• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2007, 2008 Ryan Lortie
3  * Copyright © 2010 Codethink Limited
4  *
5  * This library is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU Lesser General Public
7  * License as published by the Free Software Foundation; either
8  * version 2.1 of the License, or (at your option) any later version.
9  *
10  * This library is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13  * Lesser General Public License for more details.
14  *
15  * You should have received a copy of the GNU Lesser General Public
16  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
17  *
18  * Author: Ryan Lortie <desrt@desrt.ca>
19  */
20 
21 /* Prologue {{{1 */
22 #include "config.h"
23 
24 #include "gvariant-serialiser.h"
25 
26 #include <glib/gvariant-internal.h>
27 #include <glib/gtestutils.h>
28 #include <glib/gstrfuncs.h>
29 #include <glib/gtypes.h>
30 
31 #include <string.h>
32 
33 
34 /* GVariantSerialiser
35  *
36  * After this prologue section, this file has roughly 2 parts.
37  *
38  * The first part is split up into sections according to various
39  * container types.  Maybe, Array, Tuple, Variant.  The Maybe and Array
40  * sections are subdivided for element types being fixed or
41  * variable-sized types.
42  *
43  * Each section documents the format of that particular type of
44  * container and implements 5 functions for dealing with it:
45  *
46  *  n_children:
47  *    - determines (according to serialised data) how many child values
48  *      are inside a particular container value.
49  *
50  *  get_child:
51  *    - gets the type of and the serialised data corresponding to a
52  *      given child value within the container value.
53  *
54  *  needed_size:
55  *    - determines how much space would be required to serialise a
56  *      container of this type, containing the given children so that
57  *      buffers can be preallocated before serialising.
58  *
59  *  serialise:
60  *    - write the serialised data for a container of this type,
61  *      containing the given children, to a buffer.
62  *
63  *  is_normal:
64  *    - check the given data to ensure that it is in normal form.  For a
65  *      given set of child values, there is exactly one normal form for
66  *      the serialised data of a container.  Other forms are possible
67  *      while maintaining the same children (for example, by inserting
68  *      something other than zero bytes as padding) but only one form is
69  *      the normal form.
70  *
71  * The second part contains the main entry point for each of the above 5
72  * functions and logic to dispatch it to the handler for the appropriate
73  * container type code.
74  *
75  * The second part also contains a routine to byteswap serialised
76  * values.  This code makes use of the n_children() and get_child()
77  * functions above to do its work so no extra support is needed on a
78  * per-container-type basis.
79  *
80  * There is also additional code for checking for normal form.  All
81  * numeric types are always in normal form since the full range of
82  * values is permitted (eg: 0 to 255 is a valid byte).  Special checks
83  * need to be performed for booleans (only 0 or 1 allowed), strings
84  * (properly nul-terminated) and object paths and signature strings
85  * (meeting the D-Bus specification requirements).  Depth checks need to be
86  * performed for nested types (arrays, tuples, and variants), to avoid massive
87  * recursion which could exhaust our stack when handling untrusted input.
88  */
89 
90 /* < private >
91  * GVariantSerialised:
92  * @type_info: the #GVariantTypeInfo of this value
93  * @data: (nullable): the serialised data of this value, or %NULL
94  * @size: the size of this value
95  *
96  * A structure representing a GVariant in serialised form.  This
97  * structure is used with #GVariantSerialisedFiller functions and as the
98  * primary interface to the serialiser.  See #GVariantSerialisedFiller
99  * for a description of its use there.
100  *
101  * When used with the serialiser API functions, the following invariants
102  * apply to all #GVariantTypeSerialised structures passed to and
103  * returned from the serialiser.
104  *
105  * @type_info must be non-%NULL.
106  *
107  * @data must be properly aligned for the type described by @type_info.
108  *
109  * If @type_info describes a fixed-sized type then @size must always be
110  * equal to the fixed size of that type.
111  *
112  * For fixed-sized types (and only fixed-sized types), @data may be
113  * %NULL even if @size is non-zero.  This happens when a framing error
114  * occurs while attempting to extract a fixed-sized value out of a
115  * variable-sized container.  There is no data to return for the
116  * fixed-sized type, yet @size must be non-zero.  The effect of this
117  * combination should be as if @data were a pointer to an
118  * appropriately-sized zero-filled region.
119  *
120  * @depth has no restrictions; the depth of a top-level serialised #GVariant is
121  * zero, and it increases for each level of nested child.
122  */
123 
124 /* < private >
125  * g_variant_serialised_check:
126  * @serialised: a #GVariantSerialised struct
127  *
128  * Checks @serialised for validity according to the invariants described
129  * above.
130  *
131  * Returns: %TRUE if @serialised is valid; %FALSE otherwise
132  */
133 gboolean
g_variant_serialised_check(GVariantSerialised serialised)134 g_variant_serialised_check (GVariantSerialised serialised)
135 {
136   gsize fixed_size;
137   guint alignment;
138 
139   if (serialised.type_info == NULL)
140     return FALSE;
141   g_variant_type_info_query (serialised.type_info, &alignment, &fixed_size);
142 
143   if (fixed_size != 0 && serialised.size != fixed_size)
144     return FALSE;
145   else if (fixed_size == 0 &&
146            !(serialised.size == 0 || serialised.data != NULL))
147     return FALSE;
148 
149   /* Depending on the native alignment requirements of the machine, the
150    * compiler will insert either 3 or 7 padding bytes after the char.
151    * This will result in the sizeof() the struct being 12 or 16.
152    * Subtract 9 to get 3 or 7 which is a nice bitmask to apply to get
153    * the alignment bits that we "care about" being zero: in the
154    * 4-aligned case, we care about 2 bits, and in the 8-aligned case, we
155    * care about 3 bits.
156    */
157   alignment &= sizeof (struct {
158                          char a;
159                          union {
160                            guint64 x;
161                            void *y;
162                            gdouble z;
163                          } b;
164                        }
165                       ) - 9;
166 
167   /* Some OSes (FreeBSD is a known example) have a malloc() that returns
168    * unaligned memory if you request small sizes.  'malloc (1);', for
169    * example, has been seen to return pointers aligned to 6 mod 16.
170    *
171    * Check if this is a small allocation and return without enforcing
172    * the alignment assertion if this is the case.
173    */
174   return (serialised.size <= alignment ||
175           (alignment & (gsize) serialised.data) == 0);
176 }
177 
178 /* < private >
179  * GVariantSerialisedFiller:
180  * @serialised: a #GVariantSerialised instance to fill
181  * @data: data from the children array
182  *
183  * This function is called back from g_variant_serialiser_needed_size()
184  * and g_variant_serialiser_serialise().  It fills in missing details
185  * from a partially-complete #GVariantSerialised.
186  *
187  * The @data parameter passed back to the function is one of the items
188  * that was passed to the serialiser in the @children array.  It
189  * represents a single child item of the container that is being
190  * serialised.  The information filled in to @serialised is the
191  * information for this child.
192  *
193  * If the @type_info field of @serialised is %NULL then the callback
194  * function must set it to the type information corresponding to the
195  * type of the child.  No reference should be added.  If it is non-%NULL
196  * then the callback should assert that it is equal to the actual type
197  * of the child.
198  *
199  * If the @size field is zero then the callback must fill it in with the
200  * required amount of space to store the serialised form of the child.
201  * If it is non-zero then the callback should assert that it is equal to
202  * the needed size of the child.
203  *
204  * If @data is non-%NULL then it points to a space that is properly
205  * aligned for and large enough to store the serialised data of the
206  * child.  The callback must store the serialised form of the child at
207  * @data.
208  *
209  * If the child value is another container then the callback will likely
210  * recurse back into the serialiser by calling
211  * g_variant_serialiser_needed_size() to determine @size and
212  * g_variant_serialiser_serialise() to write to @data.
213  */
214 
215 /* PART 1: Container types {{{1
216  *
217  * This section contains the serialiser implementation functions for
218  * each container type.
219  */
220 
221 /* Maybe {{{2
222  *
223  * Maybe types are handled depending on if the element type of the maybe
224  * type is a fixed-sized or variable-sized type.  Although all maybe
225  * types themselves are variable-sized types, herein, a maybe value with
226  * a fixed-sized element type is called a "fixed-sized maybe" for
227  * convenience and a maybe value with a variable-sized element type is
228  * called a "variable-sized maybe".
229  */
230 
231 /* Fixed-sized Maybe {{{3
232  *
233  * The size of a maybe value with a fixed-sized element type is either 0
234  * or equal to the fixed size of its element type.  The case where the
235  * size of the maybe value is zero corresponds to the "Nothing" case and
236  * the case where the size of the maybe value is equal to the fixed size
237  * of the element type corresponds to the "Just" case; in that case, the
238  * serialised data of the child value forms the entire serialised data
239  * of the maybe value.
240  *
241  * In the event that a fixed-sized maybe value is presented with a size
242  * that is not equal to the fixed size of the element type then the
243  * value must be taken to be "Nothing".
244  */
245 
246 static gsize
gvs_fixed_sized_maybe_n_children(GVariantSerialised value)247 gvs_fixed_sized_maybe_n_children (GVariantSerialised value)
248 {
249   gsize element_fixed_size;
250 
251   g_variant_type_info_query_element (value.type_info, NULL,
252                                      &element_fixed_size);
253 
254   return (element_fixed_size == value.size) ? 1 : 0;
255 }
256 
257 static GVariantSerialised
gvs_fixed_sized_maybe_get_child(GVariantSerialised value,gsize index_)258 gvs_fixed_sized_maybe_get_child (GVariantSerialised value,
259                                  gsize              index_)
260 {
261   /* the child has the same bounds as the
262    * container, so just update the type.
263    */
264   value.type_info = g_variant_type_info_element (value.type_info);
265   g_variant_type_info_ref (value.type_info);
266   value.depth++;
267 
268   return value;
269 }
270 
271 static gsize
gvs_fixed_sized_maybe_needed_size(GVariantTypeInfo * type_info,GVariantSerialisedFiller gvs_filler,const gpointer * children,gsize n_children)272 gvs_fixed_sized_maybe_needed_size (GVariantTypeInfo         *type_info,
273                                    GVariantSerialisedFiller  gvs_filler,
274                                    const gpointer           *children,
275                                    gsize                     n_children)
276 {
277   if (n_children)
278     {
279       gsize element_fixed_size;
280 
281       g_variant_type_info_query_element (type_info, NULL,
282                                          &element_fixed_size);
283 
284       return element_fixed_size;
285     }
286   else
287     return 0;
288 }
289 
290 static void
gvs_fixed_sized_maybe_serialise(GVariantSerialised value,GVariantSerialisedFiller gvs_filler,const gpointer * children,gsize n_children)291 gvs_fixed_sized_maybe_serialise (GVariantSerialised        value,
292                                  GVariantSerialisedFiller  gvs_filler,
293                                  const gpointer           *children,
294                                  gsize                     n_children)
295 {
296   if (n_children)
297     {
298       GVariantSerialised child = { NULL, value.data, value.size, value.depth + 1 };
299 
300       gvs_filler (&child, children[0]);
301     }
302 }
303 
304 static gboolean
gvs_fixed_sized_maybe_is_normal(GVariantSerialised value)305 gvs_fixed_sized_maybe_is_normal (GVariantSerialised value)
306 {
307   if (value.size > 0)
308     {
309       gsize element_fixed_size;
310 
311       g_variant_type_info_query_element (value.type_info,
312                                          NULL, &element_fixed_size);
313 
314       if (value.size != element_fixed_size)
315         return FALSE;
316 
317       /* proper element size: "Just".  recurse to the child. */
318       value.type_info = g_variant_type_info_element (value.type_info);
319       value.depth++;
320 
321       return g_variant_serialised_is_normal (value);
322     }
323 
324   /* size of 0: "Nothing" */
325   return TRUE;
326 }
327 
328 /* Variable-sized Maybe
329  *
330  * The size of a maybe value with a variable-sized element type is
331  * either 0 or strictly greater than 0.  The case where the size of the
332  * maybe value is zero corresponds to the "Nothing" case and the case
333  * where the size of the maybe value is greater than zero corresponds to
334  * the "Just" case; in that case, the serialised data of the child value
335  * forms the first part of the serialised data of the maybe value and is
336  * followed by a single zero byte.  This zero byte is always appended,
337  * regardless of any zero bytes that may already be at the end of the
338  * serialised ata of the child value.
339  */
340 
341 static gsize
gvs_variable_sized_maybe_n_children(GVariantSerialised value)342 gvs_variable_sized_maybe_n_children (GVariantSerialised value)
343 {
344   return (value.size > 0) ? 1 : 0;
345 }
346 
347 static GVariantSerialised
gvs_variable_sized_maybe_get_child(GVariantSerialised value,gsize index_)348 gvs_variable_sized_maybe_get_child (GVariantSerialised value,
349                                     gsize              index_)
350 {
351   /* remove the padding byte and update the type. */
352   value.type_info = g_variant_type_info_element (value.type_info);
353   g_variant_type_info_ref (value.type_info);
354   value.size--;
355 
356   /* if it's zero-sized then it may as well be NULL */
357   if (value.size == 0)
358     value.data = NULL;
359 
360   value.depth++;
361 
362   return value;
363 }
364 
365 static gsize
gvs_variable_sized_maybe_needed_size(GVariantTypeInfo * type_info,GVariantSerialisedFiller gvs_filler,const gpointer * children,gsize n_children)366 gvs_variable_sized_maybe_needed_size (GVariantTypeInfo         *type_info,
367                                       GVariantSerialisedFiller  gvs_filler,
368                                       const gpointer           *children,
369                                       gsize                     n_children)
370 {
371   if (n_children)
372     {
373       GVariantSerialised child = { 0, };
374 
375       gvs_filler (&child, children[0]);
376 
377       return child.size + 1;
378     }
379   else
380     return 0;
381 }
382 
383 static void
gvs_variable_sized_maybe_serialise(GVariantSerialised value,GVariantSerialisedFiller gvs_filler,const gpointer * children,gsize n_children)384 gvs_variable_sized_maybe_serialise (GVariantSerialised        value,
385                                     GVariantSerialisedFiller  gvs_filler,
386                                     const gpointer           *children,
387                                     gsize                     n_children)
388 {
389   if (n_children)
390     {
391       GVariantSerialised child = { NULL, value.data, value.size - 1, value.depth + 1 };
392 
393       /* write the data for the child.  */
394       gvs_filler (&child, children[0]);
395       value.data[child.size] = '\0';
396     }
397 }
398 
399 static gboolean
gvs_variable_sized_maybe_is_normal(GVariantSerialised value)400 gvs_variable_sized_maybe_is_normal (GVariantSerialised value)
401 {
402   if (value.size == 0)
403     return TRUE;
404 
405   if (value.data[value.size - 1] != '\0')
406     return FALSE;
407 
408   value.type_info = g_variant_type_info_element (value.type_info);
409   value.size--;
410   value.depth++;
411 
412   return g_variant_serialised_is_normal (value);
413 }
414 
415 /* Arrays {{{2
416  *
417  * Just as with maybe types, array types are handled depending on if the
418  * element type of the array type is a fixed-sized or variable-sized
419  * type.  Similar to maybe types, for convenience, an array value with a
420  * fixed-sized element type is called a "fixed-sized array" and an array
421  * value with a variable-sized element type is called a "variable sized
422  * array".
423  */
424 
425 /* Fixed-sized Array {{{3
426  *
427  * For fixed sized arrays, the serialised data is simply a concatenation
428  * of the serialised data of each element, in order.  Since fixed-sized
429  * values always have a fixed size that is a multiple of their alignment
430  * requirement no extra padding is required.
431  *
432  * In the event that a fixed-sized array is presented with a size that
433  * is not an integer multiple of the element size then the value of the
434  * array must be taken as being empty.
435  */
436 
437 static gsize
gvs_fixed_sized_array_n_children(GVariantSerialised value)438 gvs_fixed_sized_array_n_children (GVariantSerialised value)
439 {
440   gsize element_fixed_size;
441 
442   g_variant_type_info_query_element (value.type_info, NULL,
443                                      &element_fixed_size);
444 
445   if (value.size % element_fixed_size == 0)
446     return value.size / element_fixed_size;
447 
448   return 0;
449 }
450 
451 static GVariantSerialised
gvs_fixed_sized_array_get_child(GVariantSerialised value,gsize index_)452 gvs_fixed_sized_array_get_child (GVariantSerialised value,
453                                  gsize              index_)
454 {
455   GVariantSerialised child = { 0, };
456 
457   child.type_info = g_variant_type_info_element (value.type_info);
458   g_variant_type_info_query (child.type_info, NULL, &child.size);
459   child.data = value.data + (child.size * index_);
460   g_variant_type_info_ref (child.type_info);
461   child.depth = value.depth + 1;
462 
463   return child;
464 }
465 
466 static gsize
gvs_fixed_sized_array_needed_size(GVariantTypeInfo * type_info,GVariantSerialisedFiller gvs_filler,const gpointer * children,gsize n_children)467 gvs_fixed_sized_array_needed_size (GVariantTypeInfo         *type_info,
468                                    GVariantSerialisedFiller  gvs_filler,
469                                    const gpointer           *children,
470                                    gsize                     n_children)
471 {
472   gsize element_fixed_size;
473 
474   g_variant_type_info_query_element (type_info, NULL, &element_fixed_size);
475 
476   return element_fixed_size * n_children;
477 }
478 
479 static void
gvs_fixed_sized_array_serialise(GVariantSerialised value,GVariantSerialisedFiller gvs_filler,const gpointer * children,gsize n_children)480 gvs_fixed_sized_array_serialise (GVariantSerialised        value,
481                                  GVariantSerialisedFiller  gvs_filler,
482                                  const gpointer           *children,
483                                  gsize                     n_children)
484 {
485   GVariantSerialised child = { 0, };
486   gsize i;
487 
488   child.type_info = g_variant_type_info_element (value.type_info);
489   g_variant_type_info_query (child.type_info, NULL, &child.size);
490   child.data = value.data;
491   child.depth = value.depth + 1;
492 
493   for (i = 0; i < n_children; i++)
494     {
495       gvs_filler (&child, children[i]);
496       child.data += child.size;
497     }
498 }
499 
500 static gboolean
gvs_fixed_sized_array_is_normal(GVariantSerialised value)501 gvs_fixed_sized_array_is_normal (GVariantSerialised value)
502 {
503   GVariantSerialised child = { 0, };
504 
505   child.type_info = g_variant_type_info_element (value.type_info);
506   g_variant_type_info_query (child.type_info, NULL, &child.size);
507   child.depth = value.depth + 1;
508 
509   if (value.size % child.size != 0)
510     return FALSE;
511 
512   for (child.data = value.data;
513        child.data < value.data + value.size;
514        child.data += child.size)
515     {
516       if (!g_variant_serialised_is_normal (child))
517         return FALSE;
518     }
519 
520   return TRUE;
521 }
522 
523 /* Variable-sized Array {{{3
524  *
525  * Variable sized arrays, containing variable-sized elements, must be
526  * able to determine the boundaries between the elements.  The items
527  * cannot simply be concatenated.  Additionally, we are faced with the
528  * fact that non-fixed-sized values do not necessarily have a size that
529  * is a multiple of their alignment requirement, so we may need to
530  * insert zero-filled padding.
531  *
532  * While it is possible to find the start of an item by starting from
533  * the end of the item before it and padding for alignment, it is not
534  * generally possible to do the reverse operation.  For this reason, we
535  * record the end point of each element in the array.
536  *
537  * GVariant works in terms of "offsets".  An offset is a pointer to a
538  * boundary between two bytes.  In 4 bytes of serialised data, there
539  * would be 5 possible offsets: one at the start ('0'), one between each
540  * pair of adjacent bytes ('1', '2', '3') and one at the end ('4').
541  *
542  * The numeric value of an offset is an unsigned integer given relative
543  * to the start of the serialised data of the array.  Offsets are always
544  * stored in little endian byte order and are always only as big as they
545  * need to be.  For example, in 255 bytes of serialised data, there are
546  * 256 offsets.  All possibilities can be stored in an 8 bit unsigned
547  * integer.  In 256 bytes of serialised data, however, there are 257
548  * possible offsets so 16 bit integers must be used.  The size of an
549  * offset is always a power of 2.
550  *
551  * The offsets are stored at the end of the serialised data of the
552  * array.  They are simply concatenated on without any particular
553  * alignment.  The size of the offsets is included in the size of the
554  * serialised data for purposes of determining the size of the offsets.
555  * This presents a possibly ambiguity; in certain cases, a particular
556  * value of array could have two different serialised forms.
557  *
558  * Imagine an array containing a single string of 253 bytes in length
559  * (so, 254 bytes including the nul terminator).  Now the offset must be
560  * written.  If an 8 bit offset is written, it will bring the size of
561  * the array's serialised data to 255 -- which means that the use of an
562  * 8 bit offset was valid.  If a 16 bit offset is used then the total
563  * size of the array will be 256 -- which means that the use of a 16 bit
564  * offset was valid.  Although both of these will be accepted by the
565  * deserialiser, only the smaller of the two is considered to be in
566  * normal form and that is the one that the serialiser must produce.
567  */
568 
569 /* bytes may be NULL if (size == 0). */
570 static inline gsize
gvs_read_unaligned_le(guchar * bytes,guint size)571 gvs_read_unaligned_le (guchar *bytes,
572                        guint   size)
573 {
574   union
575   {
576     guchar bytes[GLIB_SIZEOF_SIZE_T];
577     gsize integer;
578   } tmpvalue;
579 
580   tmpvalue.integer = 0;
581   if (bytes != NULL)
582     memcpy (&tmpvalue.bytes, bytes, size);
583 
584   return GSIZE_FROM_LE (tmpvalue.integer);
585 }
586 
587 static inline void
gvs_write_unaligned_le(guchar * bytes,gsize value,guint size)588 gvs_write_unaligned_le (guchar *bytes,
589                         gsize   value,
590                         guint   size)
591 {
592   union
593   {
594     guchar bytes[GLIB_SIZEOF_SIZE_T];
595     gsize integer;
596   } tmpvalue;
597 
598   tmpvalue.integer = GSIZE_TO_LE (value);
599   memcpy (bytes, &tmpvalue.bytes, size);
600 }
601 
602 static guint
gvs_get_offset_size(gsize size)603 gvs_get_offset_size (gsize size)
604 {
605   if (size > G_MAXUINT32)
606     return 8;
607 
608   else if (size > G_MAXUINT16)
609     return 4;
610 
611   else if (size > G_MAXUINT8)
612     return 2;
613 
614   else if (size > 0)
615     return 1;
616 
617   return 0;
618 }
619 
620 static gsize
gvs_calculate_total_size(gsize body_size,gsize offsets)621 gvs_calculate_total_size (gsize body_size,
622                           gsize offsets)
623 {
624   if (body_size + 1 * offsets <= G_MAXUINT8)
625     return body_size + 1 * offsets;
626 
627   if (body_size + 2 * offsets <= G_MAXUINT16)
628     return body_size + 2 * offsets;
629 
630   if (body_size + 4 * offsets <= G_MAXUINT32)
631     return body_size + 4 * offsets;
632 
633   return body_size + 8 * offsets;
634 }
635 
636 static gsize
gvs_variable_sized_array_n_children(GVariantSerialised value)637 gvs_variable_sized_array_n_children (GVariantSerialised value)
638 {
639   gsize offsets_array_size;
640   gsize offset_size;
641   gsize last_end;
642 
643   if (value.size == 0)
644     return 0;
645 
646   offset_size = gvs_get_offset_size (value.size);
647 
648   last_end = gvs_read_unaligned_le (value.data + value.size -
649                                     offset_size, offset_size);
650 
651   if (last_end > value.size)
652     return 0;
653 
654   offsets_array_size = value.size - last_end;
655 
656   if (offsets_array_size % offset_size)
657     return 0;
658 
659   return offsets_array_size / offset_size;
660 }
661 
662 static GVariantSerialised
gvs_variable_sized_array_get_child(GVariantSerialised value,gsize index_)663 gvs_variable_sized_array_get_child (GVariantSerialised value,
664                                     gsize              index_)
665 {
666   GVariantSerialised child = { 0, };
667   gsize offset_size;
668   gsize last_end;
669   gsize start;
670   gsize end;
671 
672   child.type_info = g_variant_type_info_element (value.type_info);
673   g_variant_type_info_ref (child.type_info);
674   child.depth = value.depth + 1;
675 
676   offset_size = gvs_get_offset_size (value.size);
677 
678   last_end = gvs_read_unaligned_le (value.data + value.size -
679                                     offset_size, offset_size);
680 
681   if (index_ > 0)
682     {
683       guint alignment;
684 
685       start = gvs_read_unaligned_le (value.data + last_end +
686                                      (offset_size * (index_ - 1)),
687                                      offset_size);
688 
689       g_variant_type_info_query (child.type_info, &alignment, NULL);
690       start += (-start) & alignment;
691     }
692   else
693     start = 0;
694 
695   end = gvs_read_unaligned_le (value.data + last_end +
696                                (offset_size * index_),
697                                offset_size);
698 
699   if (start < end && end <= value.size && end <= last_end)
700     {
701       child.data = value.data + start;
702       child.size = end - start;
703     }
704 
705   return child;
706 }
707 
708 static gsize
gvs_variable_sized_array_needed_size(GVariantTypeInfo * type_info,GVariantSerialisedFiller gvs_filler,const gpointer * children,gsize n_children)709 gvs_variable_sized_array_needed_size (GVariantTypeInfo         *type_info,
710                                       GVariantSerialisedFiller  gvs_filler,
711                                       const gpointer           *children,
712                                       gsize                     n_children)
713 {
714   guint alignment;
715   gsize offset;
716   gsize i;
717 
718   g_variant_type_info_query (type_info, &alignment, NULL);
719   offset = 0;
720 
721   for (i = 0; i < n_children; i++)
722     {
723       GVariantSerialised child = { 0, };
724 
725       offset += (-offset) & alignment;
726       gvs_filler (&child, children[i]);
727       offset += child.size;
728     }
729 
730   return gvs_calculate_total_size (offset, n_children);
731 }
732 
733 static void
gvs_variable_sized_array_serialise(GVariantSerialised value,GVariantSerialisedFiller gvs_filler,const gpointer * children,gsize n_children)734 gvs_variable_sized_array_serialise (GVariantSerialised        value,
735                                     GVariantSerialisedFiller  gvs_filler,
736                                     const gpointer           *children,
737                                     gsize                     n_children)
738 {
739   guchar *offset_ptr;
740   gsize offset_size;
741   guint alignment;
742   gsize offset;
743   gsize i;
744 
745   g_variant_type_info_query (value.type_info, &alignment, NULL);
746   offset_size = gvs_get_offset_size (value.size);
747   offset = 0;
748 
749   offset_ptr = value.data + value.size - offset_size * n_children;
750 
751   for (i = 0; i < n_children; i++)
752     {
753       GVariantSerialised child = { 0, };
754 
755       while (offset & alignment)
756         value.data[offset++] = '\0';
757 
758       child.data = value.data + offset;
759       gvs_filler (&child, children[i]);
760       offset += child.size;
761 
762       gvs_write_unaligned_le (offset_ptr, offset, offset_size);
763       offset_ptr += offset_size;
764     }
765 }
766 
767 static gboolean
gvs_variable_sized_array_is_normal(GVariantSerialised value)768 gvs_variable_sized_array_is_normal (GVariantSerialised value)
769 {
770   GVariantSerialised child = { 0, };
771   gsize offsets_array_size;
772   guchar *offsets_array;
773   guint offset_size;
774   guint alignment;
775   gsize last_end;
776   gsize length;
777   gsize offset;
778   gsize i;
779 
780   if (value.size == 0)
781     return TRUE;
782 
783   offset_size = gvs_get_offset_size (value.size);
784   last_end = gvs_read_unaligned_le (value.data + value.size -
785                                     offset_size, offset_size);
786 
787   if (last_end > value.size)
788     return FALSE;
789 
790   offsets_array_size = value.size - last_end;
791 
792   if (offsets_array_size % offset_size)
793     return FALSE;
794 
795   offsets_array = value.data + value.size - offsets_array_size;
796   length = offsets_array_size / offset_size;
797 
798   if (length == 0)
799     return FALSE;
800 
801   child.type_info = g_variant_type_info_element (value.type_info);
802   g_variant_type_info_query (child.type_info, &alignment, NULL);
803   child.depth = value.depth + 1;
804   offset = 0;
805 
806   for (i = 0; i < length; i++)
807     {
808       gsize this_end;
809 
810       this_end = gvs_read_unaligned_le (offsets_array + offset_size * i,
811                                         offset_size);
812 
813       if (this_end < offset || this_end > last_end)
814         return FALSE;
815 
816       while (offset & alignment)
817         {
818           if (!(offset < this_end && value.data[offset] == '\0'))
819             return FALSE;
820           offset++;
821         }
822 
823       child.data = value.data + offset;
824       child.size = this_end - offset;
825 
826       if (child.size == 0)
827         child.data = NULL;
828 
829       if (!g_variant_serialised_is_normal (child))
830         return FALSE;
831 
832       offset = this_end;
833     }
834 
835   g_assert (offset == last_end);
836 
837   return TRUE;
838 }
839 
840 /* Tuples {{{2
841  *
842  * Since tuples can contain a mix of variable- and fixed-sized items,
843  * they are, in terms of serialisation, a hybrid of variable-sized and
844  * fixed-sized arrays.
845  *
846  * Offsets are only stored for variable-sized items.  Also, since the
847  * number of items in a tuple is known from its type, we are able to
848  * know exactly how many offsets to expect in the serialised data (and
849  * therefore how much space is taken up by the offset array).  This
850  * means that we know where the end of the serialised data for the last
851  * item is -- we can just subtract the size of the offset array from the
852  * total size of the tuple.  For this reason, the last item in the tuple
853  * doesn't need an offset stored.
854  *
855  * Tuple offsets are stored in reverse.  This design choice allows
856  * iterator-based deserialisers to be more efficient.
857  *
858  * Most of the "heavy lifting" here is handled by the GVariantTypeInfo
859  * for the tuple.  See the notes in gvarianttypeinfo.h.
860  */
861 
862 static gsize
gvs_tuple_n_children(GVariantSerialised value)863 gvs_tuple_n_children (GVariantSerialised value)
864 {
865   return g_variant_type_info_n_members (value.type_info);
866 }
867 
868 static GVariantSerialised
gvs_tuple_get_child(GVariantSerialised value,gsize index_)869 gvs_tuple_get_child (GVariantSerialised value,
870                      gsize              index_)
871 {
872   const GVariantMemberInfo *member_info;
873   GVariantSerialised child = { 0, };
874   gsize offset_size;
875   gsize start, end, last_end;
876 
877   member_info = g_variant_type_info_member_info (value.type_info, index_);
878   child.type_info = g_variant_type_info_ref (member_info->type_info);
879   child.depth = value.depth + 1;
880   offset_size = gvs_get_offset_size (value.size);
881 
882   /* tuples are the only (potentially) fixed-sized containers, so the
883    * only ones that have to deal with the possibility of having %NULL
884    * data with a non-zero %size if errors occurred elsewhere.
885    */
886   if G_UNLIKELY (value.data == NULL && value.size != 0)
887     {
888       g_variant_type_info_query (child.type_info, NULL, &child.size);
889 
890       /* this can only happen in fixed-sized tuples,
891        * so the child must also be fixed sized.
892        */
893       g_assert (child.size != 0);
894       child.data = NULL;
895 
896       return child;
897     }
898 
899   if (member_info->ending_type == G_VARIANT_MEMBER_ENDING_OFFSET)
900     {
901       if (offset_size * (member_info->i + 2) > value.size)
902         return child;
903     }
904   else
905     {
906       if (offset_size * (member_info->i + 1) > value.size)
907         {
908           /* if the child is fixed size, return its size.
909            * if child is not fixed-sized, return size = 0.
910            */
911           g_variant_type_info_query (child.type_info, NULL, &child.size);
912 
913           return child;
914         }
915     }
916 
917   if (member_info->i + 1)
918     start = gvs_read_unaligned_le (value.data + value.size -
919                                    offset_size * (member_info->i + 1),
920                                    offset_size);
921   else
922     start = 0;
923 
924   start += member_info->a;
925   start &= member_info->b;
926   start |= member_info->c;
927 
928   if (member_info->ending_type == G_VARIANT_MEMBER_ENDING_LAST)
929     end = value.size - offset_size * (member_info->i + 1);
930 
931   else if (member_info->ending_type == G_VARIANT_MEMBER_ENDING_FIXED)
932     {
933       gsize fixed_size;
934 
935       g_variant_type_info_query (child.type_info, NULL, &fixed_size);
936       end = start + fixed_size;
937       child.size = fixed_size;
938     }
939 
940   else /* G_VARIANT_MEMBER_ENDING_OFFSET */
941     end = gvs_read_unaligned_le (value.data + value.size -
942                                  offset_size * (member_info->i + 2),
943                                  offset_size);
944 
945   /* The child should not extend into the offset table. */
946   if (index_ != g_variant_type_info_n_members (value.type_info) - 1)
947     {
948       GVariantSerialised last_child;
949       last_child = gvs_tuple_get_child (value,
950                                         g_variant_type_info_n_members (value.type_info) - 1);
951       last_end = last_child.data + last_child.size - value.data;
952       g_variant_type_info_unref (last_child.type_info);
953     }
954   else
955     last_end = end;
956 
957   if (start < end && end <= value.size && end <= last_end)
958     {
959       child.data = value.data + start;
960       child.size = end - start;
961     }
962 
963   return child;
964 }
965 
966 static gsize
gvs_tuple_needed_size(GVariantTypeInfo * type_info,GVariantSerialisedFiller gvs_filler,const gpointer * children,gsize n_children)967 gvs_tuple_needed_size (GVariantTypeInfo         *type_info,
968                        GVariantSerialisedFiller  gvs_filler,
969                        const gpointer           *children,
970                        gsize                     n_children)
971 {
972   const GVariantMemberInfo *member_info = NULL;
973   gsize fixed_size;
974   gsize offset;
975   gsize i;
976 
977   g_variant_type_info_query (type_info, NULL, &fixed_size);
978 
979   if (fixed_size)
980     return fixed_size;
981 
982   offset = 0;
983 
984   for (i = 0; i < n_children; i++)
985     {
986       guint alignment;
987 
988       member_info = g_variant_type_info_member_info (type_info, i);
989       g_variant_type_info_query (member_info->type_info,
990                                  &alignment, &fixed_size);
991       offset += (-offset) & alignment;
992 
993       if (fixed_size)
994         offset += fixed_size;
995       else
996         {
997           GVariantSerialised child = { 0, };
998 
999           gvs_filler (&child, children[i]);
1000           offset += child.size;
1001         }
1002     }
1003 
1004   return gvs_calculate_total_size (offset, member_info->i + 1);
1005 }
1006 
1007 static void
gvs_tuple_serialise(GVariantSerialised value,GVariantSerialisedFiller gvs_filler,const gpointer * children,gsize n_children)1008 gvs_tuple_serialise (GVariantSerialised        value,
1009                      GVariantSerialisedFiller  gvs_filler,
1010                      const gpointer           *children,
1011                      gsize                     n_children)
1012 {
1013   gsize offset_size;
1014   gsize offset;
1015   gsize i;
1016 
1017   offset_size = gvs_get_offset_size (value.size);
1018   offset = 0;
1019 
1020   for (i = 0; i < n_children; i++)
1021     {
1022       const GVariantMemberInfo *member_info;
1023       GVariantSerialised child = { 0, };
1024       guint alignment;
1025 
1026       member_info = g_variant_type_info_member_info (value.type_info, i);
1027       g_variant_type_info_query (member_info->type_info, &alignment, NULL);
1028 
1029       while (offset & alignment)
1030         value.data[offset++] = '\0';
1031 
1032       child.data = value.data + offset;
1033       gvs_filler (&child, children[i]);
1034       offset += child.size;
1035 
1036       if (member_info->ending_type == G_VARIANT_MEMBER_ENDING_OFFSET)
1037         {
1038           value.size -= offset_size;
1039           gvs_write_unaligned_le (value.data + value.size,
1040                                   offset, offset_size);
1041         }
1042     }
1043 
1044   while (offset < value.size)
1045     value.data[offset++] = '\0';
1046 }
1047 
1048 static gboolean
gvs_tuple_is_normal(GVariantSerialised value)1049 gvs_tuple_is_normal (GVariantSerialised value)
1050 {
1051   guint offset_size;
1052   gsize offset_ptr;
1053   gsize length;
1054   gsize offset;
1055   gsize i;
1056 
1057   /* as per the comment in gvs_tuple_get_child() */
1058   if G_UNLIKELY (value.data == NULL && value.size != 0)
1059     return FALSE;
1060 
1061   offset_size = gvs_get_offset_size (value.size);
1062   length = g_variant_type_info_n_members (value.type_info);
1063   offset_ptr = value.size;
1064   offset = 0;
1065 
1066   for (i = 0; i < length; i++)
1067     {
1068       const GVariantMemberInfo *member_info;
1069       GVariantSerialised child;
1070       gsize fixed_size;
1071       guint alignment;
1072       gsize end;
1073 
1074       member_info = g_variant_type_info_member_info (value.type_info, i);
1075       child.type_info = member_info->type_info;
1076       child.depth = value.depth + 1;
1077 
1078       g_variant_type_info_query (child.type_info, &alignment, &fixed_size);
1079 
1080       while (offset & alignment)
1081         {
1082           if (offset > value.size || value.data[offset] != '\0')
1083             return FALSE;
1084           offset++;
1085         }
1086 
1087       child.data = value.data + offset;
1088 
1089       switch (member_info->ending_type)
1090         {
1091         case G_VARIANT_MEMBER_ENDING_FIXED:
1092           end = offset + fixed_size;
1093           break;
1094 
1095         case G_VARIANT_MEMBER_ENDING_LAST:
1096           end = offset_ptr;
1097           break;
1098 
1099         case G_VARIANT_MEMBER_ENDING_OFFSET:
1100           if (offset_ptr < offset_size)
1101             return FALSE;
1102 
1103           offset_ptr -= offset_size;
1104 
1105           if (offset_ptr < offset)
1106             return FALSE;
1107 
1108           end = gvs_read_unaligned_le (value.data + offset_ptr, offset_size);
1109           break;
1110 
1111         default:
1112           g_assert_not_reached ();
1113         }
1114 
1115       if (end < offset || end > offset_ptr)
1116         return FALSE;
1117 
1118       child.size = end - offset;
1119 
1120       if (child.size == 0)
1121         child.data = NULL;
1122 
1123       if (!g_variant_serialised_is_normal (child))
1124         return FALSE;
1125 
1126       offset = end;
1127     }
1128 
1129   {
1130     gsize fixed_size;
1131     guint alignment;
1132 
1133     g_variant_type_info_query (value.type_info, &alignment, &fixed_size);
1134 
1135     if (fixed_size)
1136       {
1137         g_assert (fixed_size == value.size);
1138         g_assert (offset_ptr == value.size);
1139 
1140         if (i == 0)
1141           {
1142             if (value.data[offset++] != '\0')
1143               return FALSE;
1144           }
1145         else
1146           {
1147             while (offset & alignment)
1148               if (value.data[offset++] != '\0')
1149                 return FALSE;
1150           }
1151 
1152         g_assert (offset == value.size);
1153       }
1154   }
1155 
1156   return offset_ptr == offset;
1157 }
1158 
1159 /* Variants {{{2
1160  *
1161  * Variants are stored by storing the serialised data of the child,
1162  * followed by a '\0' character, followed by the type string of the
1163  * child.
1164  *
1165  * In the case that a value is presented that contains no '\0'
1166  * character, or doesn't have a single well-formed definite type string
1167  * following that character, the variant must be taken as containing the
1168  * unit tuple: ().
1169  */
1170 
1171 static inline gsize
gvs_variant_n_children(GVariantSerialised value)1172 gvs_variant_n_children (GVariantSerialised value)
1173 {
1174   return 1;
1175 }
1176 
1177 static inline GVariantSerialised
gvs_variant_get_child(GVariantSerialised value,gsize index_)1178 gvs_variant_get_child (GVariantSerialised value,
1179                        gsize              index_)
1180 {
1181   GVariantSerialised child = { 0, };
1182 
1183   /* NOTE: not O(1) and impossible for it to be... */
1184   if (value.size)
1185     {
1186       /* find '\0' character */
1187       for (child.size = value.size - 1; child.size; child.size--)
1188         if (value.data[child.size] == '\0')
1189           break;
1190 
1191       /* ensure we didn't just hit the start of the string */
1192       if (value.data[child.size] == '\0')
1193         {
1194           const gchar *type_string = (gchar *) &value.data[child.size + 1];
1195           const gchar *limit = (gchar *) &value.data[value.size];
1196           const gchar *end;
1197 
1198           if (g_variant_type_string_scan (type_string, limit, &end) &&
1199               end == limit)
1200             {
1201               const GVariantType *type = (GVariantType *) type_string;
1202 
1203               if (g_variant_type_is_definite (type))
1204                 {
1205                   gsize fixed_size;
1206                   gsize child_type_depth;
1207 
1208                   child.type_info = g_variant_type_info_get (type);
1209                   child.depth = value.depth + 1;
1210 
1211                   if (child.size != 0)
1212                     /* only set to non-%NULL if size > 0 */
1213                     child.data = value.data;
1214 
1215                   g_variant_type_info_query (child.type_info,
1216                                              NULL, &fixed_size);
1217                   child_type_depth = g_variant_type_info_query_depth (child.type_info);
1218 
1219                   if ((!fixed_size || fixed_size == child.size) &&
1220                       value.depth < G_VARIANT_MAX_RECURSION_DEPTH - child_type_depth)
1221                     return child;
1222 
1223                   g_variant_type_info_unref (child.type_info);
1224                 }
1225             }
1226         }
1227     }
1228 
1229   child.type_info = g_variant_type_info_get (G_VARIANT_TYPE_UNIT);
1230   child.data = NULL;
1231   child.size = 1;
1232   child.depth = value.depth + 1;
1233 
1234   return child;
1235 }
1236 
1237 static inline gsize
gvs_variant_needed_size(GVariantTypeInfo * type_info,GVariantSerialisedFiller gvs_filler,const gpointer * children,gsize n_children)1238 gvs_variant_needed_size (GVariantTypeInfo         *type_info,
1239                          GVariantSerialisedFiller  gvs_filler,
1240                          const gpointer           *children,
1241                          gsize                     n_children)
1242 {
1243   GVariantSerialised child = { 0, };
1244   const gchar *type_string;
1245 
1246   gvs_filler (&child, children[0]);
1247   type_string = g_variant_type_info_get_type_string (child.type_info);
1248 
1249   return child.size + 1 + strlen (type_string);
1250 }
1251 
1252 static inline void
gvs_variant_serialise(GVariantSerialised value,GVariantSerialisedFiller gvs_filler,const gpointer * children,gsize n_children)1253 gvs_variant_serialise (GVariantSerialised        value,
1254                        GVariantSerialisedFiller  gvs_filler,
1255                        const gpointer           *children,
1256                        gsize                     n_children)
1257 {
1258   GVariantSerialised child = { 0, };
1259   const gchar *type_string;
1260 
1261   child.data = value.data;
1262 
1263   gvs_filler (&child, children[0]);
1264   type_string = g_variant_type_info_get_type_string (child.type_info);
1265   value.data[child.size] = '\0';
1266   memcpy (value.data + child.size + 1, type_string, strlen (type_string));
1267 }
1268 
1269 static inline gboolean
gvs_variant_is_normal(GVariantSerialised value)1270 gvs_variant_is_normal (GVariantSerialised value)
1271 {
1272   GVariantSerialised child;
1273   gboolean normal;
1274   gsize child_type_depth;
1275 
1276   child = gvs_variant_get_child (value, 0);
1277   child_type_depth = g_variant_type_info_query_depth (child.type_info);
1278 
1279   normal = (value.depth < G_VARIANT_MAX_RECURSION_DEPTH - child_type_depth) &&
1280            (child.data != NULL || child.size == 0) &&
1281            g_variant_serialised_is_normal (child);
1282 
1283   g_variant_type_info_unref (child.type_info);
1284 
1285   return normal;
1286 }
1287 
1288 
1289 
1290 /* PART 2: Serialiser API {{{1
1291  *
1292  * This is the implementation of the API of the serialiser as advertised
1293  * in gvariant-serialiser.h.
1294  */
1295 
1296 /* Dispatch Utilities {{{2
1297  *
1298  * These macros allow a given function (for example,
1299  * g_variant_serialiser_serialise) to be dispatched to the appropriate
1300  * type-specific function above (fixed/variable-sized maybe,
1301  * fixed/variable-sized array, tuple or variant).
1302  */
1303 #define DISPATCH_FIXED(type_info, before, after) \
1304   {                                                     \
1305     gsize fixed_size;                                   \
1306                                                         \
1307     g_variant_type_info_query_element (type_info, NULL, \
1308                                        &fixed_size);    \
1309                                                         \
1310     if (fixed_size)                                     \
1311       {                                                 \
1312         before ## fixed_sized ## after                  \
1313       }                                                 \
1314     else                                                \
1315       {                                                 \
1316         before ## variable_sized ## after               \
1317       }                                                 \
1318   }
1319 
1320 #define DISPATCH_CASES(type_info, before, after) \
1321   switch (g_variant_type_info_get_type_char (type_info))        \
1322     {                                                           \
1323       case G_VARIANT_TYPE_INFO_CHAR_MAYBE:                      \
1324         DISPATCH_FIXED (type_info, before, _maybe ## after)     \
1325                                                                 \
1326       case G_VARIANT_TYPE_INFO_CHAR_ARRAY:                      \
1327         DISPATCH_FIXED (type_info, before, _array ## after)     \
1328                                                                 \
1329       case G_VARIANT_TYPE_INFO_CHAR_DICT_ENTRY:                 \
1330       case G_VARIANT_TYPE_INFO_CHAR_TUPLE:                      \
1331         {                                                       \
1332           before ## tuple ## after                              \
1333         }                                                       \
1334                                                                 \
1335       case G_VARIANT_TYPE_INFO_CHAR_VARIANT:                    \
1336         {                                                       \
1337           before ## variant ## after                            \
1338         }                                                       \
1339     }
1340 
1341 /* Serialiser entry points {{{2
1342  *
1343  * These are the functions that are called in order for the serialiser
1344  * to do its thing.
1345  */
1346 
1347 /* < private >
1348  * g_variant_serialised_n_children:
1349  * @serialised: a #GVariantSerialised
1350  *
1351  * For serialised data that represents a container value (maybes,
1352  * tuples, arrays, variants), determine how many child items are inside
1353  * that container.
1354  *
1355  * Returns: the number of children
1356  */
1357 gsize
g_variant_serialised_n_children(GVariantSerialised serialised)1358 g_variant_serialised_n_children (GVariantSerialised serialised)
1359 {
1360   g_assert (g_variant_serialised_check (serialised));
1361 
1362   DISPATCH_CASES (serialised.type_info,
1363 
1364                   return gvs_/**/,/**/_n_children (serialised);
1365 
1366                  )
1367   g_assert_not_reached ();
1368 }
1369 
1370 /* < private >
1371  * g_variant_serialised_get_child:
1372  * @serialised: a #GVariantSerialised
1373  * @index_: the index of the child to fetch
1374  *
1375  * Extracts a child from a serialised data representing a container
1376  * value.
1377  *
1378  * It is an error to call this function with an index out of bounds.
1379  *
1380  * If the result .data == %NULL and .size > 0 then there has been an
1381  * error extracting the requested fixed-sized value.  This number of
1382  * zero bytes needs to be allocated instead.
1383  *
1384  * In the case that .data == %NULL and .size == 0 then a zero-sized
1385  * item of a variable-sized type is being returned.
1386  *
1387  * .data is never non-%NULL if size is 0.
1388  *
1389  * Returns: a #GVariantSerialised for the child
1390  */
1391 GVariantSerialised
g_variant_serialised_get_child(GVariantSerialised serialised,gsize index_)1392 g_variant_serialised_get_child (GVariantSerialised serialised,
1393                                 gsize              index_)
1394 {
1395   GVariantSerialised child;
1396 
1397   g_assert (g_variant_serialised_check (serialised));
1398 
1399   if G_LIKELY (index_ < g_variant_serialised_n_children (serialised))
1400     {
1401       DISPATCH_CASES (serialised.type_info,
1402 
1403                       child = gvs_/**/,/**/_get_child (serialised, index_);
1404                       g_assert (child.size || child.data == NULL);
1405                       g_assert (g_variant_serialised_check (child));
1406                       return child;
1407 
1408                      )
1409       g_assert_not_reached ();
1410     }
1411 
1412   g_error ("Attempt to access item %"G_GSIZE_FORMAT
1413            " in a container with only %"G_GSIZE_FORMAT" items",
1414            index_, g_variant_serialised_n_children (serialised));
1415 }
1416 
1417 /* < private >
1418  * g_variant_serialiser_serialise:
1419  * @serialised: a #GVariantSerialised, properly set up
1420  * @gvs_filler: the filler function
1421  * @children: an array of child items
1422  * @n_children: the size of @children
1423  *
1424  * Writes data in serialised form.
1425  *
1426  * The type_info field of @serialised must be filled in to type info for
1427  * the type that we are serialising.
1428  *
1429  * The size field of @serialised must be filled in with the value
1430  * returned by a previous call to g_variant_serialiser_needed_size().
1431  *
1432  * The data field of @serialised must be a pointer to a properly-aligned
1433  * memory region large enough to serialise into (ie: at least as big as
1434  * the size field).
1435  *
1436  * This function is only resonsible for serialising the top-level
1437  * container.  @gvs_filler is called on each child of the container in
1438  * order for all of the data of that child to be filled in.
1439  */
1440 void
g_variant_serialiser_serialise(GVariantSerialised serialised,GVariantSerialisedFiller gvs_filler,const gpointer * children,gsize n_children)1441 g_variant_serialiser_serialise (GVariantSerialised        serialised,
1442                                 GVariantSerialisedFiller  gvs_filler,
1443                                 const gpointer           *children,
1444                                 gsize                     n_children)
1445 {
1446   g_assert (g_variant_serialised_check (serialised));
1447 
1448   DISPATCH_CASES (serialised.type_info,
1449 
1450                   gvs_/**/,/**/_serialise (serialised, gvs_filler,
1451                                            children, n_children);
1452                   return;
1453 
1454                  )
1455   g_assert_not_reached ();
1456 }
1457 
1458 /* < private >
1459  * g_variant_serialiser_needed_size:
1460  * @type_info: the type to serialise for
1461  * @gvs_filler: the filler function
1462  * @children: an array of child items
1463  * @n_children: the size of @children
1464  *
1465  * Determines how much memory would be needed to serialise this value.
1466  *
1467  * This function is only resonsible for performing calculations for the
1468  * top-level container.  @gvs_filler is called on each child of the
1469  * container in order to determine its size.
1470  */
1471 gsize
g_variant_serialiser_needed_size(GVariantTypeInfo * type_info,GVariantSerialisedFiller gvs_filler,const gpointer * children,gsize n_children)1472 g_variant_serialiser_needed_size (GVariantTypeInfo         *type_info,
1473                                   GVariantSerialisedFiller  gvs_filler,
1474                                   const gpointer           *children,
1475                                   gsize                     n_children)
1476 {
1477   DISPATCH_CASES (type_info,
1478 
1479                   return gvs_/**/,/**/_needed_size (type_info, gvs_filler,
1480                                                     children, n_children);
1481 
1482                  )
1483   g_assert_not_reached ();
1484 }
1485 
1486 /* Byteswapping {{{2 */
1487 
1488 /* < private >
1489  * g_variant_serialised_byteswap:
1490  * @value: a #GVariantSerialised
1491  *
1492  * Byte-swap serialised data.  The result of this function is only
1493  * well-defined if the data is in normal form.
1494  */
1495 void
g_variant_serialised_byteswap(GVariantSerialised serialised)1496 g_variant_serialised_byteswap (GVariantSerialised serialised)
1497 {
1498   gsize fixed_size;
1499   guint alignment;
1500 
1501   g_assert (g_variant_serialised_check (serialised));
1502 
1503   if (!serialised.data)
1504     return;
1505 
1506   /* the types we potentially need to byteswap are
1507    * exactly those with alignment requirements.
1508    */
1509   g_variant_type_info_query (serialised.type_info, &alignment, &fixed_size);
1510   if (!alignment)
1511     return;
1512 
1513   /* if fixed size and alignment are equal then we are down
1514    * to the base integer type and we should swap it.  the
1515    * only exception to this is if we have a tuple with a
1516    * single item, and then swapping it will be OK anyway.
1517    */
1518   if (alignment + 1 == fixed_size)
1519     {
1520       switch (fixed_size)
1521       {
1522         case 2:
1523           {
1524             guint16 *ptr = (guint16 *) serialised.data;
1525 
1526             g_assert_cmpint (serialised.size, ==, 2);
1527             *ptr = GUINT16_SWAP_LE_BE (*ptr);
1528           }
1529           return;
1530 
1531         case 4:
1532           {
1533             guint32 *ptr = (guint32 *) serialised.data;
1534 
1535             g_assert_cmpint (serialised.size, ==, 4);
1536             *ptr = GUINT32_SWAP_LE_BE (*ptr);
1537           }
1538           return;
1539 
1540         case 8:
1541           {
1542             guint64 *ptr = (guint64 *) serialised.data;
1543 
1544             g_assert_cmpint (serialised.size, ==, 8);
1545             *ptr = GUINT64_SWAP_LE_BE (*ptr);
1546           }
1547           return;
1548 
1549         default:
1550           g_assert_not_reached ();
1551       }
1552     }
1553 
1554   /* else, we have a container that potentially contains
1555    * some children that need to be byteswapped.
1556    */
1557   else
1558     {
1559       gsize children, i;
1560 
1561       children = g_variant_serialised_n_children (serialised);
1562       for (i = 0; i < children; i++)
1563         {
1564           GVariantSerialised child;
1565 
1566           child = g_variant_serialised_get_child (serialised, i);
1567           g_variant_serialised_byteswap (child);
1568           g_variant_type_info_unref (child.type_info);
1569         }
1570     }
1571 }
1572 
1573 /* Normal form checking {{{2 */
1574 
1575 /* < private >
1576  * g_variant_serialised_is_normal:
1577  * @serialised: a #GVariantSerialised
1578  *
1579  * Determines, recursively if @serialised is in normal form.  There is
1580  * precisely one normal form of serialised data for each possible value.
1581  *
1582  * It is possible that multiple byte sequences form the serialised data
1583  * for a given value if, for example, the padding bytes are filled in
1584  * with something other than zeros, but only one form is the normal
1585  * form.
1586  */
1587 gboolean
g_variant_serialised_is_normal(GVariantSerialised serialised)1588 g_variant_serialised_is_normal (GVariantSerialised serialised)
1589 {
1590   DISPATCH_CASES (serialised.type_info,
1591 
1592                   return gvs_/**/,/**/_is_normal (serialised);
1593 
1594                  )
1595 
1596   if (serialised.data == NULL)
1597     return FALSE;
1598   if (serialised.depth >= G_VARIANT_MAX_RECURSION_DEPTH)
1599     return FALSE;
1600 
1601   /* some hard-coded terminal cases */
1602   switch (g_variant_type_info_get_type_char (serialised.type_info))
1603     {
1604     case 'b': /* boolean */
1605       return serialised.data[0] < 2;
1606 
1607     case 's': /* string */
1608       return g_variant_serialiser_is_string (serialised.data,
1609                                              serialised.size);
1610 
1611     case 'o':
1612       return g_variant_serialiser_is_object_path (serialised.data,
1613                                                   serialised.size);
1614 
1615     case 'g':
1616       return g_variant_serialiser_is_signature (serialised.data,
1617                                                 serialised.size);
1618 
1619     default:
1620       /* all of the other types are fixed-sized numerical types for
1621        * which all possible values are valid (including various NaN
1622        * representations for floating point values).
1623        */
1624       return TRUE;
1625     }
1626 }
1627 
1628 /* Validity-checking functions {{{2
1629  *
1630  * Checks if strings, object paths and signature strings are valid.
1631  */
1632 
1633 /* < private >
1634  * g_variant_serialiser_is_string:
1635  * @data: a possible string
1636  * @size: the size of @data
1637  *
1638  * Ensures that @data is a valid string with a nul terminator at the end
1639  * and no nul bytes embedded.
1640  */
1641 gboolean
g_variant_serialiser_is_string(gconstpointer data,gsize size)1642 g_variant_serialiser_is_string (gconstpointer data,
1643                                 gsize         size)
1644 {
1645   const gchar *expected_end;
1646   const gchar *end;
1647 
1648   /* Strings must end with a nul terminator. */
1649   if (size == 0)
1650     return FALSE;
1651 
1652   expected_end = ((gchar *) data) + size - 1;
1653 
1654   if (*expected_end != '\0')
1655     return FALSE;
1656 
1657   g_utf8_validate_len (data, size, &end);
1658 
1659   return end == expected_end;
1660 }
1661 
1662 /* < private >
1663  * g_variant_serialiser_is_object_path:
1664  * @data: a possible D-Bus object path
1665  * @size: the size of @data
1666  *
1667  * Performs the checks for being a valid string.
1668  *
1669  * Also, ensures that @data is a valid D-Bus object path, as per the D-Bus
1670  * specification.
1671  */
1672 gboolean
g_variant_serialiser_is_object_path(gconstpointer data,gsize size)1673 g_variant_serialiser_is_object_path (gconstpointer data,
1674                                      gsize         size)
1675 {
1676   const gchar *string = data;
1677   gsize i;
1678 
1679   if (!g_variant_serialiser_is_string (data, size))
1680     return FALSE;
1681 
1682   /* The path must begin with an ASCII '/' (integer 47) character */
1683   if (string[0] != '/')
1684     return FALSE;
1685 
1686   for (i = 1; string[i]; i++)
1687     /* Each element must only contain the ASCII characters
1688      * "[A-Z][a-z][0-9]_"
1689      */
1690     if (g_ascii_isalnum (string[i]) || string[i] == '_')
1691       ;
1692 
1693     /* must consist of elements separated by slash characters. */
1694     else if (string[i] == '/')
1695       {
1696         /* No element may be the empty string. */
1697         /* Multiple '/' characters cannot occur in sequence. */
1698         if (string[i - 1] == '/')
1699           return FALSE;
1700       }
1701 
1702     else
1703       return FALSE;
1704 
1705   /* A trailing '/' character is not allowed unless the path is the
1706    * root path (a single '/' character).
1707    */
1708   if (i > 1 && string[i - 1] == '/')
1709     return FALSE;
1710 
1711   return TRUE;
1712 }
1713 
1714 /* < private >
1715  * g_variant_serialiser_is_signature:
1716  * @data: a possible D-Bus signature
1717  * @size: the size of @data
1718  *
1719  * Performs the checks for being a valid string.
1720  *
1721  * Also, ensures that @data is a valid D-Bus type signature, as per the
1722  * D-Bus specification. Note that this means the empty string is valid, as the
1723  * D-Bus specification defines a signature as “zero or more single complete
1724  * types”.
1725  */
1726 gboolean
g_variant_serialiser_is_signature(gconstpointer data,gsize size)1727 g_variant_serialiser_is_signature (gconstpointer data,
1728                                    gsize         size)
1729 {
1730   const gchar *string = data;
1731   gsize first_invalid;
1732 
1733   if (!g_variant_serialiser_is_string (data, size))
1734     return FALSE;
1735 
1736   /* make sure no non-definite characters appear */
1737   first_invalid = strspn (string, "ybnqiuxthdvasog(){}");
1738   if (string[first_invalid])
1739     return FALSE;
1740 
1741   /* make sure each type string is well-formed */
1742   while (*string)
1743     if (!g_variant_type_string_scan (string, NULL, &string))
1744       return FALSE;
1745 
1746   return TRUE;
1747 }
1748 
1749 /* Epilogue {{{1 */
1750 /* vim:set foldmethod=marker: */
1751