• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* GLIB - Library of useful routines for C programming
2  * Copyright (C) 1995-1997  Peter Mattis, Spencer Kimball and Josh MacDonald
3  *
4  * gthread.c: MT safety related functions
5  * Copyright 1998 Sebastian Wilhelmi; University of Karlsruhe
6  *                Owen Taylor
7  *
8  * This library is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU Lesser General Public
10  * License as published by the Free Software Foundation; either
11  * version 2.1 of the License, or (at your option) any later version.
12  *
13  * This library is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.	 See the GNU
16  * Lesser General Public License for more details.
17  *
18  * You should have received a copy of the GNU Lesser General Public
19  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20  */
21 
22 /* Prelude {{{1 ----------------------------------------------------------- */
23 
24 /*
25  * Modified by the GLib Team and others 1997-2000.  See the AUTHORS
26  * file for a list of people on the GLib Team.  See the ChangeLog
27  * files for a list of changes.  These files are distributed with
28  * GLib at ftp://ftp.gtk.org/pub/gtk/.
29  */
30 
31 /*
32  * MT safe
33  */
34 
35 /* implement gthread.h's inline functions */
36 #define G_IMPLEMENT_INLINES 1
37 #define __G_THREAD_C__
38 
39 #include "config.h"
40 
41 #include "gthread.h"
42 #include "gthreadprivate.h"
43 
44 #include <string.h>
45 
46 #ifdef G_OS_UNIX
47 #include <unistd.h>
48 #endif
49 
50 #ifndef G_OS_WIN32
51 #include <sys/time.h>
52 #include <time.h>
53 #else
54 #include <windows.h>
55 #endif /* G_OS_WIN32 */
56 
57 #include "gslice.h"
58 #include "gstrfuncs.h"
59 #include "gtestutils.h"
60 #include "glib_trace.h"
61 #include "gtrace-private.h"
62 
63 /**
64  * SECTION:threads
65  * @title: Threads
66  * @short_description: portable support for threads, mutexes, locks,
67  *     conditions and thread private data
68  * @see_also: #GThreadPool, #GAsyncQueue
69  *
70  * Threads act almost like processes, but unlike processes all threads
71  * of one process share the same memory. This is good, as it provides
72  * easy communication between the involved threads via this shared
73  * memory, and it is bad, because strange things (so called
74  * "Heisenbugs") might happen if the program is not carefully designed.
75  * In particular, due to the concurrent nature of threads, no
76  * assumptions on the order of execution of code running in different
77  * threads can be made, unless order is explicitly forced by the
78  * programmer through synchronization primitives.
79  *
80  * The aim of the thread-related functions in GLib is to provide a
81  * portable means for writing multi-threaded software. There are
82  * primitives for mutexes to protect the access to portions of memory
83  * (#GMutex, #GRecMutex and #GRWLock). There is a facility to use
84  * individual bits for locks (g_bit_lock()). There are primitives
85  * for condition variables to allow synchronization of threads (#GCond).
86  * There are primitives for thread-private data - data that every
87  * thread has a private instance of (#GPrivate). There are facilities
88  * for one-time initialization (#GOnce, g_once_init_enter()). Finally,
89  * there are primitives to create and manage threads (#GThread).
90  *
91  * The GLib threading system used to be initialized with g_thread_init().
92  * This is no longer necessary. Since version 2.32, the GLib threading
93  * system is automatically initialized at the start of your program,
94  * and all thread-creation functions and synchronization primitives
95  * are available right away.
96  *
97  * Note that it is not safe to assume that your program has no threads
98  * even if you don't call g_thread_new() yourself. GLib and GIO can
99  * and will create threads for their own purposes in some cases, such
100  * as when using g_unix_signal_source_new() or when using GDBus.
101  *
102  * Originally, UNIX did not have threads, and therefore some traditional
103  * UNIX APIs are problematic in threaded programs. Some notable examples
104  * are
105  *
106  * - C library functions that return data in statically allocated
107  *   buffers, such as strtok() or strerror(). For many of these,
108  *   there are thread-safe variants with a _r suffix, or you can
109  *   look at corresponding GLib APIs (like g_strsplit() or g_strerror()).
110  *
111  * - The functions setenv() and unsetenv() manipulate the process
112  *   environment in a not thread-safe way, and may interfere with getenv()
113  *   calls in other threads. Note that getenv() calls may be hidden behind
114  *   other APIs. For example, GNU gettext() calls getenv() under the
115  *   covers. In general, it is best to treat the environment as readonly.
116  *   If you absolutely have to modify the environment, do it early in
117  *   main(), when no other threads are around yet.
118  *
119  * - The setlocale() function changes the locale for the entire process,
120  *   affecting all threads. Temporary changes to the locale are often made
121  *   to change the behavior of string scanning or formatting functions
122  *   like scanf() or printf(). GLib offers a number of string APIs
123  *   (like g_ascii_formatd() or g_ascii_strtod()) that can often be
124  *   used as an alternative. Or you can use the uselocale() function
125  *   to change the locale only for the current thread.
126  *
127  * - The fork() function only takes the calling thread into the child's
128  *   copy of the process image. If other threads were executing in critical
129  *   sections they could have left mutexes locked which could easily
130  *   cause deadlocks in the new child. For this reason, you should
131  *   call exit() or exec() as soon as possible in the child and only
132  *   make signal-safe library calls before that.
133  *
134  * - The daemon() function uses fork() in a way contrary to what is
135  *   described above. It should not be used with GLib programs.
136  *
137  * GLib itself is internally completely thread-safe (all global data is
138  * automatically locked), but individual data structure instances are
139  * not automatically locked for performance reasons. For example,
140  * you must coordinate accesses to the same #GHashTable from multiple
141  * threads. The two notable exceptions from this rule are #GMainLoop
142  * and #GAsyncQueue, which are thread-safe and need no further
143  * application-level locking to be accessed from multiple threads.
144  * Most refcounting functions such as g_object_ref() are also thread-safe.
145  *
146  * A common use for #GThreads is to move a long-running blocking operation out
147  * of the main thread and into a worker thread. For GLib functions, such as
148  * single GIO operations, this is not necessary, and complicates the code.
149  * Instead, the `…_async()` version of the function should be used from the main
150  * thread, eliminating the need for locking and synchronisation between multiple
151  * threads. If an operation does need to be moved to a worker thread, consider
152  * using g_task_run_in_thread(), or a #GThreadPool. #GThreadPool is often a
153  * better choice than #GThread, as it handles thread reuse and task queueing;
154  * #GTask uses this internally.
155  *
156  * However, if multiple blocking operations need to be performed in sequence,
157  * and it is not possible to use #GTask for them, moving them to a worker thread
158  * can clarify the code.
159  */
160 
161 /* G_LOCK Documentation {{{1 ---------------------------------------------- */
162 
163 /**
164  * G_LOCK_DEFINE:
165  * @name: the name of the lock
166  *
167  * The #G_LOCK_ macros provide a convenient interface to #GMutex.
168  * #G_LOCK_DEFINE defines a lock. It can appear in any place where
169  * variable definitions may appear in programs, i.e. in the first block
170  * of a function or outside of functions. The @name parameter will be
171  * mangled to get the name of the #GMutex. This means that you
172  * can use names of existing variables as the parameter - e.g. the name
173  * of the variable you intend to protect with the lock. Look at our
174  * give_me_next_number() example using the #G_LOCK macros:
175  *
176  * Here is an example for using the #G_LOCK convenience macros:
177  * |[<!-- language="C" -->
178  *   G_LOCK_DEFINE (current_number);
179  *
180  *   int
181  *   give_me_next_number (void)
182  *   {
183  *     static int current_number = 0;
184  *     int ret_val;
185  *
186  *     G_LOCK (current_number);
187  *     ret_val = current_number = calc_next_number (current_number);
188  *     G_UNLOCK (current_number);
189  *
190  *     return ret_val;
191  *   }
192  * ]|
193  */
194 
195 /**
196  * G_LOCK_DEFINE_STATIC:
197  * @name: the name of the lock
198  *
199  * This works like #G_LOCK_DEFINE, but it creates a static object.
200  */
201 
202 /**
203  * G_LOCK_EXTERN:
204  * @name: the name of the lock
205  *
206  * This declares a lock, that is defined with #G_LOCK_DEFINE in another
207  * module.
208  */
209 
210 /**
211  * G_LOCK:
212  * @name: the name of the lock
213  *
214  * Works like g_mutex_lock(), but for a lock defined with
215  * #G_LOCK_DEFINE.
216  */
217 
218 /**
219  * G_TRYLOCK:
220  * @name: the name of the lock
221  *
222  * Works like g_mutex_trylock(), but for a lock defined with
223  * #G_LOCK_DEFINE.
224  *
225  * Returns: %TRUE, if the lock could be locked.
226  */
227 
228 /**
229  * G_UNLOCK:
230  * @name: the name of the lock
231  *
232  * Works like g_mutex_unlock(), but for a lock defined with
233  * #G_LOCK_DEFINE.
234  */
235 
236 /* GMutex Documentation {{{1 ------------------------------------------ */
237 
238 /**
239  * GMutex:
240  *
241  * The #GMutex struct is an opaque data structure to represent a mutex
242  * (mutual exclusion). It can be used to protect data against shared
243  * access.
244  *
245  * Take for example the following function:
246  * |[<!-- language="C" -->
247  *   int
248  *   give_me_next_number (void)
249  *   {
250  *     static int current_number = 0;
251  *
252  *     // now do a very complicated calculation to calculate the new
253  *     // number, this might for example be a random number generator
254  *     current_number = calc_next_number (current_number);
255  *
256  *     return current_number;
257  *   }
258  * ]|
259  * It is easy to see that this won't work in a multi-threaded
260  * application. There current_number must be protected against shared
261  * access. A #GMutex can be used as a solution to this problem:
262  * |[<!-- language="C" -->
263  *   int
264  *   give_me_next_number (void)
265  *   {
266  *     static GMutex mutex;
267  *     static int current_number = 0;
268  *     int ret_val;
269  *
270  *     g_mutex_lock (&mutex);
271  *     ret_val = current_number = calc_next_number (current_number);
272  *     g_mutex_unlock (&mutex);
273  *
274  *     return ret_val;
275  *   }
276  * ]|
277  * Notice that the #GMutex is not initialised to any particular value.
278  * Its placement in static storage ensures that it will be initialised
279  * to all-zeros, which is appropriate.
280  *
281  * If a #GMutex is placed in other contexts (eg: embedded in a struct)
282  * then it must be explicitly initialised using g_mutex_init().
283  *
284  * A #GMutex should only be accessed via g_mutex_ functions.
285  */
286 
287 /* GRecMutex Documentation {{{1 -------------------------------------- */
288 
289 /**
290  * GRecMutex:
291  *
292  * The GRecMutex struct is an opaque data structure to represent a
293  * recursive mutex. It is similar to a #GMutex with the difference
294  * that it is possible to lock a GRecMutex multiple times in the same
295  * thread without deadlock. When doing so, care has to be taken to
296  * unlock the recursive mutex as often as it has been locked.
297  *
298  * If a #GRecMutex is allocated in static storage then it can be used
299  * without initialisation.  Otherwise, you should call
300  * g_rec_mutex_init() on it and g_rec_mutex_clear() when done.
301  *
302  * A GRecMutex should only be accessed with the
303  * g_rec_mutex_ functions.
304  *
305  * Since: 2.32
306  */
307 
308 /* GRWLock Documentation {{{1 ---------------------------------------- */
309 
310 /**
311  * GRWLock:
312  *
313  * The GRWLock struct is an opaque data structure to represent a
314  * reader-writer lock. It is similar to a #GMutex in that it allows
315  * multiple threads to coordinate access to a shared resource.
316  *
317  * The difference to a mutex is that a reader-writer lock discriminates
318  * between read-only ('reader') and full ('writer') access. While only
319  * one thread at a time is allowed write access (by holding the 'writer'
320  * lock via g_rw_lock_writer_lock()), multiple threads can gain
321  * simultaneous read-only access (by holding the 'reader' lock via
322  * g_rw_lock_reader_lock()).
323  *
324  * It is unspecified whether readers or writers have priority in acquiring the
325  * lock when a reader already holds the lock and a writer is queued to acquire
326  * it.
327  *
328  * Here is an example for an array with access functions:
329  * |[<!-- language="C" -->
330  *   GRWLock lock;
331  *   GPtrArray *array;
332  *
333  *   gpointer
334  *   my_array_get (guint index)
335  *   {
336  *     gpointer retval = NULL;
337  *
338  *     if (!array)
339  *       return NULL;
340  *
341  *     g_rw_lock_reader_lock (&lock);
342  *     if (index < array->len)
343  *       retval = g_ptr_array_index (array, index);
344  *     g_rw_lock_reader_unlock (&lock);
345  *
346  *     return retval;
347  *   }
348  *
349  *   void
350  *   my_array_set (guint index, gpointer data)
351  *   {
352  *     g_rw_lock_writer_lock (&lock);
353  *
354  *     if (!array)
355  *       array = g_ptr_array_new ();
356  *
357  *     if (index >= array->len)
358  *       g_ptr_array_set_size (array, index+1);
359  *     g_ptr_array_index (array, index) = data;
360  *
361  *     g_rw_lock_writer_unlock (&lock);
362  *   }
363  *  ]|
364  * This example shows an array which can be accessed by many readers
365  * (the my_array_get() function) simultaneously, whereas the writers
366  * (the my_array_set() function) will only be allowed one at a time
367  * and only if no readers currently access the array. This is because
368  * of the potentially dangerous resizing of the array. Using these
369  * functions is fully multi-thread safe now.
370  *
371  * If a #GRWLock is allocated in static storage then it can be used
372  * without initialisation.  Otherwise, you should call
373  * g_rw_lock_init() on it and g_rw_lock_clear() when done.
374  *
375  * A GRWLock should only be accessed with the g_rw_lock_ functions.
376  *
377  * Since: 2.32
378  */
379 
380 /* GCond Documentation {{{1 ------------------------------------------ */
381 
382 /**
383  * GCond:
384  *
385  * The #GCond struct is an opaque data structure that represents a
386  * condition. Threads can block on a #GCond if they find a certain
387  * condition to be false. If other threads change the state of this
388  * condition they signal the #GCond, and that causes the waiting
389  * threads to be woken up.
390  *
391  * Consider the following example of a shared variable.  One or more
392  * threads can wait for data to be published to the variable and when
393  * another thread publishes the data, it can signal one of the waiting
394  * threads to wake up to collect the data.
395  *
396  * Here is an example for using GCond to block a thread until a condition
397  * is satisfied:
398  * |[<!-- language="C" -->
399  *   gpointer current_data = NULL;
400  *   GMutex data_mutex;
401  *   GCond data_cond;
402  *
403  *   void
404  *   push_data (gpointer data)
405  *   {
406  *     g_mutex_lock (&data_mutex);
407  *     current_data = data;
408  *     g_cond_signal (&data_cond);
409  *     g_mutex_unlock (&data_mutex);
410  *   }
411  *
412  *   gpointer
413  *   pop_data (void)
414  *   {
415  *     gpointer data;
416  *
417  *     g_mutex_lock (&data_mutex);
418  *     while (!current_data)
419  *       g_cond_wait (&data_cond, &data_mutex);
420  *     data = current_data;
421  *     current_data = NULL;
422  *     g_mutex_unlock (&data_mutex);
423  *
424  *     return data;
425  *   }
426  * ]|
427  * Whenever a thread calls pop_data() now, it will wait until
428  * current_data is non-%NULL, i.e. until some other thread
429  * has called push_data().
430  *
431  * The example shows that use of a condition variable must always be
432  * paired with a mutex.  Without the use of a mutex, there would be a
433  * race between the check of @current_data by the while loop in
434  * pop_data() and waiting. Specifically, another thread could set
435  * @current_data after the check, and signal the cond (with nobody
436  * waiting on it) before the first thread goes to sleep. #GCond is
437  * specifically useful for its ability to release the mutex and go
438  * to sleep atomically.
439  *
440  * It is also important to use the g_cond_wait() and g_cond_wait_until()
441  * functions only inside a loop which checks for the condition to be
442  * true.  See g_cond_wait() for an explanation of why the condition may
443  * not be true even after it returns.
444  *
445  * If a #GCond is allocated in static storage then it can be used
446  * without initialisation.  Otherwise, you should call g_cond_init()
447  * on it and g_cond_clear() when done.
448  *
449  * A #GCond should only be accessed via the g_cond_ functions.
450  */
451 
452 /* GThread Documentation {{{1 ---------------------------------------- */
453 
454 /**
455  * GThread:
456  *
457  * The #GThread struct represents a running thread. This struct
458  * is returned by g_thread_new() or g_thread_try_new(). You can
459  * obtain the #GThread struct representing the current thread by
460  * calling g_thread_self().
461  *
462  * GThread is refcounted, see g_thread_ref() and g_thread_unref().
463  * The thread represented by it holds a reference while it is running,
464  * and g_thread_join() consumes the reference that it is given, so
465  * it is normally not necessary to manage GThread references
466  * explicitly.
467  *
468  * The structure is opaque -- none of its fields may be directly
469  * accessed.
470  */
471 
472 /**
473  * GThreadFunc:
474  * @data: data passed to the thread
475  *
476  * Specifies the type of the @func functions passed to g_thread_new()
477  * or g_thread_try_new().
478  *
479  * Returns: the return value of the thread
480  */
481 
482 /**
483  * g_thread_supported:
484  *
485  * This macro returns %TRUE if the thread system is initialized,
486  * and %FALSE if it is not.
487  *
488  * For language bindings, g_thread_get_initialized() provides
489  * the same functionality as a function.
490  *
491  * Returns: %TRUE, if the thread system is initialized
492  */
493 
494 /* GThreadError {{{1 ------------------------------------------------------- */
495 /**
496  * GThreadError:
497  * @G_THREAD_ERROR_AGAIN: a thread couldn't be created due to resource
498  *                        shortage. Try again later.
499  *
500  * Possible errors of thread related functions.
501  **/
502 
503 /**
504  * G_THREAD_ERROR:
505  *
506  * The error domain of the GLib thread subsystem.
507  **/
508 G_DEFINE_QUARK (g_thread_error, g_thread_error)
509 
510 /* Local Data {{{1 -------------------------------------------------------- */
511 
512 static GMutex    g_once_mutex;
513 static GCond     g_once_cond;
514 static GSList   *g_once_init_list = NULL;
515 
516 static guint g_thread_n_created_counter = 0;  /* (atomic) */
517 
518 static void g_thread_cleanup (gpointer data);
519 static GPrivate     g_thread_specific_private = G_PRIVATE_INIT (g_thread_cleanup);
520 
521 /*
522  * g_private_set_alloc0:
523  * @key: a #GPrivate
524  * @size: size of the allocation, in bytes
525  *
526  * Sets the thread local variable @key to have a newly-allocated and zero-filled
527  * value of given @size, and returns a pointer to that memory. Allocations made
528  * using this API will be suppressed in valgrind: it is intended to be used for
529  * one-time allocations which are known to be leaked, such as those for
530  * per-thread initialisation data. Otherwise, this function behaves the same as
531  * g_private_set().
532  *
533  * Returns: (transfer full): new thread-local heap allocation of size @size
534  * Since: 2.60
535  */
536 /*< private >*/
537 gpointer
g_private_set_alloc0(GPrivate * key,gsize size)538 g_private_set_alloc0 (GPrivate *key,
539                       gsize     size)
540 {
541   gpointer allocated = g_malloc0 (size);
542 
543   g_private_set (key, allocated);
544 
545   return g_steal_pointer (&allocated);
546 }
547 
548 /* GOnce {{{1 ------------------------------------------------------------- */
549 
550 /**
551  * GOnce:
552  * @status: the status of the #GOnce
553  * @retval: the value returned by the call to the function, if @status
554  *          is %G_ONCE_STATUS_READY
555  *
556  * A #GOnce struct controls a one-time initialization function. Any
557  * one-time initialization function must have its own unique #GOnce
558  * struct.
559  *
560  * Since: 2.4
561  */
562 
563 /**
564  * G_ONCE_INIT:
565  *
566  * A #GOnce must be initialized with this macro before it can be used.
567  *
568  * |[<!-- language="C" -->
569  *   GOnce my_once = G_ONCE_INIT;
570  * ]|
571  *
572  * Since: 2.4
573  */
574 
575 /**
576  * GOnceStatus:
577  * @G_ONCE_STATUS_NOTCALLED: the function has not been called yet.
578  * @G_ONCE_STATUS_PROGRESS: the function call is currently in progress.
579  * @G_ONCE_STATUS_READY: the function has been called.
580  *
581  * The possible statuses of a one-time initialization function
582  * controlled by a #GOnce struct.
583  *
584  * Since: 2.4
585  */
586 
587 /**
588  * g_once:
589  * @once: a #GOnce structure
590  * @func: the #GThreadFunc function associated to @once. This function
591  *        is called only once, regardless of the number of times it and
592  *        its associated #GOnce struct are passed to g_once().
593  * @arg: data to be passed to @func
594  *
595  * The first call to this routine by a process with a given #GOnce
596  * struct calls @func with the given argument. Thereafter, subsequent
597  * calls to g_once()  with the same #GOnce struct do not call @func
598  * again, but return the stored result of the first call. On return
599  * from g_once(), the status of @once will be %G_ONCE_STATUS_READY.
600  *
601  * For example, a mutex or a thread-specific data key must be created
602  * exactly once. In a threaded environment, calling g_once() ensures
603  * that the initialization is serialized across multiple threads.
604  *
605  * Calling g_once() recursively on the same #GOnce struct in
606  * @func will lead to a deadlock.
607  *
608  * |[<!-- language="C" -->
609  *   gpointer
610  *   get_debug_flags (void)
611  *   {
612  *     static GOnce my_once = G_ONCE_INIT;
613  *
614  *     g_once (&my_once, parse_debug_flags, NULL);
615  *
616  *     return my_once.retval;
617  *   }
618  * ]|
619  *
620  * Since: 2.4
621  */
622 gpointer
g_once_impl(GOnce * once,GThreadFunc func,gpointer arg)623 g_once_impl (GOnce       *once,
624 	     GThreadFunc  func,
625 	     gpointer     arg)
626 {
627   g_mutex_lock (&g_once_mutex);
628 
629   while (once->status == G_ONCE_STATUS_PROGRESS)
630     g_cond_wait (&g_once_cond, &g_once_mutex);
631 
632   if (once->status != G_ONCE_STATUS_READY)
633     {
634       gpointer retval;
635 
636       once->status = G_ONCE_STATUS_PROGRESS;
637       g_mutex_unlock (&g_once_mutex);
638 
639       retval = func (arg);
640 
641       g_mutex_lock (&g_once_mutex);
642 /* We prefer the new C11-style atomic extension of GCC if available. If not,
643  * fall back to always locking. */
644 #if defined(G_ATOMIC_LOCK_FREE) && defined(__GCC_HAVE_SYNC_COMPARE_AND_SWAP_4) && defined(__ATOMIC_SEQ_CST)
645       /* Only the second store needs to be atomic, as the two writes are related
646        * by a happens-before relationship here. */
647       once->retval = retval;
648       __atomic_store_n (&once->status, G_ONCE_STATUS_READY, __ATOMIC_RELEASE);
649 #else
650       once->retval = retval;
651       once->status = G_ONCE_STATUS_READY;
652 #endif
653       g_cond_broadcast (&g_once_cond);
654     }
655 
656   g_mutex_unlock (&g_once_mutex);
657 
658   return once->retval;
659 }
660 
661 /**
662  * g_once_init_enter:
663  * @location: (not nullable): location of a static initializable variable
664  *    containing 0
665  *
666  * Function to be called when starting a critical initialization
667  * section. The argument @location must point to a static
668  * 0-initialized variable that will be set to a value other than 0 at
669  * the end of the initialization section. In combination with
670  * g_once_init_leave() and the unique address @value_location, it can
671  * be ensured that an initialization section will be executed only once
672  * during a program's life time, and that concurrent threads are
673  * blocked until initialization completed. To be used in constructs
674  * like this:
675  *
676  * |[<!-- language="C" -->
677  *   static gsize initialization_value = 0;
678  *
679  *   if (g_once_init_enter (&initialization_value))
680  *     {
681  *       gsize setup_value = 42; // initialization code here
682  *
683  *       g_once_init_leave (&initialization_value, setup_value);
684  *     }
685  *
686  *   // use initialization_value here
687  * ]|
688  *
689  * While @location has a `volatile` qualifier, this is a historical artifact and
690  * the pointer passed to it should not be `volatile`.
691  *
692  * Returns: %TRUE if the initialization section should be entered,
693  *     %FALSE and blocks otherwise
694  *
695  * Since: 2.14
696  */
gboolean(g_once_init_enter)697 gboolean
698 (g_once_init_enter) (volatile void *location)
699 {
700   gsize *value_location = (gsize *) location;
701   gboolean need_init = FALSE;
702   g_mutex_lock (&g_once_mutex);
703   if (g_atomic_pointer_get (value_location) == 0)
704     {
705       if (!g_slist_find (g_once_init_list, (void*) value_location))
706         {
707           need_init = TRUE;
708           g_once_init_list = g_slist_prepend (g_once_init_list, (void*) value_location);
709         }
710       else
711         do
712           g_cond_wait (&g_once_cond, &g_once_mutex);
713         while (g_slist_find (g_once_init_list, (void*) value_location));
714     }
715   g_mutex_unlock (&g_once_mutex);
716   return need_init;
717 }
718 
719 /**
720  * g_once_init_leave:
721  * @location: (not nullable): location of a static initializable variable
722  *    containing 0
723  * @result: new non-0 value for *@value_location
724  *
725  * Counterpart to g_once_init_enter(). Expects a location of a static
726  * 0-initialized initialization variable, and an initialization value
727  * other than 0. Sets the variable to the initialization value, and
728  * releases concurrent threads blocking in g_once_init_enter() on this
729  * initialization variable.
730  *
731  * While @location has a `volatile` qualifier, this is a historical artifact and
732  * the pointer passed to it should not be `volatile`.
733  *
734  * Since: 2.14
735  */
736 void
737 (g_once_init_leave) (volatile void *location,
738                      gsize          result)
739 {
740   gsize *value_location = (gsize *) location;
741 
742   g_return_if_fail (g_atomic_pointer_get (value_location) == 0);
743   g_return_if_fail (result != 0);
744 
745   g_atomic_pointer_set (value_location, result);
746   g_mutex_lock (&g_once_mutex);
747   g_return_if_fail (g_once_init_list != NULL);
748   g_once_init_list = g_slist_remove (g_once_init_list, (void*) value_location);
749   g_cond_broadcast (&g_once_cond);
750   g_mutex_unlock (&g_once_mutex);
751 }
752 
753 /* GThread {{{1 -------------------------------------------------------- */
754 
755 /**
756  * g_thread_ref:
757  * @thread: a #GThread
758  *
759  * Increase the reference count on @thread.
760  *
761  * Returns: (transfer full): a new reference to @thread
762  *
763  * Since: 2.32
764  */
765 GThread *
g_thread_ref(GThread * thread)766 g_thread_ref (GThread *thread)
767 {
768   GRealThread *real = (GRealThread *) thread;
769 
770   g_atomic_int_inc (&real->ref_count);
771 
772   return thread;
773 }
774 
775 /**
776  * g_thread_unref:
777  * @thread: (transfer full): a #GThread
778  *
779  * Decrease the reference count on @thread, possibly freeing all
780  * resources associated with it.
781  *
782  * Note that each thread holds a reference to its #GThread while
783  * it is running, so it is safe to drop your own reference to it
784  * if you don't need it anymore.
785  *
786  * Since: 2.32
787  */
788 void
g_thread_unref(GThread * thread)789 g_thread_unref (GThread *thread)
790 {
791   GRealThread *real = (GRealThread *) thread;
792 
793   if (g_atomic_int_dec_and_test (&real->ref_count))
794     {
795       if (real->ours)
796         g_system_thread_free (real);
797       else
798         g_slice_free (GRealThread, real);
799     }
800 }
801 
802 static void
g_thread_cleanup(gpointer data)803 g_thread_cleanup (gpointer data)
804 {
805   g_thread_unref (data);
806 }
807 
808 gpointer
g_thread_proxy(gpointer data)809 g_thread_proxy (gpointer data)
810 {
811   GRealThread* thread = data;
812 
813   g_assert (data);
814   g_private_set (&g_thread_specific_private, data);
815 
816   TRACE (GLIB_THREAD_SPAWNED (thread->thread.func, thread->thread.data,
817                               thread->name));
818 
819   if (thread->name)
820     {
821       g_system_thread_set_name (thread->name);
822       g_free (thread->name);
823       thread->name = NULL;
824     }
825 
826   thread->retval = thread->thread.func (thread->thread.data);
827 
828   return NULL;
829 }
830 
831 guint
g_thread_n_created(void)832 g_thread_n_created (void)
833 {
834   return g_atomic_int_get (&g_thread_n_created_counter);
835 }
836 
837 /**
838  * g_thread_new:
839  * @name: (nullable): an (optional) name for the new thread
840  * @func: (closure data) (scope async): a function to execute in the new thread
841  * @data: (nullable): an argument to supply to the new thread
842  *
843  * This function creates a new thread. The new thread starts by invoking
844  * @func with the argument data. The thread will run until @func returns
845  * or until g_thread_exit() is called from the new thread. The return value
846  * of @func becomes the return value of the thread, which can be obtained
847  * with g_thread_join().
848  *
849  * The @name can be useful for discriminating threads in a debugger.
850  * It is not used for other purposes and does not have to be unique.
851  * Some systems restrict the length of @name to 16 bytes.
852  *
853  * If the thread can not be created the program aborts. See
854  * g_thread_try_new() if you want to attempt to deal with failures.
855  *
856  * If you are using threads to offload (potentially many) short-lived tasks,
857  * #GThreadPool may be more appropriate than manually spawning and tracking
858  * multiple #GThreads.
859  *
860  * To free the struct returned by this function, use g_thread_unref().
861  * Note that g_thread_join() implicitly unrefs the #GThread as well.
862  *
863  * New threads by default inherit their scheduler policy (POSIX) or thread
864  * priority (Windows) of the thread creating the new thread.
865  *
866  * This behaviour changed in GLib 2.64: before threads on Windows were not
867  * inheriting the thread priority but were spawned with the default priority.
868  * Starting with GLib 2.64 the behaviour is now consistent between Windows and
869  * POSIX and all threads inherit their parent thread's priority.
870  *
871  * Returns: (transfer full): the new #GThread
872  *
873  * Since: 2.32
874  */
875 GThread *
g_thread_new(const gchar * name,GThreadFunc func,gpointer data)876 g_thread_new (const gchar *name,
877               GThreadFunc  func,
878               gpointer     data)
879 {
880   GError *error = NULL;
881   GThread *thread;
882 
883   thread = g_thread_new_internal (name, g_thread_proxy, func, data, 0, NULL, &error);
884 
885   if G_UNLIKELY (thread == NULL)
886     g_error ("creating thread '%s': %s", name ? name : "", error->message);
887 
888   return thread;
889 }
890 
891 /**
892  * g_thread_try_new:
893  * @name: (nullable): an (optional) name for the new thread
894  * @func: (closure data) (scope async): a function to execute in the new thread
895  * @data: (nullable): an argument to supply to the new thread
896  * @error: return location for error, or %NULL
897  *
898  * This function is the same as g_thread_new() except that
899  * it allows for the possibility of failure.
900  *
901  * If a thread can not be created (due to resource limits),
902  * @error is set and %NULL is returned.
903  *
904  * Returns: (transfer full): the new #GThread, or %NULL if an error occurred
905  *
906  * Since: 2.32
907  */
908 GThread *
g_thread_try_new(const gchar * name,GThreadFunc func,gpointer data,GError ** error)909 g_thread_try_new (const gchar  *name,
910                   GThreadFunc   func,
911                   gpointer      data,
912                   GError      **error)
913 {
914   return g_thread_new_internal (name, g_thread_proxy, func, data, 0, NULL, error);
915 }
916 
917 GThread *
g_thread_new_internal(const gchar * name,GThreadFunc proxy,GThreadFunc func,gpointer data,gsize stack_size,const GThreadSchedulerSettings * scheduler_settings,GError ** error)918 g_thread_new_internal (const gchar *name,
919                        GThreadFunc proxy,
920                        GThreadFunc func,
921                        gpointer data,
922                        gsize stack_size,
923                        const GThreadSchedulerSettings *scheduler_settings,
924                        GError **error)
925 {
926   g_return_val_if_fail (func != NULL, NULL);
927 
928   g_atomic_int_inc (&g_thread_n_created_counter);
929 
930   g_trace_mark (G_TRACE_CURRENT_TIME, 0, "GLib", "GThread created", "%s", name ? name : "(unnamed)");
931   return (GThread *) g_system_thread_new (proxy, stack_size, scheduler_settings,
932                                           name, func, data, error);
933 }
934 
935 gboolean
g_thread_get_scheduler_settings(GThreadSchedulerSettings * scheduler_settings)936 g_thread_get_scheduler_settings (GThreadSchedulerSettings *scheduler_settings)
937 {
938   g_return_val_if_fail (scheduler_settings != NULL, FALSE);
939 
940   return g_system_thread_get_scheduler_settings (scheduler_settings);
941 }
942 
943 /**
944  * g_thread_exit:
945  * @retval: the return value of this thread
946  *
947  * Terminates the current thread.
948  *
949  * If another thread is waiting for us using g_thread_join() then the
950  * waiting thread will be woken up and get @retval as the return value
951  * of g_thread_join().
952  *
953  * Calling g_thread_exit() with a parameter @retval is equivalent to
954  * returning @retval from the function @func, as given to g_thread_new().
955  *
956  * You must only call g_thread_exit() from a thread that you created
957  * yourself with g_thread_new() or related APIs. You must not call
958  * this function from a thread created with another threading library
959  * or or from within a #GThreadPool.
960  */
961 void
g_thread_exit(gpointer retval)962 g_thread_exit (gpointer retval)
963 {
964   GRealThread* real = (GRealThread*) g_thread_self ();
965 
966   if G_UNLIKELY (!real->ours)
967     g_error ("attempt to g_thread_exit() a thread not created by GLib");
968 
969   real->retval = retval;
970 
971   g_system_thread_exit ();
972 }
973 
974 /**
975  * g_thread_join:
976  * @thread: (transfer full): a #GThread
977  *
978  * Waits until @thread finishes, i.e. the function @func, as
979  * given to g_thread_new(), returns or g_thread_exit() is called.
980  * If @thread has already terminated, then g_thread_join()
981  * returns immediately.
982  *
983  * Any thread can wait for any other thread by calling g_thread_join(),
984  * not just its 'creator'. Calling g_thread_join() from multiple threads
985  * for the same @thread leads to undefined behaviour.
986  *
987  * The value returned by @func or given to g_thread_exit() is
988  * returned by this function.
989  *
990  * g_thread_join() consumes the reference to the passed-in @thread.
991  * This will usually cause the #GThread struct and associated resources
992  * to be freed. Use g_thread_ref() to obtain an extra reference if you
993  * want to keep the GThread alive beyond the g_thread_join() call.
994  *
995  * Returns: (transfer full): the return value of the thread
996  */
997 gpointer
g_thread_join(GThread * thread)998 g_thread_join (GThread *thread)
999 {
1000   GRealThread *real = (GRealThread*) thread;
1001   gpointer retval;
1002 
1003   g_return_val_if_fail (thread, NULL);
1004   g_return_val_if_fail (real->ours, NULL);
1005 
1006   g_system_thread_wait (real);
1007 
1008   retval = real->retval;
1009 
1010   /* Just to make sure, this isn't used any more */
1011   thread->joinable = 0;
1012 
1013   g_thread_unref (thread);
1014 
1015   return retval;
1016 }
1017 
1018 /**
1019  * g_thread_self:
1020  *
1021  * This function returns the #GThread corresponding to the
1022  * current thread. Note that this function does not increase
1023  * the reference count of the returned struct.
1024  *
1025  * This function will return a #GThread even for threads that
1026  * were not created by GLib (i.e. those created by other threading
1027  * APIs). This may be useful for thread identification purposes
1028  * (i.e. comparisons) but you must not use GLib functions (such
1029  * as g_thread_join()) on these threads.
1030  *
1031  * Returns: (transfer none): the #GThread representing the current thread
1032  */
1033 GThread*
g_thread_self(void)1034 g_thread_self (void)
1035 {
1036   GRealThread* thread = g_private_get (&g_thread_specific_private);
1037 
1038   if (!thread)
1039     {
1040       /* If no thread data is available, provide and set one.
1041        * This can happen for the main thread and for threads
1042        * that are not created by GLib.
1043        */
1044       thread = g_slice_new0 (GRealThread);
1045       thread->ref_count = 1;
1046 
1047       g_private_set (&g_thread_specific_private, thread);
1048     }
1049 
1050   return (GThread*) thread;
1051 }
1052 
1053 /**
1054  * g_get_num_processors:
1055  *
1056  * Determine the approximate number of threads that the system will
1057  * schedule simultaneously for this process.  This is intended to be
1058  * used as a parameter to g_thread_pool_new() for CPU bound tasks and
1059  * similar cases.
1060  *
1061  * Returns: Number of schedulable threads, always greater than 0
1062  *
1063  * Since: 2.36
1064  */
1065 guint
g_get_num_processors(void)1066 g_get_num_processors (void)
1067 {
1068 #ifdef G_OS_WIN32
1069   unsigned int count;
1070   SYSTEM_INFO sysinfo;
1071   DWORD_PTR process_cpus;
1072   DWORD_PTR system_cpus;
1073 
1074   /* This *never* fails, use it as fallback */
1075   GetNativeSystemInfo (&sysinfo);
1076   count = (int) sysinfo.dwNumberOfProcessors;
1077 
1078   if (GetProcessAffinityMask (GetCurrentProcess (),
1079                               &process_cpus, &system_cpus))
1080     {
1081       unsigned int af_count;
1082 
1083       for (af_count = 0; process_cpus != 0; process_cpus >>= 1)
1084         if (process_cpus & 1)
1085           af_count++;
1086 
1087       /* Prefer affinity-based result, if available */
1088       if (af_count > 0)
1089         count = af_count;
1090     }
1091 
1092   if (count > 0)
1093     return count;
1094 #elif defined(_SC_NPROCESSORS_ONLN)
1095   {
1096     int count;
1097 
1098     count = sysconf (_SC_NPROCESSORS_ONLN);
1099     if (count > 0)
1100       return count;
1101   }
1102 #elif defined HW_NCPU
1103   {
1104     int mib[2], count = 0;
1105     size_t len;
1106 
1107     mib[0] = CTL_HW;
1108     mib[1] = HW_NCPU;
1109     len = sizeof(count);
1110 
1111     if (sysctl (mib, 2, &count, &len, NULL, 0) == 0 && count > 0)
1112       return count;
1113   }
1114 #endif
1115 
1116   return 1; /* Fallback */
1117 }
1118 
1119 /* Epilogue {{{1 */
1120 /* vim: set foldmethod=marker: */
1121