1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * mm/mmap.c
4 *
5 * Written by obz.
6 *
7 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
8 */
9
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/backing-dev.h>
15 #include <linux/mm.h>
16 #include <linux/mm_inline.h>
17 #include <linux/vmacache.h>
18 #include <linux/shm.h>
19 #include <linux/mman.h>
20 #include <linux/pagemap.h>
21 #include <linux/swap.h>
22 #include <linux/syscalls.h>
23 #include <linux/capability.h>
24 #include <linux/init.h>
25 #include <linux/file.h>
26 #include <linux/fs.h>
27 #include <linux/personality.h>
28 #include <linux/security.h>
29 #include <linux/hugetlb.h>
30 #include <linux/shmem_fs.h>
31 #include <linux/profile.h>
32 #include <linux/export.h>
33 #include <linux/mount.h>
34 #include <linux/mempolicy.h>
35 #include <linux/rmap.h>
36 #include <linux/mmu_notifier.h>
37 #include <linux/mmdebug.h>
38 #include <linux/perf_event.h>
39 #include <linux/audit.h>
40 #include <linux/khugepaged.h>
41 #include <linux/uprobes.h>
42 #include <linux/rbtree_augmented.h>
43 #include <linux/notifier.h>
44 #include <linux/memory.h>
45 #include <linux/printk.h>
46 #include <linux/userfaultfd_k.h>
47 #include <linux/moduleparam.h>
48 #include <linux/pkeys.h>
49 #include <linux/oom.h>
50 #include <linux/sched/mm.h>
51
52 #include <linux/uaccess.h>
53 #include <asm/cacheflush.h>
54 #include <asm/tlb.h>
55 #include <asm/mmu_context.h>
56
57 #define CREATE_TRACE_POINTS
58 #include <trace/events/mmap.h>
59
60 #undef CREATE_TRACE_POINTS
61 #include <trace/hooks/mm.h>
62
63 #include "internal.h"
64
65 #ifndef arch_mmap_check
66 #define arch_mmap_check(addr, len, flags) (0)
67 #endif
68
69 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
70 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
71 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
72 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
73 #endif
74 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
75 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
76 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
77 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
78 #endif
79
80 static bool ignore_rlimit_data;
81 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
82
83 static void unmap_region(struct mm_struct *mm,
84 struct vm_area_struct *vma, struct vm_area_struct *prev,
85 unsigned long start, unsigned long end);
86
87 /* description of effects of mapping type and prot in current implementation.
88 * this is due to the limited x86 page protection hardware. The expected
89 * behavior is in parens:
90 *
91 * map_type prot
92 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
93 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
94 * w: (no) no w: (no) no w: (yes) yes w: (no) no
95 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
96 *
97 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
98 * w: (no) no w: (no) no w: (copy) copy w: (no) no
99 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
100 */
101 pgprot_t protection_map[16] __ro_after_init = {
102 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
103 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
104 };
105
106 #ifndef CONFIG_ARCH_HAS_FILTER_PGPROT
arch_filter_pgprot(pgprot_t prot)107 static inline pgprot_t arch_filter_pgprot(pgprot_t prot)
108 {
109 return prot;
110 }
111 #endif
112
vm_get_page_prot(unsigned long vm_flags)113 pgprot_t vm_get_page_prot(unsigned long vm_flags)
114 {
115 pgprot_t ret = __pgprot(pgprot_val(protection_map[vm_flags &
116 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
117 pgprot_val(arch_vm_get_page_prot(vm_flags)));
118
119 return arch_filter_pgprot(ret);
120 }
121 EXPORT_SYMBOL(vm_get_page_prot);
122
vm_pgprot_modify(pgprot_t oldprot,unsigned long vm_flags)123 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
124 {
125 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
126 }
127
128 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
vma_set_page_prot(struct vm_area_struct * vma)129 void vma_set_page_prot(struct vm_area_struct *vma)
130 {
131 unsigned long vm_flags = vma->vm_flags;
132 pgprot_t vm_page_prot;
133
134 vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
135 if (vma_wants_writenotify(vma, vm_page_prot)) {
136 vm_flags &= ~VM_SHARED;
137 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
138 }
139 /* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */
140 WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
141 }
142
143 /*
144 * Requires inode->i_mapping->i_mmap_rwsem
145 */
__remove_shared_vm_struct(struct vm_area_struct * vma,struct file * file,struct address_space * mapping)146 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
147 struct file *file, struct address_space *mapping)
148 {
149 if (vma->vm_flags & VM_DENYWRITE)
150 allow_write_access(file);
151 if (vma->vm_flags & VM_SHARED)
152 mapping_unmap_writable(mapping);
153
154 flush_dcache_mmap_lock(mapping);
155 vma_interval_tree_remove(vma, &mapping->i_mmap);
156 flush_dcache_mmap_unlock(mapping);
157 }
158
159 /*
160 * Unlink a file-based vm structure from its interval tree, to hide
161 * vma from rmap and vmtruncate before freeing its page tables.
162 */
unlink_file_vma(struct vm_area_struct * vma)163 void unlink_file_vma(struct vm_area_struct *vma)
164 {
165 struct file *file = vma->vm_file;
166
167 if (file) {
168 struct address_space *mapping = file->f_mapping;
169 i_mmap_lock_write(mapping);
170 __remove_shared_vm_struct(vma, file, mapping);
171 i_mmap_unlock_write(mapping);
172 }
173 }
174
175 /*
176 * Close a vm structure and free it, returning the next.
177 */
remove_vma(struct vm_area_struct * vma)178 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
179 {
180 struct vm_area_struct *next = vma->vm_next;
181
182 might_sleep();
183 if (vma->vm_ops && vma->vm_ops->close)
184 vma->vm_ops->close(vma);
185 if (vma->vm_file)
186 fput(vma->vm_file);
187 mpol_put(vma_policy(vma));
188 vm_area_free(vma);
189 return next;
190 }
191
192 static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags,
193 struct list_head *uf);
SYSCALL_DEFINE1(brk,unsigned long,brk)194 SYSCALL_DEFINE1(brk, unsigned long, brk)
195 {
196 unsigned long retval;
197 unsigned long newbrk, oldbrk, origbrk;
198 struct mm_struct *mm = current->mm;
199 struct vm_area_struct *next;
200 unsigned long min_brk;
201 bool populate;
202 bool downgraded = false;
203 LIST_HEAD(uf);
204
205 if (mmap_write_lock_killable(mm))
206 return -EINTR;
207
208 origbrk = mm->brk;
209
210 #ifdef CONFIG_COMPAT_BRK
211 /*
212 * CONFIG_COMPAT_BRK can still be overridden by setting
213 * randomize_va_space to 2, which will still cause mm->start_brk
214 * to be arbitrarily shifted
215 */
216 if (current->brk_randomized)
217 min_brk = mm->start_brk;
218 else
219 min_brk = mm->end_data;
220 #else
221 min_brk = mm->start_brk;
222 #endif
223 if (brk < min_brk)
224 goto out;
225
226 /*
227 * Check against rlimit here. If this check is done later after the test
228 * of oldbrk with newbrk then it can escape the test and let the data
229 * segment grow beyond its set limit the in case where the limit is
230 * not page aligned -Ram Gupta
231 */
232 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
233 mm->end_data, mm->start_data))
234 goto out;
235
236 newbrk = PAGE_ALIGN(brk);
237 oldbrk = PAGE_ALIGN(mm->brk);
238 if (oldbrk == newbrk) {
239 mm->brk = brk;
240 goto success;
241 }
242
243 /*
244 * Always allow shrinking brk.
245 * __do_munmap() may downgrade mmap_lock to read.
246 */
247 if (brk <= mm->brk) {
248 int ret;
249
250 /*
251 * mm->brk must to be protected by write mmap_lock so update it
252 * before downgrading mmap_lock. When __do_munmap() fails,
253 * mm->brk will be restored from origbrk.
254 */
255 mm->brk = brk;
256 ret = __do_munmap(mm, newbrk, oldbrk-newbrk, &uf, true);
257 if (ret < 0) {
258 mm->brk = origbrk;
259 goto out;
260 } else if (ret == 1) {
261 downgraded = true;
262 }
263 goto success;
264 }
265
266 /* Check against existing mmap mappings. */
267 next = find_vma(mm, oldbrk);
268 if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
269 goto out;
270
271 /* Ok, looks good - let it rip. */
272 if (do_brk_flags(oldbrk, newbrk-oldbrk, 0, &uf) < 0)
273 goto out;
274 mm->brk = brk;
275
276 success:
277 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
278 if (downgraded)
279 mmap_read_unlock(mm);
280 else
281 mmap_write_unlock(mm);
282 userfaultfd_unmap_complete(mm, &uf);
283 if (populate)
284 mm_populate(oldbrk, newbrk - oldbrk);
285 return brk;
286
287 out:
288 retval = origbrk;
289 mmap_write_unlock(mm);
290 return retval;
291 }
292
vma_compute_gap(struct vm_area_struct * vma)293 static inline unsigned long vma_compute_gap(struct vm_area_struct *vma)
294 {
295 unsigned long gap, prev_end;
296
297 /*
298 * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we
299 * allow two stack_guard_gaps between them here, and when choosing
300 * an unmapped area; whereas when expanding we only require one.
301 * That's a little inconsistent, but keeps the code here simpler.
302 */
303 gap = vm_start_gap(vma);
304 if (vma->vm_prev) {
305 prev_end = vm_end_gap(vma->vm_prev);
306 if (gap > prev_end)
307 gap -= prev_end;
308 else
309 gap = 0;
310 }
311 return gap;
312 }
313
314 #ifdef CONFIG_DEBUG_VM_RB
vma_compute_subtree_gap(struct vm_area_struct * vma)315 static unsigned long vma_compute_subtree_gap(struct vm_area_struct *vma)
316 {
317 unsigned long max = vma_compute_gap(vma), subtree_gap;
318 if (vma->vm_rb.rb_left) {
319 subtree_gap = rb_entry(vma->vm_rb.rb_left,
320 struct vm_area_struct, vm_rb)->rb_subtree_gap;
321 if (subtree_gap > max)
322 max = subtree_gap;
323 }
324 if (vma->vm_rb.rb_right) {
325 subtree_gap = rb_entry(vma->vm_rb.rb_right,
326 struct vm_area_struct, vm_rb)->rb_subtree_gap;
327 if (subtree_gap > max)
328 max = subtree_gap;
329 }
330 return max;
331 }
332
browse_rb(struct mm_struct * mm)333 static int browse_rb(struct mm_struct *mm)
334 {
335 struct rb_root *root = &mm->mm_rb;
336 int i = 0, j, bug = 0;
337 struct rb_node *nd, *pn = NULL;
338 unsigned long prev = 0, pend = 0;
339
340 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
341 struct vm_area_struct *vma;
342 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
343 if (vma->vm_start < prev) {
344 pr_emerg("vm_start %lx < prev %lx\n",
345 vma->vm_start, prev);
346 bug = 1;
347 }
348 if (vma->vm_start < pend) {
349 pr_emerg("vm_start %lx < pend %lx\n",
350 vma->vm_start, pend);
351 bug = 1;
352 }
353 if (vma->vm_start > vma->vm_end) {
354 pr_emerg("vm_start %lx > vm_end %lx\n",
355 vma->vm_start, vma->vm_end);
356 bug = 1;
357 }
358 spin_lock(&mm->page_table_lock);
359 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
360 pr_emerg("free gap %lx, correct %lx\n",
361 vma->rb_subtree_gap,
362 vma_compute_subtree_gap(vma));
363 bug = 1;
364 }
365 spin_unlock(&mm->page_table_lock);
366 i++;
367 pn = nd;
368 prev = vma->vm_start;
369 pend = vma->vm_end;
370 }
371 j = 0;
372 for (nd = pn; nd; nd = rb_prev(nd))
373 j++;
374 if (i != j) {
375 pr_emerg("backwards %d, forwards %d\n", j, i);
376 bug = 1;
377 }
378 return bug ? -1 : i;
379 }
380
validate_mm_rb(struct rb_root * root,struct vm_area_struct * ignore)381 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
382 {
383 struct rb_node *nd;
384
385 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
386 struct vm_area_struct *vma;
387 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
388 VM_BUG_ON_VMA(vma != ignore &&
389 vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
390 vma);
391 }
392 }
393
validate_mm(struct mm_struct * mm)394 static void validate_mm(struct mm_struct *mm)
395 {
396 int bug = 0;
397 int i = 0;
398 unsigned long highest_address = 0;
399 struct vm_area_struct *vma = mm->mmap;
400
401 while (vma) {
402 struct anon_vma *anon_vma = vma->anon_vma;
403 struct anon_vma_chain *avc;
404
405 if (anon_vma) {
406 anon_vma_lock_read(anon_vma);
407 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
408 anon_vma_interval_tree_verify(avc);
409 anon_vma_unlock_read(anon_vma);
410 }
411
412 highest_address = vm_end_gap(vma);
413 vma = vma->vm_next;
414 i++;
415 }
416 if (i != mm->map_count) {
417 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
418 bug = 1;
419 }
420 if (highest_address != mm->highest_vm_end) {
421 pr_emerg("mm->highest_vm_end %lx, found %lx\n",
422 mm->highest_vm_end, highest_address);
423 bug = 1;
424 }
425 i = browse_rb(mm);
426 if (i != mm->map_count) {
427 if (i != -1)
428 pr_emerg("map_count %d rb %d\n", mm->map_count, i);
429 bug = 1;
430 }
431 VM_BUG_ON_MM(bug, mm);
432 }
433 #else
434 #define validate_mm_rb(root, ignore) do { } while (0)
435 #define validate_mm(mm) do { } while (0)
436 #endif
437
RB_DECLARE_CALLBACKS_MAX(static,vma_gap_callbacks,struct vm_area_struct,vm_rb,unsigned long,rb_subtree_gap,vma_compute_gap)438 RB_DECLARE_CALLBACKS_MAX(static, vma_gap_callbacks,
439 struct vm_area_struct, vm_rb,
440 unsigned long, rb_subtree_gap, vma_compute_gap)
441
442 /*
443 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
444 * vma->vm_prev->vm_end values changed, without modifying the vma's position
445 * in the rbtree.
446 */
447 static void vma_gap_update(struct vm_area_struct *vma)
448 {
449 /*
450 * As it turns out, RB_DECLARE_CALLBACKS_MAX() already created
451 * a callback function that does exactly what we want.
452 */
453 vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
454 }
455
vma_rb_insert(struct vm_area_struct * vma,struct rb_root * root)456 static inline void vma_rb_insert(struct vm_area_struct *vma,
457 struct rb_root *root)
458 {
459 /* All rb_subtree_gap values must be consistent prior to insertion */
460 validate_mm_rb(root, NULL);
461
462 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
463 }
464
__vma_rb_erase(struct vm_area_struct * vma,struct rb_root * root)465 static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
466 {
467 /*
468 * Note rb_erase_augmented is a fairly large inline function,
469 * so make sure we instantiate it only once with our desired
470 * augmented rbtree callbacks.
471 */
472 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
473 }
474
vma_rb_erase_ignore(struct vm_area_struct * vma,struct rb_root * root,struct vm_area_struct * ignore)475 static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma,
476 struct rb_root *root,
477 struct vm_area_struct *ignore)
478 {
479 /*
480 * All rb_subtree_gap values must be consistent prior to erase,
481 * with the possible exception of
482 *
483 * a. the "next" vma being erased if next->vm_start was reduced in
484 * __vma_adjust() -> __vma_unlink()
485 * b. the vma being erased in detach_vmas_to_be_unmapped() ->
486 * vma_rb_erase()
487 */
488 validate_mm_rb(root, ignore);
489
490 __vma_rb_erase(vma, root);
491 }
492
vma_rb_erase(struct vm_area_struct * vma,struct rb_root * root)493 static __always_inline void vma_rb_erase(struct vm_area_struct *vma,
494 struct rb_root *root)
495 {
496 vma_rb_erase_ignore(vma, root, vma);
497 }
498
499 /*
500 * vma has some anon_vma assigned, and is already inserted on that
501 * anon_vma's interval trees.
502 *
503 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
504 * vma must be removed from the anon_vma's interval trees using
505 * anon_vma_interval_tree_pre_update_vma().
506 *
507 * After the update, the vma will be reinserted using
508 * anon_vma_interval_tree_post_update_vma().
509 *
510 * The entire update must be protected by exclusive mmap_lock and by
511 * the root anon_vma's mutex.
512 */
513 static inline void
anon_vma_interval_tree_pre_update_vma(struct vm_area_struct * vma)514 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
515 {
516 struct anon_vma_chain *avc;
517
518 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
519 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
520 }
521
522 static inline void
anon_vma_interval_tree_post_update_vma(struct vm_area_struct * vma)523 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
524 {
525 struct anon_vma_chain *avc;
526
527 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
528 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
529 }
530
find_vma_links(struct mm_struct * mm,unsigned long addr,unsigned long end,struct vm_area_struct ** pprev,struct rb_node *** rb_link,struct rb_node ** rb_parent)531 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
532 unsigned long end, struct vm_area_struct **pprev,
533 struct rb_node ***rb_link, struct rb_node **rb_parent)
534 {
535 struct rb_node **__rb_link, *__rb_parent, *rb_prev;
536
537 __rb_link = &mm->mm_rb.rb_node;
538 rb_prev = __rb_parent = NULL;
539
540 while (*__rb_link) {
541 struct vm_area_struct *vma_tmp;
542
543 __rb_parent = *__rb_link;
544 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
545
546 if (vma_tmp->vm_end > addr) {
547 /* Fail if an existing vma overlaps the area */
548 if (vma_tmp->vm_start < end)
549 return -ENOMEM;
550 __rb_link = &__rb_parent->rb_left;
551 } else {
552 rb_prev = __rb_parent;
553 __rb_link = &__rb_parent->rb_right;
554 }
555 }
556
557 *pprev = NULL;
558 if (rb_prev)
559 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
560 *rb_link = __rb_link;
561 *rb_parent = __rb_parent;
562 return 0;
563 }
564
565 /*
566 * vma_next() - Get the next VMA.
567 * @mm: The mm_struct.
568 * @vma: The current vma.
569 *
570 * If @vma is NULL, return the first vma in the mm.
571 *
572 * Returns: The next VMA after @vma.
573 */
vma_next(struct mm_struct * mm,struct vm_area_struct * vma)574 static inline struct vm_area_struct *vma_next(struct mm_struct *mm,
575 struct vm_area_struct *vma)
576 {
577 if (!vma)
578 return mm->mmap;
579
580 return vma->vm_next;
581 }
582
583 /*
584 * munmap_vma_range() - munmap VMAs that overlap a range.
585 * @mm: The mm struct
586 * @start: The start of the range.
587 * @len: The length of the range.
588 * @pprev: pointer to the pointer that will be set to previous vm_area_struct
589 * @rb_link: the rb_node
590 * @rb_parent: the parent rb_node
591 *
592 * Find all the vm_area_struct that overlap from @start to
593 * @end and munmap them. Set @pprev to the previous vm_area_struct.
594 *
595 * Returns: -ENOMEM on munmap failure or 0 on success.
596 */
597 static inline int
munmap_vma_range(struct mm_struct * mm,unsigned long start,unsigned long len,struct vm_area_struct ** pprev,struct rb_node *** link,struct rb_node ** parent,struct list_head * uf)598 munmap_vma_range(struct mm_struct *mm, unsigned long start, unsigned long len,
599 struct vm_area_struct **pprev, struct rb_node ***link,
600 struct rb_node **parent, struct list_head *uf)
601 {
602
603 while (find_vma_links(mm, start, start + len, pprev, link, parent))
604 if (do_munmap(mm, start, len, uf))
605 return -ENOMEM;
606
607 return 0;
608 }
count_vma_pages_range(struct mm_struct * mm,unsigned long addr,unsigned long end)609 static unsigned long count_vma_pages_range(struct mm_struct *mm,
610 unsigned long addr, unsigned long end)
611 {
612 unsigned long nr_pages = 0;
613 struct vm_area_struct *vma;
614
615 /* Find first overlaping mapping */
616 vma = find_vma_intersection(mm, addr, end);
617 if (!vma)
618 return 0;
619
620 nr_pages = (min(end, vma->vm_end) -
621 max(addr, vma->vm_start)) >> PAGE_SHIFT;
622
623 /* Iterate over the rest of the overlaps */
624 for (vma = vma->vm_next; vma; vma = vma->vm_next) {
625 unsigned long overlap_len;
626
627 if (vma->vm_start > end)
628 break;
629
630 overlap_len = min(end, vma->vm_end) - vma->vm_start;
631 nr_pages += overlap_len >> PAGE_SHIFT;
632 }
633
634 return nr_pages;
635 }
636
__vma_link_rb(struct mm_struct * mm,struct vm_area_struct * vma,struct rb_node ** rb_link,struct rb_node * rb_parent)637 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
638 struct rb_node **rb_link, struct rb_node *rb_parent)
639 {
640 /* Update tracking information for the gap following the new vma. */
641 if (vma->vm_next)
642 vma_gap_update(vma->vm_next);
643 else
644 mm->highest_vm_end = vm_end_gap(vma);
645
646 /*
647 * vma->vm_prev wasn't known when we followed the rbtree to find the
648 * correct insertion point for that vma. As a result, we could not
649 * update the vma vm_rb parents rb_subtree_gap values on the way down.
650 * So, we first insert the vma with a zero rb_subtree_gap value
651 * (to be consistent with what we did on the way down), and then
652 * immediately update the gap to the correct value. Finally we
653 * rebalance the rbtree after all augmented values have been set.
654 */
655 rb_link_node(&vma->vm_rb, rb_parent, rb_link);
656 vma->rb_subtree_gap = 0;
657 vma_gap_update(vma);
658 vma_rb_insert(vma, &mm->mm_rb);
659 }
660
__vma_link_file(struct vm_area_struct * vma)661 static void __vma_link_file(struct vm_area_struct *vma)
662 {
663 struct file *file;
664
665 file = vma->vm_file;
666 if (file) {
667 struct address_space *mapping = file->f_mapping;
668
669 if (vma->vm_flags & VM_DENYWRITE)
670 put_write_access(file_inode(file));
671 if (vma->vm_flags & VM_SHARED)
672 mapping_allow_writable(mapping);
673
674 flush_dcache_mmap_lock(mapping);
675 vma_interval_tree_insert(vma, &mapping->i_mmap);
676 flush_dcache_mmap_unlock(mapping);
677 }
678 }
679
680 static void
__vma_link(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev,struct rb_node ** rb_link,struct rb_node * rb_parent)681 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
682 struct vm_area_struct *prev, struct rb_node **rb_link,
683 struct rb_node *rb_parent)
684 {
685 __vma_link_list(mm, vma, prev);
686 __vma_link_rb(mm, vma, rb_link, rb_parent);
687 }
688
vma_link(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev,struct rb_node ** rb_link,struct rb_node * rb_parent)689 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
690 struct vm_area_struct *prev, struct rb_node **rb_link,
691 struct rb_node *rb_parent)
692 {
693 struct address_space *mapping = NULL;
694
695 if (vma->vm_file) {
696 mapping = vma->vm_file->f_mapping;
697 i_mmap_lock_write(mapping);
698 }
699
700 __vma_link(mm, vma, prev, rb_link, rb_parent);
701 __vma_link_file(vma);
702
703 if (mapping)
704 i_mmap_unlock_write(mapping);
705
706 mm->map_count++;
707 validate_mm(mm);
708 }
709
710 /*
711 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
712 * mm's list and rbtree. It has already been inserted into the interval tree.
713 */
__insert_vm_struct(struct mm_struct * mm,struct vm_area_struct * vma)714 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
715 {
716 struct vm_area_struct *prev;
717 struct rb_node **rb_link, *rb_parent;
718
719 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
720 &prev, &rb_link, &rb_parent))
721 BUG();
722 __vma_link(mm, vma, prev, rb_link, rb_parent);
723 mm->map_count++;
724 }
725
__vma_unlink(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * ignore)726 static __always_inline void __vma_unlink(struct mm_struct *mm,
727 struct vm_area_struct *vma,
728 struct vm_area_struct *ignore)
729 {
730 vma_rb_erase_ignore(vma, &mm->mm_rb, ignore);
731 __vma_unlink_list(mm, vma);
732 /* Kill the cache */
733 vmacache_invalidate(mm);
734 }
735
736 /*
737 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
738 * is already present in an i_mmap tree without adjusting the tree.
739 * The following helper function should be used when such adjustments
740 * are necessary. The "insert" vma (if any) is to be inserted
741 * before we drop the necessary locks.
742 */
__vma_adjust(struct vm_area_struct * vma,unsigned long start,unsigned long end,pgoff_t pgoff,struct vm_area_struct * insert,struct vm_area_struct * expand)743 int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
744 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
745 struct vm_area_struct *expand)
746 {
747 struct mm_struct *mm = vma->vm_mm;
748 struct vm_area_struct *next = vma->vm_next, *orig_vma = vma;
749 struct address_space *mapping = NULL;
750 struct rb_root_cached *root = NULL;
751 struct anon_vma *anon_vma = NULL;
752 struct file *file = vma->vm_file;
753 bool start_changed = false, end_changed = false;
754 long adjust_next = 0;
755 int remove_next = 0;
756
757 if (next && !insert) {
758 struct vm_area_struct *exporter = NULL, *importer = NULL;
759
760 if (end >= next->vm_end) {
761 /*
762 * vma expands, overlapping all the next, and
763 * perhaps the one after too (mprotect case 6).
764 * The only other cases that gets here are
765 * case 1, case 7 and case 8.
766 */
767 if (next == expand) {
768 /*
769 * The only case where we don't expand "vma"
770 * and we expand "next" instead is case 8.
771 */
772 VM_WARN_ON(end != next->vm_end);
773 /*
774 * remove_next == 3 means we're
775 * removing "vma" and that to do so we
776 * swapped "vma" and "next".
777 */
778 remove_next = 3;
779 VM_WARN_ON(file != next->vm_file);
780 swap(vma, next);
781 } else {
782 VM_WARN_ON(expand != vma);
783 /*
784 * case 1, 6, 7, remove_next == 2 is case 6,
785 * remove_next == 1 is case 1 or 7.
786 */
787 remove_next = 1 + (end > next->vm_end);
788 VM_WARN_ON(remove_next == 2 &&
789 end != next->vm_next->vm_end);
790 /* trim end to next, for case 6 first pass */
791 end = next->vm_end;
792 }
793
794 exporter = next;
795 importer = vma;
796
797 /*
798 * If next doesn't have anon_vma, import from vma after
799 * next, if the vma overlaps with it.
800 */
801 if (remove_next == 2 && !next->anon_vma)
802 exporter = next->vm_next;
803
804 } else if (end > next->vm_start) {
805 /*
806 * vma expands, overlapping part of the next:
807 * mprotect case 5 shifting the boundary up.
808 */
809 adjust_next = (end - next->vm_start);
810 exporter = next;
811 importer = vma;
812 VM_WARN_ON(expand != importer);
813 } else if (end < vma->vm_end) {
814 /*
815 * vma shrinks, and !insert tells it's not
816 * split_vma inserting another: so it must be
817 * mprotect case 4 shifting the boundary down.
818 */
819 adjust_next = -(vma->vm_end - end);
820 exporter = vma;
821 importer = next;
822 VM_WARN_ON(expand != importer);
823 }
824
825 /*
826 * Easily overlooked: when mprotect shifts the boundary,
827 * make sure the expanding vma has anon_vma set if the
828 * shrinking vma had, to cover any anon pages imported.
829 */
830 if (exporter && exporter->anon_vma && !importer->anon_vma) {
831 int error;
832
833 importer->anon_vma = exporter->anon_vma;
834 error = anon_vma_clone(importer, exporter);
835 if (error)
836 return error;
837 }
838 }
839 again:
840 vma_adjust_trans_huge(orig_vma, start, end, adjust_next);
841
842 if (file) {
843 mapping = file->f_mapping;
844 root = &mapping->i_mmap;
845 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
846
847 if (adjust_next)
848 uprobe_munmap(next, next->vm_start, next->vm_end);
849
850 i_mmap_lock_write(mapping);
851 if (insert) {
852 /*
853 * Put into interval tree now, so instantiated pages
854 * are visible to arm/parisc __flush_dcache_page
855 * throughout; but we cannot insert into address
856 * space until vma start or end is updated.
857 */
858 __vma_link_file(insert);
859 }
860 }
861
862 anon_vma = vma->anon_vma;
863 if (!anon_vma && adjust_next)
864 anon_vma = next->anon_vma;
865 if (anon_vma) {
866 VM_WARN_ON(adjust_next && next->anon_vma &&
867 anon_vma != next->anon_vma);
868 anon_vma_lock_write(anon_vma);
869 anon_vma_interval_tree_pre_update_vma(vma);
870 if (adjust_next)
871 anon_vma_interval_tree_pre_update_vma(next);
872 }
873
874 if (file) {
875 flush_dcache_mmap_lock(mapping);
876 vma_interval_tree_remove(vma, root);
877 if (adjust_next)
878 vma_interval_tree_remove(next, root);
879 }
880
881 if (start != vma->vm_start) {
882 vma->vm_start = start;
883 start_changed = true;
884 }
885 if (end != vma->vm_end) {
886 vma->vm_end = end;
887 end_changed = true;
888 }
889 vma->vm_pgoff = pgoff;
890 if (adjust_next) {
891 next->vm_start += adjust_next;
892 next->vm_pgoff += adjust_next >> PAGE_SHIFT;
893 }
894
895 if (file) {
896 if (adjust_next)
897 vma_interval_tree_insert(next, root);
898 vma_interval_tree_insert(vma, root);
899 flush_dcache_mmap_unlock(mapping);
900 }
901
902 if (remove_next) {
903 /*
904 * vma_merge has merged next into vma, and needs
905 * us to remove next before dropping the locks.
906 */
907 if (remove_next != 3)
908 __vma_unlink(mm, next, next);
909 else
910 /*
911 * vma is not before next if they've been
912 * swapped.
913 *
914 * pre-swap() next->vm_start was reduced so
915 * tell validate_mm_rb to ignore pre-swap()
916 * "next" (which is stored in post-swap()
917 * "vma").
918 */
919 __vma_unlink(mm, next, vma);
920 if (file)
921 __remove_shared_vm_struct(next, file, mapping);
922 } else if (insert) {
923 /*
924 * split_vma has split insert from vma, and needs
925 * us to insert it before dropping the locks
926 * (it may either follow vma or precede it).
927 */
928 __insert_vm_struct(mm, insert);
929 } else {
930 if (start_changed)
931 vma_gap_update(vma);
932 if (end_changed) {
933 if (!next)
934 mm->highest_vm_end = vm_end_gap(vma);
935 else if (!adjust_next)
936 vma_gap_update(next);
937 }
938 }
939
940 if (anon_vma) {
941 anon_vma_interval_tree_post_update_vma(vma);
942 if (adjust_next)
943 anon_vma_interval_tree_post_update_vma(next);
944 anon_vma_unlock_write(anon_vma);
945 }
946
947 if (file) {
948 i_mmap_unlock_write(mapping);
949 uprobe_mmap(vma);
950
951 if (adjust_next)
952 uprobe_mmap(next);
953 }
954
955 if (remove_next) {
956 if (file) {
957 uprobe_munmap(next, next->vm_start, next->vm_end);
958 fput(file);
959 }
960 if (next->anon_vma)
961 anon_vma_merge(vma, next);
962 mm->map_count--;
963 mpol_put(vma_policy(next));
964 vm_area_free(next);
965 /*
966 * In mprotect's case 6 (see comments on vma_merge),
967 * we must remove another next too. It would clutter
968 * up the code too much to do both in one go.
969 */
970 if (remove_next != 3) {
971 /*
972 * If "next" was removed and vma->vm_end was
973 * expanded (up) over it, in turn
974 * "next->vm_prev->vm_end" changed and the
975 * "vma->vm_next" gap must be updated.
976 */
977 next = vma->vm_next;
978 } else {
979 /*
980 * For the scope of the comment "next" and
981 * "vma" considered pre-swap(): if "vma" was
982 * removed, next->vm_start was expanded (down)
983 * over it and the "next" gap must be updated.
984 * Because of the swap() the post-swap() "vma"
985 * actually points to pre-swap() "next"
986 * (post-swap() "next" as opposed is now a
987 * dangling pointer).
988 */
989 next = vma;
990 }
991 if (remove_next == 2) {
992 remove_next = 1;
993 end = next->vm_end;
994 goto again;
995 }
996 else if (next)
997 vma_gap_update(next);
998 else {
999 /*
1000 * If remove_next == 2 we obviously can't
1001 * reach this path.
1002 *
1003 * If remove_next == 3 we can't reach this
1004 * path because pre-swap() next is always not
1005 * NULL. pre-swap() "next" is not being
1006 * removed and its next->vm_end is not altered
1007 * (and furthermore "end" already matches
1008 * next->vm_end in remove_next == 3).
1009 *
1010 * We reach this only in the remove_next == 1
1011 * case if the "next" vma that was removed was
1012 * the highest vma of the mm. However in such
1013 * case next->vm_end == "end" and the extended
1014 * "vma" has vma->vm_end == next->vm_end so
1015 * mm->highest_vm_end doesn't need any update
1016 * in remove_next == 1 case.
1017 */
1018 VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma));
1019 }
1020 }
1021 if (insert && file)
1022 uprobe_mmap(insert);
1023
1024 validate_mm(mm);
1025
1026 return 0;
1027 }
1028
1029 /*
1030 * If the vma has a ->close operation then the driver probably needs to release
1031 * per-vma resources, so we don't attempt to merge those.
1032 */
is_mergeable_vma(struct vm_area_struct * vma,struct file * file,unsigned long vm_flags,struct vm_userfaultfd_ctx vm_userfaultfd_ctx,struct anon_vma_name * anon_name)1033 static inline int is_mergeable_vma(struct vm_area_struct *vma,
1034 struct file *file, unsigned long vm_flags,
1035 struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
1036 struct anon_vma_name *anon_name)
1037 {
1038 /*
1039 * VM_SOFTDIRTY should not prevent from VMA merging, if we
1040 * match the flags but dirty bit -- the caller should mark
1041 * merged VMA as dirty. If dirty bit won't be excluded from
1042 * comparison, we increase pressure on the memory system forcing
1043 * the kernel to generate new VMAs when old one could be
1044 * extended instead.
1045 */
1046 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
1047 return 0;
1048 if (vma->vm_file != file)
1049 return 0;
1050 if (vma->vm_ops && vma->vm_ops->close)
1051 return 0;
1052 if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
1053 return 0;
1054 if (!anon_vma_name_eq(anon_vma_name(vma), anon_name))
1055 return 0;
1056 return 1;
1057 }
1058
is_mergeable_anon_vma(struct anon_vma * anon_vma1,struct anon_vma * anon_vma2,struct vm_area_struct * vma)1059 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
1060 struct anon_vma *anon_vma2,
1061 struct vm_area_struct *vma)
1062 {
1063 /*
1064 * The list_is_singular() test is to avoid merging VMA cloned from
1065 * parents. This can improve scalability caused by anon_vma lock.
1066 */
1067 if ((!anon_vma1 || !anon_vma2) && (!vma ||
1068 list_is_singular(&vma->anon_vma_chain)))
1069 return 1;
1070 return anon_vma1 == anon_vma2;
1071 }
1072
1073 /*
1074 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1075 * in front of (at a lower virtual address and file offset than) the vma.
1076 *
1077 * We cannot merge two vmas if they have differently assigned (non-NULL)
1078 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1079 *
1080 * We don't check here for the merged mmap wrapping around the end of pagecache
1081 * indices (16TB on ia32) because do_mmap() does not permit mmap's which
1082 * wrap, nor mmaps which cover the final page at index -1UL.
1083 */
1084 static int
can_vma_merge_before(struct vm_area_struct * vma,unsigned long vm_flags,struct anon_vma * anon_vma,struct file * file,pgoff_t vm_pgoff,struct vm_userfaultfd_ctx vm_userfaultfd_ctx,struct anon_vma_name * anon_name)1085 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
1086 struct anon_vma *anon_vma, struct file *file,
1087 pgoff_t vm_pgoff,
1088 struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
1089 struct anon_vma_name *anon_name)
1090 {
1091 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name) &&
1092 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1093 if (vma->vm_pgoff == vm_pgoff)
1094 return 1;
1095 }
1096 return 0;
1097 }
1098
1099 /*
1100 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1101 * beyond (at a higher virtual address and file offset than) the vma.
1102 *
1103 * We cannot merge two vmas if they have differently assigned (non-NULL)
1104 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1105 */
1106 static int
can_vma_merge_after(struct vm_area_struct * vma,unsigned long vm_flags,struct anon_vma * anon_vma,struct file * file,pgoff_t vm_pgoff,struct vm_userfaultfd_ctx vm_userfaultfd_ctx,struct anon_vma_name * anon_name)1107 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1108 struct anon_vma *anon_vma, struct file *file,
1109 pgoff_t vm_pgoff,
1110 struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
1111 struct anon_vma_name *anon_name)
1112 {
1113 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name) &&
1114 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1115 pgoff_t vm_pglen;
1116 vm_pglen = vma_pages(vma);
1117 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1118 return 1;
1119 }
1120 return 0;
1121 }
1122
1123 /*
1124 * Given a mapping request (addr,end,vm_flags,file,pgoff,anon_name),
1125 * figure out whether that can be merged with its predecessor or its
1126 * successor. Or both (it neatly fills a hole).
1127 *
1128 * In most cases - when called for mmap, brk or mremap - [addr,end) is
1129 * certain not to be mapped by the time vma_merge is called; but when
1130 * called for mprotect, it is certain to be already mapped (either at
1131 * an offset within prev, or at the start of next), and the flags of
1132 * this area are about to be changed to vm_flags - and the no-change
1133 * case has already been eliminated.
1134 *
1135 * The following mprotect cases have to be considered, where AAAA is
1136 * the area passed down from mprotect_fixup, never extending beyond one
1137 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1138 *
1139 * AAAA AAAA AAAA
1140 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN
1141 * cannot merge might become might become
1142 * PPNNNNNNNNNN PPPPPPPPPPNN
1143 * mmap, brk or case 4 below case 5 below
1144 * mremap move:
1145 * AAAA AAAA
1146 * PPPP NNNN PPPPNNNNXXXX
1147 * might become might become
1148 * PPPPPPPPPPPP 1 or PPPPPPPPPPPP 6 or
1149 * PPPPPPPPNNNN 2 or PPPPPPPPXXXX 7 or
1150 * PPPPNNNNNNNN 3 PPPPXXXXXXXX 8
1151 *
1152 * It is important for case 8 that the vma NNNN overlapping the
1153 * region AAAA is never going to extended over XXXX. Instead XXXX must
1154 * be extended in region AAAA and NNNN must be removed. This way in
1155 * all cases where vma_merge succeeds, the moment vma_adjust drops the
1156 * rmap_locks, the properties of the merged vma will be already
1157 * correct for the whole merged range. Some of those properties like
1158 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
1159 * be correct for the whole merged range immediately after the
1160 * rmap_locks are released. Otherwise if XXXX would be removed and
1161 * NNNN would be extended over the XXXX range, remove_migration_ptes
1162 * or other rmap walkers (if working on addresses beyond the "end"
1163 * parameter) may establish ptes with the wrong permissions of NNNN
1164 * instead of the right permissions of XXXX.
1165 */
vma_merge(struct mm_struct * mm,struct vm_area_struct * prev,unsigned long addr,unsigned long end,unsigned long vm_flags,struct anon_vma * anon_vma,struct file * file,pgoff_t pgoff,struct mempolicy * policy,struct vm_userfaultfd_ctx vm_userfaultfd_ctx,struct anon_vma_name * anon_name)1166 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1167 struct vm_area_struct *prev, unsigned long addr,
1168 unsigned long end, unsigned long vm_flags,
1169 struct anon_vma *anon_vma, struct file *file,
1170 pgoff_t pgoff, struct mempolicy *policy,
1171 struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
1172 struct anon_vma_name *anon_name)
1173 {
1174 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1175 struct vm_area_struct *area, *next;
1176 int err;
1177
1178 /*
1179 * We later require that vma->vm_flags == vm_flags,
1180 * so this tests vma->vm_flags & VM_SPECIAL, too.
1181 */
1182 if (vm_flags & VM_SPECIAL)
1183 return NULL;
1184
1185 next = vma_next(mm, prev);
1186 area = next;
1187 if (area && area->vm_end == end) /* cases 6, 7, 8 */
1188 next = next->vm_next;
1189
1190 /* verify some invariant that must be enforced by the caller */
1191 VM_WARN_ON(prev && addr <= prev->vm_start);
1192 VM_WARN_ON(area && end > area->vm_end);
1193 VM_WARN_ON(addr >= end);
1194
1195 /*
1196 * Can it merge with the predecessor?
1197 */
1198 if (prev && prev->vm_end == addr &&
1199 mpol_equal(vma_policy(prev), policy) &&
1200 can_vma_merge_after(prev, vm_flags,
1201 anon_vma, file, pgoff,
1202 vm_userfaultfd_ctx, anon_name)) {
1203 /*
1204 * OK, it can. Can we now merge in the successor as well?
1205 */
1206 if (next && end == next->vm_start &&
1207 mpol_equal(policy, vma_policy(next)) &&
1208 can_vma_merge_before(next, vm_flags,
1209 anon_vma, file,
1210 pgoff+pglen,
1211 vm_userfaultfd_ctx, anon_name) &&
1212 is_mergeable_anon_vma(prev->anon_vma,
1213 next->anon_vma, NULL)) {
1214 /* cases 1, 6 */
1215 err = __vma_adjust(prev, prev->vm_start,
1216 next->vm_end, prev->vm_pgoff, NULL,
1217 prev);
1218 } else /* cases 2, 5, 7 */
1219 err = __vma_adjust(prev, prev->vm_start,
1220 end, prev->vm_pgoff, NULL, prev);
1221 if (err)
1222 return NULL;
1223 khugepaged_enter_vma_merge(prev, vm_flags);
1224 return prev;
1225 }
1226
1227 /*
1228 * Can this new request be merged in front of next?
1229 */
1230 if (next && end == next->vm_start &&
1231 mpol_equal(policy, vma_policy(next)) &&
1232 can_vma_merge_before(next, vm_flags,
1233 anon_vma, file, pgoff+pglen,
1234 vm_userfaultfd_ctx, anon_name)) {
1235 if (prev && addr < prev->vm_end) /* case 4 */
1236 err = __vma_adjust(prev, prev->vm_start,
1237 addr, prev->vm_pgoff, NULL, next);
1238 else { /* cases 3, 8 */
1239 err = __vma_adjust(area, addr, next->vm_end,
1240 next->vm_pgoff - pglen, NULL, next);
1241 /*
1242 * In case 3 area is already equal to next and
1243 * this is a noop, but in case 8 "area" has
1244 * been removed and next was expanded over it.
1245 */
1246 area = next;
1247 }
1248 if (err)
1249 return NULL;
1250 khugepaged_enter_vma_merge(area, vm_flags);
1251 return area;
1252 }
1253
1254 return NULL;
1255 }
1256
1257 /*
1258 * Rough compatibility check to quickly see if it's even worth looking
1259 * at sharing an anon_vma.
1260 *
1261 * They need to have the same vm_file, and the flags can only differ
1262 * in things that mprotect may change.
1263 *
1264 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1265 * we can merge the two vma's. For example, we refuse to merge a vma if
1266 * there is a vm_ops->close() function, because that indicates that the
1267 * driver is doing some kind of reference counting. But that doesn't
1268 * really matter for the anon_vma sharing case.
1269 */
anon_vma_compatible(struct vm_area_struct * a,struct vm_area_struct * b)1270 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1271 {
1272 return a->vm_end == b->vm_start &&
1273 mpol_equal(vma_policy(a), vma_policy(b)) &&
1274 a->vm_file == b->vm_file &&
1275 !((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) &&
1276 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1277 }
1278
1279 /*
1280 * Do some basic sanity checking to see if we can re-use the anon_vma
1281 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1282 * the same as 'old', the other will be the new one that is trying
1283 * to share the anon_vma.
1284 *
1285 * NOTE! This runs with mm_sem held for reading, so it is possible that
1286 * the anon_vma of 'old' is concurrently in the process of being set up
1287 * by another page fault trying to merge _that_. But that's ok: if it
1288 * is being set up, that automatically means that it will be a singleton
1289 * acceptable for merging, so we can do all of this optimistically. But
1290 * we do that READ_ONCE() to make sure that we never re-load the pointer.
1291 *
1292 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1293 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1294 * is to return an anon_vma that is "complex" due to having gone through
1295 * a fork).
1296 *
1297 * We also make sure that the two vma's are compatible (adjacent,
1298 * and with the same memory policies). That's all stable, even with just
1299 * a read lock on the mm_sem.
1300 */
reusable_anon_vma(struct vm_area_struct * old,struct vm_area_struct * a,struct vm_area_struct * b)1301 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1302 {
1303 if (anon_vma_compatible(a, b)) {
1304 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1305
1306 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1307 return anon_vma;
1308 }
1309 return NULL;
1310 }
1311
1312 /*
1313 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1314 * neighbouring vmas for a suitable anon_vma, before it goes off
1315 * to allocate a new anon_vma. It checks because a repetitive
1316 * sequence of mprotects and faults may otherwise lead to distinct
1317 * anon_vmas being allocated, preventing vma merge in subsequent
1318 * mprotect.
1319 */
find_mergeable_anon_vma(struct vm_area_struct * vma)1320 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1321 {
1322 struct anon_vma *anon_vma = NULL;
1323
1324 /* Try next first. */
1325 if (vma->vm_next) {
1326 anon_vma = reusable_anon_vma(vma->vm_next, vma, vma->vm_next);
1327 if (anon_vma)
1328 return anon_vma;
1329 }
1330
1331 /* Try prev next. */
1332 if (vma->vm_prev)
1333 anon_vma = reusable_anon_vma(vma->vm_prev, vma->vm_prev, vma);
1334
1335 /*
1336 * We might reach here with anon_vma == NULL if we can't find
1337 * any reusable anon_vma.
1338 * There's no absolute need to look only at touching neighbours:
1339 * we could search further afield for "compatible" anon_vmas.
1340 * But it would probably just be a waste of time searching,
1341 * or lead to too many vmas hanging off the same anon_vma.
1342 * We're trying to allow mprotect remerging later on,
1343 * not trying to minimize memory used for anon_vmas.
1344 */
1345 return anon_vma;
1346 }
1347
1348 /*
1349 * If a hint addr is less than mmap_min_addr change hint to be as
1350 * low as possible but still greater than mmap_min_addr
1351 */
round_hint_to_min(unsigned long hint)1352 static inline unsigned long round_hint_to_min(unsigned long hint)
1353 {
1354 hint &= PAGE_MASK;
1355 if (((void *)hint != NULL) &&
1356 (hint < mmap_min_addr))
1357 return PAGE_ALIGN(mmap_min_addr);
1358 return hint;
1359 }
1360
mlock_future_check(struct mm_struct * mm,unsigned long flags,unsigned long len)1361 static inline int mlock_future_check(struct mm_struct *mm,
1362 unsigned long flags,
1363 unsigned long len)
1364 {
1365 unsigned long locked, lock_limit;
1366
1367 /* mlock MCL_FUTURE? */
1368 if (flags & VM_LOCKED) {
1369 locked = len >> PAGE_SHIFT;
1370 locked += mm->locked_vm;
1371 lock_limit = rlimit(RLIMIT_MEMLOCK);
1372 lock_limit >>= PAGE_SHIFT;
1373 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1374 return -EAGAIN;
1375 }
1376 return 0;
1377 }
1378
file_mmap_size_max(struct file * file,struct inode * inode)1379 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1380 {
1381 if (S_ISREG(inode->i_mode))
1382 return MAX_LFS_FILESIZE;
1383
1384 if (S_ISBLK(inode->i_mode))
1385 return MAX_LFS_FILESIZE;
1386
1387 if (S_ISSOCK(inode->i_mode))
1388 return MAX_LFS_FILESIZE;
1389
1390 /* Special "we do even unsigned file positions" case */
1391 if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1392 return 0;
1393
1394 /* Yes, random drivers might want more. But I'm tired of buggy drivers */
1395 return ULONG_MAX;
1396 }
1397
file_mmap_ok(struct file * file,struct inode * inode,unsigned long pgoff,unsigned long len)1398 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1399 unsigned long pgoff, unsigned long len)
1400 {
1401 u64 maxsize = file_mmap_size_max(file, inode);
1402
1403 if (maxsize && len > maxsize)
1404 return false;
1405 maxsize -= len;
1406 if (pgoff > maxsize >> PAGE_SHIFT)
1407 return false;
1408 return true;
1409 }
1410
1411 /*
1412 * The caller must write-lock current->mm->mmap_lock.
1413 */
do_mmap(struct file * file,unsigned long addr,unsigned long len,unsigned long prot,unsigned long flags,unsigned long pgoff,unsigned long * populate,struct list_head * uf)1414 unsigned long do_mmap(struct file *file, unsigned long addr,
1415 unsigned long len, unsigned long prot,
1416 unsigned long flags, unsigned long pgoff,
1417 unsigned long *populate, struct list_head *uf)
1418 {
1419 struct mm_struct *mm = current->mm;
1420 vm_flags_t vm_flags;
1421 int pkey = 0;
1422 int err = 0;
1423
1424 *populate = 0;
1425
1426 if (!len)
1427 return -EINVAL;
1428
1429 /*
1430 * Does the application expect PROT_READ to imply PROT_EXEC?
1431 *
1432 * (the exception is when the underlying filesystem is noexec
1433 * mounted, in which case we dont add PROT_EXEC.)
1434 */
1435 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1436 if (!(file && path_noexec(&file->f_path)))
1437 prot |= PROT_EXEC;
1438
1439 /* force arch specific MAP_FIXED handling in get_unmapped_area */
1440 if (flags & MAP_FIXED_NOREPLACE)
1441 flags |= MAP_FIXED;
1442
1443 if (!(flags & MAP_FIXED))
1444 addr = round_hint_to_min(addr);
1445
1446 /* Careful about overflows.. */
1447 len = PAGE_ALIGN(len);
1448 if (!len)
1449 return -ENOMEM;
1450
1451 /* offset overflow? */
1452 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1453 return -EOVERFLOW;
1454
1455 /* Too many mappings? */
1456 if (mm->map_count > sysctl_max_map_count)
1457 return -ENOMEM;
1458
1459 /* Obtain the address to map to. we verify (or select) it and ensure
1460 * that it represents a valid section of the address space.
1461 */
1462 addr = get_unmapped_area(file, addr, len, pgoff, flags);
1463 if (IS_ERR_VALUE(addr))
1464 return addr;
1465
1466 if (flags & MAP_FIXED_NOREPLACE) {
1467 struct vm_area_struct *vma = find_vma(mm, addr);
1468
1469 if (vma && vma->vm_start < addr + len)
1470 return -EEXIST;
1471 }
1472
1473 if (prot == PROT_EXEC) {
1474 pkey = execute_only_pkey(mm);
1475 if (pkey < 0)
1476 pkey = 0;
1477 }
1478
1479 /* Do simple checking here so the lower-level routines won't have
1480 * to. we assume access permissions have been handled by the open
1481 * of the memory object, so we don't do any here.
1482 */
1483 vm_flags = calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1484 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1485
1486 trace_vendor_do_mmap(&vm_flags, &err);
1487 if (err)
1488 return err;
1489
1490 if (flags & MAP_LOCKED)
1491 if (!can_do_mlock())
1492 return -EPERM;
1493
1494 if (mlock_future_check(mm, vm_flags, len))
1495 return -EAGAIN;
1496
1497 if (file) {
1498 struct inode *inode = file_inode(file);
1499 unsigned long flags_mask;
1500
1501 if (!file_mmap_ok(file, inode, pgoff, len))
1502 return -EOVERFLOW;
1503
1504 flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1505
1506 switch (flags & MAP_TYPE) {
1507 case MAP_SHARED:
1508 /*
1509 * Force use of MAP_SHARED_VALIDATE with non-legacy
1510 * flags. E.g. MAP_SYNC is dangerous to use with
1511 * MAP_SHARED as you don't know which consistency model
1512 * you will get. We silently ignore unsupported flags
1513 * with MAP_SHARED to preserve backward compatibility.
1514 */
1515 flags &= LEGACY_MAP_MASK;
1516 fallthrough;
1517 case MAP_SHARED_VALIDATE:
1518 if (flags & ~flags_mask)
1519 return -EOPNOTSUPP;
1520 if (prot & PROT_WRITE) {
1521 if (!(file->f_mode & FMODE_WRITE))
1522 return -EACCES;
1523 if (IS_SWAPFILE(file->f_mapping->host))
1524 return -ETXTBSY;
1525 }
1526
1527 /*
1528 * Make sure we don't allow writing to an append-only
1529 * file..
1530 */
1531 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1532 return -EACCES;
1533
1534 /*
1535 * Make sure there are no mandatory locks on the file.
1536 */
1537 if (locks_verify_locked(file))
1538 return -EAGAIN;
1539
1540 vm_flags |= VM_SHARED | VM_MAYSHARE;
1541 if (!(file->f_mode & FMODE_WRITE))
1542 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1543 fallthrough;
1544 case MAP_PRIVATE:
1545 if (!(file->f_mode & FMODE_READ))
1546 return -EACCES;
1547 if (path_noexec(&file->f_path)) {
1548 if (vm_flags & VM_EXEC)
1549 return -EPERM;
1550 vm_flags &= ~VM_MAYEXEC;
1551 }
1552
1553 if (!file->f_op->mmap)
1554 return -ENODEV;
1555 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1556 return -EINVAL;
1557 break;
1558
1559 default:
1560 return -EINVAL;
1561 }
1562 } else {
1563 switch (flags & MAP_TYPE) {
1564 case MAP_SHARED:
1565 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1566 return -EINVAL;
1567 /*
1568 * Ignore pgoff.
1569 */
1570 pgoff = 0;
1571 vm_flags |= VM_SHARED | VM_MAYSHARE;
1572 break;
1573 case MAP_PRIVATE:
1574 /*
1575 * Set pgoff according to addr for anon_vma.
1576 */
1577 pgoff = addr >> PAGE_SHIFT;
1578 break;
1579 #ifdef CONFIG_MEM_PURGEABLE
1580 case MAP_PURGEABLE:
1581 vm_flags |= VM_PURGEABLE;
1582 pr_info("vm_flags purgeable = %lx.\m", VM_PURGEABLE);
1583 break;
1584 case MAP_USEREXPTE:
1585 vm_flags |= VM_USEREXPTE;
1586 pr_info("vm_flags useredpte = %lx.\m", VM_USEREXPTE);
1587 break;
1588 #endif
1589 default:
1590 return -EINVAL;
1591 }
1592 }
1593
1594 /*
1595 * Set 'VM_NORESERVE' if we should not account for the
1596 * memory use of this mapping.
1597 */
1598 if (flags & MAP_NORESERVE) {
1599 /* We honor MAP_NORESERVE if allowed to overcommit */
1600 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1601 vm_flags |= VM_NORESERVE;
1602
1603 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1604 if (file && is_file_hugepages(file))
1605 vm_flags |= VM_NORESERVE;
1606 }
1607
1608 addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1609 if (!IS_ERR_VALUE(addr) &&
1610 ((vm_flags & VM_LOCKED) ||
1611 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1612 *populate = len;
1613 return addr;
1614 }
1615
ksys_mmap_pgoff(unsigned long addr,unsigned long len,unsigned long prot,unsigned long flags,unsigned long fd,unsigned long pgoff)1616 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1617 unsigned long prot, unsigned long flags,
1618 unsigned long fd, unsigned long pgoff)
1619 {
1620 struct file *file = NULL;
1621 unsigned long retval;
1622
1623 if (!(flags & MAP_ANONYMOUS)) {
1624 audit_mmap_fd(fd, flags);
1625 file = fget(fd);
1626 if (!file)
1627 return -EBADF;
1628 if (is_file_hugepages(file)) {
1629 len = ALIGN(len, huge_page_size(hstate_file(file)));
1630 } else if (unlikely(flags & MAP_HUGETLB)) {
1631 retval = -EINVAL;
1632 goto out_fput;
1633 }
1634 } else if (flags & MAP_HUGETLB) {
1635 struct user_struct *user = NULL;
1636 struct hstate *hs;
1637
1638 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1639 if (!hs)
1640 return -EINVAL;
1641
1642 len = ALIGN(len, huge_page_size(hs));
1643 /*
1644 * VM_NORESERVE is used because the reservations will be
1645 * taken when vm_ops->mmap() is called
1646 * A dummy user value is used because we are not locking
1647 * memory so no accounting is necessary
1648 */
1649 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1650 VM_NORESERVE,
1651 &user, HUGETLB_ANONHUGE_INODE,
1652 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1653 if (IS_ERR(file))
1654 return PTR_ERR(file);
1655 }
1656
1657 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1658
1659 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1660 out_fput:
1661 if (file)
1662 fput(file);
1663 return retval;
1664 }
1665
SYSCALL_DEFINE6(mmap_pgoff,unsigned long,addr,unsigned long,len,unsigned long,prot,unsigned long,flags,unsigned long,fd,unsigned long,pgoff)1666 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1667 unsigned long, prot, unsigned long, flags,
1668 unsigned long, fd, unsigned long, pgoff)
1669 {
1670 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1671 }
1672
1673 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1674 struct mmap_arg_struct {
1675 unsigned long addr;
1676 unsigned long len;
1677 unsigned long prot;
1678 unsigned long flags;
1679 unsigned long fd;
1680 unsigned long offset;
1681 };
1682
SYSCALL_DEFINE1(old_mmap,struct mmap_arg_struct __user *,arg)1683 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1684 {
1685 struct mmap_arg_struct a;
1686
1687 if (copy_from_user(&a, arg, sizeof(a)))
1688 return -EFAULT;
1689 if (offset_in_page(a.offset))
1690 return -EINVAL;
1691
1692 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1693 a.offset >> PAGE_SHIFT);
1694 }
1695 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1696
1697 /*
1698 * Some shared mappings will want the pages marked read-only
1699 * to track write events. If so, we'll downgrade vm_page_prot
1700 * to the private version (using protection_map[] without the
1701 * VM_SHARED bit).
1702 */
vma_wants_writenotify(struct vm_area_struct * vma,pgprot_t vm_page_prot)1703 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1704 {
1705 vm_flags_t vm_flags = vma->vm_flags;
1706 const struct vm_operations_struct *vm_ops = vma->vm_ops;
1707
1708 /* If it was private or non-writable, the write bit is already clear */
1709 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1710 return 0;
1711
1712 /* The backer wishes to know when pages are first written to? */
1713 if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1714 return 1;
1715
1716 /* The open routine did something to the protections that pgprot_modify
1717 * won't preserve? */
1718 if (pgprot_val(vm_page_prot) !=
1719 pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1720 return 0;
1721
1722 /* Do we need to track softdirty? */
1723 if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1724 return 1;
1725
1726 /* Specialty mapping? */
1727 if (vm_flags & VM_PFNMAP)
1728 return 0;
1729
1730 /* Can the mapping track the dirty pages? */
1731 return vma->vm_file && vma->vm_file->f_mapping &&
1732 mapping_can_writeback(vma->vm_file->f_mapping);
1733 }
1734
1735 /*
1736 * We account for memory if it's a private writeable mapping,
1737 * not hugepages and VM_NORESERVE wasn't set.
1738 */
accountable_mapping(struct file * file,vm_flags_t vm_flags)1739 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1740 {
1741 /*
1742 * hugetlb has its own accounting separate from the core VM
1743 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1744 */
1745 if (file && is_file_hugepages(file))
1746 return 0;
1747
1748 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1749 }
1750
mmap_region(struct file * file,unsigned long addr,unsigned long len,vm_flags_t vm_flags,unsigned long pgoff,struct list_head * uf)1751 unsigned long mmap_region(struct file *file, unsigned long addr,
1752 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
1753 struct list_head *uf)
1754 {
1755 struct mm_struct *mm = current->mm;
1756 struct vm_area_struct *vma, *prev, *merge;
1757 int error;
1758 struct rb_node **rb_link, *rb_parent;
1759 unsigned long charged = 0;
1760
1761 /* Check against address space limit. */
1762 if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1763 unsigned long nr_pages;
1764
1765 /*
1766 * MAP_FIXED may remove pages of mappings that intersects with
1767 * requested mapping. Account for the pages it would unmap.
1768 */
1769 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1770
1771 if (!may_expand_vm(mm, vm_flags,
1772 (len >> PAGE_SHIFT) - nr_pages))
1773 return -ENOMEM;
1774 }
1775
1776 /* Clear old maps, set up prev, rb_link, rb_parent, and uf */
1777 if (munmap_vma_range(mm, addr, len, &prev, &rb_link, &rb_parent, uf))
1778 return -ENOMEM;
1779 /*
1780 * Private writable mapping: check memory availability
1781 */
1782 if (accountable_mapping(file, vm_flags)) {
1783 charged = len >> PAGE_SHIFT;
1784 if (security_vm_enough_memory_mm(mm, charged))
1785 return -ENOMEM;
1786 vm_flags |= VM_ACCOUNT;
1787 }
1788
1789 /*
1790 * Can we just expand an old mapping?
1791 */
1792 vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1793 NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX, NULL);
1794 if (vma)
1795 goto out;
1796
1797 /*
1798 * Determine the object being mapped and call the appropriate
1799 * specific mapper. the address has already been validated, but
1800 * not unmapped, but the maps are removed from the list.
1801 */
1802 vma = vm_area_alloc(mm);
1803 if (!vma) {
1804 error = -ENOMEM;
1805 goto unacct_error;
1806 }
1807
1808 vma->vm_start = addr;
1809 vma->vm_end = addr + len;
1810 vma->vm_flags = vm_flags;
1811 vma->vm_page_prot = vm_get_page_prot(vm_flags);
1812 vma->vm_pgoff = pgoff;
1813
1814 if (file) {
1815 if (vm_flags & VM_DENYWRITE) {
1816 error = deny_write_access(file);
1817 if (error)
1818 goto free_vma;
1819 }
1820 if (vm_flags & VM_SHARED) {
1821 error = mapping_map_writable(file->f_mapping);
1822 if (error)
1823 goto allow_write_and_free_vma;
1824 }
1825
1826 /* ->mmap() can change vma->vm_file, but must guarantee that
1827 * vma_link() below can deny write-access if VM_DENYWRITE is set
1828 * and map writably if VM_SHARED is set. This usually means the
1829 * new file must not have been exposed to user-space, yet.
1830 */
1831 vma->vm_file = get_file(file);
1832 error = call_mmap(file, vma);
1833 if (error)
1834 goto unmap_and_free_vma;
1835
1836 /* Can addr have changed??
1837 *
1838 * Answer: Yes, several device drivers can do it in their
1839 * f_op->mmap method. -DaveM
1840 * Bug: If addr is changed, prev, rb_link, rb_parent should
1841 * be updated for vma_link()
1842 */
1843 WARN_ON_ONCE(addr != vma->vm_start);
1844
1845 addr = vma->vm_start;
1846
1847 /* If vm_flags changed after call_mmap(), we should try merge vma again
1848 * as we may succeed this time.
1849 */
1850 if (unlikely(vm_flags != vma->vm_flags && prev)) {
1851 merge = vma_merge(mm, prev, vma->vm_start, vma->vm_end, vma->vm_flags,
1852 NULL, vma->vm_file, vma->vm_pgoff, NULL, NULL_VM_UFFD_CTX, NULL);
1853 if (merge) {
1854 /* ->mmap() can change vma->vm_file and fput the original file. So
1855 * fput the vma->vm_file here or we would add an extra fput for file
1856 * and cause general protection fault ultimately.
1857 */
1858 fput(vma->vm_file);
1859 vm_area_free(vma);
1860 vma = merge;
1861 /* Update vm_flags to pick up the change. */
1862 vm_flags = vma->vm_flags;
1863 goto unmap_writable;
1864 }
1865 }
1866
1867 vm_flags = vma->vm_flags;
1868 } else if (vm_flags & VM_SHARED) {
1869 error = shmem_zero_setup(vma);
1870 if (error)
1871 goto free_vma;
1872 } else {
1873 vma_set_anonymous(vma);
1874 }
1875
1876 /* Allow architectures to sanity-check the vm_flags */
1877 if (!arch_validate_flags(vma->vm_flags)) {
1878 error = -EINVAL;
1879 if (file)
1880 goto unmap_and_free_vma;
1881 else
1882 goto free_vma;
1883 }
1884
1885 vma_link(mm, vma, prev, rb_link, rb_parent);
1886 /* Once vma denies write, undo our temporary denial count */
1887 if (file) {
1888 unmap_writable:
1889 if (vm_flags & VM_SHARED)
1890 mapping_unmap_writable(file->f_mapping);
1891 if (vm_flags & VM_DENYWRITE)
1892 allow_write_access(file);
1893 }
1894 file = vma->vm_file;
1895 out:
1896 perf_event_mmap(vma);
1897
1898 vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1899 if (vm_flags & VM_LOCKED) {
1900 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
1901 is_vm_hugetlb_page(vma) ||
1902 vma == get_gate_vma(current->mm))
1903 vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1904 else
1905 mm->locked_vm += (len >> PAGE_SHIFT);
1906 }
1907
1908 if (file)
1909 uprobe_mmap(vma);
1910
1911 /*
1912 * New (or expanded) vma always get soft dirty status.
1913 * Otherwise user-space soft-dirty page tracker won't
1914 * be able to distinguish situation when vma area unmapped,
1915 * then new mapped in-place (which must be aimed as
1916 * a completely new data area).
1917 */
1918 vma->vm_flags |= VM_SOFTDIRTY;
1919
1920 vma_set_page_prot(vma);
1921
1922 return addr;
1923
1924 unmap_and_free_vma:
1925 vma->vm_file = NULL;
1926 fput(file);
1927
1928 /* Undo any partial mapping done by a device driver. */
1929 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1930 charged = 0;
1931 if (vm_flags & VM_SHARED)
1932 mapping_unmap_writable(file->f_mapping);
1933 allow_write_and_free_vma:
1934 if (vm_flags & VM_DENYWRITE)
1935 allow_write_access(file);
1936 free_vma:
1937 vm_area_free(vma);
1938 unacct_error:
1939 if (charged)
1940 vm_unacct_memory(charged);
1941 return error;
1942 }
1943
unmapped_area(struct vm_unmapped_area_info * info)1944 static unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1945 {
1946 /*
1947 * We implement the search by looking for an rbtree node that
1948 * immediately follows a suitable gap. That is,
1949 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1950 * - gap_end = vma->vm_start >= info->low_limit + length;
1951 * - gap_end - gap_start >= length
1952 */
1953
1954 struct mm_struct *mm = current->mm;
1955 struct vm_area_struct *vma;
1956 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1957
1958 /* Adjust search length to account for worst case alignment overhead */
1959 length = info->length + info->align_mask;
1960 if (length < info->length)
1961 return -ENOMEM;
1962
1963 /* Adjust search limits by the desired length */
1964 if (info->high_limit < length)
1965 return -ENOMEM;
1966 high_limit = info->high_limit - length;
1967
1968 if (info->low_limit > high_limit)
1969 return -ENOMEM;
1970 low_limit = info->low_limit + length;
1971
1972 /* Check if rbtree root looks promising */
1973 if (RB_EMPTY_ROOT(&mm->mm_rb))
1974 goto check_highest;
1975 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1976 if (vma->rb_subtree_gap < length)
1977 goto check_highest;
1978
1979 while (true) {
1980 /* Visit left subtree if it looks promising */
1981 gap_end = vm_start_gap(vma);
1982 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1983 struct vm_area_struct *left =
1984 rb_entry(vma->vm_rb.rb_left,
1985 struct vm_area_struct, vm_rb);
1986 if (left->rb_subtree_gap >= length) {
1987 vma = left;
1988 continue;
1989 }
1990 }
1991
1992 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1993 check_current:
1994 /* Check if current node has a suitable gap */
1995 if (gap_start > high_limit)
1996 return -ENOMEM;
1997 if (gap_end >= low_limit &&
1998 gap_end > gap_start && gap_end - gap_start >= length)
1999 goto found;
2000
2001 /* Visit right subtree if it looks promising */
2002 if (vma->vm_rb.rb_right) {
2003 struct vm_area_struct *right =
2004 rb_entry(vma->vm_rb.rb_right,
2005 struct vm_area_struct, vm_rb);
2006 if (right->rb_subtree_gap >= length) {
2007 vma = right;
2008 continue;
2009 }
2010 }
2011
2012 /* Go back up the rbtree to find next candidate node */
2013 while (true) {
2014 struct rb_node *prev = &vma->vm_rb;
2015 if (!rb_parent(prev))
2016 goto check_highest;
2017 vma = rb_entry(rb_parent(prev),
2018 struct vm_area_struct, vm_rb);
2019 if (prev == vma->vm_rb.rb_left) {
2020 gap_start = vm_end_gap(vma->vm_prev);
2021 gap_end = vm_start_gap(vma);
2022 goto check_current;
2023 }
2024 }
2025 }
2026
2027 check_highest:
2028 /* Check highest gap, which does not precede any rbtree node */
2029 gap_start = mm->highest_vm_end;
2030 gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */
2031 if (gap_start > high_limit)
2032 return -ENOMEM;
2033
2034 found:
2035 /* We found a suitable gap. Clip it with the original low_limit. */
2036 if (gap_start < info->low_limit)
2037 gap_start = info->low_limit;
2038
2039 /* Adjust gap address to the desired alignment */
2040 gap_start += (info->align_offset - gap_start) & info->align_mask;
2041
2042 VM_BUG_ON(gap_start + info->length > info->high_limit);
2043 VM_BUG_ON(gap_start + info->length > gap_end);
2044 return gap_start;
2045 }
2046
unmapped_area_topdown(struct vm_unmapped_area_info * info)2047 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
2048 {
2049 struct mm_struct *mm = current->mm;
2050 struct vm_area_struct *vma;
2051 unsigned long length, low_limit, high_limit, gap_start, gap_end;
2052
2053 /* Adjust search length to account for worst case alignment overhead */
2054 length = info->length + info->align_mask;
2055 if (length < info->length)
2056 return -ENOMEM;
2057
2058 /*
2059 * Adjust search limits by the desired length.
2060 * See implementation comment at top of unmapped_area().
2061 */
2062 gap_end = info->high_limit;
2063 if (gap_end < length)
2064 return -ENOMEM;
2065 high_limit = gap_end - length;
2066
2067 if (info->low_limit > high_limit)
2068 return -ENOMEM;
2069 low_limit = info->low_limit + length;
2070
2071 /* Check highest gap, which does not precede any rbtree node */
2072 gap_start = mm->highest_vm_end;
2073 if (gap_start <= high_limit)
2074 goto found_highest;
2075
2076 /* Check if rbtree root looks promising */
2077 if (RB_EMPTY_ROOT(&mm->mm_rb))
2078 return -ENOMEM;
2079 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
2080 if (vma->rb_subtree_gap < length)
2081 return -ENOMEM;
2082
2083 while (true) {
2084 /* Visit right subtree if it looks promising */
2085 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
2086 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
2087 struct vm_area_struct *right =
2088 rb_entry(vma->vm_rb.rb_right,
2089 struct vm_area_struct, vm_rb);
2090 if (right->rb_subtree_gap >= length) {
2091 vma = right;
2092 continue;
2093 }
2094 }
2095
2096 check_current:
2097 /* Check if current node has a suitable gap */
2098 gap_end = vm_start_gap(vma);
2099 if (gap_end < low_limit)
2100 return -ENOMEM;
2101 if (gap_start <= high_limit &&
2102 gap_end > gap_start && gap_end - gap_start >= length)
2103 goto found;
2104
2105 /* Visit left subtree if it looks promising */
2106 if (vma->vm_rb.rb_left) {
2107 struct vm_area_struct *left =
2108 rb_entry(vma->vm_rb.rb_left,
2109 struct vm_area_struct, vm_rb);
2110 if (left->rb_subtree_gap >= length) {
2111 vma = left;
2112 continue;
2113 }
2114 }
2115
2116 /* Go back up the rbtree to find next candidate node */
2117 while (true) {
2118 struct rb_node *prev = &vma->vm_rb;
2119 if (!rb_parent(prev))
2120 return -ENOMEM;
2121 vma = rb_entry(rb_parent(prev),
2122 struct vm_area_struct, vm_rb);
2123 if (prev == vma->vm_rb.rb_right) {
2124 gap_start = vma->vm_prev ?
2125 vm_end_gap(vma->vm_prev) : 0;
2126 goto check_current;
2127 }
2128 }
2129 }
2130
2131 found:
2132 /* We found a suitable gap. Clip it with the original high_limit. */
2133 if (gap_end > info->high_limit)
2134 gap_end = info->high_limit;
2135
2136 found_highest:
2137 /* Compute highest gap address at the desired alignment */
2138 gap_end -= info->length;
2139 gap_end -= (gap_end - info->align_offset) & info->align_mask;
2140
2141 VM_BUG_ON(gap_end < info->low_limit);
2142 VM_BUG_ON(gap_end < gap_start);
2143 return gap_end;
2144 }
2145
2146 /*
2147 * Search for an unmapped address range.
2148 *
2149 * We are looking for a range that:
2150 * - does not intersect with any VMA;
2151 * - is contained within the [low_limit, high_limit) interval;
2152 * - is at least the desired size.
2153 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2154 */
vm_unmapped_area(struct vm_unmapped_area_info * info)2155 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info)
2156 {
2157 unsigned long addr;
2158
2159 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2160 addr = unmapped_area_topdown(info);
2161 else
2162 addr = unmapped_area(info);
2163
2164 trace_vm_unmapped_area(addr, info);
2165 return addr;
2166 }
2167
2168 #ifndef arch_get_mmap_end
2169 #define arch_get_mmap_end(addr) (TASK_SIZE)
2170 #endif
2171
2172 #ifndef arch_get_mmap_base
2173 #define arch_get_mmap_base(addr, base) (base)
2174 #endif
2175
2176 /* Get an address range which is currently unmapped.
2177 * For shmat() with addr=0.
2178 *
2179 * Ugly calling convention alert:
2180 * Return value with the low bits set means error value,
2181 * ie
2182 * if (ret & ~PAGE_MASK)
2183 * error = ret;
2184 *
2185 * This function "knows" that -ENOMEM has the bits set.
2186 */
2187 #ifndef HAVE_ARCH_UNMAPPED_AREA
2188 unsigned long
arch_get_unmapped_area(struct file * filp,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)2189 arch_get_unmapped_area(struct file *filp, unsigned long addr,
2190 unsigned long len, unsigned long pgoff, unsigned long flags)
2191 {
2192 struct mm_struct *mm = current->mm;
2193 struct vm_area_struct *vma, *prev;
2194 struct vm_unmapped_area_info info;
2195 const unsigned long mmap_end = arch_get_mmap_end(addr);
2196
2197 if (len > mmap_end - mmap_min_addr)
2198 return -ENOMEM;
2199
2200 if (flags & MAP_FIXED)
2201 return addr;
2202
2203 if (addr) {
2204 addr = PAGE_ALIGN(addr);
2205 vma = find_vma_prev(mm, addr, &prev);
2206 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2207 (!vma || addr + len <= vm_start_gap(vma)) &&
2208 (!prev || addr >= vm_end_gap(prev)))
2209 return addr;
2210 }
2211
2212 info.flags = 0;
2213 info.length = len;
2214 info.low_limit = mm->mmap_base;
2215 info.high_limit = mmap_end;
2216 info.align_mask = 0;
2217 info.align_offset = 0;
2218 return vm_unmapped_area(&info);
2219 }
2220 #endif
2221
2222 /*
2223 * This mmap-allocator allocates new areas top-down from below the
2224 * stack's low limit (the base):
2225 */
2226 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
2227 unsigned long
arch_get_unmapped_area_topdown(struct file * filp,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)2228 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
2229 unsigned long len, unsigned long pgoff,
2230 unsigned long flags)
2231 {
2232 struct vm_area_struct *vma, *prev;
2233 struct mm_struct *mm = current->mm;
2234 struct vm_unmapped_area_info info;
2235 const unsigned long mmap_end = arch_get_mmap_end(addr);
2236
2237 /* requested length too big for entire address space */
2238 if (len > mmap_end - mmap_min_addr)
2239 return -ENOMEM;
2240
2241 if (flags & MAP_FIXED)
2242 return addr;
2243
2244 /* requesting a specific address */
2245 if (addr) {
2246 addr = PAGE_ALIGN(addr);
2247 vma = find_vma_prev(mm, addr, &prev);
2248 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2249 (!vma || addr + len <= vm_start_gap(vma)) &&
2250 (!prev || addr >= vm_end_gap(prev)))
2251 return addr;
2252 }
2253
2254 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
2255 info.length = len;
2256 info.low_limit = max(PAGE_SIZE, mmap_min_addr);
2257 info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
2258 info.align_mask = 0;
2259 info.align_offset = 0;
2260 addr = vm_unmapped_area(&info);
2261
2262 /*
2263 * A failed mmap() very likely causes application failure,
2264 * so fall back to the bottom-up function here. This scenario
2265 * can happen with large stack limits and large mmap()
2266 * allocations.
2267 */
2268 if (offset_in_page(addr)) {
2269 VM_BUG_ON(addr != -ENOMEM);
2270 info.flags = 0;
2271 info.low_limit = TASK_UNMAPPED_BASE;
2272 info.high_limit = mmap_end;
2273 addr = vm_unmapped_area(&info);
2274 }
2275
2276 return addr;
2277 }
2278 #endif
2279
2280 unsigned long
get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)2281 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2282 unsigned long pgoff, unsigned long flags)
2283 {
2284 unsigned long (*get_area)(struct file *, unsigned long,
2285 unsigned long, unsigned long, unsigned long);
2286
2287 unsigned long error = arch_mmap_check(addr, len, flags);
2288 if (error)
2289 return error;
2290
2291 /* Careful about overflows.. */
2292 if (len > TASK_SIZE)
2293 return -ENOMEM;
2294
2295 get_area = current->mm->get_unmapped_area;
2296 if (file) {
2297 if (file->f_op->get_unmapped_area)
2298 get_area = file->f_op->get_unmapped_area;
2299 } else if (flags & MAP_SHARED) {
2300 /*
2301 * mmap_region() will call shmem_zero_setup() to create a file,
2302 * so use shmem's get_unmapped_area in case it can be huge.
2303 * do_mmap() will clear pgoff, so match alignment.
2304 */
2305 pgoff = 0;
2306 get_area = shmem_get_unmapped_area;
2307 }
2308
2309 addr = get_area(file, addr, len, pgoff, flags);
2310 if (IS_ERR_VALUE(addr))
2311 return addr;
2312
2313 if (addr > TASK_SIZE - len)
2314 return -ENOMEM;
2315 if (offset_in_page(addr))
2316 return -EINVAL;
2317
2318 error = security_mmap_addr(addr);
2319 return error ? error : addr;
2320 }
2321
2322 EXPORT_SYMBOL(get_unmapped_area);
2323
2324 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
find_vma(struct mm_struct * mm,unsigned long addr)2325 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2326 {
2327 struct rb_node *rb_node;
2328 struct vm_area_struct *vma;
2329
2330 /* Check the cache first. */
2331 vma = vmacache_find(mm, addr);
2332 if (likely(vma))
2333 return vma;
2334
2335 rb_node = mm->mm_rb.rb_node;
2336
2337 while (rb_node) {
2338 struct vm_area_struct *tmp;
2339
2340 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2341
2342 if (tmp->vm_end > addr) {
2343 vma = tmp;
2344 if (tmp->vm_start <= addr)
2345 break;
2346 rb_node = rb_node->rb_left;
2347 } else
2348 rb_node = rb_node->rb_right;
2349 }
2350
2351 if (vma)
2352 vmacache_update(addr, vma);
2353 return vma;
2354 }
2355
2356 EXPORT_SYMBOL(find_vma);
2357
2358 /*
2359 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2360 */
2361 struct vm_area_struct *
find_vma_prev(struct mm_struct * mm,unsigned long addr,struct vm_area_struct ** pprev)2362 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2363 struct vm_area_struct **pprev)
2364 {
2365 struct vm_area_struct *vma;
2366
2367 vma = find_vma(mm, addr);
2368 if (vma) {
2369 *pprev = vma->vm_prev;
2370 } else {
2371 struct rb_node *rb_node = rb_last(&mm->mm_rb);
2372
2373 *pprev = rb_node ? rb_entry(rb_node, struct vm_area_struct, vm_rb) : NULL;
2374 }
2375 return vma;
2376 }
2377
2378 /*
2379 * Verify that the stack growth is acceptable and
2380 * update accounting. This is shared with both the
2381 * grow-up and grow-down cases.
2382 */
acct_stack_growth(struct vm_area_struct * vma,unsigned long size,unsigned long grow)2383 static int acct_stack_growth(struct vm_area_struct *vma,
2384 unsigned long size, unsigned long grow)
2385 {
2386 struct mm_struct *mm = vma->vm_mm;
2387 unsigned long new_start;
2388
2389 /* address space limit tests */
2390 if (!may_expand_vm(mm, vma->vm_flags, grow))
2391 return -ENOMEM;
2392
2393 /* Stack limit test */
2394 if (size > rlimit(RLIMIT_STACK))
2395 return -ENOMEM;
2396
2397 /* mlock limit tests */
2398 if (vma->vm_flags & VM_LOCKED) {
2399 unsigned long locked;
2400 unsigned long limit;
2401 locked = mm->locked_vm + grow;
2402 limit = rlimit(RLIMIT_MEMLOCK);
2403 limit >>= PAGE_SHIFT;
2404 if (locked > limit && !capable(CAP_IPC_LOCK))
2405 return -ENOMEM;
2406 }
2407
2408 /* Check to ensure the stack will not grow into a hugetlb-only region */
2409 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2410 vma->vm_end - size;
2411 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2412 return -EFAULT;
2413
2414 /*
2415 * Overcommit.. This must be the final test, as it will
2416 * update security statistics.
2417 */
2418 if (security_vm_enough_memory_mm(mm, grow))
2419 return -ENOMEM;
2420
2421 return 0;
2422 }
2423
2424 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2425 /*
2426 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2427 * vma is the last one with address > vma->vm_end. Have to extend vma.
2428 */
expand_upwards(struct vm_area_struct * vma,unsigned long address)2429 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2430 {
2431 struct mm_struct *mm = vma->vm_mm;
2432 struct vm_area_struct *next;
2433 unsigned long gap_addr;
2434 int error = 0;
2435
2436 if (!(vma->vm_flags & VM_GROWSUP))
2437 return -EFAULT;
2438
2439 /* Guard against exceeding limits of the address space. */
2440 address &= PAGE_MASK;
2441 if (address >= (TASK_SIZE & PAGE_MASK))
2442 return -ENOMEM;
2443 address += PAGE_SIZE;
2444
2445 /* Enforce stack_guard_gap */
2446 gap_addr = address + stack_guard_gap;
2447
2448 /* Guard against overflow */
2449 if (gap_addr < address || gap_addr > TASK_SIZE)
2450 gap_addr = TASK_SIZE;
2451
2452 next = vma->vm_next;
2453 if (next && next->vm_start < gap_addr && vma_is_accessible(next)) {
2454 if (!(next->vm_flags & VM_GROWSUP))
2455 return -ENOMEM;
2456 /* Check that both stack segments have the same anon_vma? */
2457 }
2458
2459 /* We must make sure the anon_vma is allocated. */
2460 if (unlikely(anon_vma_prepare(vma)))
2461 return -ENOMEM;
2462
2463 /*
2464 * vma->vm_start/vm_end cannot change under us because the caller
2465 * is required to hold the mmap_lock in read mode. We need the
2466 * anon_vma lock to serialize against concurrent expand_stacks.
2467 */
2468 anon_vma_lock_write(vma->anon_vma);
2469
2470 /* Somebody else might have raced and expanded it already */
2471 if (address > vma->vm_end) {
2472 unsigned long size, grow;
2473
2474 size = address - vma->vm_start;
2475 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2476
2477 error = -ENOMEM;
2478 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2479 error = acct_stack_growth(vma, size, grow);
2480 if (!error) {
2481 /*
2482 * vma_gap_update() doesn't support concurrent
2483 * updates, but we only hold a shared mmap_lock
2484 * lock here, so we need to protect against
2485 * concurrent vma expansions.
2486 * anon_vma_lock_write() doesn't help here, as
2487 * we don't guarantee that all growable vmas
2488 * in a mm share the same root anon vma.
2489 * So, we reuse mm->page_table_lock to guard
2490 * against concurrent vma expansions.
2491 */
2492 spin_lock(&mm->page_table_lock);
2493 if (vma->vm_flags & VM_LOCKED)
2494 mm->locked_vm += grow;
2495 vm_stat_account(mm, vma->vm_flags, grow);
2496 anon_vma_interval_tree_pre_update_vma(vma);
2497 vma->vm_end = address;
2498 anon_vma_interval_tree_post_update_vma(vma);
2499 if (vma->vm_next)
2500 vma_gap_update(vma->vm_next);
2501 else
2502 mm->highest_vm_end = vm_end_gap(vma);
2503 spin_unlock(&mm->page_table_lock);
2504
2505 perf_event_mmap(vma);
2506 }
2507 }
2508 }
2509 anon_vma_unlock_write(vma->anon_vma);
2510 khugepaged_enter_vma_merge(vma, vma->vm_flags);
2511 validate_mm(mm);
2512 return error;
2513 }
2514 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2515
2516 /*
2517 * vma is the first one with address < vma->vm_start. Have to extend vma.
2518 */
expand_downwards(struct vm_area_struct * vma,unsigned long address)2519 int expand_downwards(struct vm_area_struct *vma,
2520 unsigned long address)
2521 {
2522 struct mm_struct *mm = vma->vm_mm;
2523 struct vm_area_struct *prev;
2524 int error = 0;
2525
2526 address &= PAGE_MASK;
2527 if (address < mmap_min_addr)
2528 return -EPERM;
2529
2530 /* Enforce stack_guard_gap */
2531 prev = vma->vm_prev;
2532 /* Check that both stack segments have the same anon_vma? */
2533 if (prev && !(prev->vm_flags & VM_GROWSDOWN) &&
2534 vma_is_accessible(prev)) {
2535 if (address - prev->vm_end < stack_guard_gap)
2536 return -ENOMEM;
2537 }
2538
2539 /* We must make sure the anon_vma is allocated. */
2540 if (unlikely(anon_vma_prepare(vma)))
2541 return -ENOMEM;
2542
2543 /*
2544 * vma->vm_start/vm_end cannot change under us because the caller
2545 * is required to hold the mmap_lock in read mode. We need the
2546 * anon_vma lock to serialize against concurrent expand_stacks.
2547 */
2548 anon_vma_lock_write(vma->anon_vma);
2549
2550 /* Somebody else might have raced and expanded it already */
2551 if (address < vma->vm_start) {
2552 unsigned long size, grow;
2553
2554 size = vma->vm_end - address;
2555 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2556
2557 error = -ENOMEM;
2558 if (grow <= vma->vm_pgoff) {
2559 error = acct_stack_growth(vma, size, grow);
2560 if (!error) {
2561 /*
2562 * vma_gap_update() doesn't support concurrent
2563 * updates, but we only hold a shared mmap_lock
2564 * lock here, so we need to protect against
2565 * concurrent vma expansions.
2566 * anon_vma_lock_write() doesn't help here, as
2567 * we don't guarantee that all growable vmas
2568 * in a mm share the same root anon vma.
2569 * So, we reuse mm->page_table_lock to guard
2570 * against concurrent vma expansions.
2571 */
2572 spin_lock(&mm->page_table_lock);
2573 if (vma->vm_flags & VM_LOCKED)
2574 mm->locked_vm += grow;
2575 vm_stat_account(mm, vma->vm_flags, grow);
2576 anon_vma_interval_tree_pre_update_vma(vma);
2577 vma->vm_start = address;
2578 vma->vm_pgoff -= grow;
2579 anon_vma_interval_tree_post_update_vma(vma);
2580 vma_gap_update(vma);
2581 spin_unlock(&mm->page_table_lock);
2582
2583 perf_event_mmap(vma);
2584 }
2585 }
2586 }
2587 anon_vma_unlock_write(vma->anon_vma);
2588 khugepaged_enter_vma_merge(vma, vma->vm_flags);
2589 validate_mm(mm);
2590 return error;
2591 }
2592
2593 /* enforced gap between the expanding stack and other mappings. */
2594 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2595
cmdline_parse_stack_guard_gap(char * p)2596 static int __init cmdline_parse_stack_guard_gap(char *p)
2597 {
2598 unsigned long val;
2599 char *endptr;
2600
2601 val = simple_strtoul(p, &endptr, 10);
2602 if (!*endptr)
2603 stack_guard_gap = val << PAGE_SHIFT;
2604
2605 return 0;
2606 }
2607 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2608
2609 #ifdef CONFIG_STACK_GROWSUP
expand_stack(struct vm_area_struct * vma,unsigned long address)2610 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2611 {
2612 return expand_upwards(vma, address);
2613 }
2614
2615 struct vm_area_struct *
find_extend_vma(struct mm_struct * mm,unsigned long addr)2616 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2617 {
2618 struct vm_area_struct *vma, *prev;
2619
2620 addr &= PAGE_MASK;
2621 vma = find_vma_prev(mm, addr, &prev);
2622 if (vma && (vma->vm_start <= addr))
2623 return vma;
2624 /* don't alter vm_end if the coredump is running */
2625 if (!prev || expand_stack(prev, addr))
2626 return NULL;
2627 if (prev->vm_flags & VM_LOCKED)
2628 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2629 return prev;
2630 }
2631 #else
expand_stack(struct vm_area_struct * vma,unsigned long address)2632 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2633 {
2634 return expand_downwards(vma, address);
2635 }
2636
2637 struct vm_area_struct *
find_extend_vma(struct mm_struct * mm,unsigned long addr)2638 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2639 {
2640 struct vm_area_struct *vma;
2641 unsigned long start;
2642
2643 addr &= PAGE_MASK;
2644 vma = find_vma(mm, addr);
2645 if (!vma)
2646 return NULL;
2647 if (vma->vm_start <= addr)
2648 return vma;
2649 if (!(vma->vm_flags & VM_GROWSDOWN))
2650 return NULL;
2651 start = vma->vm_start;
2652 if (expand_stack(vma, addr))
2653 return NULL;
2654 if (vma->vm_flags & VM_LOCKED)
2655 populate_vma_page_range(vma, addr, start, NULL);
2656 return vma;
2657 }
2658 #endif
2659
2660 EXPORT_SYMBOL_GPL(find_extend_vma);
2661
2662 /*
2663 * Ok - we have the memory areas we should free on the vma list,
2664 * so release them, and do the vma updates.
2665 *
2666 * Called with the mm semaphore held.
2667 */
remove_vma_list(struct mm_struct * mm,struct vm_area_struct * vma)2668 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2669 {
2670 unsigned long nr_accounted = 0;
2671
2672 /* Update high watermark before we lower total_vm */
2673 update_hiwater_vm(mm);
2674 do {
2675 long nrpages = vma_pages(vma);
2676
2677 if (vma->vm_flags & VM_ACCOUNT)
2678 nr_accounted += nrpages;
2679 vm_stat_account(mm, vma->vm_flags, -nrpages);
2680 vma = remove_vma(vma);
2681 } while (vma);
2682 vm_unacct_memory(nr_accounted);
2683 validate_mm(mm);
2684 }
2685
2686 /*
2687 * Get rid of page table information in the indicated region.
2688 *
2689 * Called with the mm semaphore held.
2690 */
unmap_region(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev,unsigned long start,unsigned long end)2691 static void unmap_region(struct mm_struct *mm,
2692 struct vm_area_struct *vma, struct vm_area_struct *prev,
2693 unsigned long start, unsigned long end)
2694 {
2695 struct vm_area_struct *next = vma_next(mm, prev);
2696 struct mmu_gather tlb;
2697
2698 lru_add_drain();
2699 tlb_gather_mmu(&tlb, mm, start, end);
2700 update_hiwater_rss(mm);
2701 unmap_vmas(&tlb, vma, start, end);
2702
2703 /*
2704 * Ensure we have no stale TLB entries by the time this mapping is
2705 * removed from the rmap.
2706 * Note that we don't have to worry about nested flushes here because
2707 * we're holding the mm semaphore for removing the mapping - so any
2708 * concurrent flush in this region has to be coming through the rmap,
2709 * and we synchronize against that using the rmap lock.
2710 */
2711 if ((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) != 0)
2712 tlb_flush_mmu(&tlb);
2713
2714 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2715 next ? next->vm_start : USER_PGTABLES_CEILING);
2716 tlb_finish_mmu(&tlb, start, end);
2717 }
2718
2719 /*
2720 * Create a list of vma's touched by the unmap, removing them from the mm's
2721 * vma list as we go..
2722 */
2723 static bool
detach_vmas_to_be_unmapped(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev,unsigned long end)2724 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2725 struct vm_area_struct *prev, unsigned long end)
2726 {
2727 struct vm_area_struct **insertion_point;
2728 struct vm_area_struct *tail_vma = NULL;
2729
2730 insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2731 vma->vm_prev = NULL;
2732 do {
2733 vma_rb_erase(vma, &mm->mm_rb);
2734 mm->map_count--;
2735 tail_vma = vma;
2736 vma = vma->vm_next;
2737 } while (vma && vma->vm_start < end);
2738 *insertion_point = vma;
2739 if (vma) {
2740 vma->vm_prev = prev;
2741 vma_gap_update(vma);
2742 } else
2743 mm->highest_vm_end = prev ? vm_end_gap(prev) : 0;
2744 tail_vma->vm_next = NULL;
2745
2746 /* Kill the cache */
2747 vmacache_invalidate(mm);
2748
2749 /*
2750 * Do not downgrade mmap_lock if we are next to VM_GROWSDOWN or
2751 * VM_GROWSUP VMA. Such VMAs can change their size under
2752 * down_read(mmap_lock) and collide with the VMA we are about to unmap.
2753 */
2754 if (vma && (vma->vm_flags & VM_GROWSDOWN))
2755 return false;
2756 if (prev && (prev->vm_flags & VM_GROWSUP))
2757 return false;
2758 return true;
2759 }
2760
2761 /*
2762 * __split_vma() bypasses sysctl_max_map_count checking. We use this where it
2763 * has already been checked or doesn't make sense to fail.
2764 */
__split_vma(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,int new_below)2765 int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2766 unsigned long addr, int new_below)
2767 {
2768 struct vm_area_struct *new;
2769 int err;
2770
2771 if (vma->vm_ops && vma->vm_ops->split) {
2772 err = vma->vm_ops->split(vma, addr);
2773 if (err)
2774 return err;
2775 }
2776
2777 new = vm_area_dup(vma);
2778 if (!new)
2779 return -ENOMEM;
2780
2781 if (new_below)
2782 new->vm_end = addr;
2783 else {
2784 new->vm_start = addr;
2785 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2786 }
2787
2788 err = vma_dup_policy(vma, new);
2789 if (err)
2790 goto out_free_vma;
2791
2792 err = anon_vma_clone(new, vma);
2793 if (err)
2794 goto out_free_mpol;
2795
2796 if (new->vm_file)
2797 get_file(new->vm_file);
2798
2799 if (new->vm_ops && new->vm_ops->open)
2800 new->vm_ops->open(new);
2801
2802 if (new_below)
2803 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2804 ((addr - new->vm_start) >> PAGE_SHIFT), new);
2805 else
2806 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2807
2808 /* Success. */
2809 if (!err)
2810 return 0;
2811
2812 /* Clean everything up if vma_adjust failed. */
2813 if (new->vm_ops && new->vm_ops->close)
2814 new->vm_ops->close(new);
2815 if (new->vm_file)
2816 fput(new->vm_file);
2817 unlink_anon_vmas(new);
2818 out_free_mpol:
2819 mpol_put(vma_policy(new));
2820 out_free_vma:
2821 vm_area_free(new);
2822 return err;
2823 }
2824
2825 /*
2826 * Split a vma into two pieces at address 'addr', a new vma is allocated
2827 * either for the first part or the tail.
2828 */
split_vma(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,int new_below)2829 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2830 unsigned long addr, int new_below)
2831 {
2832 if (mm->map_count >= sysctl_max_map_count)
2833 return -ENOMEM;
2834
2835 return __split_vma(mm, vma, addr, new_below);
2836 }
2837
2838 /* Munmap is split into 2 main parts -- this part which finds
2839 * what needs doing, and the areas themselves, which do the
2840 * work. This now handles partial unmappings.
2841 * Jeremy Fitzhardinge <jeremy@goop.org>
2842 */
__do_munmap(struct mm_struct * mm,unsigned long start,size_t len,struct list_head * uf,bool downgrade)2843 int __do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2844 struct list_head *uf, bool downgrade)
2845 {
2846 unsigned long end;
2847 struct vm_area_struct *vma, *prev, *last;
2848
2849 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2850 return -EINVAL;
2851
2852 len = PAGE_ALIGN(len);
2853 end = start + len;
2854 if (len == 0)
2855 return -EINVAL;
2856
2857 /*
2858 * arch_unmap() might do unmaps itself. It must be called
2859 * and finish any rbtree manipulation before this code
2860 * runs and also starts to manipulate the rbtree.
2861 */
2862 arch_unmap(mm, start, end);
2863
2864 /* Find the first overlapping VMA */
2865 vma = find_vma(mm, start);
2866 if (!vma)
2867 return 0;
2868 prev = vma->vm_prev;
2869 /* we have start < vma->vm_end */
2870
2871 /* if it doesn't overlap, we have nothing.. */
2872 if (vma->vm_start >= end)
2873 return 0;
2874
2875 /*
2876 * If we need to split any vma, do it now to save pain later.
2877 *
2878 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2879 * unmapped vm_area_struct will remain in use: so lower split_vma
2880 * places tmp vma above, and higher split_vma places tmp vma below.
2881 */
2882 if (start > vma->vm_start) {
2883 int error;
2884
2885 /*
2886 * Make sure that map_count on return from munmap() will
2887 * not exceed its limit; but let map_count go just above
2888 * its limit temporarily, to help free resources as expected.
2889 */
2890 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2891 return -ENOMEM;
2892
2893 error = __split_vma(mm, vma, start, 0);
2894 if (error)
2895 return error;
2896 prev = vma;
2897 }
2898
2899 /* Does it split the last one? */
2900 last = find_vma(mm, end);
2901 if (last && end > last->vm_start) {
2902 int error = __split_vma(mm, last, end, 1);
2903 if (error)
2904 return error;
2905 }
2906 vma = vma_next(mm, prev);
2907
2908 if (unlikely(uf)) {
2909 /*
2910 * If userfaultfd_unmap_prep returns an error the vmas
2911 * will remain splitted, but userland will get a
2912 * highly unexpected error anyway. This is no
2913 * different than the case where the first of the two
2914 * __split_vma fails, but we don't undo the first
2915 * split, despite we could. This is unlikely enough
2916 * failure that it's not worth optimizing it for.
2917 */
2918 int error = userfaultfd_unmap_prep(vma, start, end, uf);
2919 if (error)
2920 return error;
2921 }
2922
2923 /*
2924 * unlock any mlock()ed ranges before detaching vmas
2925 */
2926 if (mm->locked_vm) {
2927 struct vm_area_struct *tmp = vma;
2928 while (tmp && tmp->vm_start < end) {
2929 if (tmp->vm_flags & VM_LOCKED) {
2930 mm->locked_vm -= vma_pages(tmp);
2931 munlock_vma_pages_all(tmp);
2932 }
2933
2934 tmp = tmp->vm_next;
2935 }
2936 }
2937
2938 /* Detach vmas from rbtree */
2939 if (!detach_vmas_to_be_unmapped(mm, vma, prev, end))
2940 downgrade = false;
2941
2942 if (downgrade)
2943 mmap_write_downgrade(mm);
2944
2945 unmap_region(mm, vma, prev, start, end);
2946
2947 /* Fix up all other VM information */
2948 remove_vma_list(mm, vma);
2949
2950 return downgrade ? 1 : 0;
2951 }
2952
do_munmap(struct mm_struct * mm,unsigned long start,size_t len,struct list_head * uf)2953 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2954 struct list_head *uf)
2955 {
2956 return __do_munmap(mm, start, len, uf, false);
2957 }
2958
__vm_munmap(unsigned long start,size_t len,bool downgrade)2959 static int __vm_munmap(unsigned long start, size_t len, bool downgrade)
2960 {
2961 int ret;
2962 struct mm_struct *mm = current->mm;
2963 LIST_HEAD(uf);
2964
2965 if (mmap_write_lock_killable(mm))
2966 return -EINTR;
2967
2968 ret = __do_munmap(mm, start, len, &uf, downgrade);
2969 /*
2970 * Returning 1 indicates mmap_lock is downgraded.
2971 * But 1 is not legal return value of vm_munmap() and munmap(), reset
2972 * it to 0 before return.
2973 */
2974 if (ret == 1) {
2975 mmap_read_unlock(mm);
2976 ret = 0;
2977 } else
2978 mmap_write_unlock(mm);
2979
2980 userfaultfd_unmap_complete(mm, &uf);
2981 return ret;
2982 }
2983
vm_munmap(unsigned long start,size_t len)2984 int vm_munmap(unsigned long start, size_t len)
2985 {
2986 return __vm_munmap(start, len, false);
2987 }
2988 EXPORT_SYMBOL(vm_munmap);
2989
SYSCALL_DEFINE2(munmap,unsigned long,addr,size_t,len)2990 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2991 {
2992 addr = untagged_addr(addr);
2993 profile_munmap(addr);
2994 return __vm_munmap(addr, len, true);
2995 }
2996
2997
2998 /*
2999 * Emulation of deprecated remap_file_pages() syscall.
3000 */
SYSCALL_DEFINE5(remap_file_pages,unsigned long,start,unsigned long,size,unsigned long,prot,unsigned long,pgoff,unsigned long,flags)3001 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
3002 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
3003 {
3004
3005 struct mm_struct *mm = current->mm;
3006 struct vm_area_struct *vma;
3007 unsigned long populate = 0;
3008 unsigned long ret = -EINVAL;
3009 struct file *file;
3010
3011 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.rst.\n",
3012 current->comm, current->pid);
3013
3014 if (prot)
3015 return ret;
3016 start = start & PAGE_MASK;
3017 size = size & PAGE_MASK;
3018
3019 if (start + size <= start)
3020 return ret;
3021
3022 /* Does pgoff wrap? */
3023 if (pgoff + (size >> PAGE_SHIFT) < pgoff)
3024 return ret;
3025
3026 if (mmap_write_lock_killable(mm))
3027 return -EINTR;
3028
3029 vma = find_vma(mm, start);
3030
3031 if (!vma || !(vma->vm_flags & VM_SHARED))
3032 goto out;
3033
3034 if (start < vma->vm_start)
3035 goto out;
3036
3037 if (start + size > vma->vm_end) {
3038 struct vm_area_struct *next;
3039
3040 for (next = vma->vm_next; next; next = next->vm_next) {
3041 /* hole between vmas ? */
3042 if (next->vm_start != next->vm_prev->vm_end)
3043 goto out;
3044
3045 if (next->vm_file != vma->vm_file)
3046 goto out;
3047
3048 if (next->vm_flags != vma->vm_flags)
3049 goto out;
3050
3051 if (start + size <= next->vm_end)
3052 break;
3053 }
3054
3055 if (!next)
3056 goto out;
3057 }
3058
3059 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
3060 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
3061 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
3062
3063 flags &= MAP_NONBLOCK;
3064 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
3065 if (vma->vm_flags & VM_LOCKED) {
3066 struct vm_area_struct *tmp;
3067 flags |= MAP_LOCKED;
3068
3069 /* drop PG_Mlocked flag for over-mapped range */
3070 for (tmp = vma; tmp->vm_start >= start + size;
3071 tmp = tmp->vm_next) {
3072 /*
3073 * Split pmd and munlock page on the border
3074 * of the range.
3075 */
3076 vma_adjust_trans_huge(tmp, start, start + size, 0);
3077
3078 munlock_vma_pages_range(tmp,
3079 max(tmp->vm_start, start),
3080 min(tmp->vm_end, start + size));
3081 }
3082 }
3083
3084 file = get_file(vma->vm_file);
3085 ret = do_mmap(vma->vm_file, start, size,
3086 prot, flags, pgoff, &populate, NULL);
3087 fput(file);
3088 out:
3089 mmap_write_unlock(mm);
3090 if (populate)
3091 mm_populate(ret, populate);
3092 if (!IS_ERR_VALUE(ret))
3093 ret = 0;
3094 return ret;
3095 }
3096
3097 /*
3098 * this is really a simplified "do_mmap". it only handles
3099 * anonymous maps. eventually we may be able to do some
3100 * brk-specific accounting here.
3101 */
do_brk_flags(unsigned long addr,unsigned long len,unsigned long flags,struct list_head * uf)3102 static int do_brk_flags(unsigned long addr, unsigned long len, unsigned long flags, struct list_head *uf)
3103 {
3104 struct mm_struct *mm = current->mm;
3105 struct vm_area_struct *vma, *prev;
3106 struct rb_node **rb_link, *rb_parent;
3107 pgoff_t pgoff = addr >> PAGE_SHIFT;
3108 int error;
3109 unsigned long mapped_addr;
3110
3111 /* Until we need other flags, refuse anything except VM_EXEC. */
3112 if ((flags & (~VM_EXEC)) != 0)
3113 return -EINVAL;
3114 flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
3115
3116 mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
3117 if (IS_ERR_VALUE(mapped_addr))
3118 return mapped_addr;
3119
3120 error = mlock_future_check(mm, mm->def_flags, len);
3121 if (error)
3122 return error;
3123
3124 /* Clear old maps, set up prev, rb_link, rb_parent, and uf */
3125 if (munmap_vma_range(mm, addr, len, &prev, &rb_link, &rb_parent, uf))
3126 return -ENOMEM;
3127
3128 /* Check against address space limits *after* clearing old maps... */
3129 if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
3130 return -ENOMEM;
3131
3132 if (mm->map_count > sysctl_max_map_count)
3133 return -ENOMEM;
3134
3135 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
3136 return -ENOMEM;
3137
3138 /* Can we just expand an old private anonymous mapping? */
3139 vma = vma_merge(mm, prev, addr, addr + len, flags,
3140 NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX, NULL);
3141 if (vma)
3142 goto out;
3143
3144 /*
3145 * create a vma struct for an anonymous mapping
3146 */
3147 vma = vm_area_alloc(mm);
3148 if (!vma) {
3149 vm_unacct_memory(len >> PAGE_SHIFT);
3150 return -ENOMEM;
3151 }
3152
3153 vma_set_anonymous(vma);
3154 vma->vm_start = addr;
3155 vma->vm_end = addr + len;
3156 vma->vm_pgoff = pgoff;
3157 vma->vm_flags = flags;
3158 vma->vm_page_prot = vm_get_page_prot(flags);
3159 vma_link(mm, vma, prev, rb_link, rb_parent);
3160 out:
3161 perf_event_mmap(vma);
3162 mm->total_vm += len >> PAGE_SHIFT;
3163 mm->data_vm += len >> PAGE_SHIFT;
3164 if (flags & VM_LOCKED)
3165 mm->locked_vm += (len >> PAGE_SHIFT);
3166 vma->vm_flags |= VM_SOFTDIRTY;
3167 return 0;
3168 }
3169
vm_brk_flags(unsigned long addr,unsigned long request,unsigned long flags)3170 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3171 {
3172 struct mm_struct *mm = current->mm;
3173 unsigned long len;
3174 int ret;
3175 bool populate;
3176 LIST_HEAD(uf);
3177
3178 len = PAGE_ALIGN(request);
3179 if (len < request)
3180 return -ENOMEM;
3181 if (!len)
3182 return 0;
3183
3184 if (mmap_write_lock_killable(mm))
3185 return -EINTR;
3186
3187 ret = do_brk_flags(addr, len, flags, &uf);
3188 populate = ((mm->def_flags & VM_LOCKED) != 0);
3189 mmap_write_unlock(mm);
3190 userfaultfd_unmap_complete(mm, &uf);
3191 if (populate && !ret)
3192 mm_populate(addr, len);
3193 return ret;
3194 }
3195 EXPORT_SYMBOL(vm_brk_flags);
3196
vm_brk(unsigned long addr,unsigned long len)3197 int vm_brk(unsigned long addr, unsigned long len)
3198 {
3199 return vm_brk_flags(addr, len, 0);
3200 }
3201 EXPORT_SYMBOL(vm_brk);
3202
3203 /* Release all mmaps. */
exit_mmap(struct mm_struct * mm)3204 void exit_mmap(struct mm_struct *mm)
3205 {
3206 struct mmu_gather tlb;
3207 struct vm_area_struct *vma;
3208 unsigned long nr_accounted = 0;
3209
3210 /* mm's last user has gone, and its about to be pulled down */
3211 mmu_notifier_release(mm);
3212
3213 if (unlikely(mm_is_oom_victim(mm))) {
3214 /*
3215 * Manually reap the mm to free as much memory as possible.
3216 * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard
3217 * this mm from further consideration. Taking mm->mmap_lock for
3218 * write after setting MMF_OOM_SKIP will guarantee that the oom
3219 * reaper will not run on this mm again after mmap_lock is
3220 * dropped.
3221 *
3222 * Nothing can be holding mm->mmap_lock here and the above call
3223 * to mmu_notifier_release(mm) ensures mmu notifier callbacks in
3224 * __oom_reap_task_mm() will not block.
3225 *
3226 * This needs to be done before calling munlock_vma_pages_all(),
3227 * which clears VM_LOCKED, otherwise the oom reaper cannot
3228 * reliably test it.
3229 */
3230 (void)__oom_reap_task_mm(mm);
3231
3232 set_bit(MMF_OOM_SKIP, &mm->flags);
3233 mmap_write_lock(mm);
3234 mmap_write_unlock(mm);
3235 }
3236
3237 if (mm->locked_vm) {
3238 vma = mm->mmap;
3239 while (vma) {
3240 if (vma->vm_flags & VM_LOCKED)
3241 munlock_vma_pages_all(vma);
3242 vma = vma->vm_next;
3243 }
3244 }
3245
3246 arch_exit_mmap(mm);
3247
3248 vma = mm->mmap;
3249 if (!vma) /* Can happen if dup_mmap() received an OOM */
3250 return;
3251
3252 lru_add_drain();
3253 flush_cache_mm(mm);
3254 tlb_gather_mmu(&tlb, mm, 0, -1);
3255 /* update_hiwater_rss(mm) here? but nobody should be looking */
3256 /* Use -1 here to ensure all VMAs in the mm are unmapped */
3257 unmap_vmas(&tlb, vma, 0, -1);
3258 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
3259 tlb_finish_mmu(&tlb, 0, -1);
3260
3261 /*
3262 * Walk the list again, actually closing and freeing it,
3263 * with preemption enabled, without holding any MM locks.
3264 */
3265 while (vma) {
3266 if (vma->vm_flags & VM_ACCOUNT)
3267 nr_accounted += vma_pages(vma);
3268 vma = remove_vma(vma);
3269 cond_resched();
3270 }
3271 vm_unacct_memory(nr_accounted);
3272 }
3273
3274 /* Insert vm structure into process list sorted by address
3275 * and into the inode's i_mmap tree. If vm_file is non-NULL
3276 * then i_mmap_rwsem is taken here.
3277 */
insert_vm_struct(struct mm_struct * mm,struct vm_area_struct * vma)3278 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3279 {
3280 struct vm_area_struct *prev;
3281 struct rb_node **rb_link, *rb_parent;
3282
3283 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
3284 &prev, &rb_link, &rb_parent))
3285 return -ENOMEM;
3286 if ((vma->vm_flags & VM_ACCOUNT) &&
3287 security_vm_enough_memory_mm(mm, vma_pages(vma)))
3288 return -ENOMEM;
3289
3290 /*
3291 * The vm_pgoff of a purely anonymous vma should be irrelevant
3292 * until its first write fault, when page's anon_vma and index
3293 * are set. But now set the vm_pgoff it will almost certainly
3294 * end up with (unless mremap moves it elsewhere before that
3295 * first wfault), so /proc/pid/maps tells a consistent story.
3296 *
3297 * By setting it to reflect the virtual start address of the
3298 * vma, merges and splits can happen in a seamless way, just
3299 * using the existing file pgoff checks and manipulations.
3300 * Similarly in do_mmap and in do_brk_flags.
3301 */
3302 if (vma_is_anonymous(vma)) {
3303 BUG_ON(vma->anon_vma);
3304 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3305 }
3306
3307 vma_link(mm, vma, prev, rb_link, rb_parent);
3308 return 0;
3309 }
3310
3311 /*
3312 * Copy the vma structure to a new location in the same mm,
3313 * prior to moving page table entries, to effect an mremap move.
3314 */
copy_vma(struct vm_area_struct ** vmap,unsigned long addr,unsigned long len,pgoff_t pgoff,bool * need_rmap_locks)3315 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3316 unsigned long addr, unsigned long len, pgoff_t pgoff,
3317 bool *need_rmap_locks)
3318 {
3319 struct vm_area_struct *vma = *vmap;
3320 unsigned long vma_start = vma->vm_start;
3321 struct mm_struct *mm = vma->vm_mm;
3322 struct vm_area_struct *new_vma, *prev;
3323 struct rb_node **rb_link, *rb_parent;
3324 bool faulted_in_anon_vma = true;
3325
3326 /*
3327 * If anonymous vma has not yet been faulted, update new pgoff
3328 * to match new location, to increase its chance of merging.
3329 */
3330 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3331 pgoff = addr >> PAGE_SHIFT;
3332 faulted_in_anon_vma = false;
3333 }
3334
3335 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
3336 return NULL; /* should never get here */
3337 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
3338 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3339 vma->vm_userfaultfd_ctx, anon_vma_name(vma));
3340 if (new_vma) {
3341 /*
3342 * Source vma may have been merged into new_vma
3343 */
3344 if (unlikely(vma_start >= new_vma->vm_start &&
3345 vma_start < new_vma->vm_end)) {
3346 /*
3347 * The only way we can get a vma_merge with
3348 * self during an mremap is if the vma hasn't
3349 * been faulted in yet and we were allowed to
3350 * reset the dst vma->vm_pgoff to the
3351 * destination address of the mremap to allow
3352 * the merge to happen. mremap must change the
3353 * vm_pgoff linearity between src and dst vmas
3354 * (in turn preventing a vma_merge) to be
3355 * safe. It is only safe to keep the vm_pgoff
3356 * linear if there are no pages mapped yet.
3357 */
3358 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3359 *vmap = vma = new_vma;
3360 }
3361 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3362 } else {
3363 new_vma = vm_area_dup(vma);
3364 if (!new_vma)
3365 goto out;
3366 new_vma->vm_start = addr;
3367 new_vma->vm_end = addr + len;
3368 new_vma->vm_pgoff = pgoff;
3369 if (vma_dup_policy(vma, new_vma))
3370 goto out_free_vma;
3371 if (anon_vma_clone(new_vma, vma))
3372 goto out_free_mempol;
3373 if (new_vma->vm_file)
3374 get_file(new_vma->vm_file);
3375 if (new_vma->vm_ops && new_vma->vm_ops->open)
3376 new_vma->vm_ops->open(new_vma);
3377 vma_link(mm, new_vma, prev, rb_link, rb_parent);
3378 *need_rmap_locks = false;
3379 }
3380 return new_vma;
3381
3382 out_free_mempol:
3383 mpol_put(vma_policy(new_vma));
3384 out_free_vma:
3385 vm_area_free(new_vma);
3386 out:
3387 return NULL;
3388 }
3389
3390 /*
3391 * Return true if the calling process may expand its vm space by the passed
3392 * number of pages
3393 */
may_expand_vm(struct mm_struct * mm,vm_flags_t flags,unsigned long npages)3394 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3395 {
3396 if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3397 return false;
3398
3399 if (is_data_mapping(flags) &&
3400 mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3401 /* Workaround for Valgrind */
3402 if (rlimit(RLIMIT_DATA) == 0 &&
3403 mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3404 return true;
3405
3406 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3407 current->comm, current->pid,
3408 (mm->data_vm + npages) << PAGE_SHIFT,
3409 rlimit(RLIMIT_DATA),
3410 ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3411
3412 if (!ignore_rlimit_data)
3413 return false;
3414 }
3415
3416 return true;
3417 }
3418
vm_stat_account(struct mm_struct * mm,vm_flags_t flags,long npages)3419 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3420 {
3421 mm->total_vm += npages;
3422
3423 if (is_exec_mapping(flags))
3424 mm->exec_vm += npages;
3425 else if (is_stack_mapping(flags))
3426 mm->stack_vm += npages;
3427 else if (is_data_mapping(flags))
3428 mm->data_vm += npages;
3429 }
3430
3431 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3432
3433 /*
3434 * Having a close hook prevents vma merging regardless of flags.
3435 */
special_mapping_close(struct vm_area_struct * vma)3436 static void special_mapping_close(struct vm_area_struct *vma)
3437 {
3438 }
3439
special_mapping_name(struct vm_area_struct * vma)3440 static const char *special_mapping_name(struct vm_area_struct *vma)
3441 {
3442 return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3443 }
3444
special_mapping_mremap(struct vm_area_struct * new_vma)3445 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3446 {
3447 struct vm_special_mapping *sm = new_vma->vm_private_data;
3448
3449 if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3450 return -EFAULT;
3451
3452 if (sm->mremap)
3453 return sm->mremap(sm, new_vma);
3454
3455 return 0;
3456 }
3457
3458 static const struct vm_operations_struct special_mapping_vmops = {
3459 .close = special_mapping_close,
3460 .fault = special_mapping_fault,
3461 .mremap = special_mapping_mremap,
3462 .name = special_mapping_name,
3463 /* vDSO code relies that VVAR can't be accessed remotely */
3464 .access = NULL,
3465 };
3466
3467 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3468 .close = special_mapping_close,
3469 .fault = special_mapping_fault,
3470 };
3471
special_mapping_fault(struct vm_fault * vmf)3472 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3473 {
3474 struct vm_area_struct *vma = vmf->vma;
3475 pgoff_t pgoff;
3476 struct page **pages;
3477
3478 if (vma->vm_ops == &legacy_special_mapping_vmops) {
3479 pages = vma->vm_private_data;
3480 } else {
3481 struct vm_special_mapping *sm = vma->vm_private_data;
3482
3483 if (sm->fault)
3484 return sm->fault(sm, vmf->vma, vmf);
3485
3486 pages = sm->pages;
3487 }
3488
3489 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3490 pgoff--;
3491
3492 if (*pages) {
3493 struct page *page = *pages;
3494 get_page(page);
3495 vmf->page = page;
3496 return 0;
3497 }
3498
3499 return VM_FAULT_SIGBUS;
3500 }
3501
__install_special_mapping(struct mm_struct * mm,unsigned long addr,unsigned long len,unsigned long vm_flags,void * priv,const struct vm_operations_struct * ops)3502 static struct vm_area_struct *__install_special_mapping(
3503 struct mm_struct *mm,
3504 unsigned long addr, unsigned long len,
3505 unsigned long vm_flags, void *priv,
3506 const struct vm_operations_struct *ops)
3507 {
3508 int ret;
3509 struct vm_area_struct *vma;
3510
3511 vma = vm_area_alloc(mm);
3512 if (unlikely(vma == NULL))
3513 return ERR_PTR(-ENOMEM);
3514
3515 vma->vm_start = addr;
3516 vma->vm_end = addr + len;
3517
3518 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3519 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3520
3521 vma->vm_ops = ops;
3522 vma->vm_private_data = priv;
3523
3524 ret = insert_vm_struct(mm, vma);
3525 if (ret)
3526 goto out;
3527
3528 vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3529
3530 perf_event_mmap(vma);
3531
3532 return vma;
3533
3534 out:
3535 vm_area_free(vma);
3536 return ERR_PTR(ret);
3537 }
3538
vma_is_special_mapping(const struct vm_area_struct * vma,const struct vm_special_mapping * sm)3539 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3540 const struct vm_special_mapping *sm)
3541 {
3542 return vma->vm_private_data == sm &&
3543 (vma->vm_ops == &special_mapping_vmops ||
3544 vma->vm_ops == &legacy_special_mapping_vmops);
3545 }
3546
3547 /*
3548 * Called with mm->mmap_lock held for writing.
3549 * Insert a new vma covering the given region, with the given flags.
3550 * Its pages are supplied by the given array of struct page *.
3551 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3552 * The region past the last page supplied will always produce SIGBUS.
3553 * The array pointer and the pages it points to are assumed to stay alive
3554 * for as long as this mapping might exist.
3555 */
_install_special_mapping(struct mm_struct * mm,unsigned long addr,unsigned long len,unsigned long vm_flags,const struct vm_special_mapping * spec)3556 struct vm_area_struct *_install_special_mapping(
3557 struct mm_struct *mm,
3558 unsigned long addr, unsigned long len,
3559 unsigned long vm_flags, const struct vm_special_mapping *spec)
3560 {
3561 return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3562 &special_mapping_vmops);
3563 }
3564
install_special_mapping(struct mm_struct * mm,unsigned long addr,unsigned long len,unsigned long vm_flags,struct page ** pages)3565 int install_special_mapping(struct mm_struct *mm,
3566 unsigned long addr, unsigned long len,
3567 unsigned long vm_flags, struct page **pages)
3568 {
3569 struct vm_area_struct *vma = __install_special_mapping(
3570 mm, addr, len, vm_flags, (void *)pages,
3571 &legacy_special_mapping_vmops);
3572
3573 return PTR_ERR_OR_ZERO(vma);
3574 }
3575
3576 static DEFINE_MUTEX(mm_all_locks_mutex);
3577
vm_lock_anon_vma(struct mm_struct * mm,struct anon_vma * anon_vma)3578 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3579 {
3580 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3581 /*
3582 * The LSB of head.next can't change from under us
3583 * because we hold the mm_all_locks_mutex.
3584 */
3585 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
3586 /*
3587 * We can safely modify head.next after taking the
3588 * anon_vma->root->rwsem. If some other vma in this mm shares
3589 * the same anon_vma we won't take it again.
3590 *
3591 * No need of atomic instructions here, head.next
3592 * can't change from under us thanks to the
3593 * anon_vma->root->rwsem.
3594 */
3595 if (__test_and_set_bit(0, (unsigned long *)
3596 &anon_vma->root->rb_root.rb_root.rb_node))
3597 BUG();
3598 }
3599 }
3600
vm_lock_mapping(struct mm_struct * mm,struct address_space * mapping)3601 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3602 {
3603 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3604 /*
3605 * AS_MM_ALL_LOCKS can't change from under us because
3606 * we hold the mm_all_locks_mutex.
3607 *
3608 * Operations on ->flags have to be atomic because
3609 * even if AS_MM_ALL_LOCKS is stable thanks to the
3610 * mm_all_locks_mutex, there may be other cpus
3611 * changing other bitflags in parallel to us.
3612 */
3613 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3614 BUG();
3615 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
3616 }
3617 }
3618
3619 /*
3620 * This operation locks against the VM for all pte/vma/mm related
3621 * operations that could ever happen on a certain mm. This includes
3622 * vmtruncate, try_to_unmap, and all page faults.
3623 *
3624 * The caller must take the mmap_lock in write mode before calling
3625 * mm_take_all_locks(). The caller isn't allowed to release the
3626 * mmap_lock until mm_drop_all_locks() returns.
3627 *
3628 * mmap_lock in write mode is required in order to block all operations
3629 * that could modify pagetables and free pages without need of
3630 * altering the vma layout. It's also needed in write mode to avoid new
3631 * anon_vmas to be associated with existing vmas.
3632 *
3633 * A single task can't take more than one mm_take_all_locks() in a row
3634 * or it would deadlock.
3635 *
3636 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3637 * mapping->flags avoid to take the same lock twice, if more than one
3638 * vma in this mm is backed by the same anon_vma or address_space.
3639 *
3640 * We take locks in following order, accordingly to comment at beginning
3641 * of mm/rmap.c:
3642 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3643 * hugetlb mapping);
3644 * - all i_mmap_rwsem locks;
3645 * - all anon_vma->rwseml
3646 *
3647 * We can take all locks within these types randomly because the VM code
3648 * doesn't nest them and we protected from parallel mm_take_all_locks() by
3649 * mm_all_locks_mutex.
3650 *
3651 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3652 * that may have to take thousand of locks.
3653 *
3654 * mm_take_all_locks() can fail if it's interrupted by signals.
3655 */
mm_take_all_locks(struct mm_struct * mm)3656 int mm_take_all_locks(struct mm_struct *mm)
3657 {
3658 struct vm_area_struct *vma;
3659 struct anon_vma_chain *avc;
3660
3661 BUG_ON(mmap_read_trylock(mm));
3662
3663 mutex_lock(&mm_all_locks_mutex);
3664
3665 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3666 if (signal_pending(current))
3667 goto out_unlock;
3668 if (vma->vm_file && vma->vm_file->f_mapping &&
3669 is_vm_hugetlb_page(vma))
3670 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3671 }
3672
3673 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3674 if (signal_pending(current))
3675 goto out_unlock;
3676 if (vma->vm_file && vma->vm_file->f_mapping &&
3677 !is_vm_hugetlb_page(vma))
3678 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3679 }
3680
3681 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3682 if (signal_pending(current))
3683 goto out_unlock;
3684 if (vma->anon_vma)
3685 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3686 vm_lock_anon_vma(mm, avc->anon_vma);
3687 }
3688
3689 return 0;
3690
3691 out_unlock:
3692 mm_drop_all_locks(mm);
3693 return -EINTR;
3694 }
3695
vm_unlock_anon_vma(struct anon_vma * anon_vma)3696 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3697 {
3698 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3699 /*
3700 * The LSB of head.next can't change to 0 from under
3701 * us because we hold the mm_all_locks_mutex.
3702 *
3703 * We must however clear the bitflag before unlocking
3704 * the vma so the users using the anon_vma->rb_root will
3705 * never see our bitflag.
3706 *
3707 * No need of atomic instructions here, head.next
3708 * can't change from under us until we release the
3709 * anon_vma->root->rwsem.
3710 */
3711 if (!__test_and_clear_bit(0, (unsigned long *)
3712 &anon_vma->root->rb_root.rb_root.rb_node))
3713 BUG();
3714 anon_vma_unlock_write(anon_vma);
3715 }
3716 }
3717
vm_unlock_mapping(struct address_space * mapping)3718 static void vm_unlock_mapping(struct address_space *mapping)
3719 {
3720 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3721 /*
3722 * AS_MM_ALL_LOCKS can't change to 0 from under us
3723 * because we hold the mm_all_locks_mutex.
3724 */
3725 i_mmap_unlock_write(mapping);
3726 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3727 &mapping->flags))
3728 BUG();
3729 }
3730 }
3731
3732 /*
3733 * The mmap_lock cannot be released by the caller until
3734 * mm_drop_all_locks() returns.
3735 */
mm_drop_all_locks(struct mm_struct * mm)3736 void mm_drop_all_locks(struct mm_struct *mm)
3737 {
3738 struct vm_area_struct *vma;
3739 struct anon_vma_chain *avc;
3740
3741 BUG_ON(mmap_read_trylock(mm));
3742 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3743
3744 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3745 if (vma->anon_vma)
3746 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3747 vm_unlock_anon_vma(avc->anon_vma);
3748 if (vma->vm_file && vma->vm_file->f_mapping)
3749 vm_unlock_mapping(vma->vm_file->f_mapping);
3750 }
3751
3752 mutex_unlock(&mm_all_locks_mutex);
3753 }
3754
3755 /*
3756 * initialise the percpu counter for VM
3757 */
mmap_init(void)3758 void __init mmap_init(void)
3759 {
3760 int ret;
3761
3762 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3763 VM_BUG_ON(ret);
3764 }
3765
3766 /*
3767 * Initialise sysctl_user_reserve_kbytes.
3768 *
3769 * This is intended to prevent a user from starting a single memory hogging
3770 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3771 * mode.
3772 *
3773 * The default value is min(3% of free memory, 128MB)
3774 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3775 */
init_user_reserve(void)3776 static int init_user_reserve(void)
3777 {
3778 unsigned long free_kbytes;
3779
3780 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3781
3782 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3783 return 0;
3784 }
3785 subsys_initcall(init_user_reserve);
3786
3787 /*
3788 * Initialise sysctl_admin_reserve_kbytes.
3789 *
3790 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3791 * to log in and kill a memory hogging process.
3792 *
3793 * Systems with more than 256MB will reserve 8MB, enough to recover
3794 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3795 * only reserve 3% of free pages by default.
3796 */
init_admin_reserve(void)3797 static int init_admin_reserve(void)
3798 {
3799 unsigned long free_kbytes;
3800
3801 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3802
3803 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3804 return 0;
3805 }
3806 subsys_initcall(init_admin_reserve);
3807
3808 /*
3809 * Reinititalise user and admin reserves if memory is added or removed.
3810 *
3811 * The default user reserve max is 128MB, and the default max for the
3812 * admin reserve is 8MB. These are usually, but not always, enough to
3813 * enable recovery from a memory hogging process using login/sshd, a shell,
3814 * and tools like top. It may make sense to increase or even disable the
3815 * reserve depending on the existence of swap or variations in the recovery
3816 * tools. So, the admin may have changed them.
3817 *
3818 * If memory is added and the reserves have been eliminated or increased above
3819 * the default max, then we'll trust the admin.
3820 *
3821 * If memory is removed and there isn't enough free memory, then we
3822 * need to reset the reserves.
3823 *
3824 * Otherwise keep the reserve set by the admin.
3825 */
reserve_mem_notifier(struct notifier_block * nb,unsigned long action,void * data)3826 static int reserve_mem_notifier(struct notifier_block *nb,
3827 unsigned long action, void *data)
3828 {
3829 unsigned long tmp, free_kbytes;
3830
3831 switch (action) {
3832 case MEM_ONLINE:
3833 /* Default max is 128MB. Leave alone if modified by operator. */
3834 tmp = sysctl_user_reserve_kbytes;
3835 if (0 < tmp && tmp < (1UL << 17))
3836 init_user_reserve();
3837
3838 /* Default max is 8MB. Leave alone if modified by operator. */
3839 tmp = sysctl_admin_reserve_kbytes;
3840 if (0 < tmp && tmp < (1UL << 13))
3841 init_admin_reserve();
3842
3843 break;
3844 case MEM_OFFLINE:
3845 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3846
3847 if (sysctl_user_reserve_kbytes > free_kbytes) {
3848 init_user_reserve();
3849 pr_info("vm.user_reserve_kbytes reset to %lu\n",
3850 sysctl_user_reserve_kbytes);
3851 }
3852
3853 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3854 init_admin_reserve();
3855 pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3856 sysctl_admin_reserve_kbytes);
3857 }
3858 break;
3859 default:
3860 break;
3861 }
3862 return NOTIFY_OK;
3863 }
3864
3865 static struct notifier_block reserve_mem_nb = {
3866 .notifier_call = reserve_mem_notifier,
3867 };
3868
init_reserve_notifier(void)3869 static int __meminit init_reserve_notifier(void)
3870 {
3871 if (register_hotmemory_notifier(&reserve_mem_nb))
3872 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3873
3874 return 0;
3875 }
3876 subsys_initcall(init_reserve_notifier);
3877