• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2019 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #include "include/private/SkVx.h"
9 #include "tests/Test.h"
10 #include <numeric>
11 
12 using float2 = skvx::Vec<2,float>;
13 using float4 = skvx::Vec<4,float>;
14 using float8 = skvx::Vec<8,float>;
15 
16 using double2 = skvx::Vec<2,double>;
17 using double4 = skvx::Vec<4,double>;
18 using double8 = skvx::Vec<8,double>;
19 
20 using byte2  = skvx::Vec< 2,uint8_t>;
21 using byte4  = skvx::Vec< 4,uint8_t>;
22 using byte8  = skvx::Vec< 8,uint8_t>;
23 using byte16 = skvx::Vec<16,uint8_t>;
24 
25 using int2 = skvx::Vec<2,int32_t>;
26 using int4 = skvx::Vec<4,int32_t>;
27 using int8 = skvx::Vec<8,int32_t>;
28 
29 using uint2 = skvx::Vec<2,uint32_t>;
30 using uint4 = skvx::Vec<4,uint32_t>;
31 using uint8 = skvx::Vec<8,uint32_t>;
32 
33 using long2 = skvx::Vec<2,int64_t>;
34 using long4 = skvx::Vec<4,int64_t>;
35 using long8 = skvx::Vec<8,int64_t>;
36 
DEF_TEST(SkVx,r)37 DEF_TEST(SkVx, r) {
38     static_assert(sizeof(float2) ==  8, "");
39     static_assert(sizeof(float4) == 16, "");
40     static_assert(sizeof(float8) == 32, "");
41 
42     static_assert(sizeof(byte2) == 2, "");
43     static_assert(sizeof(byte4) == 4, "");
44     static_assert(sizeof(byte8) == 8, "");
45 
46     {
47         int4 mask = float4{1,2,3,4} < float4{1,2,4,8};
48         REPORTER_ASSERT(r, mask[0] == int32_t( 0));
49         REPORTER_ASSERT(r, mask[1] == int32_t( 0));
50         REPORTER_ASSERT(r, mask[2] == int32_t(-1));
51         REPORTER_ASSERT(r, mask[3] == int32_t(-1));
52 
53         REPORTER_ASSERT(r,  any(mask));
54         REPORTER_ASSERT(r, !all(mask));
55     }
56 
57     {
58         long4 mask = double4{1,2,3,4} < double4{1,2,4,8};
59         REPORTER_ASSERT(r, mask[0] == int64_t( 0));
60         REPORTER_ASSERT(r, mask[1] == int64_t( 0));
61         REPORTER_ASSERT(r, mask[2] == int64_t(-1));
62         REPORTER_ASSERT(r, mask[3] == int64_t(-1));
63 
64         REPORTER_ASSERT(r,  any(mask));
65         REPORTER_ASSERT(r, !all(mask));
66     }
67 
68     REPORTER_ASSERT(r, min(float4{1,2,3,4}) == 1);
69     REPORTER_ASSERT(r, max(float4{1,2,3,4}) == 4);
70 
71     REPORTER_ASSERT(r, all(int4{1,2,3,4,5} == int4{1,2,3,4}));
72     REPORTER_ASSERT(r, all(int4{1,2,3,4}   == int4{1,2,3,4}));
73     REPORTER_ASSERT(r, all(int4{1,2,3}     == int4{1,2,3,0}));
74     REPORTER_ASSERT(r, all(int4{1,2}       == int4{1,2,0,0}));
75     REPORTER_ASSERT(r, all(int4{1}         == int4{1,0,0,0}));
76     REPORTER_ASSERT(r, all(int4(1)         == int4{1,1,1,1}));
77     REPORTER_ASSERT(r, all(int4{}          == int4{0,0,0,0}));
78     REPORTER_ASSERT(r, all(int4()          == int4{0,0,0,0}));
79 
80     REPORTER_ASSERT(r, all(int4{1,2,2,1} == min(int4{1,2,3,4}, int4{4,3,2,1})));
81     REPORTER_ASSERT(r, all(int4{4,3,3,4} == max(int4{1,2,3,4}, int4{4,3,2,1})));
82 
83     REPORTER_ASSERT(r, all(if_then_else(float4{1,2,3,2} <= float4{2,2,2,2}, float4(42), float4(47))
84                            == float4{42,42,47,42}));
85 
86     REPORTER_ASSERT(r, all(floor(float4{-1.5f,1.5f,1.0f,-1.0f}) == float4{-2.0f,1.0f,1.0f,-1.0f}));
87     REPORTER_ASSERT(r, all( ceil(float4{-1.5f,1.5f,1.0f,-1.0f}) == float4{-1.0f,2.0f,1.0f,-1.0f}));
88     REPORTER_ASSERT(r, all(trunc(float4{-1.5f,1.5f,1.0f,-1.0f}) == float4{-1.0f,1.0f,1.0f,-1.0f}));
89     REPORTER_ASSERT(r, all(round(float4{-1.5f,1.5f,1.0f,-1.0f}) == float4{-2.0f,2.0f,1.0f,-1.0f}));
90 
91 
92     REPORTER_ASSERT(r, all(abs(float4{-2,-1,0,1}) == float4{2,1,0,1}));
93 
94     // TODO(mtklein): these tests could be made less loose.
95     REPORTER_ASSERT(r, all( sqrt(float4{2,3,4,5}) < float4{2,2,3,3}));
96     REPORTER_ASSERT(r, all( sqrt(float2{2,3}) < float2{2,2}));
97 
98     REPORTER_ASSERT(r, all(skvx::cast<int>(float4{-1.5f,0.5f,1.0f,1.5f}) == int4{-1,0,1,1}));
99 
100     float buf[] = {1,2,3,4,5,6};
101     REPORTER_ASSERT(r, all(float4::Load(buf) == float4{1,2,3,4}));
102     float4{2,3,4,5}.store(buf);
103     REPORTER_ASSERT(r, buf[0] == 2
104                     && buf[1] == 3
105                     && buf[2] == 4
106                     && buf[3] == 5
107                     && buf[4] == 5
108                     && buf[5] == 6);
109     REPORTER_ASSERT(r, all(float4::Load(buf+0) == float4{2,3,4,5}));
110     REPORTER_ASSERT(r, all(float4::Load(buf+2) == float4{4,5,5,6}));
111 
112     REPORTER_ASSERT(r, all(skvx::shuffle<2,1,0,3>        (float4{1,2,3,4}) == float4{3,2,1,4}));
113     REPORTER_ASSERT(r, all(skvx::shuffle<2,1>            (float4{1,2,3,4}) == float2{3,2}));
114     REPORTER_ASSERT(r, all(skvx::shuffle<3,3,3,3>        (float4{1,2,3,4}) == float4{4,4,4,4}));
115     REPORTER_ASSERT(r, all(skvx::shuffle<2,1,2,1,2,1,2,1>(float4{1,2,3,4})
116                            == float8{3,2,3,2,3,2,3,2}));
117 
118     // Test that mixed types can be used where they make sense.  Mostly about ergonomics.
119     REPORTER_ASSERT(r, all(float4{1,2,3,4} < 5));
120     REPORTER_ASSERT(r, all( byte4{1,2,3,4} < 5));
121     REPORTER_ASSERT(r, all(  int4{1,2,3,4} < 5.0f));
122     float4 five = 5;
123     REPORTER_ASSERT(r, all(five == 5.0f));
124     REPORTER_ASSERT(r, all(five == 5));
125 
126     REPORTER_ASSERT(r, all(max(2, min(float4{1,2,3,4}, 3)) == float4{2,2,3,3}));
127 
128     for (int x = 0; x < 256; x++)
129     for (int y = 0; y < 256; y++) {
130         uint8_t want = (uint8_t)( 255*(x/255.0 * y/255.0) + 0.5 );
131 
132         {
133             uint8_t got = skvx::div255(skvx::Vec<8, uint16_t>(x) *
134                                        skvx::Vec<8, uint16_t>(y) )[0];
135             REPORTER_ASSERT(r, got == want);
136         }
137 
138         {
139             uint8_t got = skvx::approx_scale(skvx::Vec<8,uint8_t>(x),
140                                              skvx::Vec<8,uint8_t>(y))[0];
141 
142             REPORTER_ASSERT(r, got == want-1 ||
143                                got == want   ||
144                                got == want+1);
145             if (x == 0 || y == 0 || x == 255 || y == 255) {
146                 REPORTER_ASSERT(r, got == want);
147             }
148         }
149     }
150 
151     for (int x = 0; x < 256; x++)
152     for (int y = 0; y < 256; y++) {
153         uint16_t xy = x*y;
154 
155         // Make sure to cover implementation cases N=8, N<8, and N>8.
156         REPORTER_ASSERT(r, all(mull(byte2 (x), byte2 (y)) == xy));
157         REPORTER_ASSERT(r, all(mull(byte4 (x), byte4 (y)) == xy));
158         REPORTER_ASSERT(r, all(mull(byte8 (x), byte8 (y)) == xy));
159         REPORTER_ASSERT(r, all(mull(byte16(x), byte16(y)) == xy));
160     }
161 
162     {
163         // Intentionally not testing -0, as we don't care if it's 0x0000 or 0x8000.
164         float8 fs = {+0.0f,+0.5f,+1.0f,+2.0f,
165                      -4.0f,-0.5f,-1.0f,-2.0f};
166         skvx::Vec<8,uint16_t> hs = {0x0000,0x3800,0x3c00,0x4000,
167                                     0xc400,0xb800,0xbc00,0xc000};
168         REPORTER_ASSERT(r, all(skvx::  to_half(fs) == hs));
169         REPORTER_ASSERT(r, all(skvx::from_half(hs) == fs));
170     }
171 }
172 
DEF_TEST(SkVx_xy,r)173 DEF_TEST(SkVx_xy, r) {
174     float2 f = float2(1,2);
175     REPORTER_ASSERT(r, all(f == float2{1,2}));
176     REPORTER_ASSERT(r, f.x() == 1);
177     REPORTER_ASSERT(r, f.y() == 2);
178     f.y() = 9;
179     REPORTER_ASSERT(r, all(f == float2{1,9}));
180     f.x() = 0;
181     REPORTER_ASSERT(r, all(f == float2(0,9)));
182     f[0] = 8;
183     REPORTER_ASSERT(r, f.x() == 8);
184     f[1] = 6;
185     REPORTER_ASSERT(r, f.y() == 6);
186     REPORTER_ASSERT(r, all(f == float2(8,6)));
187     f = f.yx();
188     REPORTER_ASSERT(r, all(f == float2(6,8)));
189     REPORTER_ASSERT(r, skvx::bit_pun<SkPoint>(f) == SkPoint::Make(6,8));
190     SkPoint p;
191     f.store(&p);
192     REPORTER_ASSERT(r, p == SkPoint::Make(6,8));
193     f.yx().store(&p);
194     REPORTER_ASSERT(r, p == SkPoint::Make(8,6));
195     REPORTER_ASSERT(r, all(f.xyxy() == float4(6,8,6,8)));
196     REPORTER_ASSERT(r, all(f.xyxy() == float4(f,f)));
197     REPORTER_ASSERT(r, all(skvx::join(f,f) == f.xyxy()));
198     REPORTER_ASSERT(r, all(skvx::join(f.yx(),f) == float4(f.y(),f.x(),f)));
199     REPORTER_ASSERT(r, all(skvx::join(f.yx(),f) == float4(f.yx(),f.x(),f.y())));
200     REPORTER_ASSERT(r, all(skvx::join(f,f.yx()) == float4(f.x(),f.y(),f.yx())));
201     REPORTER_ASSERT(r, all(skvx::join(f.yx(),f.yx()) == float4(f.yx(),f.yx())));
202 }
203 
DEF_TEST(SkVx_xyzw,r)204 DEF_TEST(SkVx_xyzw, r) {
205     float4 f = float4{1,2,3,4};
206     REPORTER_ASSERT(r, all(f == float4(1,2,3,4)));
207     REPORTER_ASSERT(r, all(f == float4(1,2,float2(3,4))));
208     REPORTER_ASSERT(r, all(f == float4(float2(1,2),3,4)));
209     REPORTER_ASSERT(r, all(f == float4(float2(1,2),float2(3,4))));
210     f.xy() = float2(9,8);
211     REPORTER_ASSERT(r, all(f == float4(9,8,3,4)));
212     f.zw().x() = 7;
213     f.zw().y() = 6;
214     REPORTER_ASSERT(r, all(f == float4(9,8,7,6)));
215     f.x() = 5;
216     f.y() = 4;
217     f.z() = 3;
218     f.w() = 2;
219     REPORTER_ASSERT(r, all(f == float4(5,4,3,2)));
220     f[0] = 0;
221     REPORTER_ASSERT(r, f.x() == 0);
222     f[1] = 1;
223     REPORTER_ASSERT(r, f.y() == 1);
224     f[2] = 2;
225     REPORTER_ASSERT(r, f.z() == 2);
226     f[3] = 3;
227     REPORTER_ASSERT(r, f.w() == 3);
228     REPORTER_ASSERT(r, skvx::all(f.xy() == float2(0,1)));
229     REPORTER_ASSERT(r, skvx::all(f.zw() == float2{2,3}));
230     REPORTER_ASSERT(r, all(f == float4(0,1,2,3)));
231     REPORTER_ASSERT(r, all(f.yxwz().lo == skvx::shuffle<1,0>(f)));
232     REPORTER_ASSERT(r, all(f.yxwz().hi == skvx::shuffle<3,2>(f)));
233     REPORTER_ASSERT(r, all(f.zwxy().lo.lo == f.z()));
234     REPORTER_ASSERT(r, all(f.zwxy().lo.hi == f.w()));
235     REPORTER_ASSERT(r, all(f.zwxy().hi.lo == f.x()));
236     REPORTER_ASSERT(r, all(f.zwxy().hi.hi == f.y()));
237     REPORTER_ASSERT(r, f.yxwz().lo.lo.val == f.y());
238     REPORTER_ASSERT(r, f.yxwz().lo.hi.val == f.x());
239     REPORTER_ASSERT(r, f.yxwz().hi.lo.val == f.w());
240     REPORTER_ASSERT(r, f.yxwz().hi.hi.val == f.z());
241 
242     REPORTER_ASSERT(r, all(skvx::naive_if_then_else(int2(0,~0),
243                                                     skvx::shuffle<3,2>(float4(0,1,2,3)),
244                                                     float4(4,5,6,7).xy()) == float2(4,2)));
245     REPORTER_ASSERT(r, all(skvx::if_then_else(int2(0,~0),
246                                               skvx::shuffle<3,2>(float4(0,1,2,3)),
247                                               float4(4,5,6,7).xy()) == float2(4,2)));
248     REPORTER_ASSERT(r, all(skvx::naive_if_then_else(int2(0,~0).xyxy(),
249                                                     float4(0,1,2,3).zwxy(),
250                                                     float4(4,5,6,7)) == float4(4,3,6,1)));
251     REPORTER_ASSERT(r, all(skvx::if_then_else(int2(0,~0).xyxy(),
252                                               float4(0,1,2,3).zwxy(),
253                                               float4(4,5,6,7)) == float4(4,3,6,1)));
254 
255     REPORTER_ASSERT(r, all(skvx::pin(float4(0,1,2,3).yxwz(),
256                                      float2(1).xyxy(),
257                                      float2(2).xyxy()) == float4(1,1,2,2)));
258 }
259 
check_approx_acos(skiatest::Reporter * r,float x,float approx_acos_x)260 static bool check_approx_acos(skiatest::Reporter* r, float x, float approx_acos_x) {
261     float acosf_x = acosf(x);
262     float error = acosf_x - approx_acos_x;
263     if (!(fabsf(error) <= SKVX_APPROX_ACOS_MAX_ERROR)) {
264         ERRORF(r, "Larger-than-expected error from skvx::approx_acos\n"
265                   "  x=              %f\n"
266                   "  approx_acos_x=  %f  (%f degrees\n"
267                   "  acosf_x=        %f  (%f degrees\n"
268                   "  error=          %f  (%f degrees)\n"
269                   "  tolerance=      %f  (%f degrees)\n\n",
270                   x, approx_acos_x, SkRadiansToDegrees(approx_acos_x), acosf_x,
271                   SkRadiansToDegrees(acosf_x), error, SkRadiansToDegrees(error),
272                   SKVX_APPROX_ACOS_MAX_ERROR, SkRadiansToDegrees(SKVX_APPROX_ACOS_MAX_ERROR));
273         return false;
274     }
275     return true;
276 }
277 
DEF_TEST(SkVx_approx_acos,r)278 DEF_TEST(SkVx_approx_acos, r) {
279     float4 boundaries = skvx::approx_acos(float4{-1, 0, 1, 0});
280     check_approx_acos(r, -1, boundaries[0]);
281     check_approx_acos(r, 0, boundaries[1]);
282     check_approx_acos(r, +1, boundaries[2]);
283 
284     // Select a distribution of starting points around which to begin testing approx_acos. These
285     // fall roughly around the known minimum and maximum errors. No need to include -1, 0, or 1
286     // since those were just tested above. (Those are tricky because 0 is an inflection and the
287     // derivative is infinite at 1 and -1.)
288     float8 x = {-.99f, -.8f, -.4f, -.2f, .2f, .4f, .8f, .99f};
289 
290     // Converge at the various local minima and maxima of "approx_acos(x) - cosf(x)" and verify that
291     // approx_acos is always within "kTolerance" degrees of the expected answer.
292     float8 err_;
293     for (int iter = 0; iter < 10; ++iter) {
294         // Run our approximate inverse cosine approximation.
295         auto approx_acos_x = skvx::approx_acos(x);
296 
297         // Find d/dx(error)
298         //    = d/dx(approx_acos(x) - acos(x))
299         //    = (f'g - fg')/gg + 1/sqrt(1 - x^2), [where f = bx^3 + ax, g = dx^4 + cx^2 + 1]
300         float8 xx = x*x;
301         float8 a = -0.939115566365855f;
302         float8 b =  0.9217841528914573f;
303         float8 c = -1.2845906244690837f;
304         float8 d =  0.295624144969963174f;
305         float8 f = (b*xx + a)*x;
306         float8 f_ = 3*b*xx + a;
307         float8 g = (d*xx + c)*xx + 1;
308         float8 g_ = (4*d*xx + 2*c)*x;
309         float8 gg = g*g;
310         float8 q = skvx::sqrt(1 - xx);
311         err_ = (f_*g - f*g_)/gg + 1/q;
312 
313         // Find d^2/dx^2(error)
314         //    = ((f''g - fg'')g^2 - (f'g - fg')2gg') / g^4 + x(1 - x^2)^(-3/2)
315         //    = ((f''g - fg'')g - (f'g - fg')2g') / g^3 + x(1 - x^2)^(-3/2)
316         float8 f__ = 6*b*x;
317         float8 g__ = 12*d*xx + 2*c;
318         float8 err__ = ((f__*g - f*g__)*g - (f_*g - f*g_)*2*g_) / (gg*g) + x/((1 - xx)*q);
319 
320 #if 0
321         SkDebugf("\n\niter %i\n", iter);
322 #endif
323         // Ensure each lane's approximation is within maximum error.
324         for (int j = 0; j < 8; ++j) {
325 #if 0
326             SkDebugf("x=%f  err=%f  err'=%f  err''=%f\n",
327                      x[j], SkRadiansToDegrees(skvx::approx_acos_x[j] - acosf(x[j])),
328                      SkRadiansToDegrees(err_[j]), SkRadiansToDegrees(err__[j]));
329 #endif
330             if (!check_approx_acos(r, x[j], approx_acos_x[j])) {
331                 return;
332             }
333         }
334 
335         // Use Newton's method to update the x values to locations closer to their local minimum or
336         // maximum. (This is where d/dx(error) == 0.)
337         x -= err_/err__;
338         x = skvx::pin<8,float>(x, -.99f, .99f);
339     }
340 
341     // Ensure each lane converged to a local minimum or maximum.
342     for (int j = 0; j < 8; ++j) {
343         REPORTER_ASSERT(r, SkScalarNearlyZero(err_[j]));
344     }
345 
346     // Make sure we found all the actual known locations of local min/max error.
347     for (float knownRoot : {-0.983536f, -0.867381f, -0.410923f, 0.410923f, 0.867381f, 0.983536f}) {
348         REPORTER_ASSERT(r, skvx::any(skvx::abs(x - knownRoot) < SK_ScalarNearlyZero));
349     }
350 }
351 
check_strided_loads(skiatest::Reporter * r)352 template<int N, typename T> void check_strided_loads(skiatest::Reporter* r) {
353     using Vec = skvx::Vec<N,T>;
354     T values[N*4];
355     std::iota(values, values + N*4, 0);
356     Vec a, b, c, d;
357     skvx::strided_load2(values, a, b);
358     for (int i = 0; i < N; ++i) {
359         REPORTER_ASSERT(r, a[i] == values[i*2]);
360         REPORTER_ASSERT(r, b[i] == values[i*2 + 1]);
361     }
362     skvx::strided_load4(values, a, b, c, d);
363     for (int i = 0; i < N; ++i) {
364         REPORTER_ASSERT(r, a[i] == values[i*4]);
365         REPORTER_ASSERT(r, b[i] == values[i*4 + 1]);
366         REPORTER_ASSERT(r, c[i] == values[i*4 + 2]);
367         REPORTER_ASSERT(r, d[i] == values[i*4 + 3]);
368     }
369 }
370 
check_strided_loads(skiatest::Reporter * r)371 template<typename T> void check_strided_loads(skiatest::Reporter* r) {
372     check_strided_loads<1,T>(r);
373     check_strided_loads<2,T>(r);
374     check_strided_loads<4,T>(r);
375     check_strided_loads<8,T>(r);
376     check_strided_loads<16,T>(r);
377     check_strided_loads<32,T>(r);
378 }
379 
DEF_TEST(SkVx_strided_loads,r)380 DEF_TEST(SkVx_strided_loads, r) {
381     check_strided_loads<uint32_t>(r);
382     check_strided_loads<uint16_t>(r);
383     check_strided_loads<uint8_t>(r);
384     check_strided_loads<int32_t>(r);
385     check_strided_loads<int16_t>(r);
386     check_strided_loads<int8_t>(r);
387     check_strided_loads<float>(r);
388 }
389 
DEF_TEST(SkVM_ScaledDividerU32,r)390 DEF_TEST(SkVM_ScaledDividerU32, r) {
391     static constexpr uint32_t kMax = std::numeric_limits<uint32_t>::max();
392 
393     auto errorBounds = [&](uint32_t actual, uint32_t expected) {
394         uint32_t lowerLimit = expected == 0 ? 0 : expected - 1,
395                  upperLimit = expected == kMax ? kMax : expected + 1;
396         return lowerLimit <= actual && actual <= upperLimit;
397     };
398 
399     auto test = [&](uint32_t denom) {
400         // half == 1 so, the max to check is kMax-1
401         skvx::ScaledDividerU32 d(denom);
402         uint32_t maxCheck = static_cast<uint32_t>(floor((double)(kMax - d.half()) / denom + 0.5));
403         REPORTER_ASSERT(r, errorBounds(d.divide((kMax))[0], maxCheck));
404         for (uint32_t i = 0; i < kMax - d.half(); i += 65535) {
405             uint32_t expected = static_cast<uint32_t>(floor((double)i / denom + 0.5));
406             auto actual = d.divide(i + d.half());
407             if (!errorBounds(actual[0], expected)) {
408                 SkDebugf("i: %u expected: %u actual: %u\n", i, expected, actual[0]);
409             }
410             // Make sure all the lanes are the same.
411             for (int e = 1; e < 4; e++) {
412                 SkASSERT(actual[0] == actual[e]);
413             }
414         }
415     };
416 
417     test(2);
418     test(3);
419     test(5);
420     test(7);
421     test(27);
422     test(65'535);
423     test(15'485'863);
424     test(512'927'377);
425 }
426