgoff,
1110 		    struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
1111 		    struct anon_vma_name *anon_name)
1112 {
1113 	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name) &&
1114 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1115 		pgoff_t vm_pglen;
1116 		vm_pglen = vma_pages(vma);
1117 		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1118 			return 1;
1119 	}
1120 	return 0;
1121 }
1122 
1123 /*
1124  * Given a mapping request (addr,end,vm_flags,file,pgoff,anon_name),
1125  * figure out whether that can be merged with its predecessor or its
1126  * successor.  Or both (it neatly fills a hole).
1127  *
1128  * In most cases - when called for mmap, brk or mremap - [addr,end) is
1129  * certain not to be mapped by the time vma_merge is called; but when
1130  * called for mprotect, it is certain to be already mapped (either at
1131  * an offset within prev, or at the start of next), and the flags of
1132  * this area are about to be changed to vm_flags - and the no-change
1133  * case has already been eliminated.
1134  *
1135  * The following mprotect cases have to be considered, where AAAA is
1136  * the area passed down from mprotect_fixup, never extending beyond one
1137  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1138  *
1139  *     AAAA             AAAA                   AAAA
1140  *    PPPPPPNNNNNN    PPPPPPNNNNNN       PPPPPPNNNNNN
1141  *    cannot merge    might become       might become
1142  *                    PPNNNNNNNNNN       PPPPPPPPPPNN
1143  *    mmap, brk or    case 4 below       case 5 below
1144  *    mremap move:
1145  *                        AAAA               AAAA
1146  *                    PPPP    NNNN       PPPPNNNNXXXX
1147  *                    might become       might become
1148  *                    PPPPPPPPPPPP 1 or  PPPPPPPPPPPP 6 or
1149  *                    PPPPPPPPNNNN 2 or  PPPPPPPPXXXX 7 or
1150  *                    PPPPNNNNNNNN 3     PPPPXXXXXXXX 8
1151  *
1152  * It is important for case 8 that the vma NNNN overlapping the
1153  * region AAAA is never going to extended over XXXX. Instead XXXX must
1154  * be extended in region AAAA and NNNN must be removed. This way in
1155  * all cases where vma_merge succeeds, the moment vma_adjust drops the
1156  * rmap_locks, the properties of the merged vma will be already
1157  * correct for the whole merged range. Some of those properties like
1158  * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
1159  * be correct for the whole merged range immediately after the
1160  * rmap_locks are released. Otherwise if XXXX would be removed and
1161  * NNNN would be extended over the XXXX range, remove_migration_ptes
1162  * or other rmap walkers (if working on addresses beyond the "end"
1163  * parameter) may establish ptes with the wrong permissions of NNNN
1164  * instead of the right permissions of XXXX.
1165  */
vma_merge(struct mm_struct * mm,struct vm_area_struct * prev,unsigned long addr,unsigned long end,unsigned long vm_flags,struct anon_vma * anon_vma,struct file * file,pgoff_t pgoff,struct mempolicy * policy,struct vm_userfaultfd_ctx vm_userfaultfd_ctx,struct anon_vma_name * anon_name)1166 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1167 			struct vm_area_struct *prev, unsigned long addr,
1168 			unsigned long end, unsigned long vm_flags,
1169 			struct anon_vma *anon_vma, struct file *file,
1170 			pgoff_t pgoff, struct mempolicy *policy,
1171 			struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
1172 			struct anon_vma_name *anon_name)
1173 {
1174 	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1175 	struct vm_area_struct *area, *next;
1176 	int err;
1177 
1178 	/*
1179 	 * We later require that vma->vm_flags == vm_flags,
1180 	 * so this tests vma->vm_flags & VM_SPECIAL, too.
1181 	 */
1182 	if (vm_flags & VM_SPECIAL)
1183 		return NULL;
1184 
1185 	next = vma_next(mm, prev);
1186 	area = next;
1187 	if (area && area->vm_end == end)		/* cases 6, 7, 8 */
1188 		next = next->vm_next;
1189 
1190 	/* verify some invariant that must be enforced by the caller */
1191 	VM_WARN_ON(prev && addr <= prev->vm_start);
1192 	VM_WARN_ON(area && end > area->vm_end);
1193 	VM_WARN_ON(addr >= end);
1194 
1195 	/*
1196 	 * Can it merge with the predecessor?
1197 	 */
1198 	if (prev && prev->vm_end == addr &&
1199 			mpol_equal(vma_policy(prev), policy) &&
1200 			can_vma_merge_after(prev, vm_flags,
1201 					    anon_vma, file, pgoff,
1202 					    vm_userfaultfd_ctx, anon_name)) {
1203 		/*
1204 		 * OK, it can.  Can we now merge in the successor as well?
1205 		 */
1206 		if (next && end == next->vm_start &&
1207 				mpol_equal(policy, vma_policy(next)) &&
1208 				can_vma_merge_before(next, vm_flags,
1209 						     anon_vma, file,
1210 						     pgoff+pglen,
1211 						     vm_userfaultfd_ctx, anon_name) &&
1212 				is_mergeable_anon_vma(prev->anon_vma,
1213 						      next->anon_vma, NULL)) {
1214 							/* cases 1, 6 */
1215 			err = __vma_adjust(prev, prev->vm_start,
1216 					 next->vm_end, prev->vm_pgoff, NULL,
1217 					 prev);
1218 		} else					/* cases 2, 5, 7 */
1219 			err = __vma_adjust(prev, prev->vm_start,
1220 					 end, prev->vm_pgoff, NULL, prev);
1221 		if (err)
1222 			return NULL;
1223 		khugepaged_enter_vma_merge(prev, vm_flags);
1224 		return prev;
1225 	}
1226 
1227 	/*
1228 	 * Can this new request be merged in front of next?
1229 	 */
1230 	if (next && end == next->vm_start &&
1231 			mpol_equal(policy, vma_policy(next)) &&
1232 			can_vma_merge_before(next, vm_flags,
1233 					     anon_vma, file, pgoff+pglen,
1234 					     vm_userfaultfd_ctx, anon_name)) {
1235 		if (prev && addr < prev->vm_end)	/* case 4 */
1236 			err = __vma_adjust(prev, prev->vm_start,
1237 					 addr, prev->vm_pgoff, NULL, next);
1238 		else {					/* cases 3, 8 */
1239 			err = __vma_adjust(area, addr, next->vm_end,
1240 					 next->vm_pgoff - pglen, NULL, next);
1241 			/*
1242 			 * In case 3 area is already equal to next and
1243 			 * this is a noop, but in case 8 "area" has
1244 			 * been removed and next was expanded over it.
1245 			 */
1246 			area = next;
1247 		}
1248 		if (err)
1249 			return NULL;
1250 		khugepaged_enter_vma_merge(area, vm_flags);
1251 		return area;
1252 	}
1253 
1254 	return NULL;
1255 }
1256 
1257 /*
1258  * Rough compatibility check to quickly see if it's even worth looking
1259  * at sharing an anon_vma.
1260  *
1261  * They need to have the same vm_file, and the flags can only differ
1262  * in things that mprotect may change.
1263  *
1264  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1265  * we can merge the two vma's. For example, we refuse to merge a vma if
1266  * there is a vm_ops->close() function, because that indicates that the
1267  * driver is doing some kind of reference counting. But that doesn't
1268  * really matter for the anon_vma sharing case.
1269  */
anon_vma_compatible(struct vm_area_struct * a,struct vm_area_struct * b)1270 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1271 {
1272 	return a->vm_end == b->vm_start &&
1273 		mpol_equal(vma_policy(a), vma_policy(b)) &&
1274 		a->vm_file == b->vm_file &&
1275 		!((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) &&
1276 		b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1277 }
1278 
1279 /*
1280  * Do some basic sanity checking to see if we can re-use the anon_vma
1281  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1282  * the same as 'old', the other will be the new one that is trying
1283  * to share the anon_vma.
1284  *
1285  * NOTE! This runs with mm_sem held for reading, so it is possible that
1286  * the anon_vma of 'old' is concurrently in the process of being set up
1287  * by another page fault trying to merge _that_. But that's ok: if it
1288  * is being set up, that automatically means that it will be a singleton
1289  * acceptable for merging, so we can do all of this optimistically. But
1290  * we do that READ_ONCE() to make sure that we never re-load the pointer.
1291  *
1292  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1293  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1294  * is to return an anon_vma that is "complex" due to having gone through
1295  * a fork).
1296  *
1297  * We also make sure that the two vma's are compatible (adjacent,
1298  * and with the same memory policies). That's all stable, even with just
1299  * a read lock on the mm_sem.
1300  */
reusable_anon_vma(struct vm_area_struct * old,struct vm_area_struct * a,struct vm_area_struct * b)1301 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1302 {
1303 	if (anon_vma_compatible(a, b)) {
1304 		struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1305 
1306 		if (anon_vma && list_is_singular(&old->anon_vma_chain))
1307 			return anon_vma;
1308 	}
1309 	return NULL;
1310 }
1311 
1312 /*
1313  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1314  * neighbouring vmas for a suitable anon_vma, before it goes off
1315  * to allocate a new anon_vma.  It checks because a repetitive
1316  * sequence of mprotects and faults may otherwise lead to distinct
1317  * anon_vmas being allocated, preventing vma merge in subsequent
1318  * mprotect.
1319  */
find_mergeable_anon_vma(struct vm_area_struct * vma)1320 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1321 {
1322 	struct anon_vma *anon_vma = NULL;
1323 
1324 	/* Try next first. */
1325 	if (vma->vm_next) {
1326 		anon_vma = reusable_anon_vma(vma->vm_next, vma, vma->vm_next);
1327 		if (anon_vma)
1328 			return anon_vma;
1329 	}
1330 
1331 	/* Try prev next. */
1332 	if (vma->vm_prev)
1333 		anon_vma = reusable_anon_vma(vma->vm_prev, vma->vm_prev, vma);
1334 
1335 	/*
1336 	 * We might reach here with anon_vma == NULL if we can't find
1337 	 * any reusable anon_vma.
1338 	 * There's no absolute need to look only at touching neighbours:
1339 	 * we could search further afield for "compatible" anon_vmas.
1340 	 * But it would probably just be a waste of time searching,
1341 	 * or lead to too many vmas hanging off the same anon_vma.
1342 	 * We're trying to allow mprotect remerging later on,
1343 	 * not trying to minimize memory used for anon_vmas.
1344 	 */
1345 	return anon_vma;
1346 }
1347 
1348 /*
1349  * If a hint addr is less than mmap_min_addr change hint to be as
1350  * low as possible but still greater than mmap_min_addr
1351  */
round_hint_to_min(unsigned long hint)1352 static inline unsigned long round_hint_to_min(unsigned long hint)
1353 {
1354 	hint &= PAGE_MASK;
1355 	if (((void *)hint != NULL) &&
1356 	    (hint < mmap_min_addr))
1357 		return PAGE_ALIGN(mmap_min_addr);
1358 	return hint;
1359 }
1360 
mlock_future_check(struct mm_struct * mm,unsigned long flags,unsigned long len)1361 static inline int mlock_future_check(struct mm_struct *mm,
1362 				     unsigned long flags,
1363 				     unsigned long len)
1364 {
1365 	unsigned long locked, lock_limit;
1366 
1367 	/*  mlock MCL_FUTURE? */
1368 	if (flags & VM_LOCKED) {
1369 		locked = len >> PAGE_SHIFT;
1370 		locked += mm->locked_vm;
1371 		lock_limit = rlimit(RLIMIT_MEMLOCK);
1372 		lock_limit >>= PAGE_SHIFT;
1373 		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1374 			return -EAGAIN;
1375 	}
1376 	return 0;
1377 }
1378 
file_mmap_size_max(struct file * file,struct inode * inode)1379 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1380 {
1381 	if (S_ISREG(inode->i_mode))
1382 		return MAX_LFS_FILESIZE;
1383 
1384 	if (S_ISBLK(inode->i_mode))
1385 		return MAX_LFS_FILESIZE;
1386 
1387 	if (S_ISSOCK(inode->i_mode))
1388 		return MAX_LFS_FILESIZE;
1389 
1390 	/* Special "we do even unsigned file positions" case */
1391 	if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1392 		return 0;
1393 
1394 	/* Yes, random drivers might want more. But I'm tired of buggy drivers */
1395 	return ULONG_MAX;
1396 }
1397 
file_mmap_ok(struct file * file,struct inode * inode,unsigned long pgoff,unsigned long len)1398 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1399 				unsigned long pgoff, unsigned long len)
1400 {
1401 	u64 maxsize = file_mmap_size_max(file, inode);
1402 
1403 	if (maxsize && len > maxsize)
1404 		return false;
1405 	maxsize -= len;
1406 	if (pgoff > maxsize >> PAGE_SHIFT)
1407 		return false;
1408 	return true;
1409 }
1410 
1411 /*
1412  * The caller must write-lock current->mm->mmap_lock.
1413  */
do_mmap(struct file * file,unsigned long addr,unsigned long len,unsigned long prot,unsigned long flags,unsigned long pgoff,unsigned long * populate,struct list_head * uf)1414 unsigned long do_mmap(struct file *file, unsigned long addr,
1415 			unsigned long len, unsigned long prot,
1416 			unsigned long flags, unsigned long pgoff,
1417 			unsigned long *populate, struct list_head *uf)
1418 {
1419 	struct mm_struct *mm = current->mm;
1420 	vm_flags_t vm_flags;
1421 	int pkey = 0;
1422 	int err = 0;
1423 
1424 	*populate = 0;
1425 
1426 	if (!len)
1427 		return -EINVAL;
1428 
1429 	/*
1430 	 * Does the application expect PROT_READ to imply PROT_EXEC?
1431 	 *
1432 	 * (the exception is when the underlying filesystem is noexec
1433 	 *  mounted, in which case we dont add PROT_EXEC.)
1434 	 */
1435 	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1436 		if (!(file && path_noexec(&file->f_path)))
1437 			prot |= PROT_EXEC;
1438 
1439 	/* force arch specific MAP_FIXED handling in get_unmapped_area */
1440 	if (flags & MAP_FIXED_NOREPLACE)
1441 		flags |= MAP_FIXED;
1442 
1443 	if (!(flags & MAP_FIXED))
1444 		addr = round_hint_to_min(addr);
1445 
1446 	/* Careful about overflows.. */
1447 	len = PAGE_ALIGN(len);
1448 	if (!len)
1449 		return -ENOMEM;
1450 
1451 	/* offset overflow? */
1452 	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1453 		return -EOVERFLOW;
1454 
1455 	/* Too many mappings? */
1456 	if (mm->map_count > sysctl_max_map_count)
1457 		return -ENOMEM;
1458 
1459 	/* Obtain the address to map to. we verify (or select) it and ensure
1460 	 * that it represents a valid section of the address space.
1461 	 */
1462 	addr = get_unmapped_area(file, addr, len, pgoff, flags);
1463 	if (IS_ERR_VALUE(addr))
1464 		return addr;
1465 
1466 	if (flags & MAP_FIXED_NOREPLACE) {
1467 		struct vm_area_struct *vma = find_vma(mm, addr);
1468 
1469 		if (vma && vma->vm_start < addr + len)
1470 			return -EEXIST;
1471 	}
1472 
1473 	if (prot == PROT_EXEC) {
1474 		pkey = execute_only_pkey(mm);
1475 		if (pkey < 0)
1476 			pkey = 0;
1477 	}
1478 
1479 	/* Do simple checking here so the lower-level routines won't have
1480 	 * to. we assume access permissions have been handled by the open
1481 	 * of the memory object, so we don't do any here.
1482 	 */
1483 	vm_flags = calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1484 			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1485 
1486 	trace_vendor_do_mmap(&vm_flags, &err);
1487 	if (err)
1488 		return err;
1489 
1490 	if (flags & MAP_LOCKED)
1491 		if (!can_do_mlock())
1492 			return -EPERM;
1493 
1494 	if (mlock_future_check(mm, vm_flags, len))
1495 		return -EAGAIN;
1496 
1497 	if (file) {
1498 		struct inode *inode = file_inode(file);
1499 		unsigned long flags_mask;
1500 
1501 		if (!file_mmap_ok(file, inode, pgoff, len))
1502 			return -EOVERFLOW;
1503 
1504 		flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1505 
1506 		switch (flags & MAP_TYPE) {
1507 		case MAP_SHARED:
1508 			/*
1509 			 * Force use of MAP_SHARED_VALIDATE with non-legacy
1510 			 * flags. E.g. MAP_SYNC is dangerous to use with
1511 			 * MAP_SHARED as you don't know which consistency model
1512 			 * you will get. We silently ignore unsupported flags
1513 			 * with MAP_SHARED to preserve backward compatibility.
1514 			 */
1515 			flags &= LEGACY_MAP_MASK;
1516 			fallthrough;
1517 		case MAP_SHARED_VALIDATE:
1518 			if (flags & ~flags_mask)
1519 				return -EOPNOTSUPP;
1520 			if (prot & PROT_WRITE) {
1521 				if (!(file->f_mode & FMODE_WRITE))
1522 					return -EACCES;
1523 				if (IS_SWAPFILE(file->f_mapping->host))
1524 					return -ETXTBSY;
1525 			}
1526 
1527 			/*
1528 			 * Make sure we don't allow writing to an append-only
1529 			 * file..
1530 			 */
1531 			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1532 				return -EACCES;
1533 
1534 			/*
1535 			 * Make sure there are no mandatory locks on the file.
1536 			 */
1537 			if (locks_verify_locked(file))
1538 				return -EAGAIN;
1539 
1540 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1541 			if (!(file->f_mode & FMODE_WRITE))
1542 				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1543 			fallthrough;
1544 		case MAP_PRIVATE:
1545 			if (!(file->f_mode & FMODE_READ))
1546 				return -EACCES;
1547 			if (path_noexec(&file->f_path)) {
1548 				if (vm_flags & VM_EXEC)
1549 					return -EPERM;
1550 				vm_flags &= ~VM_MAYEXEC;
1551 			}
1552 
1553 			if (!file->f_op->mmap)
1554 				return -ENODEV;
1555 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1556 				return -EINVAL;
1557 			break;
1558 
1559 		default:
1560 			return -EINVAL;
1561 		}
1562 	} else {
1563 		switch (flags & MAP_TYPE) {
1564 		case MAP_SHARED:
1565 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1566 				return -EINVAL;
1567 			/*
1568 			 * Ignore pgoff.
1569 			 */
1570 			pgoff = 0;
1571 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1572 			break;
1573 		case MAP_PRIVATE:
1574 			/*
1575 			 * Set pgoff according to addr for anon_vma.
1576 			 */
1577 			pgoff = addr >> PAGE_SHIFT;
1578 			break;
1579 #ifdef CONFIG_MEM_PURGEABLE
1580 		case MAP_PURGEABLE:
1581 			vm_flags |= VM_PURGEABLE;
1582 			pr_info("vm_flags purgeable = %lx.\m", VM_PURGEABLE);
1583 			break;
1584 		case MAP_USEREXPTE:
1585 			vm_flags |= VM_USEREXPTE;
1586 			pr_info("vm_flags useredpte = %lx.\m", VM_USEREXPTE);
1587 			break;
1588 #endif
1589 		default:
1590 			return -EINVAL;
1591 		}
1592 	}
1593 
1594 	/*
1595 	 * Set 'VM_NORESERVE' if we should not account for the
1596 	 * memory use of this mapping.
1597 	 */
1598 	if (flags & MAP_NORESERVE) {
1599 		/* We honor MAP_NORESERVE if allowed to overcommit */
1600 		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1601 			vm_flags |= VM_NORESERVE;
1602 
1603 		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
1604 		if (file && is_file_hugepages(file))
1605 			vm_flags |= VM_NORESERVE;
1606 	}
1607 
1608 	addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1609 	if (!IS_ERR_VALUE(addr) &&
1610 	    ((vm_flags & VM_LOCKED) ||
1611 	     (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1612 		*populate = len;
1613 	return addr;
1614 }
1615 
ksys_mmap_pgoff(unsigned long addr,unsigned long len,unsigned long prot,unsigned long flags,unsigned long fd,unsigned long pgoff)1616 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1617 			      unsigned long prot, unsigned long flags,
1618 			      unsigned long fd, unsigned long pgoff)
1619 {
1620 	struct file *file = NULL;
1621 	unsigned long retval;
1622 
1623 	if (!(flags & MAP_ANONYMOUS)) {
1624 		audit_mmap_fd(fd, flags);
1625 		file = fget(fd);
1626 		if (!file)
1627 			return -EBADF;
1628 		if (is_file_hugepages(file)) {
1629 			len = ALIGN(len, huge_page_size(hstate_file(file)));
1630 		} else if (unlikely(flags & MAP_HUGETLB)) {
1631 			retval = -EINVAL;
1632 			goto out_fput;
1633 		}
1634 	} else if (flags & MAP_HUGETLB) {
1635 		struct user_struct *user = NULL;
1636 		struct hstate *hs;
1637 
1638 		hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1639 		if (!hs)
1640 			return -EINVAL;
1641 
1642 		len = ALIGN(len, huge_page_size(hs));
1643 		/*
1644 		 * VM_NORESERVE is used because the reservations will be
1645 		 * taken when vm_ops->mmap() is called
1646 		 * A dummy user value is used because we are not locking
1647 		 * memory so no accounting is necessary
1648 		 */
1649 		file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1650 				VM_NORESERVE,
1651 				&user, HUGETLB_ANONHUGE_INODE,
1652 				(flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1653 		if (IS_ERR(file))
1654 			return PTR_ERR(file);
1655 	}
1656 
1657 	flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1658 
1659 	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1660 out_fput:
1661 	if (file)
1662 		fput(file);
1663 	return retval;
1664 }
1665 
SYSCALL_DEFINE6(mmap_pgoff,unsigned long,addr,unsigned long,len,unsigned long,prot,unsigned long,flags,unsigned long,fd,unsigned long,pgoff)1666 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1667 		unsigned long, prot, unsigned long, flags,
1668 		unsigned long, fd, unsigned long, pgoff)
1669 {
1670 	return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1671 }
1672 
1673 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1674 struct mmap_arg_struct {
1675 	unsigned long addr;
1676 	unsigned long len;
1677 	unsigned long prot;
1678 	unsigned long flags;
1679 	unsigned long fd;
1680 	unsigned long offset;
1681 };
1682 
SYSCALL_DEFINE1(old_mmap,struct mmap_arg_struct __user *,arg)1683 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1684 {
1685 	struct mmap_arg_struct a;
1686 
1687 	if (copy_from_user(&a, arg, sizeof(a)))
1688 		return -EFAULT;
1689 	if (offset_in_page(a.offset))
1690 		return -EINVAL;
1691 
1692 	return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1693 			       a.offset >> PAGE_SHIFT);
1694 }
1695 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1696 
1697 /*
1698  * Some shared mappings will want the pages marked read-only
1699  * to track write events. If so, we'll downgrade vm_page_prot
1700  * to the private version (using protection_map[] without the
1701  * VM_SHARED bit).
1702  */
vma_wants_writenotify(struct vm_area_struct * vma,pgprot_t vm_page_prot)1703 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1704 {
1705 	vm_flags_t vm_flags = vma->vm_flags;
1706 	const struct vm_operations_struct *vm_ops = vma->vm_ops;
1707 
1708 	/* If it was private or non-writable, the write bit is already clear */
1709 	if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1710 		return 0;
1711 
1712 	/* The backer wishes to know when pages are first written to? */
1713 	if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1714 		return 1;
1715 
1716 	/* The open routine did something to the protections that pgprot_modify
1717 	 * won't preserve? */
1718 	if (pgprot_val(vm_page_prot) !=
1719 	    pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1720 		return 0;
1721 
1722 	/* Do we need to track softdirty? */
1723 	if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1724 		return 1;
1725 
1726 	/* Specialty mapping? */
1727 	if (vm_flags & VM_PFNMAP)
1728 		return 0;
1729 
1730 	/* Can the mapping track the dirty pages? */
1731 	return vma->vm_file && vma->vm_file->f_mapping &&
1732 		mapping_can_writeback(vma->vm_file->f_mapping);
1733 }
1734 
1735 /*
1736  * We account for memory if it's a private writeable mapping,
1737  * not hugepages and VM_NORESERVE wasn't set.
1738  */
accountable_mapping(struct file * file,vm_flags_t vm_flags)1739 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1740 {
1741 	/*
1742 	 * hugetlb has its own accounting separate from the core VM
1743 	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1744 	 */
1745 	if (file && is_file_hugepages(file))
1746 		return 0;
1747 
1748 	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1749 }
1750 
mmap_region(struct file * file,unsigned long addr,unsigned long len,vm_flags_t vm_flags,unsigned long pgoff,struct list_head * uf)1751 unsigned long mmap_region(struct file *file, unsigned long addr,
1752 		unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
1753 		struct list_head *uf)
1754 {
1755 	struct mm_struct *mm = current->mm;
1756 	struct vm_area_struct *vma, *prev, *merge;
1757 	int error;
1758 	struct rb_node **rb_link, *rb_parent;
1759 	unsigned long charged = 0;
1760 
1761 	/* Check against address space limit. */
1762 	if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1763 		unsigned long nr_pages;
1764 
1765 		/*
1766 		 * MAP_FIXED may remove pages of mappings that intersects with
1767 		 * requested mapping. Account for the pages it would unmap.
1768 		 */
1769 		nr_pages = count_vma_pages_range(mm, addr, addr + len);
1770 
1771 		if (!may_expand_vm(mm, vm_flags,
1772 					(len >> PAGE_SHIFT) - nr_pages))
1773 			return -ENOMEM;
1774 	}
1775 
1776 	/* Clear old maps, set up prev, rb_link, rb_parent, and uf */
1777 	if (munmap_vma_range(mm, addr, len, &prev, &rb_link, &rb_parent, uf))
1778 		return -ENOMEM;
1779 	/*
1780 	 * Private writable mapping: check memory availability
1781 	 */
1782 	if (accountable_mapping(file, vm_flags)) {
1783 		charged = len >> PAGE_SHIFT;
1784 		if (security_vm_enough_memory_mm(mm, charged))
1785 			return -ENOMEM;
1786 		vm_flags |= VM_ACCOUNT;
1787 	}
1788 
1789 	/*
1790 	 * Can we just expand an old mapping?
1791 	 */
1792 	vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1793 			NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX, NULL);
1794 	if (vma)
1795 		goto out;
1796 
1797 	/*
1798 	 * Determine the object being mapped and call the appropriate
1799 	 * specific mapper. the address has already been validated, but
1800 	 * not unmapped, but the maps are removed from the list.
1801 	 */
1802 	vma = vm_area_alloc(mm);
1803 	if (!vma) {
1804 		error = -ENOMEM;
1805 		goto unacct_error;
1806 	}
1807 
1808 	vma->vm_start = addr;
1809 	vma->vm_end = addr + len;
1810 	vma->vm_flags = vm_flags;
1811 	vma->vm_page_prot = vm_get_page_prot(vm_flags);
1812 	vma->vm_pgoff = pgoff;
1813 
1814 	if (file) {
1815 		if (vm_flags & VM_DENYWRITE) {
1816 			error = deny_write_access(file);
1817 			if (error)
1818 				goto free_vma;
1819 		}
1820 		if (vm_flags & VM_SHARED) {
1821 			error = mapping_map_writable(file->f_mapping);
1822 			if (error)
1823 				goto allow_write_and_free_vma;
1824 		}
1825 
1826 		/* ->mmap() can change vma->vm_file, but must guarantee that
1827 		 * vma_link() below can deny write-access if VM_DENYWRITE is set
1828 		 * and map writably if VM_SHARED is set. This usually means the
1829 		 * new file must not have been exposed to user-space, yet.
1830 		 */
1831 		vma->vm_file = get_file(file);
1832 		error = call_mmap(file, vma);
1833 		if (error)
1834 			goto unmap_and_free_vma;
1835 
1836 		/* Can addr have changed??
1837 		 *
1838 		 * Answer: Yes, several device drivers can do it in their
1839 		 *         f_op->mmap method. -DaveM
1840 		 * Bug: If addr is changed, prev, rb_link, rb_parent should
1841 		 *      be updated for vma_link()
1842 		 */
1843 		WARN_ON_ONCE(addr != vma->vm_start);
1844 
1845 		addr = vma->vm_start;
1846 
1847 		/* If vm_flags changed after call_mmap(), we should try merge vma again
1848 		 * as we may succeed this time.
1849 		 */
1850 		if (unlikely(vm_flags != vma->vm_flags && prev)) {
1851 			merge = vma_merge(mm, prev, vma->vm_start, vma->vm_end, vma->vm_flags,
1852 				NULL, vma->vm_file, vma->vm_pgoff, NULL, NULL_VM_UFFD_CTX, NULL);
1853 			if (merge) {
1854 				/* ->mmap() can change vma->vm_file and fput the original file. So
1855 				 * fput the vma->vm_file here or we would add an extra fput for file
1856 				 * and cause general protection fault ultimately.
1857 				 */
1858 				fput(vma->vm_file);
1859 				vm_area_free(vma);
1860 				vma = merge;
1861 				/* Update vm_flags to pick up the change. */
1862 				vm_flags = vma->vm_flags;
1863 				goto unmap_writable;
1864 			}
1865 		}
1866 
1867 		vm_flags = vma->vm_flags;
1868 	} else if (vm_flags & VM_SHARED) {
1869 		error = shmem_zero_setup(vma);
1870 		if (error)
1871 			goto free_vma;
1872 	} else {
1873 		vma_set_anonymous(vma);
1874 	}
1875 
1876 	/* Allow architectures to sanity-check the vm_flags */
1877 	if (!arch_validate_flags(vma->vm_flags)) {
1878 		error = -EINVAL;
1879 		if (file)
1880 			goto unmap_and_free_vma;
1881 		else
1882 			goto free_vma;
1883 	}
1884 
1885 	vma_link(mm, vma, prev, rb_link, rb_parent);
1886 	/* Once vma denies write, undo our temporary denial count */
1887 	if (file) {
1888 unmap_writable:
1889 		if (vm_flags & VM_SHARED)
1890 			mapping_unmap_writable(file->f_mapping);
1891 		if (vm_flags & VM_DENYWRITE)
1892 			allow_write_access(file);
1893 	}
1894 	file = vma->vm_file;
1895 out:
1896 	perf_event_mmap(vma);
1897 
1898 	vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1899 	if (vm_flags & VM_LOCKED) {
1900 		if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
1901 					is_vm_hugetlb_page(vma) ||
1902 					vma == get_gate_vma(current->mm))
1903 			vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1904 		else
1905 			mm->locked_vm += (len >> PAGE_SHIFT);
1906 	}
1907 
1908 	if (file)
1909 		uprobe_mmap(vma);
1910 
1911 	/*
1912 	 * New (or expanded) vma always get soft dirty status.
1913 	 * Otherwise user-space soft-dirty page tracker won't
1914 	 * be able to distinguish situation when vma area unmapped,
1915 	 * then new mapped in-place (which must be aimed as
1916 	 * a completely new data area).
1917 	 */
1918 	vma->vm_flags |= VM_SOFTDIRTY;
1919 
1920 	vma_set_page_prot(vma);
1921 
1922 	return addr;
1923 
1924 unmap_and_free_vma:
1925 	vma->vm_file = NULL;
1926 	fput(file);
1927 
1928 	/* Undo any partial mapping done by a device driver. */
1929 	unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1930 	charged = 0;
1931 	if (vm_flags & VM_SHARED)
1932 		mapping_unmap_writable(file->f_mapping);
1933 allow_write_and_free_vma:
1934 	if (vm_flags & VM_DENYWRITE)
1935 		allow_write_access(file);
1936 free_vma:
1937 	vm_area_free(vma);
1938 unacct_error:
1939 	if (charged)
1940 		vm_unacct_memory(charged);
1941 	return error;
1942 }
1943 
unmapped_area(struct vm_unmapped_area_info * info)1944 static unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1945 {
1946 	/*
1947 	 * We implement the search by looking for an rbtree node that
1948 	 * immediately follows a suitable gap. That is,
1949 	 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1950 	 * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1951 	 * - gap_end - gap_start >= length
1952 	 */
1953 
1954 	struct mm_struct *mm = current->mm;
1955 	struct vm_area_struct *vma;
1956 	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1957 
1958 	/* Adjust search length to account for worst case alignment overhead */
1959 	length = info->length + info->align_mask;
1960 	if (length < info->length)
1961 		return -ENOMEM;
1962 
1963 	/* Adjust search limits by the desired length */
1964 	if (info->high_limit < length)
1965 		return -ENOMEM;
1966 	high_limit = info->high_limit - length;
1967 
1968 	if (info->low_limit > high_limit)
1969 		return -ENOMEM;
1970 	low_limit = info->low_limit + length;
1971 
1972 	/* Check if rbtree root looks promising */
1973 	if (RB_EMPTY_ROOT(&mm->mm_rb))
1974 		goto check_highest;
1975 	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1976 	if (vma->rb_subtree_gap < length)
1977 		goto check_highest;
1978 
1979 	while (true) {
1980 		/* Visit left subtree if it looks promising */
1981 		gap_end = vm_start_gap(vma);
1982 		if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1983 			struct vm_area_struct *left =
1984 				rb_entry(vma->vm_rb.rb_left,
1985 					 struct vm_area_struct, vm_rb);
1986 			if (left->rb_subtree_gap >= length) {
1987 				vma = left;
1988 				continue;
1989 			}
1990 		}
1991 
1992 		gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1993 check_current:
1994 		/* Check if current node has a suitable gap */
1995 		if (gap_start > high_limit)
1996 			return -ENOMEM;
1997 		if (gap_end >= low_limit &&
1998 		    gap_end > gap_start && gap_end - gap_start >= length)
1999 			goto found;
2000 
2001 		/* Visit right subtree if it looks promising */
2002 		if (vma->vm_rb.rb_right) {
2003 			struct vm_area_struct *right =
2004 				rb_entry(vma->vm_rb.rb_right,
2005 					 struct vm_area_struct, vm_rb);
2006 			if (right->rb_subtree_gap >= length) {
2007 				vma = right;
2008 				continue;
2009 			}
2010 		}
2011 
2012 		/* Go back up the rbtree to find next candidate node */
2013 		while (true) {
2014 			struct rb_node *prev = &vma->vm_rb;
2015 			if (!rb_parent(prev))
2016 				goto check_highest;
2017 			vma = rb_entry(rb_parent(prev),
2018 				       struct vm_area_struct, vm_rb);
2019 			if (prev == vma->vm_rb.rb_left) {
2020 				gap_start = vm_end_gap(vma->vm_prev);
2021 				gap_end = vm_start_gap(vma);
2022 				goto check_current;
2023 			}
2024 		}
2025 	}
2026 
2027 check_highest:
2028 	/* Check highest gap, which does not precede any rbtree node */
2029 	gap_start = mm->highest_vm_end;
2030 	gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
2031 	if (gap_start > high_limit)
2032 		return -ENOMEM;
2033 
2034 found:
2035 	/* We found a suitable gap. Clip it with the original low_limit. */
2036 	if (gap_start < info->low_limit)
2037 		gap_start = info->low_limit;
2038 
2039 	/* Adjust gap address to the desired alignment */
2040 	gap_start += (info->align_offset - gap_start) & info->align_mask;
2041 
2042 	VM_BUG_ON(gap_start + info->length > info->high_limit);
2043 	VM_BUG_ON(gap_start + info->length > gap_end);
2044 	return gap_start;
2045 }
2046 
unmapped_area_topdown(struct vm_unmapped_area_info * info)2047 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
2048 {
2049 	struct mm_struct *mm = current->mm;
2050 	struct vm_area_struct *vma;
2051 	unsigned long length, low_limit, high_limit, gap_start, gap_end;
2052 
2053 	/* Adjust search length to account for worst case alignment overhead */
2054 	length = info->length + info->align_mask;
2055 	if (length < info->length)
2056 		return -ENOMEM;
2057 
2058 	/*
2059 	 * Adjust search limits by the desired length.
2060 	 * See implementation comment at top of unmapped_area().
2061 	 */
2062 	gap_end = info->high_limit;
2063 	if (gap_end < length)
2064 		return -ENOMEM;
2065 	high_limit = gap_end - length;
2066 
2067 	if (info->low_limit > high_limit)
2068 		return -ENOMEM;
2069 	low_limit = info->low_limit + length;
2070 
2071 	/* Check highest gap, which does not precede any rbtree node */
2072 	gap_start = mm->highest_vm_end;
2073 	if (gap_start <= high_limit)
2074 		goto found_highest;
2075 
2076 	/* Check if rbtree root looks promising */
2077 	if (RB_EMPTY_ROOT(&mm->mm_rb))
2078 		return -ENOMEM;
2079 	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
2080 	if (vma->rb_subtree_gap < length)
2081 		return -ENOMEM;
2082 
2083 	while (true) {
2084 		/* Visit right subtree if it looks promising */
2085 		gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
2086 		if (gap_start <= high_limit && vma->vm_rb.rb_right) {
2087 			struct vm_area_struct *right =
2088 				rb_entry(vma->vm_rb.rb_right,
2089 					 struct vm_area_struct, vm_rb);
2090 			if (right->rb_subtree_gap >= length) {
2091 				vma = right;
2092 				continue;
2093 			}
2094 		}
2095 
2096 check_current:
2097 		/* Check if current node has a suitable gap */
2098 		gap_end = vm_start_gap(vma);
2099 		if (gap_end < low_limit)
2100 			return -ENOMEM;
2101 		if (gap_start <= high_limit &&
2102 		    gap_end > gap_start && gap_end - gap_start >= length)
2103 			goto found;
2104 
2105 		/* Visit left subtree if it looks promising */
2106 		if (vma->vm_rb.rb_left) {
2107 			struct vm_area_struct *left =
2108 				rb_entry(vma->vm_rb.rb_left,
2109 					 struct vm_area_struct, vm_rb);
2110 			if (left->rb_subtree_gap >= length) {
2111 				vma = left;
2112 				continue;
2113 			}
2114 		}
2115 
2116 		/* Go back up the rbtree to find next candidate node */
2117 		while (true) {
2118 			struct rb_node *prev = &vma->vm_rb;
2119 			if (!rb_parent(prev))
2120 				return -ENOMEM;
2121 			vma = rb_entry(rb_parent(prev),
2122 				       struct vm_area_struct, vm_rb);
2123 			if (prev == vma->vm_rb.rb_right) {
2124 				gap_start = vma->vm_prev ?
2125 					vm_end_gap(vma->vm_prev) : 0;
2126 				goto check_current;
2127 			}
2128 		}
2129 	}
2130 
2131 found:
2132 	/* We found a suitable gap. Clip it with the original high_limit. */
2133 	if (gap_end > info->high_limit)
2134 		gap_end = info->high_limit;
2135 
2136 found_highest:
2137 	/* Compute highest gap address at the desired alignment */
2138 	gap_end -= info->length;
2139 	gap_end -= (gap_end - info->align_offset) & info->align_mask;
2140 
2141 	VM_BUG_ON(gap_end < info->low_limit);
2142 	VM_BUG_ON(gap_end < gap_start);
2143 	return gap_end;
2144 }
2145 
2146 /*
2147  * Search for an unmapped address range.
2148  *
2149  * We are looking for a range that:
2150  * - does not intersect with any VMA;
2151  * - is contained within the [low_limit, high_limit) interval;
2152  * - is at least the desired size.
2153  * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2154  */
vm_unmapped_area(struct vm_unmapped_area_info * info)2155 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info)
2156 {
2157 	unsigned long addr;
2158 
2159 	if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2160 		addr = unmapped_area_topdown(info);
2161 	else
2162 		addr = unmapped_area(info);
2163 
2164 	trace_vm_unmapped_area(addr, info);
2165 	return addr;
2166 }
2167 
2168 #ifndef arch_get_mmap_end
2169 #define arch_get_mmap_end(addr)	(TASK_SIZE)
2170 #endif
2171 
2172 #ifndef arch_get_mmap_base
2173 #define arch_get_mmap_base(addr, base) (base)
2174 #endif
2175 
2176 /* Get an address range which is currently unmapped.
2177  * For shmat() with addr=0.
2178  *
2179  * Ugly calling convention alert:
2180  * Return value with the low bits set means error value,
2181  * ie
2182  *	if (ret & ~PAGE_MASK)
2183  *		error = ret;
2184  *
2185  * This function "knows" that -ENOMEM has the bits set.
2186  */
2187 #ifndef HAVE_ARCH_UNMAPPED_AREA
2188 unsigned long
arch_get_unmapped_area(struct file * filp,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)2189 arch_get_unmapped_area(struct file *filp, unsigned long addr,
2190 		unsigned long len, unsigned long pgoff, unsigned long flags)
2191 {
2192 	struct mm_struct *mm = current->mm;
2193 	struct vm_area_struct *vma, *prev;
2194 	struct vm_unmapped_area_info info;
2195 	const unsigned long mmap_end = arch_get_mmap_end(addr);
2196 
2197 	if (len > mmap_end - mmap_min_addr)
2198 		return -ENOMEM;
2199 
2200 	if (flags & MAP_FIXED)
2201 		return addr;
2202 
2203 	if (addr) {
2204 		addr = PAGE_ALIGN(addr);
2205 		vma = find_vma_prev(mm, addr, &prev);
2206 		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2207 		    (!vma || addr + len <= vm_start_gap(vma)) &&
2208 		    (!prev || addr >= vm_end_gap(prev)))
2209 			return addr;
2210 	}
2211 
2212 	info.flags = 0;
2213 	info.length = len;
2214 	info.low_limit = mm->mmap_base;
2215 	info.high_limit = mmap_end;
2216 	info.align_mask = 0;
2217 	info.align_offset = 0;
2218 	return vm_unmapped_area(&info);
2219 }
2220 #endif
2221 
2222 /*
2223  * This mmap-allocator allocates new areas top-down from below the
2224  * stack's low limit (the base):
2225  */
2226 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
2227 unsigned long
arch_get_unmapped_area_topdown(struct file * filp,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)2228 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
2229 			  unsigned long len, unsigned long pgoff,
2230 			  unsigned long flags)
2231 {
2232 	struct vm_area_struct *vma, *prev;
2233 	struct mm_struct *mm = current->mm;
2234 	struct vm_unmapped_area_info info;
2235 	const unsigned long mmap_end = arch_get_mmap_end(addr);
2236 
2237 	/* requested length too big for entire address space */
2238 	if (len > mmap_end - mmap_min_addr)
2239 		return -ENOMEM;
2240 
2241 	if (flags & MAP_FIXED)
2242 		return addr;
2243 
2244 	/* requesting a specific address */
2245 	if (addr) {
2246 		addr = PAGE_ALIGN(addr);
2247 		vma = find_vma_prev(mm, addr, &prev);
2248 		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2249 				(!vma || addr + len <= vm_start_gap(vma)) &&
2250 				(!prev || addr >= vm_end_gap(prev)))
2251 			return addr;
2252 	}
2253 
2254 	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
2255 	info.length = len;
2256 	info.low_limit = max(PAGE_SIZE, mmap_min_addr);
2257 	info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
2258 	info.align_mask = 0;
2259 	info.align_offset = 0;
2260 	addr = vm_unmapped_area(&info);
2261 
2262 	/*
2263 	 * A failed mmap() very likely causes application failure,
2264 	 * so fall back to the bottom-up function here. This scenario
2265 	 * can happen with large stack limits and large mmap()
2266 	 * allocations.
2267 	 */
2268 	if (offset_in_page(addr)) {
2269 		VM_BUG_ON(addr != -ENOMEM);
2270 		info.flags = 0;
2271 		info.low_limit = TASK_UNMAPPED_BASE;
2272 		info.high_limit = mmap_end;
2273 		addr = vm_unmapped_area(&info);
2274 	}
2275 
2276 	return addr;
2277 }
2278 #endif
2279 
2280 unsigned long
get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)2281 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2282 		unsigned long pgoff, unsigned long flags)
2283 {
2284 	unsigned long (*get_area)(struct file *, unsigned long,
2285 				  unsigned long, unsigned long, unsigned long);
2286 
2287 	unsigned long error = arch_mmap_check(addr, len, flags);
2288 	if (error)
2289 		return error;
2290 
2291 	/* Careful about overflows.. */
2292 	if (len > TASK_SIZE)
2293 		return -ENOMEM;
2294 
2295 	get_area = current->mm->get_unmapped_area;
2296 	if (file) {
2297 		if (file->f_op->get_unmapped_area)
2298 			get_area = file->f_op->get_unmapped_area;
2299 	} else if (flags & MAP_SHARED) {
2300 		/*
2301 		 * mmap_region() will call shmem_zero_setup() to create a file,
2302 		 * so use shmem's get_unmapped_area in case it can be huge.
2303 		 * do_mmap() will clear pgoff, so match alignment.
2304 		 */
2305 		pgoff = 0;
2306 		get_area = shmem_get_unmapped_area;
2307 	}
2308 
2309 	addr = get_area(file, addr, len, pgoff, flags);
2310 	if (IS_ERR_VALUE(addr))
2311 		return addr;
2312 
2313 	if (addr > TASK_SIZE - len)
2314 		return -ENOMEM;
2315 	if (offset_in_page(addr))
2316 		return -EINVAL;
2317 
2318 	error = security_mmap_addr(addr);
2319 	return error ? error : addr;
2320 }
2321 
2322 EXPORT_SYMBOL(get_unmapped_area);
2323 
2324 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
find_vma(struct mm_struct * mm,unsigned long addr)2325 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2326 {
2327 	struct rb_node *rb_node;
2328 	struct vm_area_struct *vma;
2329 
2330 	/* Check the cache first. */
2331 	vma = vmacache_find(mm, addr);
2332 	if (likely(vma))
2333 		return vma;
2334 
2335 	rb_node = mm->mm_rb.rb_node;
2336 
2337 	while (rb_node) {
2338 		struct vm_area_struct *tmp;
2339 
2340 		tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2341 
2342 		if (tmp->vm_end > addr) {
2343 			vma = tmp;
2344 			if (tmp->vm_start <= addr)
2345 				break;
2346 			rb_node = rb_node->rb_left;
2347 		} else
2348 			rb_node = rb_node->rb_right;
2349 	}
2350 
2351 	if (vma)
2352 		vmacache_update(addr, vma);
2353 	return vma;
2354 }
2355 
2356 EXPORT_SYMBOL(find_vma);
2357 
2358 /*
2359  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2360  */
2361 struct vm_area_struct *
find_vma_prev(struct mm_struct * mm,unsigned long addr,struct vm_area_struct ** pprev)2362 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2363 			struct vm_area_struct **pprev)
2364 {
2365 	struct vm_area_struct *vma;
2366 
2367 	vma = find_vma(mm, addr);
2368 	if (vma) {
2369 		*pprev = vma->vm_prev;
2370 	} else {
2371 		struct rb_node *rb_node = rb_last(&mm->mm_rb);
2372 
2373 		*pprev = rb_node ? rb_entry(rb_node, struct vm_area_struct, vm_rb) : NULL;
2374 	}
2375 	return vma;
2376 }
2377 
2378 /*
2379  * Verify that the stack growth is acceptable and
2380  * update accounting. This is shared with both the
2381  * grow-up and grow-down cases.
2382  */
acct_stack_growth(struct vm_area_struct * vma,unsigned long size,unsigned long grow)2383 static int acct_stack_growth(struct vm_area_struct *vma,
2384 			     unsigned long size, unsigned long grow)
2385 {
2386 	struct mm_struct *mm = vma->vm_mm;
2387 	unsigned long new_start;
2388 
2389 	/* address space limit tests */
2390 	if (!may_expand_vm(mm, vma->vm_flags, grow))
2391 		return -ENOMEM;
2392 
2393 	/* Stack limit test */
2394 	if (size > rlimit(RLIMIT_STACK))
2395 		return -ENOMEM;
2396 
2397 	/* mlock limit tests */
2398 	if (vma->vm_flags & VM_LOCKED) {
2399 		unsigned long locked;
2400 		unsigned long limit;
2401 		locked = mm->locked_vm + grow;
2402 		limit = rlimit(RLIMIT_MEMLOCK);
2403 		limit >>= PAGE_SHIFT;
2404 		if (locked > limit && !capable(CAP_IPC_LOCK))
2405 			return -ENOMEM;
2406 	}
2407 
2408 	/* Check to ensure the stack will not grow into a hugetlb-only region */
2409 	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2410 			vma->vm_end - size;
2411 	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2412 		return -EFAULT;
2413 
2414 	/*
2415 	 * Overcommit..  This must be the final test, as it will
2416 	 * update security statistics.
2417 	 */
2418 	if (security_vm_enough_memory_mm(mm, grow))
2419 		return -ENOMEM;
2420 
2421 	return 0;
2422 }
2423 
2424 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2425 /*
2426  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2427  * vma is the last one with address > vma->vm_end.  Have to extend vma.
2428  */
expand_upwards(struct vm_area_struct * vma,unsigned long address)2429 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2430 {
2431 	struct mm_struct *mm = vma->vm_mm;
2432 	struct vm_area_struct *next;
2433 	unsigned long gap_addr;
2434 	int error = 0;
2435 
2436 	if (!(vma->vm_flags & VM_GROWSUP))
2437 		return -EFAULT;
2438 
2439 	/* Guard against exceeding limits of the address space. */
2440 	address &= PAGE_MASK;
2441 	if (address >= (TASK_SIZE & PAGE_MASK))
2442 		return -ENOMEM;
2443 	address += PAGE_SIZE;
2444 
2445 	/* Enforce stack_guard_gap */
2446 	gap_addr = address + stack_guard_gap;
2447 
2448 	/* Guard against overflow */
2449 	if (gap_addr < address || gap_addr > TASK_SIZE)
2450 		gap_addr = TASK_SIZE;
2451 
2452 	next = vma->vm_next;
2453 	if (next && next->vm_start < gap_addr && vma_is_accessible(next)) {
2454 		if (!(next->vm_flags & VM_GROWSUP))
2455 			return -ENOMEM;
2456 		/* Check that both stack segments have the same anon_vma? */
2457 	}
2458 
2459 	/* We must make sure the anon_vma is allocated. */
2460 	if (unlikely(anon_vma_prepare(vma)))
2461 		return -ENOMEM;
2462 
2463 	/*
2464 	 * vma->vm_start/vm_end cannot change under us because the caller
2465 	 * is required to hold the mmap_lock in read mode.  We need the
2466 	 * anon_vma lock to serialize against concurrent expand_stacks.
2467 	 */
2468 	anon_vma_lock_write(vma->anon_vma);
2469 
2470 	/* Somebody else might have raced and expanded it already */
2471 	if (address > vma->vm_end) {
2472 		unsigned long size, grow;
2473 
2474 		size = address - vma->vm_start;
2475 		grow = (address - vma->vm_end) >> PAGE_SHIFT;
2476 
2477 		error = -ENOMEM;
2478 		if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2479 			error = acct_stack_growth(vma, size, grow);
2480 			if (!error) {
2481 				/*
2482 				 * vma_gap_update() doesn't support concurrent
2483 				 * updates, but we only hold a shared mmap_lock
2484 				 * lock here, so we need to protect against
2485 				 * concurrent vma expansions.
2486 				 * anon_vma_lock_write() doesn't help here, as
2487 				 * we don't guarantee that all growable vmas
2488 				 * in a mm share the same root anon vma.
2489 				 * So, we reuse mm->page_table_lock to guard
2490 				 * against concurrent vma expansions.
2491 				 */
2492 				spin_lock(&mm->page_table_lock);
2493 				if (vma->vm_flags & VM_LOCKED)
2494 					mm->locked_vm += grow;
2495 				vm_stat_account(mm, vma->vm_flags, grow);
2496 				anon_vma_interval_tree_pre_update_vma(vma);
2497 				vma->vm_end = address;
2498 				anon_vma_interval_tree_post_update_vma(vma);
2499 				if (vma->vm_next)
2500 					vma_gap_update(vma->vm_next);
2501 				else
2502 					mm->highest_vm_end = vm_end_gap(vma);
2503 				spin_unlock(&mm->page_table_lock);
2504 
2505 				perf_event_mmap(vma);
2506 			}
2507 		}
2508 	}
2509 	anon_vma_unlock_write(vma->anon_vma);
2510 	khugepaged_enter_vma_merge(vma, vma->vm_flags);
2511 	validate_mm(mm);
2512 	return error;
2513 }
2514 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2515 
2516 /*
2517  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2518  */
expand_downwards(struct vm_area_struct * vma,unsigned long address)2519 int expand_downwards(struct vm_area_struct *vma,
2520 				   unsigned long address)
2521 {
2522 	struct mm_struct *mm = vma->vm_mm;
2523 	struct vm_area_struct *prev;
2524 	int error = 0;
2525 
2526 	address &= PAGE_MASK;
2527 	if (address < mmap_min_addr)
2528 		return -EPERM;
2529 
2530 	/* Enforce stack_guard_gap */
2531 	prev = vma->vm_prev;
2532 	/* Check that both stack segments have the same anon_vma? */
2533 	if (prev && !(prev->vm_flags & VM_GROWSDOWN) &&
2534 			vma_is_accessible(prev)) {
2535 		if (address - prev->vm_end < stack_guard_gap)
2536 			return -ENOMEM;
2537 	}
2538 
2539 	/* We must make sure the anon_vma is allocated. */
2540 	if (unlikely(anon_vma_prepare(vma)))
2541 		return -ENOMEM;
2542 
2543 	/*
2544 	 * vma->vm_start/vm_end cannot change under us because the caller
2545 	 * is required to hold the mmap_lock in read mode.  We need the
2546 	 * anon_vma lock to serialize against concurrent expand_stacks.
2547 	 */
2548 	anon_vma_lock_write(vma->anon_vma);
2549 
2550 	/* Somebody else might have raced and expanded it already */
2551 	if (address < vma->vm_start) {
2552 		unsigned long size, grow;
2553 
2554 		size = vma->vm_end - address;
2555 		grow = (vma->vm_start - address) >> PAGE_SHIFT;
2556 
2557 		error = -ENOMEM;
2558 		if (grow <= vma->vm_pgoff) {
2559 			error = acct_stack_growth(vma, size, grow);
2560 			if (!error) {
2561 				/*
2562 				 * vma_gap_update() doesn't support concurrent
2563 				 * updates, but we only hold a shared mmap_lock
2564 				 * lock here, so we need to protect against
2565 				 * concurrent vma expansions.
2566 				 * anon_vma_lock_write() doesn't help here, as
2567 				 * we don't guarantee that all growable vmas
2568 				 * in a mm share the same root anon vma.
2569 				 * So, we reuse mm->page_table_lock to guard
2570 				 * against concurrent vma expansions.
2571 				 */
2572 				spin_lock(&mm->page_table_lock);
2573 				if (vma->vm_flags & VM_LOCKED)
2574 					mm->locked_vm += grow;
2575 				vm_stat_account(mm, vma->vm_flags, grow);
2576 				anon_vma_interval_tree_pre_update_vma(vma);
2577 				vma->vm_start = address;
2578 				vma->vm_pgoff -= grow;
2579 				anon_vma_interval_tree_post_update_vma(vma);
2580 				vma_gap_update(vma);
2581 				spin_unlock(&mm->page_table_lock);
2582 
2583 				perf_event_mmap(vma);
2584 			}
2585 		}
2586 	}
2587 	anon_vma_unlock_write(vma->anon_vma);
2588 	khugepaged_enter_vma_merge(vma, vma->vm_flags);
2589 	validate_mm(mm);
2590 	return error;
2591 }
2592 
2593 /* enforced gap between the expanding stack and other mappings. */
2594 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2595 
cmdline_parse_stack_guard_gap(char * p)2596 static int __init cmdline_parse_stack_guard_gap(char *p)
2597 {
2598 	unsigned long val;
2599 	char *endptr;
2600 
2601 	val = simple_strtoul(p, &endptr, 10);
2602 	if (!*endptr)
2603 		stack_guard_gap = val << PAGE_SHIFT;
2604 
2605 	return 0;
2606 }
2607 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2608 
2609 #ifdef CONFIG_STACK_GROWSUP
expand_stack(struct vm_area_struct * vma,unsigned long address)2610 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2611 {
2612 	return expand_upwards(vma, address);
2613 }
2614 
2615 struct vm_area_struct *
find_extend_vma(struct mm_struct * mm,unsigned long addr)2616 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2617 {
2618 	struct vm_area_struct *vma, *prev;
2619 
2620 	addr &= PAGE_MASK;
2621 	vma = find_vma_prev(mm, addr, &prev);
2622 	if (vma && (vma->vm_start <= addr))
2623 		return vma;
2624 	/* don't alter vm_end if the coredump is running */
2625 	if (!prev || expand_stack(prev, addr))
2626 		return NULL;
2627 	if (prev->vm_flags & VM_LOCKED)
2628 		populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2629 	return prev;
2630 }
2631 #else
expand_stack(struct vm_area_struct * vma,unsigned long address)2632 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2633 {
2634 	return expand_downwards(vma, address);
2635 }
2636 
2637 struct vm_area_struct *
find_extend_vma(struct mm_struct * mm,unsigned long addr)2638 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2639 {
2640 	struct vm_area_struct *vma;
2641 	unsigned long start;
2642 
2643 	addr &= PAGE_MASK;
2644 	vma = find_vma(mm, addr);
2645 	if (!vma)
2646 		return NULL;
2647 	if (vma->vm_start <= addr)
2648 		return vma;
2649 	if (!(vma->vm_flags & VM_GROWSDOWN))
2650 		return NULL;
2651 	start = vma->vm_start;
2652 	if (expand_stack(vma, addr))
2653 		return NULL;
2654 	if (vma->vm_flags & VM_LOCKED)
2655 		populate_vma_page_range(vma, addr, start, NULL);
2656 	return vma;
2657 }
2658 #endif
2659 
2660 EXPORT_SYMBOL_GPL(find_extend_vma);
2661 
2662 /*
2663  * Ok - we have the memory areas we should free on the vma list,
2664  * so release them, and do the vma updates.
2665  *
2666  * Called with the mm semaphore held.
2667  */
remove_vma_list(struct mm_struct * mm,struct vm_area_struct * vma)2668 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2669 {
2670 	unsigned long nr_accounted = 0;
2671 
2672 	/* Update high watermark before we lower total_vm */
2673 	update_hiwater_vm(mm);
2674 	do {
2675 		long nrpages = vma_pages(vma);
2676 
2677 		if (vma->vm_flags & VM_ACCOUNT)
2678 			nr_accounted += nrpages;
2679 		vm_stat_account(mm, vma->vm_flags, -nrpages);
2680 		vma = remove_vma(vma);
2681 	} while (vma);
2682 	vm_unacct_memory(nr_accounted);
2683 	validate_mm(mm);
2684 }
2685 
2686 /*
2687  * Get rid of page table information in the indicated region.
2688  *
2689  * Called with the mm semaphore held.
2690  */
unmap_region(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev,unsigned long start,unsigned long end)2691 static void unmap_region(struct mm_struct *mm,
2692 		struct vm_area_struct *vma, struct vm_area_struct *prev,
2693 		unsigned long start, unsigned long end)
2694 {
2695 	struct vm_area_struct *next = vma_next(mm, prev);
2696 	struct mmu_gather tlb;
2697 
2698 	lru_add_drain();
2699 	tlb_gather_mmu(&tlb, mm, start, end);
2700 	update_hiwater_rss(mm);
2701 	unmap_vmas(&tlb, vma, start, end);
2702 
2703 	/*
2704 	 * Ensure we have no stale TLB entries by the time this mapping is
2705 	 * removed from the rmap.
2706 	 * Note that we don't have to worry about nested flushes here because
2707 	 * we're holding the mm semaphore for removing the mapping - so any
2708 	 * concurrent flush in this region has to be coming through the rmap,
2709 	 * and we synchronize against that using the rmap lock.
2710 	 */
2711 	if ((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) != 0)
2712 		tlb_flush_mmu(&tlb);
2713 
2714 	free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2715 				 next ? next->vm_start : USER_PGTABLES_CEILING);
2716 	tlb_finish_mmu(&tlb, start, end);
2717 }
2718 
2719 /*
2720  * Create a list of vma's touched by the unmap, removing them from the mm's
2721  * vma list as we go..
2722  */
2723 static bool
detach_vmas_to_be_unmapped(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev,unsigned long end)2724 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2725 	struct vm_area_struct *prev, unsigned long end)
2726 {
2727 	struct vm_area_struct **insertion_point;
2728 	struct vm_area_struct *tail_vma = NULL;
2729 
2730 	insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2731 	vma->vm_prev = NULL;
2732 	do {
2733 		vma_rb_erase(vma, &mm->mm_rb);
2734 		mm->map_count--;
2735 		tail_vma = vma;
2736 		vma = vma->vm_next;
2737 	} while (vma && vma->vm_start < end);
2738 	*insertion_point = vma;
2739 	if (vma) {
2740 		vma->vm_prev = prev;
2741 		vma_gap_update(vma);
2742 	} else
2743 		mm->highest_vm_end = prev ? vm_end_gap(prev) : 0;
2744 	tail_vma->vm_next = NULL;
2745 
2746 	/* Kill the cache */
2747 	vmacache_invalidate(mm);
2748 
2749 	/*
2750 	 * Do not downgrade mmap_lock if we are next to VM_GROWSDOWN or
2751 	 * VM_GROWSUP VMA. Such VMAs can change their size under
2752 	 * down_read(mmap_lock) and collide with the VMA we are about to unmap.
2753 	 */
2754 	if (vma && (vma->vm_flags & VM_GROWSDOWN))
2755 		return false;
2756 	if (prev && (prev->vm_flags & VM_GROWSUP))
2757 		return false;
2758 	return true;
2759 }
2760 
2761 /*
2762  * __split_vma() bypasses sysctl_max_map_count checking.  We use this where it
2763  * has already been checked or doesn't make sense to fail.
2764  */
__split_vma(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,int new_below)2765 int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2766 		unsigned long addr, int new_below)
2767 {
2768 	struct vm_area_struct *new;
2769 	int err;
2770 
2771 	if (vma->vm_ops && vma->vm_ops->split) {
2772 		err = vma->vm_ops->split(vma, addr);
2773 		if (err)
2774 			return err;
2775 	}
2776 
2777 	new = vm_area_dup(vma);
2778 	if (!new)
2779 		return -ENOMEM;
2780 
2781 	if (new_below)
2782 		new->vm_end = addr;
2783 	else {
2784 		new->vm_start = addr;
2785 		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2786 	}
2787 
2788 	err = vma_dup_policy(vma, new);
2789 	if (err)
2790 		goto out_free_vma;
2791 
2792 	err = anon_vma_clone(new, vma);
2793 	if (err)
2794 		goto out_free_mpol;
2795 
2796 	if (new->vm_file)
2797 		get_file(new->vm_file);
2798 
2799 	if (new->vm_ops && new->vm_ops->open)
2800 		new->vm_ops->open(new);
2801 
2802 	if (new_below)
2803 		err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2804 			((addr - new->vm_start) >> PAGE_SHIFT), new);
2805 	else
2806 		err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2807 
2808 	/* Success. */
2809 	if (!err)
2810 		return 0;
2811 
2812 	/* Clean everything up if vma_adjust failed. */
2813 	if (new->vm_ops && new->vm_ops->close)
2814 		new->vm_ops->close(new);
2815 	if (new->vm_file)
2816 		fput(new->vm_file);
2817 	unlink_anon_vmas(new);
2818  out_free_mpol:
2819 	mpol_put(vma_policy(new));
2820  out_free_vma:
2821 	vm_area_free(new);
2822 	return err;
2823 }
2824 
2825 /*
2826  * Split a vma into two pieces at address 'addr', a new vma is allocated
2827  * either for the first part or the tail.
2828  */
split_vma(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,int new_below)2829 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2830 	      unsigned long addr, int new_below)
2831 {
2832 	if (mm->map_count >= sysctl_max_map_count)
2833 		return -ENOMEM;
2834 
2835 	return __split_vma(mm, vma, addr, new_below);
2836 }
2837 
2838 /* Munmap is split into 2 main parts -- this part which finds
2839  * what needs doing, and the areas themselves, which do the
2840  * work.  This now handles partial unmappings.
2841  * Jeremy Fitzhardinge <jeremy@goop.org>
2842  */
__do_munmap(struct mm_struct * mm,unsigned long start,size_t len,struct list_head * uf,bool downgrade)2843 int __do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2844 		struct list_head *uf, bool downgrade)
2845 {
2846 	unsigned long end;
2847 	struct vm_area_struct *vma, *prev, *last;
2848 
2849 	if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2850 		return -EINVAL;
2851 
2852 	len = PAGE_ALIGN(len);
2853 	end = start + len;
2854 	if (len == 0)
2855 		return -EINVAL;
2856 
2857 	/*
2858 	 * arch_unmap() might do unmaps itself.  It must be called
2859 	 * and finish any rbtree manipulation before this code
2860 	 * runs and also starts to manipulate the rbtree.
2861 	 */
2862 	arch_unmap(mm, start, end);
2863 
2864 	/* Find the first overlapping VMA */
2865 	vma = find_vma(mm, start);
2866 	if (!vma)
2867 		return 0;
2868 	prev = vma->vm_prev;
2869 	/* we have  start < vma->vm_end  */
2870 
2871 	/* if it doesn't overlap, we have nothing.. */
2872 	if (vma->vm_start >= end)
2873 		return 0;
2874 
2875 	/*
2876 	 * If we need to split any vma, do it now to save pain later.
2877 	 *
2878 	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2879 	 * unmapped vm_area_struct will remain in use: so lower split_vma
2880 	 * places tmp vma above, and higher split_vma places tmp vma below.
2881 	 */
2882 	if (start > vma->vm_start) {
2883 		int error;
2884 
2885 		/*
2886 		 * Make sure that map_count on return from munmap() will
2887 		 * not exceed its limit; but let map_count go just above
2888 		 * its limit temporarily, to help free resources as expected.
2889 		 */
2890 		if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2891 			return -ENOMEM;
2892 
2893 		error = __split_vma(mm, vma, start, 0);
2894 		if (error)
2895 			return error;
2896 		prev = vma;
2897 	}
2898 
2899 	/* Does it split the last one? */
2900 	last = find_vma(mm, end);
2901 	if (last && end > last->vm_start) {
2902 		int error = __split_vma(mm, last, end, 1);
2903 		if (error)
2904 			return error;
2905 	}
2906 	vma = vma_next(mm, prev);
2907 
2908 	if (unlikely(uf)) {
2909 		/*
2910 		 * If userfaultfd_unmap_prep returns an error the vmas
2911 		 * will remain splitted, but userland will get a
2912 		 * highly unexpected error anyway. This is no
2913 		 * different than the case where the first of the two
2914 		 * __split_vma fails, but we don't undo the first
2915 		 * split, despite we could. This is unlikely enough
2916 		 * failure that it's not worth optimizing it for.
2917 		 */
2918 		int error = userfaultfd_unmap_prep(vma, start, end, uf);
2919 		if (error)
2920 			return error;
2921 	}
2922 
2923 	/*
2924 	 * unlock any mlock()ed ranges before detaching vmas
2925 	 */
2926 	if (mm->locked_vm) {
2927 		struct vm_area_struct *tmp = vma;
2928 		while (tmp && tmp->vm_start < end) {
2929 			if (tmp->vm_flags & VM_LOCKED) {
2930 				mm->locked_vm -= vma_pages(tmp);
2931 				munlock_vma_pages_all(tmp);
2932 			}
2933 
2934 			tmp = tmp->vm_next;
2935 		}
2936 	}
2937 
2938 	/* Detach vmas from rbtree */
2939 	if (!detach_vmas_to_be_unmapped(mm, vma, prev, end))
2940 		downgrade = false;
2941 
2942 	if (downgrade)
2943 		mmap_write_downgrade(mm);
2944 
2945 	unmap_region(mm, vma, prev, start, end);
2946 
2947 	/* Fix up all other VM information */
2948 	remove_vma_list(mm, vma);
2949 
2950 	return downgrade ? 1 : 0;
2951 }
2952 
do_munmap(struct mm_struct * mm,unsigned long start,size_t len,struct list_head * uf)2953 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2954 	      struct list_head *uf)
2955 {
2956 	return __do_munmap(mm, start, len, uf, false);
2957 }
2958 
__vm_munmap(unsigned long start,size_t len,bool downgrade)2959 static int __vm_munmap(unsigned long start, size_t len, bool downgrade)
2960 {
2961 	int ret;
2962 	struct mm_struct *mm = current->mm;
2963 	LIST_HEAD(uf);
2964 
2965 	if (mmap_write_lock_killable(mm))
2966 		return -EINTR;
2967 
2968 	ret = __do_munmap(mm, start, len, &uf, downgrade);
2969 	/*
2970 	 * Returning 1 indicates mmap_lock is downgraded.
2971 	 * But 1 is not legal return value of vm_munmap() and munmap(), reset
2972 	 * it to 0 before return.
2973 	 */
2974 	if (ret == 1) {
2975 		mmap_read_unlock(mm);
2976 		ret = 0;
2977 	} else
2978 		mmap_write_unlock(mm);
2979 
2980 	userfaultfd_unmap_complete(mm, &uf);
2981 	return ret;
2982 }
2983 
vm_munmap(unsigned long start,size_t len)2984 int vm_munmap(unsigned long start, size_t len)
2985 {
2986 	return __vm_munmap(start, len, false);
2987 }
2988 EXPORT_SYMBOL(vm_munmap);
2989 
SYSCALL_DEFINE2(munmap,unsigned long,addr,size_t,len)2990 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2991 {
2992 	addr = untagged_addr(addr);
2993 	profile_munmap(addr);
2994 	return __vm_munmap(addr, len, true);
2995 }
2996 
2997 
2998 /*
2999  * Emulation of deprecated remap_file_pages() syscall.
3000  */
SYSCALL_DEFINE5(remap_file_pages,unsigned long,start,unsigned long,size,unsigned long,prot,unsigned long,pgoff,unsigned long,flags)3001 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
3002 		unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
3003 {
3004 
3005 	struct mm_struct *mm = current->mm;
3006 	struct vm_area_struct *vma;
3007 	unsigned long populate = 0;
3008 	unsigned long ret = -EINVAL;
3009 	struct file *file;
3010 
3011 	pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.rst.\n",
3012 		     current->comm, current->pid);
3013 
3014 	if (prot)
3015 		return ret;
3016 	start = start & PAGE_MASK;
3017 	size = size & PAGE_MASK;
3018 
3019 	if (start + size <= start)
3020 		return ret;
3021 
3022 	/* Does pgoff wrap? */
3023 	if (pgoff + (size >> PAGE_SHIFT) < pgoff)
3024 		return ret;
3025 
3026 	if (mmap_write_lock_killable(mm))
3027 		return -EINTR;
3028 
3029 	vma = find_vma(mm, start);
3030 
3031 	if (!vma || !(vma->vm_flags & VM_SHARED))
3032 		goto out;
3033 
3034 	if (start < vma->vm_start)
3035 		goto out;
3036 
3037 	if (start + size > vma->vm_end) {
3038 		struct vm_area_struct *next;
3039 
3040 		for (next = vma->vm_next; next; next = next->vm_next) {
3041 			/* hole between vmas ? */
3042 			if (next->vm_start != next->vm_prev->vm_end)
3043 				goto out;
3044 
3045 			if (next->vm_file != vma->vm_file)
3046 				goto out;
3047 
3048 			if (next->vm_flags != vma->vm_flags)
3049 				goto out;
3050 
3051 			if (start + size <= next->vm_end)
3052 				break;
3053 		}
3054 
3055 		if (!next)
3056 			goto out;
3057 	}
3058 
3059 	prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
3060 	prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
3061 	prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
3062 
3063 	flags &= MAP_NONBLOCK;
3064 	flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
3065 	if (vma->vm_flags & VM_LOCKED) {
3066 		struct vm_area_struct *tmp;
3067 		flags |= MAP_LOCKED;
3068 
3069 		/* drop PG_Mlocked flag for over-mapped range */
3070 		for (tmp = vma; tmp->vm_start >= start + size;
3071 				tmp = tmp->vm_next) {
3072 			/*
3073 			 * Split pmd and munlock page on the border
3074 			 * of the range.
3075 			 */
3076 			vma_adjust_trans_huge(tmp, start, start + size, 0);
3077 
3078 			munlock_vma_pages_range(tmp,
3079 					max(tmp->vm_start, start),
3080 					min(tmp->vm_end, start + size));
3081 		}
3082 	}
3083 
3084 	file = get_file(vma->vm_file);
3085 	ret = do_mmap(vma->vm_file, start, size,
3086 			prot, flags, pgoff, &populate, NULL);
3087 	fput(file);
3088 out:
3089 	mmap_write_unlock(mm);
3090 	if (populate)
3091 		mm_populate(ret, populate);
3092 	if (!IS_ERR_VALUE(ret))
3093 		ret = 0;
3094 	return ret;
3095 }
3096 
3097 /*
3098  *  this is really a simplified "do_mmap".  it only handles
3099  *  anonymous maps.  eventually we may be able to do some
3100  *  brk-specific accounting here.
3101  */
do_brk_flags(unsigned long addr,unsigned long len,unsigned long flags,struct list_head * uf)3102 static int do_brk_flags(unsigned long addr, unsigned long len, unsigned long flags, struct list_head *uf)
3103 {
3104 	struct mm_struct *mm = current->mm;
3105 	struct vm_area_struct *vma, *prev;
3106 	struct rb_node **rb_link, *rb_parent;
3107 	pgoff_t pgoff = addr >> PAGE_SHIFT;
3108 	int error;
3109 	unsigned long mapped_addr;
3110 
3111 	/* Until we need other flags, refuse anything except VM_EXEC. */
3112 	if ((flags & (~VM_EXEC)) != 0)
3113 		return -EINVAL;
3114 	flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
3115 
3116 	mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
3117 	if (IS_ERR_VALUE(mapped_addr))
3118 		return mapped_addr;
3119 
3120 	error = mlock_future_check(mm, mm->def_flags, len);
3121 	if (error)
3122 		return error;
3123 
3124 	/* Clear old maps, set up prev, rb_link, rb_parent, and uf */
3125 	if (munmap_vma_range(mm, addr, len, &prev, &rb_link, &rb_parent, uf))
3126 		return -ENOMEM;
3127 
3128 	/* Check against address space limits *after* clearing old maps... */
3129 	if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
3130 		return -ENOMEM;
3131 
3132 	if (mm->map_count > sysctl_max_map_count)
3133 		return -ENOMEM;
3134 
3135 	if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
3136 		return -ENOMEM;
3137 
3138 	/* Can we just expand an old private anonymous mapping? */
3139 	vma = vma_merge(mm, prev, addr, addr + len, flags,
3140 			NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX, NULL);
3141 	if (vma)
3142 		goto out;
3143 
3144 	/*
3145 	 * create a vma struct for an anonymous mapping
3146 	 */
3147 	vma = vm_area_alloc(mm);
3148 	if (!vma) {
3149 		vm_unacct_memory(len >> PAGE_SHIFT);
3150 		return -ENOMEM;
3151 	}
3152 
3153 	vma_set_anonymous(vma);
3154 	vma->vm_start = addr;
3155 	vma->vm_end = addr + len;
3156 	vma->vm_pgoff = pgoff;
3157 	vma->vm_flags = flags;
3158 	vma->vm_page_prot = vm_get_page_prot(flags);
3159 	vma_link(mm, vma, prev, rb_link, rb_parent);
3160 out:
3161 	perf_event_mmap(vma);
3162 	mm->total_vm += len >> PAGE_SHIFT;
3163 	mm->data_vm += len >> PAGE_SHIFT;
3164 	if (flags & VM_LOCKED)
3165 		mm->locked_vm += (len >> PAGE_SHIFT);
3166 	vma->vm_flags |= VM_SOFTDIRTY;
3167 	return 0;
3168 }
3169 
vm_brk_flags(unsigned long addr,unsigned long request,unsigned long flags)3170 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3171 {
3172 	struct mm_struct *mm = current->mm;
3173 	unsigned long len;
3174 	int ret;
3175 	bool populate;
3176 	LIST_HEAD(uf);
3177 
3178 	len = PAGE_ALIGN(request);
3179 	if (len < request)
3180 		return -ENOMEM;
3181 	if (!len)
3182 		return 0;
3183 
3184 	if (mmap_write_lock_killable(mm))
3185 		return -EINTR;
3186 
3187 	ret = do_brk_flags(addr, len, flags, &uf);
3188 	populate = ((mm->def_flags & VM_LOCKED) != 0);
3189 	mmap_write_unlock(mm);
3190 	userfaultfd_unmap_complete(mm, &uf);
3191 	if (populate && !ret)
3192 		mm_populate(addr, len);
3193 	return ret;
3194 }
3195 EXPORT_SYMBOL(vm_brk_flags);
3196 
vm_brk(unsigned long addr,unsigned long len)3197 int vm_brk(unsigned long addr, unsigned long len)
3198 {
3199 	return vm_brk_flags(addr, len, 0);
3200 }
3201 EXPORT_SYMBOL(vm_brk);
3202 
3203 /* Release all mmaps. */
exit_mmap(struct mm_struct * mm)3204 void exit_mmap(struct mm_struct *mm)
3205 {
3206 	struct mmu_gather tlb;
3207 	struct vm_area_struct *vma;
3208 	unsigned long nr_accounted = 0;
3209 
3210 	/* mm's last user has gone, and its about to be pulled down */
3211 	mmu_notifier_release(mm);
3212 
3213 	if (unlikely(mm_is_oom_victim(mm))) {
3214 		/*
3215 		 * Manually reap the mm to free as much memory as possible.
3216 		 * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard
3217 		 * this mm from further consideration.  Taking mm->mmap_lock for
3218 		 * write after setting MMF_OOM_SKIP will guarantee that the oom
3219 		 * reaper will not run on this mm again after mmap_lock is
3220 		 * dropped.
3221 		 *
3222 		 * Nothing can be holding mm->mmap_lock here and the above call
3223 		 * to mmu_notifier_release(mm) ensures mmu notifier callbacks in
3224 		 * __oom_reap_task_mm() will not block.
3225 		 *
3226 		 * This needs to be done before calling munlock_vma_pages_all(),
3227 		 * which clears VM_LOCKED, otherwise the oom reaper cannot
3228 		 * reliably test it.
3229 		 */
3230 		(void)__oom_reap_task_mm(mm);
3231 
3232 		set_bit(MMF_OOM_SKIP, &mm->flags);
3233 		mmap_write_lock(mm);
3234 		mmap_write_unlock(mm);
3235 	}
3236 
3237 	if (mm->locked_vm) {
3238 		vma = mm->mmap;
3239 		while (vma) {
3240 			if (vma->vm_flags & VM_LOCKED)
3241 				munlock_vma_pages_all(vma);
3242 			vma = vma->vm_next;
3243 		}
3244 	}
3245 
3246 	arch_exit_mmap(mm);
3247 
3248 	vma = mm->mmap;
3249 	if (!vma)	/* Can happen if dup_mmap() received an OOM */
3250 		return;
3251 
3252 	lru_add_drain();
3253 	flush_cache_mm(mm);
3254 	tlb_gather_mmu(&tlb, mm, 0, -1);
3255 	/* update_hiwater_rss(mm) here? but nobody should be looking */
3256 	/* Use -1 here to ensure all VMAs in the mm are unmapped */
3257 	unmap_vmas(&tlb, vma, 0, -1);
3258 	free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
3259 	tlb_finish_mmu(&tlb, 0, -1);
3260 
3261 	/*
3262 	 * Walk the list again, actually closing and freeing it,
3263 	 * with preemption enabled, without holding any MM locks.
3264 	 */
3265 	while (vma) {
3266 		if (vma->vm_flags & VM_ACCOUNT)
3267 			nr_accounted += vma_pages(vma);
3268 		vma = remove_vma(vma);
3269 		cond_resched();
3270 	}
3271 	vm_unacct_memory(nr_accounted);
3272 }
3273 
3274 /* Insert vm structure into process list sorted by address
3275  * and into the inode's i_mmap tree.  If vm_file is non-NULL
3276  * then i_mmap_rwsem is taken here.
3277  */
insert_vm_struct(struct mm_struct * mm,struct vm_area_struct * vma)3278 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3279 {
3280 	struct vm_area_struct *prev;
3281 	struct rb_node **rb_link, *rb_parent;
3282 
3283 	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
3284 			   &prev, &rb_link, &rb_parent))
3285 		return -ENOMEM;
3286 	if ((vma->vm_flags & VM_ACCOUNT) &&
3287 	     security_vm_enough_memory_mm(mm, vma_pages(vma)))
3288 		return -ENOMEM;
3289 
3290 	/*
3291 	 * The vm_pgoff of a purely anonymous vma should be irrelevant
3292 	 * until its first write fault, when page's anon_vma and index
3293 	 * are set.  But now set the vm_pgoff it will almost certainly
3294 	 * end up with (unless mremap moves it elsewhere before that
3295 	 * first wfault), so /proc/pid/maps tells a consistent story.
3296 	 *
3297 	 * By setting it to reflect the virtual start address of the
3298 	 * vma, merges and splits can happen in a seamless way, just
3299 	 * using the existing file pgoff checks and manipulations.
3300 	 * Similarly in do_mmap and in do_brk_flags.
3301 	 */
3302 	if (vma_is_anonymous(vma)) {
3303 		BUG_ON(vma->anon_vma);
3304 		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3305 	}
3306 
3307 	vma_link(mm, vma, prev, rb_link, rb_parent);
3308 	return 0;
3309 }
3310 
3311 /*
3312  * Copy the vma structure to a new location in the same mm,
3313  * prior to moving page table entries, to effect an mremap move.
3314  */
copy_vma(struct vm_area_struct ** vmap,unsigned long addr,unsigned long len,pgoff_t pgoff,bool * need_rmap_locks)3315 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3316 	unsigned long addr, unsigned long len, pgoff_t pgoff,
3317 	bool *need_rmap_locks)
3318 {
3319 	struct vm_area_struct *vma = *vmap;
3320 	unsigned long vma_start = vma->vm_start;
3321 	struct mm_struct *mm = vma->vm_mm;
3322 	struct vm_area_struct *new_vma, *prev;
3323 	struct rb_node **rb_link, *rb_parent;
3324 	bool faulted_in_anon_vma = true;
3325 
3326 	/*
3327 	 * If anonymous vma has not yet been faulted, update new pgoff
3328 	 * to match new location, to increase its chance of merging.
3329 	 */
3330 	if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3331 		pgoff = addr >> PAGE_SHIFT;
3332 		faulted_in_anon_vma = false;
3333 	}
3334 
3335 	if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
3336 		return NULL;	/* should never get here */
3337 	new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
3338 			    vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3339 			    vma->vm_userfaultfd_ctx, anon_vma_name(vma));
3340 	if (new_vma) {
3341 		/*
3342 		 * Source vma may have been merged into new_vma
3343 		 */
3344 		if (unlikely(vma_start >= new_vma->vm_start &&
3345 			     vma_start < new_vma->vm_end)) {
3346 			/*
3347 			 * The only way we can get a vma_merge with
3348 			 * self during an mremap is if the vma hasn't
3349 			 * been faulted in yet and we were allowed to
3350 			 * reset the dst vma->vm_pgoff to the
3351 			 * destination address of the mremap to allow
3352 			 * the merge to happen. mremap must change the
3353 			 * vm_pgoff linearity between src and dst vmas
3354 			 * (in turn preventing a vma_merge) to be
3355 			 * safe. It is only safe to keep the vm_pgoff
3356 			 * linear if there are no pages mapped yet.
3357 			 */
3358 			VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3359 			*vmap = vma = new_vma;
3360 		}
3361 		*need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3362 	} else {
3363 		new_vma = vm_area_dup(vma);
3364 		if (!new_vma)
3365 			goto out;
3366 		new_vma->vm_start = addr;
3367 		new_vma->vm_end = addr + len;
3368 		new_vma->vm_pgoff = pgoff;
3369 		if (vma_dup_policy(vma, new_vma))
3370 			goto out_free_vma;
3371 		if (anon_vma_clone(new_vma, vma))
3372 			goto out_free_mempol;
3373 		if (new_vma->vm_file)
3374 			get_file(new_vma->vm_file);
3375 		if (new_vma->vm_ops && new_vma->vm_ops->open)
3376 			new_vma->vm_ops->open(new_vma);
3377 		vma_link(mm, new_vma, prev, rb_link, rb_parent);
3378 		*need_rmap_locks = false;
3379 	}
3380 	return new_vma;
3381 
3382 out_free_mempol:
3383 	mpol_put(vma_policy(new_vma));
3384 out_free_vma:
3385 	vm_area_free(new_vma);
3386 out:
3387 	return NULL;
3388 }
3389 
3390 /*
3391  * Return true if the calling process may expand its vm space by the passed
3392  * number of pages
3393  */
may_expand_vm(struct mm_struct * mm,vm_flags_t flags,unsigned long npages)3394 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3395 {
3396 	if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3397 		return false;
3398 
3399 	if (is_data_mapping(flags) &&
3400 	    mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3401 		/* Workaround for Valgrind */
3402 		if (rlimit(RLIMIT_DATA) == 0 &&
3403 		    mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3404 			return true;
3405 
3406 		pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3407 			     current->comm, current->pid,
3408 			     (mm->data_vm + npages) << PAGE_SHIFT,
3409 			     rlimit(RLIMIT_DATA),
3410 			     ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3411 
3412 		if (!ignore_rlimit_data)
3413 			return false;
3414 	}
3415 
3416 	return true;
3417 }
3418 
vm_stat_account(struct mm_struct * mm,vm_flags_t flags,long npages)3419 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3420 {
3421 	mm->total_vm += npages;
3422 
3423 	if (is_exec_mapping(flags))
3424 		mm->exec_vm += npages;
3425 	else if (is_stack_mapping(flags))
3426 		mm->stack_vm += npages;
3427 	else if (is_data_mapping(flags))
3428 		mm->data_vm += npages;
3429 }
3430 
3431 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3432 
3433 /*
3434  * Having a close hook prevents vma merging regardless of flags.
3435  */
special_mapping_close(struct vm_area_struct * vma)3436 static void special_mapping_close(struct vm_area_struct *vma)
3437 {
3438 }
3439 
special_mapping_name(struct vm_area_struct * vma)3440 static const char *special_mapping_name(struct vm_area_struct *vma)
3441 {
3442 	return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3443 }
3444 
special_mapping_mremap(struct vm_area_struct * new_vma)3445 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3446 {
3447 	struct vm_special_mapping *sm = new_vma->vm_private_data;
3448 
3449 	if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3450 		return -EFAULT;
3451 
3452 	if (sm->mremap)
3453 		return sm->mremap(sm, new_vma);
3454 
3455 	return 0;
3456 }
3457 
3458 static const struct vm_operations_struct special_mapping_vmops = {
3459 	.close = special_mapping_close,
3460 	.fault = special_mapping_fault,
3461 	.mremap = special_mapping_mremap,
3462 	.name = special_mapping_name,
3463 	/* vDSO code relies that VVAR can't be accessed remotely */
3464 	.access = NULL,
3465 };
3466 
3467 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3468 	.close = special_mapping_close,
3469 	.fault = special_mapping_fault,
3470 };
3471 
special_mapping_fault(struct vm_fault * vmf)3472 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3473 {
3474 	struct vm_area_struct *vma = vmf->vma;
3475 	pgoff_t pgoff;
3476 	struct page **pages;
3477 
3478 	if (vma->vm_ops == &legacy_special_mapping_vmops) {
3479 		pages = vma->vm_private_data;
3480 	} else {
3481 		struct vm_special_mapping *sm = vma->vm_private_data;
3482 
3483 		if (sm->fault)
3484 			return sm->fault(sm, vmf->vma, vmf);
3485 
3486 		pages = sm->pages;
3487 	}
3488 
3489 	for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3490 		pgoff--;
3491 
3492 	if (*pages) {
3493 		struct page *page = *pages;
3494 		get_page(page);
3495 		vmf->page = page;
3496 		return 0;
3497 	}
3498 
3499 	return VM_FAULT_SIGBUS;
3500 }
3501 
__install_special_mapping(struct mm_struct * mm,unsigned long addr,unsigned long len,unsigned long vm_flags,void * priv,const struct vm_operations_struct * ops)3502 static struct vm_area_struct *__install_special_mapping(
3503 	struct mm_struct *mm,
3504 	unsigned long addr, unsigned long len,
3505 	unsigned long vm_flags, void *priv,
3506 	const struct vm_operations_struct *ops)
3507 {
3508 	int ret;
3509 	struct vm_area_struct *vma;
3510 
3511 	vma = vm_area_alloc(mm);
3512 	if (unlikely(vma == NULL))
3513 		return ERR_PTR(-ENOMEM);
3514 
3515 	vma->vm_start = addr;
3516 	vma->vm_end = addr + len;
3517 
3518 	vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3519 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3520 
3521 	vma->vm_ops = ops;
3522 	vma->vm_private_data = priv;
3523 
3524 	ret = insert_vm_struct(mm, vma);
3525 	if (ret)
3526 		goto out;
3527 
3528 	vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3529 
3530 	perf_event_mmap(vma);
3531 
3532 	return vma;
3533 
3534 out:
3535 	vm_area_free(vma);
3536 	return ERR_PTR(ret);
3537 }
3538 
vma_is_special_mapping(const struct vm_area_struct * vma,const struct vm_special_mapping * sm)3539 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3540 	const struct vm_special_mapping *sm)
3541 {
3542 	return vma->vm_private_data == sm &&
3543 		(vma->vm_ops == &special_mapping_vmops ||
3544 		 vma->vm_ops == &legacy_special_mapping_vmops);
3545 }
3546 
3547 /*
3548  * Called with mm->mmap_lock held for writing.
3549  * Insert a new vma covering the given region, with the given flags.
3550  * Its pages are supplied by the given array of struct page *.
3551  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3552  * The region past the last page supplied will always produce SIGBUS.
3553  * The array pointer and the pages it points to are assumed to stay alive
3554  * for as long as this mapping might exist.
3555  */
_install_special_mapping(struct mm_struct * mm,unsigned long addr,unsigned long len,unsigned long vm_flags,const struct vm_special_mapping * spec)3556 struct vm_area_struct *_install_special_mapping(
3557 	struct mm_struct *mm,
3558 	unsigned long addr, unsigned long len,
3559 	unsigned long vm_flags, const struct vm_special_mapping *spec)
3560 {
3561 	return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3562 					&special_mapping_vmops);
3563 }
3564 
install_special_mapping(struct mm_struct * mm,unsigned long addr,unsigned long len,unsigned long vm_flags,struct page ** pages)3565 int install_special_mapping(struct mm_struct *mm,
3566 			    unsigned long addr, unsigned long len,
3567 			    unsigned long vm_flags, struct page **pages)
3568 {
3569 	struct vm_area_struct *vma = __install_special_mapping(
3570 		mm, addr, len, vm_flags, (void *)pages,
3571 		&legacy_special_mapping_vmops);
3572 
3573 	return PTR_ERR_OR_ZERO(vma);
3574 }
3575 
3576 static DEFINE_MUTEX(mm_all_locks_mutex);
3577 
vm_lock_anon_vma(struct mm_struct * mm,struct anon_vma * anon_vma)3578 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3579 {
3580 	if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3581 		/*
3582 		 * The LSB of head.next can't change from under us
3583 		 * because we hold the mm_all_locks_mutex.
3584 		 */
3585 		down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
3586 		/*
3587 		 * We can safely modify head.next after taking the
3588 		 * anon_vma->root->rwsem. If some other vma in this mm shares
3589 		 * the same anon_vma we won't take it again.
3590 		 *
3591 		 * No need of atomic instructions here, head.next
3592 		 * can't change from under us thanks to the
3593 		 * anon_vma->root->rwsem.
3594 		 */
3595 		if (__test_and_set_bit(0, (unsigned long *)
3596 				       &anon_vma->root->rb_root.rb_root.rb_node))
3597 			BUG();
3598 	}
3599 }
3600 
vm_lock_mapping(struct mm_struct * mm,struct address_space * mapping)3601 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3602 {
3603 	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3604 		/*
3605 		 * AS_MM_ALL_LOCKS can't change from under us because
3606 		 * we hold the mm_all_locks_mutex.
3607 		 *
3608 		 * Operations on ->flags have to be atomic because
3609 		 * even if AS_MM_ALL_LOCKS is stable thanks to the
3610 		 * mm_all_locks_mutex, there may be other cpus
3611 		 * changing other bitflags in parallel to us.
3612 		 */
3613 		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3614 			BUG();
3615 		down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
3616 	}
3617 }
3618 
3619 /*
3620  * This operation locks against the VM for all pte/vma/mm related
3621  * operations that could ever happen on a certain mm. This includes
3622  * vmtruncate, try_to_unmap, and all page faults.
3623  *
3624  * The caller must take the mmap_lock in write mode before calling
3625  * mm_take_all_locks(). The caller isn't allowed to release the
3626  * mmap_lock until mm_drop_all_locks() returns.
3627  *
3628  * mmap_lock in write mode is required in order to block all operations
3629  * that could modify pagetables and free pages without need of
3630  * altering the vma layout. It's also needed in write mode to avoid new
3631  * anon_vmas to be associated with existing vmas.
3632  *
3633  * A single task can't take more than one mm_take_all_locks() in a row
3634  * or it would deadlock.
3635  *
3636  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3637  * mapping->flags avoid to take the same lock twice, if more than one
3638  * vma in this mm is backed by the same anon_vma or address_space.
3639  *
3640  * We take locks in following order, accordingly to comment at beginning
3641  * of mm/rmap.c:
3642  *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3643  *     hugetlb mapping);
3644  *   - all i_mmap_rwsem locks;
3645  *   - all anon_vma->rwseml
3646  *
3647  * We can take all locks within these types randomly because the VM code
3648  * doesn't nest them and we protected from parallel mm_take_all_locks() by
3649  * mm_all_locks_mutex.
3650  *
3651  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3652  * that may have to take thousand of locks.
3653  *
3654  * mm_take_all_locks() can fail if it's interrupted by signals.
3655  */
mm_take_all_locks(struct mm_struct * mm)3656 int mm_take_all_locks(struct mm_struct *mm)
3657 {
3658 	struct vm_area_struct *vma;
3659 	struct anon_vma_chain *avc;
3660 
3661 	BUG_ON(mmap_read_trylock(mm));
3662 
3663 	mutex_lock(&mm_all_locks_mutex);
3664 
3665 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3666 		if (signal_pending(current))
3667 			goto out_unlock;
3668 		if (vma->vm_file && vma->vm_file->f_mapping &&
3669 				is_vm_hugetlb_page(vma))
3670 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3671 	}
3672 
3673 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3674 		if (signal_pending(current))
3675 			goto out_unlock;
3676 		if (vma->vm_file && vma->vm_file->f_mapping &&
3677 				!is_vm_hugetlb_page(vma))
3678 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3679 	}
3680 
3681 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3682 		if (signal_pending(current))
3683 			goto out_unlock;
3684 		if (vma->anon_vma)
3685 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3686 				vm_lock_anon_vma(mm, avc->anon_vma);
3687 	}
3688 
3689 	return 0;
3690 
3691 out_unlock:
3692 	mm_drop_all_locks(mm);
3693 	return -EINTR;
3694 }
3695 
vm_unlock_anon_vma(struct anon_vma * anon_vma)3696 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3697 {
3698 	if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3699 		/*
3700 		 * The LSB of head.next can't change to 0 from under
3701 		 * us because we hold the mm_all_locks_mutex.
3702 		 *
3703 		 * We must however clear the bitflag before unlocking
3704 		 * the vma so the users using the anon_vma->rb_root will
3705 		 * never see our bitflag.
3706 		 *
3707 		 * No need of atomic instructions here, head.next
3708 		 * can't change from under us until we release the
3709 		 * anon_vma->root->rwsem.
3710 		 */
3711 		if (!__test_and_clear_bit(0, (unsigned long *)
3712 					  &anon_vma->root->rb_root.rb_root.rb_node))
3713 			BUG();
3714 		anon_vma_unlock_write(anon_vma);
3715 	}
3716 }
3717 
vm_unlock_mapping(struct address_space * mapping)3718 static void vm_unlock_mapping(struct address_space *mapping)
3719 {
3720 	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3721 		/*
3722 		 * AS_MM_ALL_LOCKS can't change to 0 from under us
3723 		 * because we hold the mm_all_locks_mutex.
3724 		 */
3725 		i_mmap_unlock_write(mapping);
3726 		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3727 					&mapping->flags))
3728 			BUG();
3729 	}
3730 }
3731 
3732 /*
3733  * The mmap_lock cannot be released by the caller until
3734  * mm_drop_all_locks() returns.
3735  */
mm_drop_all_locks(struct mm_struct * mm)3736 void mm_drop_all_locks(struct mm_struct *mm)
3737 {
3738 	struct vm_area_struct *vma;
3739 	struct anon_vma_chain *avc;
3740 
3741 	BUG_ON(mmap_read_trylock(mm));
3742 	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3743 
3744 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3745 		if (vma->anon_vma)
3746 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3747 				vm_unlock_anon_vma(avc->anon_vma);
3748 		if (vma->vm_file && vma->vm_file->f_mapping)
3749 			vm_unlock_mapping(vma->vm_file->f_mapping);
3750 	}
3751 
3752 	mutex_unlock(&mm_all_locks_mutex);
3753 }
3754 
3755 /*
3756  * initialise the percpu counter for VM
3757  */
mmap_init(void)3758 void __init mmap_init(void)
3759 {
3760 	int ret;
3761 
3762 	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3763 	VM_BUG_ON(ret);
3764 }
3765 
3766 /*
3767  * Initialise sysctl_user_reserve_kbytes.
3768  *
3769  * This is intended to prevent a user from starting a single memory hogging
3770  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3771  * mode.
3772  *
3773  * The default value is min(3% of free memory, 128MB)
3774  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3775  */
init_user_reserve(void)3776 static int init_user_reserve(void)
3777 {
3778 	unsigned long free_kbytes;
3779 
3780 	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3781 
3782 	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3783 	return 0;
3784 }
3785 subsys_initcall(init_user_reserve);
3786 
3787 /*
3788  * Initialise sysctl_admin_reserve_kbytes.
3789  *
3790  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3791  * to log in and kill a memory hogging process.
3792  *
3793  * Systems with more than 256MB will reserve 8MB, enough to recover
3794  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3795  * only reserve 3% of free pages by default.
3796  */
init_admin_reserve(void)3797 static int init_admin_reserve(void)
3798 {
3799 	unsigned long free_kbytes;
3800 
3801 	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3802 
3803 	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3804 	return 0;
3805 }
3806 subsys_initcall(init_admin_reserve);
3807 
3808 /*
3809  * Reinititalise user and admin reserves if memory is added or removed.
3810  *
3811  * The default user reserve max is 128MB, and the default max for the
3812  * admin reserve is 8MB. These are usually, but not always, enough to
3813  * enable recovery from a memory hogging process using login/sshd, a shell,
3814  * and tools like top. It may make sense to increase or even disable the
3815  * reserve depending on the existence of swap or variations in the recovery
3816  * tools. So, the admin may have changed them.
3817  *
3818  * If memory is added and the reserves have been eliminated or increased above
3819  * the default max, then we'll trust the admin.
3820  *
3821  * If memory is removed and there isn't enough free memory, then we
3822  * need to reset the reserves.
3823  *
3824  * Otherwise keep the reserve set by the admin.
3825  */
reserve_mem_notifier(struct notifier_block * nb,unsigned long action,void * data)3826 static int reserve_mem_notifier(struct notifier_block *nb,
3827 			     unsigned long action, void *data)
3828 {
3829 	unsigned long tmp, free_kbytes;
3830 
3831 	switch (action) {
3832 	case MEM_ONLINE:
3833 		/* Default max is 128MB. Leave alone if modified by operator. */
3834 		tmp = sysctl_user_reserve_kbytes;
3835 		if (0 < tmp && tmp < (1UL << 17))
3836 			init_user_reserve();
3837 
3838 		/* Default max is 8MB.  Leave alone if modified by operator. */
3839 		tmp = sysctl_admin_reserve_kbytes;
3840 		if (0 < tmp && tmp < (1UL << 13))
3841 			init_admin_reserve();
3842 
3843 		break;
3844 	case MEM_OFFLINE:
3845 		free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3846 
3847 		if (sysctl_user_reserve_kbytes > free_kbytes) {
3848 			init_user_reserve();
3849 			pr_info("vm.user_reserve_kbytes reset to %lu\n",
3850 				sysctl_user_reserve_kbytes);
3851 		}
3852 
3853 		if (sysctl_admin_reserve_kbytes > free_kbytes) {
3854 			init_admin_reserve();
3855 			pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3856 				sysctl_admin_reserve_kbytes);
3857 		}
3858 		break;
3859 	default:
3860 		break;
3861 	}
3862 	return NOTIFY_OK;
3863 }
3864 
3865 static struct notifier_block reserve_mem_nb = {
3866 	.notifier_call = reserve_mem_notifier,
3867 };
3868 
init_reserve_notifier(void)3869 static int __meminit init_reserve_notifier(void)
3870 {
3871 	if (register_hotmemory_notifier(&reserve_mem_nb))
3872 		pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3873 
3874 	return 0;
3875 }
3876 subsys_initcall(init_reserve_notifier);
3877