1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /** @file brw_fs_generator.cpp
25 *
26 * This file supports generating code from the FS LIR to the actual
27 * native instructions.
28 */
29
30 #include "brw_eu.h"
31 #include "brw_fs.h"
32 #include "brw_cfg.h"
33 #include "util/mesa-sha1.h"
34
35 static enum brw_reg_file
brw_file_from_reg(fs_reg * reg)36 brw_file_from_reg(fs_reg *reg)
37 {
38 switch (reg->file) {
39 case ARF:
40 return BRW_ARCHITECTURE_REGISTER_FILE;
41 case FIXED_GRF:
42 case VGRF:
43 return BRW_GENERAL_REGISTER_FILE;
44 case MRF:
45 return BRW_MESSAGE_REGISTER_FILE;
46 case IMM:
47 return BRW_IMMEDIATE_VALUE;
48 case BAD_FILE:
49 case ATTR:
50 case UNIFORM:
51 unreachable("not reached");
52 }
53 return BRW_ARCHITECTURE_REGISTER_FILE;
54 }
55
56 static struct brw_reg
brw_reg_from_fs_reg(const struct intel_device_info * devinfo,fs_inst * inst,fs_reg * reg,bool compressed)57 brw_reg_from_fs_reg(const struct intel_device_info *devinfo, fs_inst *inst,
58 fs_reg *reg, bool compressed)
59 {
60 struct brw_reg brw_reg;
61
62 switch (reg->file) {
63 case MRF:
64 assert((reg->nr & ~BRW_MRF_COMPR4) < BRW_MAX_MRF(devinfo->ver));
65 FALLTHROUGH;
66 case VGRF:
67 if (reg->stride == 0) {
68 brw_reg = brw_vec1_reg(brw_file_from_reg(reg), reg->nr, 0);
69 } else {
70 /* From the Haswell PRM:
71 *
72 * "VertStride must be used to cross GRF register boundaries. This
73 * rule implies that elements within a 'Width' cannot cross GRF
74 * boundaries."
75 *
76 * The maximum width value that could satisfy this restriction is:
77 */
78 const unsigned reg_width = REG_SIZE / (reg->stride * type_sz(reg->type));
79
80 /* Because the hardware can only split source regions at a whole
81 * multiple of width during decompression (i.e. vertically), clamp
82 * the value obtained above to the physical execution size of a
83 * single decompressed chunk of the instruction:
84 */
85 const unsigned phys_width = compressed ? inst->exec_size / 2 :
86 inst->exec_size;
87
88 const unsigned max_hw_width = 16;
89
90 /* XXX - The equation above is strictly speaking not correct on
91 * hardware that supports unbalanced GRF writes -- On Gfx9+
92 * each decompressed chunk of the instruction may have a
93 * different execution size when the number of components
94 * written to each destination GRF is not the same.
95 */
96 if (reg->stride > 4) {
97 assert(reg != &inst->dst);
98 assert(reg->stride * type_sz(reg->type) <= REG_SIZE);
99 brw_reg = brw_vecn_reg(1, brw_file_from_reg(reg), reg->nr, 0);
100 brw_reg = stride(brw_reg, reg->stride, 1, 0);
101 } else {
102 const unsigned width = MIN3(reg_width, phys_width, max_hw_width);
103 brw_reg = brw_vecn_reg(width, brw_file_from_reg(reg), reg->nr, 0);
104 brw_reg = stride(brw_reg, width * reg->stride, width, reg->stride);
105 }
106
107 if (devinfo->verx10 == 70) {
108 /* From the IvyBridge PRM (EU Changes by Processor Generation, page 13):
109 * "Each DF (Double Float) operand uses an element size of 4 rather
110 * than 8 and all regioning parameters are twice what the values
111 * would be based on the true element size: ExecSize, Width,
112 * HorzStride, and VertStride. Each DF operand uses a pair of
113 * channels and all masking and swizzing should be adjusted
114 * appropriately."
115 *
116 * From the IvyBridge PRM (Special Requirements for Handling Double
117 * Precision Data Types, page 71):
118 * "In Align1 mode, all regioning parameters like stride, execution
119 * size, and width must use the syntax of a pair of packed
120 * floats. The offsets for these data types must be 64-bit
121 * aligned. The execution size and regioning parameters are in terms
122 * of floats."
123 *
124 * Summarized: when handling DF-typed arguments, ExecSize,
125 * VertStride, and Width must be doubled.
126 *
127 * It applies to BayTrail too.
128 */
129 if (type_sz(reg->type) == 8) {
130 brw_reg.width++;
131 if (brw_reg.vstride > 0)
132 brw_reg.vstride++;
133 assert(brw_reg.hstride == BRW_HORIZONTAL_STRIDE_1);
134 }
135
136 /* When converting from DF->F, we set the destination stride to 2
137 * because each d2f conversion implicitly writes 2 floats, being
138 * the first one the converted value. IVB/BYT actually writes two
139 * F components per SIMD channel, and every other component is
140 * filled with garbage.
141 */
142 if (reg == &inst->dst && get_exec_type_size(inst) == 8 &&
143 type_sz(inst->dst.type) < 8) {
144 assert(brw_reg.hstride > BRW_HORIZONTAL_STRIDE_1);
145 brw_reg.hstride--;
146 }
147 }
148 }
149
150 brw_reg = retype(brw_reg, reg->type);
151 brw_reg = byte_offset(brw_reg, reg->offset);
152 brw_reg.abs = reg->abs;
153 brw_reg.negate = reg->negate;
154 break;
155 case ARF:
156 case FIXED_GRF:
157 case IMM:
158 assert(reg->offset == 0);
159 brw_reg = reg->as_brw_reg();
160 break;
161 case BAD_FILE:
162 /* Probably unused. */
163 brw_reg = brw_null_reg();
164 break;
165 case ATTR:
166 case UNIFORM:
167 unreachable("not reached");
168 }
169
170 /* On HSW+, scalar DF sources can be accessed using the normal <0,1,0>
171 * region, but on IVB and BYT DF regions must be programmed in terms of
172 * floats. A <0,2,1> region accomplishes this.
173 */
174 if (devinfo->verx10 == 70 &&
175 type_sz(reg->type) == 8 &&
176 brw_reg.vstride == BRW_VERTICAL_STRIDE_0 &&
177 brw_reg.width == BRW_WIDTH_1 &&
178 brw_reg.hstride == BRW_HORIZONTAL_STRIDE_0) {
179 brw_reg.width = BRW_WIDTH_2;
180 brw_reg.hstride = BRW_HORIZONTAL_STRIDE_1;
181 }
182
183 return brw_reg;
184 }
185
fs_generator(const struct brw_compiler * compiler,void * log_data,void * mem_ctx,struct brw_stage_prog_data * prog_data,bool runtime_check_aads_emit,gl_shader_stage stage)186 fs_generator::fs_generator(const struct brw_compiler *compiler, void *log_data,
187 void *mem_ctx,
188 struct brw_stage_prog_data *prog_data,
189 bool runtime_check_aads_emit,
190 gl_shader_stage stage)
191
192 : compiler(compiler), log_data(log_data),
193 devinfo(compiler->devinfo),
194 prog_data(prog_data), dispatch_width(0),
195 runtime_check_aads_emit(runtime_check_aads_emit), debug_flag(false),
196 shader_name(NULL), stage(stage), mem_ctx(mem_ctx)
197 {
198 p = rzalloc(mem_ctx, struct brw_codegen);
199 brw_init_codegen(devinfo, p, mem_ctx);
200
201 /* In the FS code generator, we are very careful to ensure that we always
202 * set the right execution size so we don't need the EU code to "help" us
203 * by trying to infer it. Sometimes, it infers the wrong thing.
204 */
205 p->automatic_exec_sizes = false;
206 }
207
~fs_generator()208 fs_generator::~fs_generator()
209 {
210 }
211
212 class ip_record : public exec_node {
213 public:
214 DECLARE_RALLOC_CXX_OPERATORS(ip_record)
215
ip_record(int ip)216 ip_record(int ip)
217 {
218 this->ip = ip;
219 }
220
221 int ip;
222 };
223
224 bool
patch_halt_jumps()225 fs_generator::patch_halt_jumps()
226 {
227 if (this->discard_halt_patches.is_empty())
228 return false;
229
230 int scale = brw_jump_scale(p->devinfo);
231
232 if (devinfo->ver >= 6) {
233 /* There is a somewhat strange undocumented requirement of using
234 * HALT, according to the simulator. If some channel has HALTed to
235 * a particular UIP, then by the end of the program, every channel
236 * must have HALTed to that UIP. Furthermore, the tracking is a
237 * stack, so you can't do the final halt of a UIP after starting
238 * halting to a new UIP.
239 *
240 * Symptoms of not emitting this instruction on actual hardware
241 * included GPU hangs and sparkly rendering on the piglit discard
242 * tests.
243 */
244 brw_inst *last_halt = brw_HALT(p);
245 brw_inst_set_uip(p->devinfo, last_halt, 1 * scale);
246 brw_inst_set_jip(p->devinfo, last_halt, 1 * scale);
247 }
248
249 int ip = p->nr_insn;
250
251 foreach_in_list(ip_record, patch_ip, &discard_halt_patches) {
252 brw_inst *patch = &p->store[patch_ip->ip];
253
254 assert(brw_inst_opcode(p->devinfo, patch) == BRW_OPCODE_HALT);
255 if (devinfo->ver >= 6) {
256 /* HALT takes a half-instruction distance from the pre-incremented IP. */
257 brw_inst_set_uip(p->devinfo, patch, (ip - patch_ip->ip) * scale);
258 } else {
259 brw_set_src1(p, patch, brw_imm_d((ip - patch_ip->ip) * scale));
260 }
261 }
262
263 this->discard_halt_patches.make_empty();
264
265 if (devinfo->ver < 6) {
266 /* From the g965 PRM:
267 *
268 * "As DMask is not automatically reloaded into AMask upon completion
269 * of this instruction, software has to manually restore AMask upon
270 * completion."
271 *
272 * DMask lives in the bottom 16 bits of sr0.1.
273 */
274 brw_inst *reset = brw_MOV(p, brw_mask_reg(BRW_AMASK),
275 retype(brw_sr0_reg(1), BRW_REGISTER_TYPE_UW));
276 brw_inst_set_exec_size(devinfo, reset, BRW_EXECUTE_1);
277 brw_inst_set_mask_control(devinfo, reset, BRW_MASK_DISABLE);
278 brw_inst_set_qtr_control(devinfo, reset, BRW_COMPRESSION_NONE);
279 brw_inst_set_thread_control(devinfo, reset, BRW_THREAD_SWITCH);
280 }
281
282 if (devinfo->ver == 4 && !devinfo->is_g4x) {
283 /* From the g965 PRM:
284 *
285 * "[DevBW, DevCL] Erratum: The subfields in mask stack register are
286 * reset to zero during graphics reset, however, they are not
287 * initialized at thread dispatch. These subfields will retain the
288 * values from the previous thread. Software should make sure the
289 * mask stack is empty (reset to zero) before terminating the thread.
290 * In case that this is not practical, software may have to reset the
291 * mask stack at the beginning of each kernel, which will impact the
292 * performance."
293 *
294 * Luckily we can rely on:
295 *
296 * "[DevBW, DevCL] This register access restriction is not
297 * applicable, hardware does ensure execution pipeline coherency,
298 * when a mask stack register is used as an explicit source and/or
299 * destination."
300 */
301 brw_push_insn_state(p);
302 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
303 brw_set_default_compression_control(p, BRW_COMPRESSION_NONE);
304
305 brw_set_default_exec_size(p, BRW_EXECUTE_2);
306 brw_MOV(p, vec2(brw_mask_stack_depth_reg(0)), brw_imm_uw(0));
307
308 brw_set_default_exec_size(p, BRW_EXECUTE_16);
309 /* Reset the if stack. */
310 brw_MOV(p, retype(brw_mask_stack_reg(0), BRW_REGISTER_TYPE_UW),
311 brw_imm_uw(0));
312
313 brw_pop_insn_state(p);
314 }
315
316 return true;
317 }
318
319 void
generate_send(fs_inst * inst,struct brw_reg dst,struct brw_reg desc,struct brw_reg ex_desc,struct brw_reg payload,struct brw_reg payload2)320 fs_generator::generate_send(fs_inst *inst,
321 struct brw_reg dst,
322 struct brw_reg desc,
323 struct brw_reg ex_desc,
324 struct brw_reg payload,
325 struct brw_reg payload2)
326 {
327 const bool dst_is_null = dst.file == BRW_ARCHITECTURE_REGISTER_FILE &&
328 dst.nr == BRW_ARF_NULL;
329 const unsigned rlen = dst_is_null ? 0 : inst->size_written / REG_SIZE;
330
331 uint32_t desc_imm = inst->desc |
332 brw_message_desc(devinfo, inst->mlen, rlen, inst->header_size);
333
334 uint32_t ex_desc_imm = inst->ex_desc |
335 brw_message_ex_desc(devinfo, inst->ex_mlen);
336
337 if (ex_desc.file != BRW_IMMEDIATE_VALUE || ex_desc.ud || ex_desc_imm) {
338 /* If we have any sort of extended descriptor, then we need SENDS. This
339 * also covers the dual-payload case because ex_mlen goes in ex_desc.
340 */
341 brw_send_indirect_split_message(p, inst->sfid, dst, payload, payload2,
342 desc, desc_imm, ex_desc, ex_desc_imm,
343 inst->eot);
344 if (inst->check_tdr)
345 brw_inst_set_opcode(p->devinfo, brw_last_inst,
346 devinfo->ver >= 12 ? BRW_OPCODE_SENDC : BRW_OPCODE_SENDSC);
347 } else {
348 brw_send_indirect_message(p, inst->sfid, dst, payload, desc, desc_imm,
349 inst->eot);
350 if (inst->check_tdr)
351 brw_inst_set_opcode(p->devinfo, brw_last_inst, BRW_OPCODE_SENDC);
352 }
353 }
354
355 void
fire_fb_write(fs_inst * inst,struct brw_reg payload,struct brw_reg implied_header,GLuint nr)356 fs_generator::fire_fb_write(fs_inst *inst,
357 struct brw_reg payload,
358 struct brw_reg implied_header,
359 GLuint nr)
360 {
361 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
362
363 if (devinfo->ver < 6) {
364 brw_push_insn_state(p);
365 brw_set_default_exec_size(p, BRW_EXECUTE_8);
366 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
367 brw_set_default_predicate_control(p, BRW_PREDICATE_NONE);
368 brw_set_default_compression_control(p, BRW_COMPRESSION_NONE);
369 brw_MOV(p, offset(retype(payload, BRW_REGISTER_TYPE_UD), 1),
370 offset(retype(implied_header, BRW_REGISTER_TYPE_UD), 1));
371 brw_pop_insn_state(p);
372 }
373
374 uint32_t msg_control = brw_fb_write_msg_control(inst, prog_data);
375
376 /* We assume render targets start at 0, because headerless FB write
377 * messages set "Render Target Index" to 0. Using a different binding
378 * table index would make it impossible to use headerless messages.
379 */
380 const uint32_t surf_index = inst->target;
381
382 brw_inst *insn = brw_fb_WRITE(p,
383 payload,
384 retype(implied_header, BRW_REGISTER_TYPE_UW),
385 msg_control,
386 surf_index,
387 nr,
388 0,
389 inst->eot,
390 inst->last_rt,
391 inst->header_size != 0);
392
393 if (devinfo->ver >= 6)
394 brw_inst_set_rt_slot_group(devinfo, insn, inst->group / 16);
395 }
396
397 void
generate_fb_write(fs_inst * inst,struct brw_reg payload)398 fs_generator::generate_fb_write(fs_inst *inst, struct brw_reg payload)
399 {
400 if (devinfo->verx10 <= 70) {
401 brw_set_default_predicate_control(p, BRW_PREDICATE_NONE);
402 brw_set_default_flag_reg(p, 0, 0);
403 }
404
405 const struct brw_reg implied_header =
406 devinfo->ver < 6 ? payload : brw_null_reg();
407
408 if (inst->base_mrf >= 0)
409 payload = brw_message_reg(inst->base_mrf);
410
411 if (!runtime_check_aads_emit) {
412 fire_fb_write(inst, payload, implied_header, inst->mlen);
413 } else {
414 /* This can only happen in gen < 6 */
415 assert(devinfo->ver < 6);
416
417 struct brw_reg v1_null_ud = vec1(retype(brw_null_reg(), BRW_REGISTER_TYPE_UD));
418
419 /* Check runtime bit to detect if we have to send AA data or not */
420 brw_push_insn_state(p);
421 brw_set_default_compression_control(p, BRW_COMPRESSION_NONE);
422 brw_set_default_exec_size(p, BRW_EXECUTE_1);
423 brw_AND(p,
424 v1_null_ud,
425 retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_UD),
426 brw_imm_ud(1<<26));
427 brw_inst_set_cond_modifier(p->devinfo, brw_last_inst, BRW_CONDITIONAL_NZ);
428
429 int jmp = brw_JMPI(p, brw_imm_ud(0), BRW_PREDICATE_NORMAL) - p->store;
430 brw_pop_insn_state(p);
431 {
432 /* Don't send AA data */
433 fire_fb_write(inst, offset(payload, 1), implied_header, inst->mlen-1);
434 }
435 brw_land_fwd_jump(p, jmp);
436 fire_fb_write(inst, payload, implied_header, inst->mlen);
437 }
438 }
439
440 void
generate_fb_read(fs_inst * inst,struct brw_reg dst,struct brw_reg payload)441 fs_generator::generate_fb_read(fs_inst *inst, struct brw_reg dst,
442 struct brw_reg payload)
443 {
444 assert(inst->size_written % REG_SIZE == 0);
445 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
446 /* We assume that render targets start at binding table index 0. */
447 const unsigned surf_index = inst->target;
448
449 gfx9_fb_READ(p, dst, payload, surf_index,
450 inst->header_size, inst->size_written / REG_SIZE,
451 prog_data->persample_dispatch);
452 }
453
454 void
generate_mov_indirect(fs_inst * inst,struct brw_reg dst,struct brw_reg reg,struct brw_reg indirect_byte_offset)455 fs_generator::generate_mov_indirect(fs_inst *inst,
456 struct brw_reg dst,
457 struct brw_reg reg,
458 struct brw_reg indirect_byte_offset)
459 {
460 assert(indirect_byte_offset.type == BRW_REGISTER_TYPE_UD);
461 assert(indirect_byte_offset.file == BRW_GENERAL_REGISTER_FILE);
462 assert(!reg.abs && !reg.negate);
463 assert(reg.type == dst.type);
464
465 unsigned imm_byte_offset = reg.nr * REG_SIZE + reg.subnr;
466
467 if (indirect_byte_offset.file == BRW_IMMEDIATE_VALUE) {
468 imm_byte_offset += indirect_byte_offset.ud;
469
470 reg.nr = imm_byte_offset / REG_SIZE;
471 reg.subnr = imm_byte_offset % REG_SIZE;
472 if (type_sz(reg.type) > 4 && !devinfo->has_64bit_float) {
473 brw_MOV(p, subscript(dst, BRW_REGISTER_TYPE_D, 0),
474 subscript(reg, BRW_REGISTER_TYPE_D, 0));
475 brw_set_default_swsb(p, tgl_swsb_null());
476 brw_MOV(p, subscript(dst, BRW_REGISTER_TYPE_D, 1),
477 subscript(reg, BRW_REGISTER_TYPE_D, 1));
478 } else {
479 brw_MOV(p, dst, reg);
480 }
481 } else {
482 /* Prior to Broadwell, there are only 8 address registers. */
483 assert(inst->exec_size <= 8 || devinfo->ver >= 8);
484
485 /* We use VxH indirect addressing, clobbering a0.0 through a0.7. */
486 struct brw_reg addr = vec8(brw_address_reg(0));
487
488 /* Whether we can use destination dependency control without running the
489 * risk of a hang if an instruction gets shot down.
490 */
491 const bool use_dep_ctrl = !inst->predicate &&
492 inst->exec_size == dispatch_width;
493 brw_inst *insn;
494
495 /* The destination stride of an instruction (in bytes) must be greater
496 * than or equal to the size of the rest of the instruction. Since the
497 * address register is of type UW, we can't use a D-type instruction.
498 * In order to get around this, re retype to UW and use a stride.
499 */
500 indirect_byte_offset =
501 retype(spread(indirect_byte_offset, 2), BRW_REGISTER_TYPE_UW);
502
503 /* There are a number of reasons why we don't use the base offset here.
504 * One reason is that the field is only 9 bits which means we can only
505 * use it to access the first 16 GRFs. Also, from the Haswell PRM
506 * section "Register Region Restrictions":
507 *
508 * "The lower bits of the AddressImmediate must not overflow to
509 * change the register address. The lower 5 bits of Address
510 * Immediate when added to lower 5 bits of address register gives
511 * the sub-register offset. The upper bits of Address Immediate
512 * when added to upper bits of address register gives the register
513 * address. Any overflow from sub-register offset is dropped."
514 *
515 * Since the indirect may cause us to cross a register boundary, this
516 * makes the base offset almost useless. We could try and do something
517 * clever where we use a actual base offset if base_offset % 32 == 0 but
518 * that would mean we were generating different code depending on the
519 * base offset. Instead, for the sake of consistency, we'll just do the
520 * add ourselves. This restriction is only listed in the Haswell PRM
521 * but empirical testing indicates that it applies on all older
522 * generations and is lifted on Broadwell.
523 *
524 * In the end, while base_offset is nice to look at in the generated
525 * code, using it saves us 0 instructions and would require quite a bit
526 * of case-by-case work. It's just not worth it.
527 *
528 * Due to a hardware bug some platforms (particularly Gfx11+) seem to
529 * require the address components of all channels to be valid whether or
530 * not they're active, which causes issues if we use VxH addressing
531 * under non-uniform control-flow. We can easily work around that by
532 * initializing the whole address register with a pipelined NoMask MOV
533 * instruction.
534 */
535 if (devinfo->ver >= 7) {
536 insn = brw_MOV(p, addr, brw_imm_uw(imm_byte_offset));
537 brw_inst_set_mask_control(devinfo, insn, BRW_MASK_DISABLE);
538 brw_inst_set_pred_control(devinfo, insn, BRW_PREDICATE_NONE);
539 if (devinfo->ver >= 12)
540 brw_set_default_swsb(p, tgl_swsb_null());
541 else
542 brw_inst_set_no_dd_clear(devinfo, insn, use_dep_ctrl);
543 }
544
545 insn = brw_ADD(p, addr, indirect_byte_offset, brw_imm_uw(imm_byte_offset));
546 if (devinfo->ver >= 12)
547 brw_set_default_swsb(p, tgl_swsb_regdist(1));
548 else if (devinfo->ver >= 7)
549 brw_inst_set_no_dd_check(devinfo, insn, use_dep_ctrl);
550
551 if (type_sz(reg.type) > 4 &&
552 ((devinfo->verx10 == 70) ||
553 devinfo->is_cherryview || intel_device_info_is_9lp(devinfo) ||
554 !devinfo->has_64bit_float || devinfo->verx10 >= 125)) {
555 /* IVB has an issue (which we found empirically) where it reads two
556 * address register components per channel for indirectly addressed
557 * 64-bit sources.
558 *
559 * From the Cherryview PRM Vol 7. "Register Region Restrictions":
560 *
561 * "When source or destination datatype is 64b or operation is
562 * integer DWord multiply, indirect addressing must not be used."
563 *
564 * To work around both of these, we do two integer MOVs insead of one
565 * 64-bit MOV. Because no double value should ever cross a register
566 * boundary, it's safe to use the immediate offset in the indirect
567 * here to handle adding 4 bytes to the offset and avoid the extra
568 * ADD to the register file.
569 */
570 brw_MOV(p, subscript(dst, BRW_REGISTER_TYPE_D, 0),
571 retype(brw_VxH_indirect(0, 0), BRW_REGISTER_TYPE_D));
572 brw_set_default_swsb(p, tgl_swsb_null());
573 brw_MOV(p, subscript(dst, BRW_REGISTER_TYPE_D, 1),
574 retype(brw_VxH_indirect(0, 4), BRW_REGISTER_TYPE_D));
575 } else {
576 struct brw_reg ind_src = brw_VxH_indirect(0, 0);
577
578 brw_inst *mov = brw_MOV(p, dst, retype(ind_src, reg.type));
579
580 if (devinfo->ver == 6 && dst.file == BRW_MESSAGE_REGISTER_FILE &&
581 !inst->get_next()->is_tail_sentinel() &&
582 ((fs_inst *)inst->get_next())->mlen > 0) {
583 /* From the Sandybridge PRM:
584 *
585 * "[Errata: DevSNB(SNB)] If MRF register is updated by any
586 * instruction that “indexed/indirect” source AND is followed
587 * by a send, the instruction requires a “Switch”. This is to
588 * avoid race condition where send may dispatch before MRF is
589 * updated."
590 */
591 brw_inst_set_thread_control(devinfo, mov, BRW_THREAD_SWITCH);
592 }
593 }
594 }
595 }
596
597 void
generate_shuffle(fs_inst * inst,struct brw_reg dst,struct brw_reg src,struct brw_reg idx)598 fs_generator::generate_shuffle(fs_inst *inst,
599 struct brw_reg dst,
600 struct brw_reg src,
601 struct brw_reg idx)
602 {
603 assert(src.file == BRW_GENERAL_REGISTER_FILE);
604 assert(!src.abs && !src.negate);
605
606 /* Ivy bridge has some strange behavior that makes this a real pain to
607 * implement for 64-bit values so we just don't bother.
608 */
609 assert(devinfo->verx10 >= 75 || type_sz(src.type) <= 4);
610
611 /* Because we're using the address register, we're limited to 8-wide
612 * execution on gfx7. On gfx8, we're limited to 16-wide by the address
613 * register file and 8-wide for 64-bit types. We could try and make this
614 * instruction splittable higher up in the compiler but that gets weird
615 * because it reads all of the channels regardless of execution size. It's
616 * easier just to split it here.
617 */
618 const unsigned lower_width =
619 (devinfo->ver <= 7 || type_sz(src.type) > 4) ?
620 8 : MIN2(16, inst->exec_size);
621
622 brw_set_default_exec_size(p, cvt(lower_width) - 1);
623 for (unsigned group = 0; group < inst->exec_size; group += lower_width) {
624 brw_set_default_group(p, group);
625
626 if ((src.vstride == 0 && src.hstride == 0) ||
627 idx.file == BRW_IMMEDIATE_VALUE) {
628 /* Trivial, the source is already uniform or the index is a constant.
629 * We will typically not get here if the optimizer is doing its job,
630 * but asserting would be mean.
631 */
632 const unsigned i = idx.file == BRW_IMMEDIATE_VALUE ? idx.ud : 0;
633 struct brw_reg group_src = stride(suboffset(src, i), 0, 1, 0);
634 struct brw_reg group_dst = suboffset(dst, group);
635 if (type_sz(src.type) > 4 && !devinfo->has_64bit_float) {
636 brw_MOV(p, subscript(group_dst, BRW_REGISTER_TYPE_UD, 0),
637 subscript(group_src, BRW_REGISTER_TYPE_UD, 0));
638 brw_set_default_swsb(p, tgl_swsb_null());
639 brw_MOV(p, subscript(group_dst, BRW_REGISTER_TYPE_UD, 1),
640 subscript(group_src, BRW_REGISTER_TYPE_UD, 1));
641 } else {
642 brw_MOV(p, group_dst, group_src);
643 }
644 } else {
645 /* We use VxH indirect addressing, clobbering a0.0 through a0.7. */
646 struct brw_reg addr = vec8(brw_address_reg(0));
647
648 struct brw_reg group_idx = suboffset(idx, group);
649
650 if (lower_width == 8 && group_idx.width == BRW_WIDTH_16) {
651 /* Things get grumpy if the register is too wide. */
652 group_idx.width--;
653 group_idx.vstride--;
654 }
655
656 assert(type_sz(group_idx.type) <= 4);
657 if (type_sz(group_idx.type) == 4) {
658 /* The destination stride of an instruction (in bytes) must be
659 * greater than or equal to the size of the rest of the
660 * instruction. Since the address register is of type UW, we
661 * can't use a D-type instruction. In order to get around this,
662 * re retype to UW and use a stride.
663 */
664 group_idx = retype(spread(group_idx, 2), BRW_REGISTER_TYPE_W);
665 }
666
667 uint32_t src_start_offset = src.nr * REG_SIZE + src.subnr;
668
669 /* From the Haswell PRM:
670 *
671 * "When a sequence of NoDDChk and NoDDClr are used, the last
672 * instruction that completes the scoreboard clear must have a
673 * non-zero execution mask. This means, if any kind of predication
674 * can change the execution mask or channel enable of the last
675 * instruction, the optimization must be avoided. This is to
676 * avoid instructions being shot down the pipeline when no writes
677 * are required."
678 *
679 * Whenever predication is enabled or the instructions being emitted
680 * aren't the full width, it's possible that it will be run with zero
681 * channels enabled so we can't use dependency control without
682 * running the risk of a hang if an instruction gets shot down.
683 */
684 const bool use_dep_ctrl = !inst->predicate &&
685 lower_width == dispatch_width;
686 brw_inst *insn;
687
688 /* Due to a hardware bug some platforms (particularly Gfx11+) seem
689 * to require the address components of all channels to be valid
690 * whether or not they're active, which causes issues if we use VxH
691 * addressing under non-uniform control-flow. We can easily work
692 * around that by initializing the whole address register with a
693 * pipelined NoMask MOV instruction.
694 */
695 insn = brw_MOV(p, addr, brw_imm_uw(src_start_offset));
696 brw_inst_set_mask_control(devinfo, insn, BRW_MASK_DISABLE);
697 brw_inst_set_pred_control(devinfo, insn, BRW_PREDICATE_NONE);
698 if (devinfo->ver >= 12)
699 brw_set_default_swsb(p, tgl_swsb_null());
700 else
701 brw_inst_set_no_dd_clear(devinfo, insn, use_dep_ctrl);
702
703 /* Take into account the component size and horizontal stride. */
704 assert(src.vstride == src.hstride + src.width);
705 insn = brw_SHL(p, addr, group_idx,
706 brw_imm_uw(util_logbase2(type_sz(src.type)) +
707 src.hstride - 1));
708 if (devinfo->ver >= 12)
709 brw_set_default_swsb(p, tgl_swsb_regdist(1));
710 else
711 brw_inst_set_no_dd_check(devinfo, insn, use_dep_ctrl);
712
713 /* Add on the register start offset */
714 brw_ADD(p, addr, addr, brw_imm_uw(src_start_offset));
715
716 if (type_sz(src.type) > 4 &&
717 ((devinfo->verx10 == 70) ||
718 devinfo->is_cherryview || intel_device_info_is_9lp(devinfo) ||
719 !devinfo->has_64bit_float)) {
720 /* IVB has an issue (which we found empirically) where it reads
721 * two address register components per channel for indirectly
722 * addressed 64-bit sources.
723 *
724 * From the Cherryview PRM Vol 7. "Register Region Restrictions":
725 *
726 * "When source or destination datatype is 64b or operation is
727 * integer DWord multiply, indirect addressing must not be
728 * used."
729 *
730 * To work around both of these, we do two integer MOVs insead of
731 * one 64-bit MOV. Because no double value should ever cross a
732 * register boundary, it's safe to use the immediate offset in the
733 * indirect here to handle adding 4 bytes to the offset and avoid
734 * the extra ADD to the register file.
735 */
736 struct brw_reg gdst = suboffset(dst, group);
737 struct brw_reg dst_d = retype(spread(gdst, 2),
738 BRW_REGISTER_TYPE_D);
739 assert(dst.hstride == 1);
740 brw_MOV(p, dst_d,
741 retype(brw_VxH_indirect(0, 0), BRW_REGISTER_TYPE_D));
742 brw_set_default_swsb(p, tgl_swsb_null());
743 brw_MOV(p, byte_offset(dst_d, 4),
744 retype(brw_VxH_indirect(0, 4), BRW_REGISTER_TYPE_D));
745 } else {
746 brw_MOV(p, suboffset(dst, group * dst.hstride),
747 retype(brw_VxH_indirect(0, 0), src.type));
748 }
749 }
750
751 brw_set_default_swsb(p, tgl_swsb_null());
752 }
753 }
754
755 void
generate_quad_swizzle(const fs_inst * inst,struct brw_reg dst,struct brw_reg src,unsigned swiz)756 fs_generator::generate_quad_swizzle(const fs_inst *inst,
757 struct brw_reg dst, struct brw_reg src,
758 unsigned swiz)
759 {
760 /* Requires a quad. */
761 assert(inst->exec_size >= 4);
762
763 if (src.file == BRW_IMMEDIATE_VALUE ||
764 has_scalar_region(src)) {
765 /* The value is uniform across all channels */
766 brw_MOV(p, dst, src);
767
768 } else if (devinfo->ver < 11 && type_sz(src.type) == 4) {
769 /* This only works on 8-wide 32-bit values */
770 assert(inst->exec_size == 8);
771 assert(src.hstride == BRW_HORIZONTAL_STRIDE_1);
772 assert(src.vstride == src.width + 1);
773 brw_set_default_access_mode(p, BRW_ALIGN_16);
774 struct brw_reg swiz_src = stride(src, 4, 4, 1);
775 swiz_src.swizzle = swiz;
776 brw_MOV(p, dst, swiz_src);
777
778 } else {
779 assert(src.hstride == BRW_HORIZONTAL_STRIDE_1);
780 assert(src.vstride == src.width + 1);
781 const struct brw_reg src_0 = suboffset(src, BRW_GET_SWZ(swiz, 0));
782
783 switch (swiz) {
784 case BRW_SWIZZLE_XXXX:
785 case BRW_SWIZZLE_YYYY:
786 case BRW_SWIZZLE_ZZZZ:
787 case BRW_SWIZZLE_WWWW:
788 brw_MOV(p, dst, stride(src_0, 4, 4, 0));
789 break;
790
791 case BRW_SWIZZLE_XXZZ:
792 case BRW_SWIZZLE_YYWW:
793 brw_MOV(p, dst, stride(src_0, 2, 2, 0));
794 break;
795
796 case BRW_SWIZZLE_XYXY:
797 case BRW_SWIZZLE_ZWZW:
798 assert(inst->exec_size == 4);
799 brw_MOV(p, dst, stride(src_0, 0, 2, 1));
800 break;
801
802 default:
803 assert(inst->force_writemask_all);
804 brw_set_default_exec_size(p, cvt(inst->exec_size / 4) - 1);
805
806 for (unsigned c = 0; c < 4; c++) {
807 brw_inst *insn = brw_MOV(
808 p, stride(suboffset(dst, c),
809 4 * inst->dst.stride, 1, 4 * inst->dst.stride),
810 stride(suboffset(src, BRW_GET_SWZ(swiz, c)), 4, 1, 0));
811
812 if (devinfo->ver < 12) {
813 brw_inst_set_no_dd_clear(devinfo, insn, c < 3);
814 brw_inst_set_no_dd_check(devinfo, insn, c > 0);
815 }
816
817 brw_set_default_swsb(p, tgl_swsb_null());
818 }
819
820 break;
821 }
822 }
823 }
824
825 void
generate_urb_read(fs_inst * inst,struct brw_reg dst,struct brw_reg header)826 fs_generator::generate_urb_read(fs_inst *inst,
827 struct brw_reg dst,
828 struct brw_reg header)
829 {
830 assert(inst->size_written % REG_SIZE == 0);
831 assert(header.file == BRW_GENERAL_REGISTER_FILE);
832 assert(header.type == BRW_REGISTER_TYPE_UD);
833
834 brw_inst *send = brw_next_insn(p, BRW_OPCODE_SEND);
835 brw_set_dest(p, send, retype(dst, BRW_REGISTER_TYPE_UD));
836 brw_set_src0(p, send, header);
837 if (devinfo->ver < 12)
838 brw_set_src1(p, send, brw_imm_ud(0u));
839
840 brw_inst_set_sfid(p->devinfo, send, BRW_SFID_URB);
841 brw_inst_set_urb_opcode(p->devinfo, send, GFX8_URB_OPCODE_SIMD8_READ);
842
843 if (inst->opcode == SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT)
844 brw_inst_set_urb_per_slot_offset(p->devinfo, send, true);
845
846 brw_inst_set_mlen(p->devinfo, send, inst->mlen);
847 brw_inst_set_rlen(p->devinfo, send, inst->size_written / REG_SIZE);
848 brw_inst_set_header_present(p->devinfo, send, true);
849 brw_inst_set_urb_global_offset(p->devinfo, send, inst->offset);
850 }
851
852 void
generate_urb_write(fs_inst * inst,struct brw_reg payload)853 fs_generator::generate_urb_write(fs_inst *inst, struct brw_reg payload)
854 {
855 brw_inst *insn = brw_next_insn(p, BRW_OPCODE_SEND);
856
857 brw_set_dest(p, insn, brw_null_reg());
858 brw_set_src0(p, insn, payload);
859 if (devinfo->ver < 12)
860 brw_set_src1(p, insn, brw_imm_ud(0u));
861
862 brw_inst_set_sfid(p->devinfo, insn, BRW_SFID_URB);
863 brw_inst_set_urb_opcode(p->devinfo, insn, GFX8_URB_OPCODE_SIMD8_WRITE);
864
865 if (inst->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT ||
866 inst->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT)
867 brw_inst_set_urb_per_slot_offset(p->devinfo, insn, true);
868
869 if (inst->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED ||
870 inst->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT)
871 brw_inst_set_urb_channel_mask_present(p->devinfo, insn, true);
872
873 brw_inst_set_mlen(p->devinfo, insn, inst->mlen);
874 brw_inst_set_rlen(p->devinfo, insn, 0);
875 brw_inst_set_eot(p->devinfo, insn, inst->eot);
876 brw_inst_set_header_present(p->devinfo, insn, true);
877 brw_inst_set_urb_global_offset(p->devinfo, insn, inst->offset);
878 }
879
880 void
generate_cs_terminate(fs_inst * inst,struct brw_reg payload)881 fs_generator::generate_cs_terminate(fs_inst *inst, struct brw_reg payload)
882 {
883 struct brw_inst *insn;
884
885 insn = brw_next_insn(p, BRW_OPCODE_SEND);
886
887 brw_set_dest(p, insn, retype(brw_null_reg(), BRW_REGISTER_TYPE_UW));
888 brw_set_src0(p, insn, retype(payload, BRW_REGISTER_TYPE_UW));
889 if (devinfo->ver < 12)
890 brw_set_src1(p, insn, brw_imm_ud(0u));
891
892 /* For XeHP and newer send a message to the message gateway to terminate a
893 * compute shader. For older devices, a message is sent to the thread
894 * spawner.
895 */
896 if (devinfo->verx10 >= 125)
897 brw_inst_set_sfid(devinfo, insn, BRW_SFID_MESSAGE_GATEWAY);
898 else
899 brw_inst_set_sfid(devinfo, insn, BRW_SFID_THREAD_SPAWNER);
900 brw_inst_set_mlen(devinfo, insn, 1);
901 brw_inst_set_rlen(devinfo, insn, 0);
902 brw_inst_set_eot(devinfo, insn, inst->eot);
903 brw_inst_set_header_present(devinfo, insn, false);
904
905 brw_inst_set_ts_opcode(devinfo, insn, 0); /* Dereference resource */
906
907 if (devinfo->ver < 11) {
908 brw_inst_set_ts_request_type(devinfo, insn, 0); /* Root thread */
909
910 /* Note that even though the thread has a URB resource associated with it,
911 * we set the "do not dereference URB" bit, because the URB resource is
912 * managed by the fixed-function unit, so it will free it automatically.
913 */
914 brw_inst_set_ts_resource_select(devinfo, insn, 1); /* Do not dereference URB */
915 }
916
917 brw_inst_set_mask_control(devinfo, insn, BRW_MASK_DISABLE);
918 }
919
920 void
generate_barrier(fs_inst *,struct brw_reg src)921 fs_generator::generate_barrier(fs_inst *, struct brw_reg src)
922 {
923 brw_barrier(p, src);
924 if (devinfo->ver >= 12) {
925 brw_set_default_swsb(p, tgl_swsb_null());
926 brw_SYNC(p, TGL_SYNC_BAR);
927 } else {
928 brw_WAIT(p);
929 }
930 }
931
932 bool
generate_linterp(fs_inst * inst,struct brw_reg dst,struct brw_reg * src)933 fs_generator::generate_linterp(fs_inst *inst,
934 struct brw_reg dst, struct brw_reg *src)
935 {
936 /* PLN reads:
937 * / in SIMD16 \
938 * -----------------------------------
939 * | src1+0 | src1+1 | src1+2 | src1+3 |
940 * |-----------------------------------|
941 * |(x0, x1)|(y0, y1)|(x2, x3)|(y2, y3)|
942 * -----------------------------------
943 *
944 * but for the LINE/MAC pair, the LINE reads Xs and the MAC reads Ys:
945 *
946 * -----------------------------------
947 * | src1+0 | src1+1 | src1+2 | src1+3 |
948 * |-----------------------------------|
949 * |(x0, x1)|(y0, y1)| | | in SIMD8
950 * |-----------------------------------|
951 * |(x0, x1)|(x2, x3)|(y0, y1)|(y2, y3)| in SIMD16
952 * -----------------------------------
953 *
954 * See also: emit_interpolation_setup_gfx4().
955 */
956 struct brw_reg delta_x = src[0];
957 struct brw_reg delta_y = offset(src[0], inst->exec_size / 8);
958 struct brw_reg interp = src[1];
959 brw_inst *i[2];
960
961 /* nir_lower_interpolation() will do the lowering to MAD instructions for
962 * us on gfx11+
963 */
964 assert(devinfo->ver < 11);
965
966 if (devinfo->has_pln) {
967 if (devinfo->ver <= 6 && (delta_x.nr & 1) != 0) {
968 /* From the Sandy Bridge PRM Vol. 4, Pt. 2, Section 8.3.53, "Plane":
969 *
970 * "[DevSNB]:<src1> must be even register aligned.
971 *
972 * This restriction is lifted on Ivy Bridge.
973 *
974 * This means that we need to split PLN into LINE+MAC on-the-fly.
975 * Unfortunately, the inputs are laid out for PLN and not LINE+MAC so
976 * we have to split into SIMD8 pieces. For gfx4 (!has_pln), the
977 * coordinate registers are laid out differently so we leave it as a
978 * SIMD16 instruction.
979 */
980 assert(inst->exec_size == 8 || inst->exec_size == 16);
981 assert(inst->group % 16 == 0);
982
983 brw_push_insn_state(p);
984 brw_set_default_exec_size(p, BRW_EXECUTE_8);
985
986 /* Thanks to two accumulators, we can emit all the LINEs and then all
987 * the MACs. This improves parallelism a bit.
988 */
989 for (unsigned g = 0; g < inst->exec_size / 8; g++) {
990 brw_inst *line = brw_LINE(p, brw_null_reg(), interp,
991 offset(delta_x, g * 2));
992 brw_inst_set_group(devinfo, line, inst->group + g * 8);
993
994 /* LINE writes the accumulator automatically on gfx4-5. On Sandy
995 * Bridge and later, we have to explicitly enable it.
996 */
997 if (devinfo->ver >= 6)
998 brw_inst_set_acc_wr_control(p->devinfo, line, true);
999
1000 /* brw_set_default_saturate() is called before emitting
1001 * instructions, so the saturate bit is set in each instruction,
1002 * so we need to unset it on the LINE instructions.
1003 */
1004 brw_inst_set_saturate(p->devinfo, line, false);
1005 }
1006
1007 for (unsigned g = 0; g < inst->exec_size / 8; g++) {
1008 brw_inst *mac = brw_MAC(p, offset(dst, g), suboffset(interp, 1),
1009 offset(delta_x, g * 2 + 1));
1010 brw_inst_set_group(devinfo, mac, inst->group + g * 8);
1011 brw_inst_set_cond_modifier(p->devinfo, mac, inst->conditional_mod);
1012 }
1013
1014 brw_pop_insn_state(p);
1015
1016 return true;
1017 } else {
1018 brw_PLN(p, dst, interp, delta_x);
1019
1020 return false;
1021 }
1022 } else {
1023 i[0] = brw_LINE(p, brw_null_reg(), interp, delta_x);
1024 i[1] = brw_MAC(p, dst, suboffset(interp, 1), delta_y);
1025
1026 brw_inst_set_cond_modifier(p->devinfo, i[1], inst->conditional_mod);
1027
1028 /* brw_set_default_saturate() is called before emitting instructions, so
1029 * the saturate bit is set in each instruction, so we need to unset it on
1030 * the first instruction.
1031 */
1032 brw_inst_set_saturate(p->devinfo, i[0], false);
1033
1034 return true;
1035 }
1036 }
1037
1038 void
generate_get_buffer_size(fs_inst * inst,struct brw_reg dst,struct brw_reg src,struct brw_reg surf_index)1039 fs_generator::generate_get_buffer_size(fs_inst *inst,
1040 struct brw_reg dst,
1041 struct brw_reg src,
1042 struct brw_reg surf_index)
1043 {
1044 assert(devinfo->ver >= 7);
1045 assert(surf_index.file == BRW_IMMEDIATE_VALUE);
1046
1047 uint32_t simd_mode;
1048 int rlen = 4;
1049
1050 switch (inst->exec_size) {
1051 case 8:
1052 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD8;
1053 break;
1054 case 16:
1055 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1056 break;
1057 default:
1058 unreachable("Invalid width for texture instruction");
1059 }
1060
1061 if (simd_mode == BRW_SAMPLER_SIMD_MODE_SIMD16) {
1062 rlen = 8;
1063 dst = vec16(dst);
1064 }
1065
1066 brw_SAMPLE(p,
1067 retype(dst, BRW_REGISTER_TYPE_UW),
1068 inst->base_mrf,
1069 src,
1070 surf_index.ud,
1071 0,
1072 GFX5_SAMPLER_MESSAGE_SAMPLE_RESINFO,
1073 rlen, /* response length */
1074 inst->mlen,
1075 inst->header_size > 0,
1076 simd_mode,
1077 BRW_SAMPLER_RETURN_FORMAT_SINT32);
1078 }
1079
1080 void
generate_tex(fs_inst * inst,struct brw_reg dst,struct brw_reg surface_index,struct brw_reg sampler_index)1081 fs_generator::generate_tex(fs_inst *inst, struct brw_reg dst,
1082 struct brw_reg surface_index,
1083 struct brw_reg sampler_index)
1084 {
1085 assert(devinfo->ver < 7);
1086 assert(inst->size_written % REG_SIZE == 0);
1087 int msg_type = -1;
1088 uint32_t simd_mode;
1089 uint32_t return_format;
1090
1091 /* Sampler EOT message of less than the dispatch width would kill the
1092 * thread prematurely.
1093 */
1094 assert(!inst->eot || inst->exec_size == dispatch_width);
1095
1096 switch (dst.type) {
1097 case BRW_REGISTER_TYPE_D:
1098 return_format = BRW_SAMPLER_RETURN_FORMAT_SINT32;
1099 break;
1100 case BRW_REGISTER_TYPE_UD:
1101 return_format = BRW_SAMPLER_RETURN_FORMAT_UINT32;
1102 break;
1103 default:
1104 return_format = BRW_SAMPLER_RETURN_FORMAT_FLOAT32;
1105 break;
1106 }
1107
1108 /* Stomp the resinfo output type to UINT32. On gens 4-5, the output type
1109 * is set as part of the message descriptor. On gfx4, the PRM seems to
1110 * allow UINT32 and FLOAT32 (i965 PRM, Vol. 4 Section 4.8.1.1), but on
1111 * later gens UINT32 is required. Once you hit Sandy Bridge, the bit is
1112 * gone from the message descriptor entirely and you just get UINT32 all
1113 * the time regasrdless. Since we can really only do non-UINT32 on gfx4,
1114 * just stomp it to UINT32 all the time.
1115 */
1116 if (inst->opcode == SHADER_OPCODE_TXS)
1117 return_format = BRW_SAMPLER_RETURN_FORMAT_UINT32;
1118
1119 switch (inst->exec_size) {
1120 case 8:
1121 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD8;
1122 break;
1123 case 16:
1124 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1125 break;
1126 default:
1127 unreachable("Invalid width for texture instruction");
1128 }
1129
1130 if (devinfo->ver >= 5) {
1131 switch (inst->opcode) {
1132 case SHADER_OPCODE_TEX:
1133 if (inst->shadow_compare) {
1134 msg_type = GFX5_SAMPLER_MESSAGE_SAMPLE_COMPARE;
1135 } else {
1136 msg_type = GFX5_SAMPLER_MESSAGE_SAMPLE;
1137 }
1138 break;
1139 case FS_OPCODE_TXB:
1140 if (inst->shadow_compare) {
1141 msg_type = GFX5_SAMPLER_MESSAGE_SAMPLE_BIAS_COMPARE;
1142 } else {
1143 msg_type = GFX5_SAMPLER_MESSAGE_SAMPLE_BIAS;
1144 }
1145 break;
1146 case SHADER_OPCODE_TXL:
1147 if (inst->shadow_compare) {
1148 msg_type = GFX5_SAMPLER_MESSAGE_SAMPLE_LOD_COMPARE;
1149 } else {
1150 msg_type = GFX5_SAMPLER_MESSAGE_SAMPLE_LOD;
1151 }
1152 break;
1153 case SHADER_OPCODE_TXS:
1154 msg_type = GFX5_SAMPLER_MESSAGE_SAMPLE_RESINFO;
1155 break;
1156 case SHADER_OPCODE_TXD:
1157 assert(!inst->shadow_compare);
1158 msg_type = GFX5_SAMPLER_MESSAGE_SAMPLE_DERIVS;
1159 break;
1160 case SHADER_OPCODE_TXF:
1161 msg_type = GFX5_SAMPLER_MESSAGE_SAMPLE_LD;
1162 break;
1163 case SHADER_OPCODE_TXF_CMS:
1164 msg_type = GFX5_SAMPLER_MESSAGE_SAMPLE_LD;
1165 break;
1166 case SHADER_OPCODE_LOD:
1167 msg_type = GFX5_SAMPLER_MESSAGE_LOD;
1168 break;
1169 case SHADER_OPCODE_TG4:
1170 assert(devinfo->ver == 6);
1171 assert(!inst->shadow_compare);
1172 msg_type = GFX7_SAMPLER_MESSAGE_SAMPLE_GATHER4;
1173 break;
1174 case SHADER_OPCODE_SAMPLEINFO:
1175 msg_type = GFX6_SAMPLER_MESSAGE_SAMPLE_SAMPLEINFO;
1176 break;
1177 default:
1178 unreachable("not reached");
1179 }
1180 } else {
1181 switch (inst->opcode) {
1182 case SHADER_OPCODE_TEX:
1183 /* Note that G45 and older determines shadow compare and dispatch width
1184 * from message length for most messages.
1185 */
1186 if (inst->exec_size == 8) {
1187 msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE;
1188 if (inst->shadow_compare) {
1189 assert(inst->mlen == 6);
1190 } else {
1191 assert(inst->mlen <= 4);
1192 }
1193 } else {
1194 if (inst->shadow_compare) {
1195 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE_COMPARE;
1196 assert(inst->mlen == 9);
1197 } else {
1198 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE;
1199 assert(inst->mlen <= 7 && inst->mlen % 2 == 1);
1200 }
1201 }
1202 break;
1203 case FS_OPCODE_TXB:
1204 if (inst->shadow_compare) {
1205 assert(inst->exec_size == 8);
1206 assert(inst->mlen == 6);
1207 msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE_BIAS_COMPARE;
1208 } else {
1209 assert(inst->mlen == 9);
1210 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE_BIAS;
1211 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1212 }
1213 break;
1214 case SHADER_OPCODE_TXL:
1215 if (inst->shadow_compare) {
1216 assert(inst->exec_size == 8);
1217 assert(inst->mlen == 6);
1218 msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE_LOD_COMPARE;
1219 } else {
1220 assert(inst->mlen == 9);
1221 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE_LOD;
1222 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1223 }
1224 break;
1225 case SHADER_OPCODE_TXD:
1226 /* There is no sample_d_c message; comparisons are done manually */
1227 assert(inst->exec_size == 8);
1228 assert(inst->mlen == 7 || inst->mlen == 10);
1229 msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE_GRADIENTS;
1230 break;
1231 case SHADER_OPCODE_TXF:
1232 assert(inst->mlen <= 9 && inst->mlen % 2 == 1);
1233 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_LD;
1234 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1235 break;
1236 case SHADER_OPCODE_TXS:
1237 assert(inst->mlen == 3);
1238 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_RESINFO;
1239 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1240 break;
1241 default:
1242 unreachable("not reached");
1243 }
1244 }
1245 assert(msg_type != -1);
1246
1247 if (simd_mode == BRW_SAMPLER_SIMD_MODE_SIMD16) {
1248 dst = vec16(dst);
1249 }
1250
1251 assert(sampler_index.type == BRW_REGISTER_TYPE_UD);
1252
1253 /* Load the message header if present. If there's a texture offset,
1254 * we need to set it up explicitly and load the offset bitfield.
1255 * Otherwise, we can use an implied move from g0 to the first message reg.
1256 */
1257 struct brw_reg src = brw_null_reg();
1258 if (inst->header_size != 0) {
1259 if (devinfo->ver < 6 && !inst->offset) {
1260 /* Set up an implied move from g0 to the MRF. */
1261 src = retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UW);
1262 } else {
1263 const tgl_swsb swsb = brw_get_default_swsb(p);
1264 assert(inst->base_mrf != -1);
1265 struct brw_reg header_reg = brw_message_reg(inst->base_mrf);
1266
1267 brw_push_insn_state(p);
1268 brw_set_default_swsb(p, tgl_swsb_src_dep(swsb));
1269 brw_set_default_exec_size(p, BRW_EXECUTE_8);
1270 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1271 brw_set_default_compression_control(p, BRW_COMPRESSION_NONE);
1272 /* Explicitly set up the message header by copying g0 to the MRF. */
1273 brw_MOV(p, header_reg, brw_vec8_grf(0, 0));
1274 brw_set_default_swsb(p, tgl_swsb_regdist(1));
1275
1276 brw_set_default_exec_size(p, BRW_EXECUTE_1);
1277 if (inst->offset) {
1278 /* Set the offset bits in DWord 2. */
1279 brw_MOV(p, get_element_ud(header_reg, 2),
1280 brw_imm_ud(inst->offset));
1281 }
1282
1283 brw_pop_insn_state(p);
1284 brw_set_default_swsb(p, tgl_swsb_dst_dep(swsb, 1));
1285 }
1286 }
1287
1288 uint32_t base_binding_table_index;
1289 switch (inst->opcode) {
1290 case SHADER_OPCODE_TG4:
1291 base_binding_table_index = prog_data->binding_table.gather_texture_start;
1292 break;
1293 default:
1294 base_binding_table_index = prog_data->binding_table.texture_start;
1295 break;
1296 }
1297
1298 assert(surface_index.file == BRW_IMMEDIATE_VALUE);
1299 assert(sampler_index.file == BRW_IMMEDIATE_VALUE);
1300
1301 brw_SAMPLE(p,
1302 retype(dst, BRW_REGISTER_TYPE_UW),
1303 inst->base_mrf,
1304 src,
1305 surface_index.ud + base_binding_table_index,
1306 sampler_index.ud % 16,
1307 msg_type,
1308 inst->size_written / REG_SIZE,
1309 inst->mlen,
1310 inst->header_size != 0,
1311 simd_mode,
1312 return_format);
1313 }
1314
1315
1316 /* For OPCODE_DDX and OPCODE_DDY, per channel of output we've got input
1317 * looking like:
1318 *
1319 * arg0: ss0.tl ss0.tr ss0.bl ss0.br ss1.tl ss1.tr ss1.bl ss1.br
1320 *
1321 * Ideally, we want to produce:
1322 *
1323 * DDX DDY
1324 * dst: (ss0.tr - ss0.tl) (ss0.tl - ss0.bl)
1325 * (ss0.tr - ss0.tl) (ss0.tr - ss0.br)
1326 * (ss0.br - ss0.bl) (ss0.tl - ss0.bl)
1327 * (ss0.br - ss0.bl) (ss0.tr - ss0.br)
1328 * (ss1.tr - ss1.tl) (ss1.tl - ss1.bl)
1329 * (ss1.tr - ss1.tl) (ss1.tr - ss1.br)
1330 * (ss1.br - ss1.bl) (ss1.tl - ss1.bl)
1331 * (ss1.br - ss1.bl) (ss1.tr - ss1.br)
1332 *
1333 * and add another set of two more subspans if in 16-pixel dispatch mode.
1334 *
1335 * For DDX, it ends up being easy: width = 2, horiz=0 gets us the same result
1336 * for each pair, and vertstride = 2 jumps us 2 elements after processing a
1337 * pair. But the ideal approximation may impose a huge performance cost on
1338 * sample_d. On at least Haswell, sample_d instruction does some
1339 * optimizations if the same LOD is used for all pixels in the subspan.
1340 *
1341 * For DDY, we need to use ALIGN16 mode since it's capable of doing the
1342 * appropriate swizzling.
1343 */
1344 void
generate_ddx(const fs_inst * inst,struct brw_reg dst,struct brw_reg src)1345 fs_generator::generate_ddx(const fs_inst *inst,
1346 struct brw_reg dst, struct brw_reg src)
1347 {
1348 unsigned vstride, width;
1349
1350 if (devinfo->ver >= 8) {
1351 if (inst->opcode == FS_OPCODE_DDX_FINE) {
1352 /* produce accurate derivatives */
1353 vstride = BRW_VERTICAL_STRIDE_2;
1354 width = BRW_WIDTH_2;
1355 } else {
1356 /* replicate the derivative at the top-left pixel to other pixels */
1357 vstride = BRW_VERTICAL_STRIDE_4;
1358 width = BRW_WIDTH_4;
1359 }
1360
1361 struct brw_reg src0 = byte_offset(src, type_sz(src.type));;
1362 struct brw_reg src1 = src;
1363
1364 src0.vstride = vstride;
1365 src0.width = width;
1366 src0.hstride = BRW_HORIZONTAL_STRIDE_0;
1367 src1.vstride = vstride;
1368 src1.width = width;
1369 src1.hstride = BRW_HORIZONTAL_STRIDE_0;
1370
1371 brw_ADD(p, dst, src0, negate(src1));
1372 } else {
1373 /* On Haswell and earlier, the region used above appears to not work
1374 * correctly for compressed instructions. At least on Haswell and
1375 * Iron Lake, compressed ALIGN16 instructions do work. Since we
1376 * would have to split to SIMD8 no matter which method we choose, we
1377 * may as well use ALIGN16 on all platforms gfx7 and earlier.
1378 */
1379 struct brw_reg src0 = stride(src, 4, 4, 1);
1380 struct brw_reg src1 = stride(src, 4, 4, 1);
1381 if (inst->opcode == FS_OPCODE_DDX_FINE) {
1382 src0.swizzle = BRW_SWIZZLE_XXZZ;
1383 src1.swizzle = BRW_SWIZZLE_YYWW;
1384 } else {
1385 src0.swizzle = BRW_SWIZZLE_XXXX;
1386 src1.swizzle = BRW_SWIZZLE_YYYY;
1387 }
1388
1389 brw_push_insn_state(p);
1390 brw_set_default_access_mode(p, BRW_ALIGN_16);
1391 brw_ADD(p, dst, negate(src0), src1);
1392 brw_pop_insn_state(p);
1393 }
1394 }
1395
1396 /* The negate_value boolean is used to negate the derivative computation for
1397 * FBOs, since they place the origin at the upper left instead of the lower
1398 * left.
1399 */
1400 void
generate_ddy(const fs_inst * inst,struct brw_reg dst,struct brw_reg src)1401 fs_generator::generate_ddy(const fs_inst *inst,
1402 struct brw_reg dst, struct brw_reg src)
1403 {
1404 const uint32_t type_size = type_sz(src.type);
1405
1406 if (inst->opcode == FS_OPCODE_DDY_FINE) {
1407 /* produce accurate derivatives.
1408 *
1409 * From the Broadwell PRM, Volume 7 (3D-Media-GPGPU)
1410 * "Register Region Restrictions", Section "1. Special Restrictions":
1411 *
1412 * "In Align16 mode, the channel selects and channel enables apply to
1413 * a pair of half-floats, because these parameters are defined for
1414 * DWord elements ONLY. This is applicable when both source and
1415 * destination are half-floats."
1416 *
1417 * So for half-float operations we use the Gfx11+ Align1 path. CHV
1418 * inherits its FP16 hardware from SKL, so it is not affected.
1419 */
1420 if (devinfo->ver >= 11 ||
1421 (devinfo->is_broadwell && src.type == BRW_REGISTER_TYPE_HF)) {
1422 src = stride(src, 0, 2, 1);
1423
1424 brw_push_insn_state(p);
1425 brw_set_default_exec_size(p, BRW_EXECUTE_4);
1426 for (uint32_t g = 0; g < inst->exec_size; g += 4) {
1427 brw_set_default_group(p, inst->group + g);
1428 brw_ADD(p, byte_offset(dst, g * type_size),
1429 negate(byte_offset(src, g * type_size)),
1430 byte_offset(src, (g + 2) * type_size));
1431 brw_set_default_swsb(p, tgl_swsb_null());
1432 }
1433 brw_pop_insn_state(p);
1434 } else {
1435 struct brw_reg src0 = stride(src, 4, 4, 1);
1436 struct brw_reg src1 = stride(src, 4, 4, 1);
1437 src0.swizzle = BRW_SWIZZLE_XYXY;
1438 src1.swizzle = BRW_SWIZZLE_ZWZW;
1439
1440 brw_push_insn_state(p);
1441 brw_set_default_access_mode(p, BRW_ALIGN_16);
1442 brw_ADD(p, dst, negate(src0), src1);
1443 brw_pop_insn_state(p);
1444 }
1445 } else {
1446 /* replicate the derivative at the top-left pixel to other pixels */
1447 if (devinfo->ver >= 8) {
1448 struct brw_reg src0 = byte_offset(stride(src, 4, 4, 0), 0 * type_size);
1449 struct brw_reg src1 = byte_offset(stride(src, 4, 4, 0), 2 * type_size);
1450
1451 brw_ADD(p, dst, negate(src0), src1);
1452 } else {
1453 /* On Haswell and earlier, the region used above appears to not work
1454 * correctly for compressed instructions. At least on Haswell and
1455 * Iron Lake, compressed ALIGN16 instructions do work. Since we
1456 * would have to split to SIMD8 no matter which method we choose, we
1457 * may as well use ALIGN16 on all platforms gfx7 and earlier.
1458 */
1459 struct brw_reg src0 = stride(src, 4, 4, 1);
1460 struct brw_reg src1 = stride(src, 4, 4, 1);
1461 src0.swizzle = BRW_SWIZZLE_XXXX;
1462 src1.swizzle = BRW_SWIZZLE_ZZZZ;
1463
1464 brw_push_insn_state(p);
1465 brw_set_default_access_mode(p, BRW_ALIGN_16);
1466 brw_ADD(p, dst, negate(src0), src1);
1467 brw_pop_insn_state(p);
1468 }
1469 }
1470 }
1471
1472 void
generate_halt(fs_inst *)1473 fs_generator::generate_halt(fs_inst *)
1474 {
1475 /* This HALT will be patched up at FB write time to point UIP at the end of
1476 * the program, and at brw_uip_jip() JIP will be set to the end of the
1477 * current block (or the program).
1478 */
1479 this->discard_halt_patches.push_tail(new(mem_ctx) ip_record(p->nr_insn));
1480 brw_HALT(p);
1481 }
1482
1483 void
generate_scratch_write(fs_inst * inst,struct brw_reg src)1484 fs_generator::generate_scratch_write(fs_inst *inst, struct brw_reg src)
1485 {
1486 /* The 32-wide messages only respect the first 16-wide half of the channel
1487 * enable signals which are replicated identically for the second group of
1488 * 16 channels, so we cannot use them unless the write is marked
1489 * force_writemask_all.
1490 */
1491 const unsigned lower_size = inst->force_writemask_all ? inst->exec_size :
1492 MIN2(16, inst->exec_size);
1493 const unsigned block_size = 4 * lower_size / REG_SIZE;
1494 const tgl_swsb swsb = brw_get_default_swsb(p);
1495 assert(inst->mlen != 0);
1496
1497 brw_push_insn_state(p);
1498 brw_set_default_exec_size(p, cvt(lower_size) - 1);
1499 brw_set_default_compression(p, lower_size > 8);
1500
1501 for (unsigned i = 0; i < inst->exec_size / lower_size; i++) {
1502 brw_set_default_group(p, inst->group + lower_size * i);
1503
1504 if (i > 0) {
1505 assert(swsb.mode & TGL_SBID_SET);
1506 brw_set_default_swsb(p, tgl_swsb_sbid(TGL_SBID_SRC, swsb.sbid));
1507 } else {
1508 brw_set_default_swsb(p, tgl_swsb_src_dep(swsb));
1509 }
1510
1511 brw_MOV(p, brw_uvec_mrf(lower_size, inst->base_mrf + 1, 0),
1512 retype(offset(src, block_size * i), BRW_REGISTER_TYPE_UD));
1513
1514 brw_set_default_swsb(p, tgl_swsb_dst_dep(swsb, 1));
1515 brw_oword_block_write_scratch(p, brw_message_reg(inst->base_mrf),
1516 block_size,
1517 inst->offset + block_size * REG_SIZE * i);
1518 }
1519
1520 brw_pop_insn_state(p);
1521 }
1522
1523 void
generate_scratch_read(fs_inst * inst,struct brw_reg dst)1524 fs_generator::generate_scratch_read(fs_inst *inst, struct brw_reg dst)
1525 {
1526 assert(inst->exec_size <= 16 || inst->force_writemask_all);
1527 assert(inst->mlen != 0);
1528
1529 brw_oword_block_read_scratch(p, dst, brw_message_reg(inst->base_mrf),
1530 inst->exec_size / 8, inst->offset);
1531 }
1532
1533 void
generate_scratch_read_gfx7(fs_inst * inst,struct brw_reg dst)1534 fs_generator::generate_scratch_read_gfx7(fs_inst *inst, struct brw_reg dst)
1535 {
1536 assert(inst->exec_size <= 16 || inst->force_writemask_all);
1537
1538 gfx7_block_read_scratch(p, dst, inst->exec_size / 8, inst->offset);
1539 }
1540
1541 /* The A32 messages take a buffer base address in header.5:[31:0] (See
1542 * MH1_A32_PSM for typed messages or MH_A32_GO for byte/dword scattered
1543 * and OWord block messages in the SKL PRM Vol. 2d for more details.)
1544 * Unfortunately, there are a number of subtle differences:
1545 *
1546 * For the block read/write messages:
1547 *
1548 * - We always stomp header.2 to fill in the actual scratch address (in
1549 * units of OWORDs) so we don't care what's in there.
1550 *
1551 * - They rely on per-thread scratch space value in header.3[3:0] to do
1552 * bounds checking so that needs to be valid. The upper bits of
1553 * header.3 are ignored, though, so we can copy all of g0.3.
1554 *
1555 * - They ignore header.5[9:0] and assumes the address is 1KB aligned.
1556 *
1557 *
1558 * For the byte/dword scattered read/write messages:
1559 *
1560 * - We want header.2 to be zero because that gets added to the per-channel
1561 * offset in the non-header portion of the message.
1562 *
1563 * - Contrary to what the docs claim, they don't do any bounds checking so
1564 * the value of header.3[3:0] doesn't matter.
1565 *
1566 * - They consider all of header.5 for the base address and header.5[9:0]
1567 * are not ignored. This means that we can't copy g0.5 verbatim because
1568 * g0.5[9:0] contains the FFTID on most platforms. Instead, we have to
1569 * use an AND to mask off the bottom 10 bits.
1570 *
1571 *
1572 * For block messages, just copying g0 gives a valid header because all the
1573 * garbage gets ignored except for header.2 which we stomp as part of message
1574 * setup. For byte/dword scattered messages, we can just zero out the header
1575 * and copy over the bits we need from g0.5. This opcode, however, tries to
1576 * satisfy the requirements of both by starting with 0 and filling out the
1577 * information required by either set of opcodes.
1578 */
1579 void
generate_scratch_header(fs_inst * inst,struct brw_reg dst)1580 fs_generator::generate_scratch_header(fs_inst *inst, struct brw_reg dst)
1581 {
1582 assert(inst->exec_size == 8 && inst->force_writemask_all);
1583 assert(dst.file == BRW_GENERAL_REGISTER_FILE);
1584
1585 dst.type = BRW_REGISTER_TYPE_UD;
1586
1587 brw_inst *insn = brw_MOV(p, dst, brw_imm_ud(0));
1588 if (devinfo->ver >= 12)
1589 brw_set_default_swsb(p, tgl_swsb_null());
1590 else
1591 brw_inst_set_no_dd_clear(p->devinfo, insn, true);
1592
1593 /* Copy the per-thread scratch space size from g0.3[3:0] */
1594 brw_set_default_exec_size(p, BRW_EXECUTE_1);
1595 insn = brw_AND(p, suboffset(dst, 3),
1596 retype(brw_vec1_grf(0, 3), BRW_REGISTER_TYPE_UD),
1597 brw_imm_ud(INTEL_MASK(3, 0)));
1598 if (devinfo->ver < 12) {
1599 brw_inst_set_no_dd_clear(p->devinfo, insn, true);
1600 brw_inst_set_no_dd_check(p->devinfo, insn, true);
1601 }
1602
1603 /* Copy the scratch base address from g0.5[31:10] */
1604 insn = brw_AND(p, suboffset(dst, 5),
1605 retype(brw_vec1_grf(0, 5), BRW_REGISTER_TYPE_UD),
1606 brw_imm_ud(INTEL_MASK(31, 10)));
1607 if (devinfo->ver < 12)
1608 brw_inst_set_no_dd_check(p->devinfo, insn, true);
1609 }
1610
1611 void
generate_uniform_pull_constant_load(fs_inst * inst,struct brw_reg dst,struct brw_reg index,struct brw_reg offset)1612 fs_generator::generate_uniform_pull_constant_load(fs_inst *inst,
1613 struct brw_reg dst,
1614 struct brw_reg index,
1615 struct brw_reg offset)
1616 {
1617 assert(type_sz(dst.type) == 4);
1618 assert(inst->mlen != 0);
1619
1620 assert(index.file == BRW_IMMEDIATE_VALUE &&
1621 index.type == BRW_REGISTER_TYPE_UD);
1622 uint32_t surf_index = index.ud;
1623
1624 assert(offset.file == BRW_IMMEDIATE_VALUE &&
1625 offset.type == BRW_REGISTER_TYPE_UD);
1626 uint32_t read_offset = offset.ud;
1627
1628 brw_oword_block_read(p, dst, brw_message_reg(inst->base_mrf),
1629 read_offset, surf_index);
1630 }
1631
1632 void
generate_uniform_pull_constant_load_gfx7(fs_inst * inst,struct brw_reg dst,struct brw_reg index,struct brw_reg payload)1633 fs_generator::generate_uniform_pull_constant_load_gfx7(fs_inst *inst,
1634 struct brw_reg dst,
1635 struct brw_reg index,
1636 struct brw_reg payload)
1637 {
1638 assert(index.type == BRW_REGISTER_TYPE_UD);
1639 assert(payload.file == BRW_GENERAL_REGISTER_FILE);
1640 assert(type_sz(dst.type) == 4);
1641
1642 if (index.file == BRW_IMMEDIATE_VALUE) {
1643 const uint32_t surf_index = index.ud;
1644
1645 brw_push_insn_state(p);
1646 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1647 brw_inst *send = brw_next_insn(p, BRW_OPCODE_SEND);
1648 brw_pop_insn_state(p);
1649
1650 brw_inst_set_sfid(devinfo, send, GFX6_SFID_DATAPORT_CONSTANT_CACHE);
1651 brw_set_dest(p, send, retype(dst, BRW_REGISTER_TYPE_UD));
1652 brw_set_src0(p, send, retype(payload, BRW_REGISTER_TYPE_UD));
1653 brw_set_desc(p, send,
1654 brw_message_desc(devinfo, 1, DIV_ROUND_UP(inst->size_written,
1655 REG_SIZE), true) |
1656 brw_dp_desc(devinfo, surf_index,
1657 GFX7_DATAPORT_DC_OWORD_BLOCK_READ,
1658 BRW_DATAPORT_OWORD_BLOCK_DWORDS(inst->exec_size)));
1659
1660 } else {
1661 const tgl_swsb swsb = brw_get_default_swsb(p);
1662 struct brw_reg addr = vec1(retype(brw_address_reg(0), BRW_REGISTER_TYPE_UD));
1663
1664 brw_push_insn_state(p);
1665 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1666
1667 /* a0.0 = surf_index & 0xff */
1668 brw_set_default_swsb(p, tgl_swsb_src_dep(swsb));
1669 brw_inst *insn_and = brw_next_insn(p, BRW_OPCODE_AND);
1670 brw_inst_set_exec_size(p->devinfo, insn_and, BRW_EXECUTE_1);
1671 brw_set_dest(p, insn_and, addr);
1672 brw_set_src0(p, insn_and, vec1(retype(index, BRW_REGISTER_TYPE_UD)));
1673 brw_set_src1(p, insn_and, brw_imm_ud(0x0ff));
1674
1675 /* dst = send(payload, a0.0 | <descriptor>) */
1676 brw_set_default_swsb(p, tgl_swsb_dst_dep(swsb, 1));
1677 brw_send_indirect_message(
1678 p, GFX6_SFID_DATAPORT_CONSTANT_CACHE,
1679 retype(dst, BRW_REGISTER_TYPE_UD),
1680 retype(payload, BRW_REGISTER_TYPE_UD), addr,
1681 brw_message_desc(devinfo, 1,
1682 DIV_ROUND_UP(inst->size_written, REG_SIZE), true) |
1683 brw_dp_desc(devinfo, 0 /* surface */,
1684 GFX7_DATAPORT_DC_OWORD_BLOCK_READ,
1685 BRW_DATAPORT_OWORD_BLOCK_DWORDS(inst->exec_size)),
1686 false /* EOT */);
1687
1688 brw_pop_insn_state(p);
1689 }
1690 }
1691
1692 void
generate_varying_pull_constant_load_gfx4(fs_inst * inst,struct brw_reg dst,struct brw_reg index)1693 fs_generator::generate_varying_pull_constant_load_gfx4(fs_inst *inst,
1694 struct brw_reg dst,
1695 struct brw_reg index)
1696 {
1697 assert(devinfo->ver < 7); /* Should use the gfx7 variant. */
1698 assert(inst->header_size != 0);
1699 assert(inst->mlen);
1700
1701 assert(index.file == BRW_IMMEDIATE_VALUE &&
1702 index.type == BRW_REGISTER_TYPE_UD);
1703 uint32_t surf_index = index.ud;
1704
1705 uint32_t simd_mode, rlen, msg_type;
1706 if (inst->exec_size == 16) {
1707 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1708 rlen = 8;
1709 } else {
1710 assert(inst->exec_size == 8);
1711 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD8;
1712 rlen = 4;
1713 }
1714
1715 if (devinfo->ver >= 5)
1716 msg_type = GFX5_SAMPLER_MESSAGE_SAMPLE_LD;
1717 else {
1718 /* We always use the SIMD16 message so that we only have to load U, and
1719 * not V or R.
1720 */
1721 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_LD;
1722 assert(inst->mlen == 3);
1723 assert(inst->size_written == 8 * REG_SIZE);
1724 rlen = 8;
1725 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1726 }
1727
1728 struct brw_reg header = brw_vec8_grf(0, 0);
1729 gfx6_resolve_implied_move(p, &header, inst->base_mrf);
1730
1731 brw_inst *send = brw_next_insn(p, BRW_OPCODE_SEND);
1732 brw_inst_set_compression(devinfo, send, false);
1733 brw_inst_set_sfid(devinfo, send, BRW_SFID_SAMPLER);
1734 brw_set_dest(p, send, retype(dst, BRW_REGISTER_TYPE_UW));
1735 brw_set_src0(p, send, header);
1736 if (devinfo->ver < 6)
1737 brw_inst_set_base_mrf(p->devinfo, send, inst->base_mrf);
1738
1739 /* Our surface is set up as floats, regardless of what actual data is
1740 * stored in it.
1741 */
1742 uint32_t return_format = BRW_SAMPLER_RETURN_FORMAT_FLOAT32;
1743 brw_set_desc(p, send,
1744 brw_message_desc(devinfo, inst->mlen, rlen, inst->header_size) |
1745 brw_sampler_desc(devinfo, surf_index,
1746 0, /* sampler (unused) */
1747 msg_type, simd_mode, return_format));
1748 }
1749
1750 void
generate_pixel_interpolator_query(fs_inst * inst,struct brw_reg dst,struct brw_reg src,struct brw_reg msg_data,unsigned msg_type)1751 fs_generator::generate_pixel_interpolator_query(fs_inst *inst,
1752 struct brw_reg dst,
1753 struct brw_reg src,
1754 struct brw_reg msg_data,
1755 unsigned msg_type)
1756 {
1757 const bool has_payload = inst->src[0].file != BAD_FILE;
1758 assert(msg_data.type == BRW_REGISTER_TYPE_UD);
1759 assert(inst->size_written % REG_SIZE == 0);
1760
1761 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
1762
1763 brw_pixel_interpolator_query(p,
1764 retype(dst, BRW_REGISTER_TYPE_UW),
1765 /* If we don't have a payload, what we send doesn't matter */
1766 has_payload ? src : brw_vec8_grf(0, 0),
1767 inst->pi_noperspective,
1768 prog_data->per_coarse_pixel_dispatch,
1769 msg_type,
1770 msg_data,
1771 has_payload ? 2 * inst->exec_size / 8 : 1,
1772 inst->size_written / REG_SIZE);
1773 }
1774
1775 /* Sets vstride=1, width=4, hstride=0 of register src1 during
1776 * the ADD instruction.
1777 */
1778 void
generate_set_sample_id(fs_inst * inst,struct brw_reg dst,struct brw_reg src0,struct brw_reg src1)1779 fs_generator::generate_set_sample_id(fs_inst *inst,
1780 struct brw_reg dst,
1781 struct brw_reg src0,
1782 struct brw_reg src1)
1783 {
1784 assert(dst.type == BRW_REGISTER_TYPE_D ||
1785 dst.type == BRW_REGISTER_TYPE_UD);
1786 assert(src0.type == BRW_REGISTER_TYPE_D ||
1787 src0.type == BRW_REGISTER_TYPE_UD);
1788
1789 const struct brw_reg reg = stride(src1, 1, 4, 0);
1790 const unsigned lower_size = MIN2(inst->exec_size,
1791 devinfo->ver >= 8 ? 16 : 8);
1792
1793 for (unsigned i = 0; i < inst->exec_size / lower_size; i++) {
1794 brw_inst *insn = brw_ADD(p, offset(dst, i * lower_size / 8),
1795 offset(src0, (src0.vstride == 0 ? 0 : (1 << (src0.vstride - 1)) *
1796 (i * lower_size / (1 << src0.width))) *
1797 type_sz(src0.type) / REG_SIZE),
1798 suboffset(reg, i * lower_size / 4));
1799 brw_inst_set_exec_size(devinfo, insn, cvt(lower_size) - 1);
1800 brw_inst_set_group(devinfo, insn, inst->group + lower_size * i);
1801 brw_inst_set_compression(devinfo, insn, lower_size > 8);
1802 brw_set_default_swsb(p, tgl_swsb_null());
1803 }
1804 }
1805
1806 void
generate_pack_half_2x16_split(fs_inst *,struct brw_reg dst,struct brw_reg x,struct brw_reg y)1807 fs_generator::generate_pack_half_2x16_split(fs_inst *,
1808 struct brw_reg dst,
1809 struct brw_reg x,
1810 struct brw_reg y)
1811 {
1812 assert(devinfo->ver >= 7);
1813 assert(dst.type == BRW_REGISTER_TYPE_UD);
1814 assert(x.type == BRW_REGISTER_TYPE_F);
1815 assert(y.type == BRW_REGISTER_TYPE_F);
1816
1817 /* From the Ivybridge PRM, Vol4, Part3, Section 6.27 f32to16:
1818 *
1819 * Because this instruction does not have a 16-bit floating-point type,
1820 * the destination data type must be Word (W).
1821 *
1822 * The destination must be DWord-aligned and specify a horizontal stride
1823 * (HorzStride) of 2. The 16-bit result is stored in the lower word of
1824 * each destination channel and the upper word is not modified.
1825 */
1826 struct brw_reg dst_w = spread(retype(dst, BRW_REGISTER_TYPE_W), 2);
1827
1828 /* Give each 32-bit channel of dst the form below, where "." means
1829 * unchanged.
1830 * 0x....hhhh
1831 */
1832 brw_F32TO16(p, dst_w, y);
1833
1834 /* Now the form:
1835 * 0xhhhh0000
1836 */
1837 brw_set_default_swsb(p, tgl_swsb_regdist(1));
1838 brw_SHL(p, dst, dst, brw_imm_ud(16u));
1839
1840 /* And, finally the form of packHalf2x16's output:
1841 * 0xhhhhllll
1842 */
1843 brw_F32TO16(p, dst_w, x);
1844 }
1845
1846 void
generate_shader_time_add(fs_inst *,struct brw_reg payload,struct brw_reg offset,struct brw_reg value)1847 fs_generator::generate_shader_time_add(fs_inst *,
1848 struct brw_reg payload,
1849 struct brw_reg offset,
1850 struct brw_reg value)
1851 {
1852 const tgl_swsb swsb = brw_get_default_swsb(p);
1853
1854 assert(devinfo->ver >= 7);
1855 brw_push_insn_state(p);
1856 brw_set_default_mask_control(p, true);
1857 brw_set_default_swsb(p, tgl_swsb_src_dep(swsb));
1858
1859 assert(payload.file == BRW_GENERAL_REGISTER_FILE);
1860 struct brw_reg payload_offset = retype(brw_vec1_grf(payload.nr, 0),
1861 offset.type);
1862 struct brw_reg payload_value = retype(brw_vec1_grf(payload.nr + 1, 0),
1863 value.type);
1864
1865 assert(offset.file == BRW_IMMEDIATE_VALUE);
1866 if (value.file == BRW_GENERAL_REGISTER_FILE) {
1867 value.width = BRW_WIDTH_1;
1868 value.hstride = BRW_HORIZONTAL_STRIDE_0;
1869 value.vstride = BRW_VERTICAL_STRIDE_0;
1870 } else {
1871 assert(value.file == BRW_IMMEDIATE_VALUE);
1872 }
1873
1874 /* Trying to deal with setup of the params from the IR is crazy in the FS8
1875 * case, and we don't really care about squeezing every bit of performance
1876 * out of this path, so we just emit the MOVs from here.
1877 */
1878 brw_MOV(p, payload_offset, offset);
1879 brw_set_default_swsb(p, tgl_swsb_null());
1880 brw_MOV(p, payload_value, value);
1881 brw_set_default_swsb(p, tgl_swsb_dst_dep(swsb, 1));
1882 brw_shader_time_add(p, payload,
1883 prog_data->binding_table.shader_time_start);
1884 brw_pop_insn_state(p);
1885 }
1886
1887 void
enable_debug(const char * shader_name)1888 fs_generator::enable_debug(const char *shader_name)
1889 {
1890 debug_flag = true;
1891 this->shader_name = shader_name;
1892 }
1893
1894 int
generate_code(const cfg_t * cfg,int dispatch_width,struct shader_stats shader_stats,const brw::performance & perf,struct brw_compile_stats * stats)1895 fs_generator::generate_code(const cfg_t *cfg, int dispatch_width,
1896 struct shader_stats shader_stats,
1897 const brw::performance &perf,
1898 struct brw_compile_stats *stats)
1899 {
1900 /* align to 64 byte boundary. */
1901 brw_realign(p, 64);
1902
1903 this->dispatch_width = dispatch_width;
1904
1905 int start_offset = p->next_insn_offset;
1906
1907 /* `send_count` explicitly does not include spills or fills, as we'd
1908 * like to use it as a metric for intentional memory access or other
1909 * shared function use. Otherwise, subtle changes to scheduling or
1910 * register allocation could cause it to fluctuate wildly - and that
1911 * effect is already counted in spill/fill counts.
1912 */
1913 int spill_count = 0, fill_count = 0;
1914 int loop_count = 0, send_count = 0, nop_count = 0;
1915 bool is_accum_used = false;
1916
1917 struct disasm_info *disasm_info = disasm_initialize(devinfo, cfg);
1918
1919 foreach_block_and_inst (block, fs_inst, inst, cfg) {
1920 if (inst->opcode == SHADER_OPCODE_UNDEF)
1921 continue;
1922
1923 struct brw_reg src[4], dst;
1924 unsigned int last_insn_offset = p->next_insn_offset;
1925 bool multiple_instructions_emitted = false;
1926 tgl_swsb swsb = inst->sched;
1927
1928 /* From the Broadwell PRM, Volume 7, "3D-Media-GPGPU", in the
1929 * "Register Region Restrictions" section: for BDW, SKL:
1930 *
1931 * "A POW/FDIV operation must not be followed by an instruction
1932 * that requires two destination registers."
1933 *
1934 * The documentation is often lacking annotations for Atom parts,
1935 * and empirically this affects CHV as well.
1936 */
1937 if (devinfo->ver >= 8 &&
1938 devinfo->ver <= 9 &&
1939 p->nr_insn > 1 &&
1940 brw_inst_opcode(devinfo, brw_last_inst) == BRW_OPCODE_MATH &&
1941 brw_inst_math_function(devinfo, brw_last_inst) == BRW_MATH_FUNCTION_POW &&
1942 inst->dst.component_size(inst->exec_size) > REG_SIZE) {
1943 brw_NOP(p);
1944 last_insn_offset = p->next_insn_offset;
1945
1946 /* In order to avoid spurious instruction count differences when the
1947 * instruction schedule changes, keep track of the number of inserted
1948 * NOPs.
1949 */
1950 nop_count++;
1951 }
1952
1953 /* Wa_14010017096:
1954 *
1955 * Clear accumulator register before end of thread.
1956 */
1957 if (inst->eot && is_accum_used && devinfo->ver >= 12) {
1958 brw_set_default_exec_size(p, BRW_EXECUTE_16);
1959 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1960 brw_set_default_predicate_control(p, BRW_PREDICATE_NONE);
1961 brw_set_default_swsb(p, tgl_swsb_src_dep(swsb));
1962 brw_MOV(p, brw_acc_reg(8), brw_imm_f(0.0f));
1963 last_insn_offset = p->next_insn_offset;
1964 swsb = tgl_swsb_dst_dep(swsb, 1);
1965 }
1966
1967 if (!is_accum_used && !inst->eot) {
1968 is_accum_used = inst->writes_accumulator_implicitly(devinfo) ||
1969 inst->dst.is_accumulator();
1970 }
1971
1972 /* Wa_14013745556:
1973 *
1974 * Always use @1 SWSB for EOT.
1975 */
1976 if (inst->eot && devinfo->ver >= 12) {
1977 if (tgl_swsb_src_dep(swsb).mode) {
1978 brw_set_default_exec_size(p, BRW_EXECUTE_1);
1979 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1980 brw_set_default_predicate_control(p, BRW_PREDICATE_NONE);
1981 brw_set_default_swsb(p, tgl_swsb_src_dep(swsb));
1982 brw_SYNC(p, TGL_SYNC_NOP);
1983 last_insn_offset = p->next_insn_offset;
1984 }
1985
1986 swsb = tgl_swsb_dst_dep(swsb, 1);
1987 }
1988
1989 if (unlikely(debug_flag))
1990 disasm_annotate(disasm_info, inst, p->next_insn_offset);
1991
1992 /* If the instruction writes to more than one register, it needs to be
1993 * explicitly marked as compressed on Gen <= 5. On Gen >= 6 the
1994 * hardware figures out by itself what the right compression mode is,
1995 * but we still need to know whether the instruction is compressed to
1996 * set up the source register regions appropriately.
1997 *
1998 * XXX - This is wrong for instructions that write a single register but
1999 * read more than one which should strictly speaking be treated as
2000 * compressed. For instructions that don't write any registers it
2001 * relies on the destination being a null register of the correct
2002 * type and regioning so the instruction is considered compressed
2003 * or not accordingly.
2004 */
2005 const bool compressed =
2006 inst->dst.component_size(inst->exec_size) > REG_SIZE;
2007 brw_set_default_compression(p, compressed);
2008 brw_set_default_group(p, inst->group);
2009
2010 for (unsigned int i = 0; i < inst->sources; i++) {
2011 src[i] = brw_reg_from_fs_reg(devinfo, inst,
2012 &inst->src[i], compressed);
2013 /* The accumulator result appears to get used for the
2014 * conditional modifier generation. When negating a UD
2015 * value, there is a 33rd bit generated for the sign in the
2016 * accumulator value, so now you can't check, for example,
2017 * equality with a 32-bit value. See piglit fs-op-neg-uvec4.
2018 */
2019 assert(!inst->conditional_mod ||
2020 inst->src[i].type != BRW_REGISTER_TYPE_UD ||
2021 !inst->src[i].negate);
2022 }
2023 dst = brw_reg_from_fs_reg(devinfo, inst,
2024 &inst->dst, compressed);
2025
2026 brw_set_default_access_mode(p, BRW_ALIGN_1);
2027 brw_set_default_predicate_control(p, inst->predicate);
2028 brw_set_default_predicate_inverse(p, inst->predicate_inverse);
2029 /* On gfx7 and above, hardware automatically adds the group onto the
2030 * flag subregister number. On Sandy Bridge and older, we have to do it
2031 * ourselves.
2032 */
2033 const unsigned flag_subreg = inst->flag_subreg +
2034 (devinfo->ver >= 7 ? 0 : inst->group / 16);
2035 brw_set_default_flag_reg(p, flag_subreg / 2, flag_subreg % 2);
2036 brw_set_default_saturate(p, inst->saturate);
2037 brw_set_default_mask_control(p, inst->force_writemask_all);
2038 brw_set_default_acc_write_control(p, inst->writes_accumulator);
2039 brw_set_default_swsb(p, swsb);
2040
2041 unsigned exec_size = inst->exec_size;
2042 if (devinfo->verx10 == 70 &&
2043 (get_exec_type_size(inst) == 8 || type_sz(inst->dst.type) == 8)) {
2044 exec_size *= 2;
2045 }
2046
2047 brw_set_default_exec_size(p, cvt(exec_size) - 1);
2048
2049 assert(inst->force_writemask_all || inst->exec_size >= 4);
2050 assert(inst->force_writemask_all || inst->group % inst->exec_size == 0);
2051 assert(inst->base_mrf + inst->mlen <= BRW_MAX_MRF(devinfo->ver));
2052 assert(inst->mlen <= BRW_MAX_MSG_LENGTH);
2053
2054 switch (inst->opcode) {
2055 case BRW_OPCODE_SYNC:
2056 assert(src[0].file == BRW_IMMEDIATE_VALUE);
2057 brw_SYNC(p, tgl_sync_function(src[0].ud));
2058 break;
2059 case BRW_OPCODE_MOV:
2060 brw_MOV(p, dst, src[0]);
2061 break;
2062 case BRW_OPCODE_ADD:
2063 brw_ADD(p, dst, src[0], src[1]);
2064 break;
2065 case BRW_OPCODE_MUL:
2066 brw_MUL(p, dst, src[0], src[1]);
2067 break;
2068 case BRW_OPCODE_AVG:
2069 brw_AVG(p, dst, src[0], src[1]);
2070 break;
2071 case BRW_OPCODE_MACH:
2072 brw_MACH(p, dst, src[0], src[1]);
2073 break;
2074
2075 case BRW_OPCODE_DP4A:
2076 assert(devinfo->ver >= 12);
2077 brw_DP4A(p, dst, src[0], src[1], src[2]);
2078 break;
2079
2080 case BRW_OPCODE_LINE:
2081 brw_LINE(p, dst, src[0], src[1]);
2082 break;
2083
2084 case BRW_OPCODE_MAD:
2085 assert(devinfo->ver >= 6);
2086 if (devinfo->ver < 10)
2087 brw_set_default_access_mode(p, BRW_ALIGN_16);
2088 brw_MAD(p, dst, src[0], src[1], src[2]);
2089 break;
2090
2091 case BRW_OPCODE_LRP:
2092 assert(devinfo->ver >= 6 && devinfo->ver <= 10);
2093 if (devinfo->ver < 10)
2094 brw_set_default_access_mode(p, BRW_ALIGN_16);
2095 brw_LRP(p, dst, src[0], src[1], src[2]);
2096 break;
2097
2098 case BRW_OPCODE_ADD3:
2099 assert(devinfo->verx10 >= 125);
2100 brw_ADD3(p, dst, src[0], src[1], src[2]);
2101 break;
2102
2103 case BRW_OPCODE_FRC:
2104 brw_FRC(p, dst, src[0]);
2105 break;
2106 case BRW_OPCODE_RNDD:
2107 brw_RNDD(p, dst, src[0]);
2108 break;
2109 case BRW_OPCODE_RNDE:
2110 brw_RNDE(p, dst, src[0]);
2111 break;
2112 case BRW_OPCODE_RNDZ:
2113 brw_RNDZ(p, dst, src[0]);
2114 break;
2115
2116 case BRW_OPCODE_AND:
2117 brw_AND(p, dst, src[0], src[1]);
2118 break;
2119 case BRW_OPCODE_OR:
2120 brw_OR(p, dst, src[0], src[1]);
2121 break;
2122 case BRW_OPCODE_XOR:
2123 brw_XOR(p, dst, src[0], src[1]);
2124 break;
2125 case BRW_OPCODE_NOT:
2126 brw_NOT(p, dst, src[0]);
2127 break;
2128 case BRW_OPCODE_ASR:
2129 brw_ASR(p, dst, src[0], src[1]);
2130 break;
2131 case BRW_OPCODE_SHR:
2132 brw_SHR(p, dst, src[0], src[1]);
2133 break;
2134 case BRW_OPCODE_SHL:
2135 brw_SHL(p, dst, src[0], src[1]);
2136 break;
2137 case BRW_OPCODE_ROL:
2138 assert(devinfo->ver >= 11);
2139 assert(src[0].type == dst.type);
2140 brw_ROL(p, dst, src[0], src[1]);
2141 break;
2142 case BRW_OPCODE_ROR:
2143 assert(devinfo->ver >= 11);
2144 assert(src[0].type == dst.type);
2145 brw_ROR(p, dst, src[0], src[1]);
2146 break;
2147 case BRW_OPCODE_F32TO16:
2148 assert(devinfo->ver >= 7);
2149 brw_F32TO16(p, dst, src[0]);
2150 break;
2151 case BRW_OPCODE_F16TO32:
2152 assert(devinfo->ver >= 7);
2153 brw_F16TO32(p, dst, src[0]);
2154 break;
2155 case BRW_OPCODE_CMP:
2156 if (inst->exec_size >= 16 && devinfo->verx10 == 70 &&
2157 dst.file == BRW_ARCHITECTURE_REGISTER_FILE) {
2158 /* For unknown reasons the WaCMPInstFlagDepClearedEarly workaround
2159 * implemented in the compiler is not sufficient. Overriding the
2160 * type when the destination is the null register is necessary but
2161 * not sufficient by itself.
2162 */
2163 dst.type = BRW_REGISTER_TYPE_D;
2164 }
2165 brw_CMP(p, dst, inst->conditional_mod, src[0], src[1]);
2166 break;
2167 case BRW_OPCODE_CMPN:
2168 if (inst->exec_size >= 16 && devinfo->verx10 == 70 &&
2169 dst.file == BRW_ARCHITECTURE_REGISTER_FILE) {
2170 /* For unknown reasons the WaCMPInstFlagDepClearedEarly workaround
2171 * implemented in the compiler is not sufficient. Overriding the
2172 * type when the destination is the null register is necessary but
2173 * not sufficient by itself.
2174 */
2175 dst.type = BRW_REGISTER_TYPE_D;
2176 }
2177 brw_CMPN(p, dst, inst->conditional_mod, src[0], src[1]);
2178 break;
2179 case BRW_OPCODE_SEL:
2180 brw_SEL(p, dst, src[0], src[1]);
2181 break;
2182 case BRW_OPCODE_CSEL:
2183 assert(devinfo->ver >= 8);
2184 if (devinfo->ver < 10)
2185 brw_set_default_access_mode(p, BRW_ALIGN_16);
2186 brw_CSEL(p, dst, src[0], src[1], src[2]);
2187 break;
2188 case BRW_OPCODE_BFREV:
2189 assert(devinfo->ver >= 7);
2190 brw_BFREV(p, retype(dst, BRW_REGISTER_TYPE_UD),
2191 retype(src[0], BRW_REGISTER_TYPE_UD));
2192 break;
2193 case BRW_OPCODE_FBH:
2194 assert(devinfo->ver >= 7);
2195 brw_FBH(p, retype(dst, src[0].type), src[0]);
2196 break;
2197 case BRW_OPCODE_FBL:
2198 assert(devinfo->ver >= 7);
2199 brw_FBL(p, retype(dst, BRW_REGISTER_TYPE_UD),
2200 retype(src[0], BRW_REGISTER_TYPE_UD));
2201 break;
2202 case BRW_OPCODE_LZD:
2203 brw_LZD(p, dst, src[0]);
2204 break;
2205 case BRW_OPCODE_CBIT:
2206 assert(devinfo->ver >= 7);
2207 brw_CBIT(p, retype(dst, BRW_REGISTER_TYPE_UD),
2208 retype(src[0], BRW_REGISTER_TYPE_UD));
2209 break;
2210 case BRW_OPCODE_ADDC:
2211 assert(devinfo->ver >= 7);
2212 brw_ADDC(p, dst, src[0], src[1]);
2213 break;
2214 case BRW_OPCODE_SUBB:
2215 assert(devinfo->ver >= 7);
2216 brw_SUBB(p, dst, src[0], src[1]);
2217 break;
2218 case BRW_OPCODE_MAC:
2219 brw_MAC(p, dst, src[0], src[1]);
2220 break;
2221
2222 case BRW_OPCODE_BFE:
2223 assert(devinfo->ver >= 7);
2224 if (devinfo->ver < 10)
2225 brw_set_default_access_mode(p, BRW_ALIGN_16);
2226 brw_BFE(p, dst, src[0], src[1], src[2]);
2227 break;
2228
2229 case BRW_OPCODE_BFI1:
2230 assert(devinfo->ver >= 7);
2231 brw_BFI1(p, dst, src[0], src[1]);
2232 break;
2233 case BRW_OPCODE_BFI2:
2234 assert(devinfo->ver >= 7);
2235 if (devinfo->ver < 10)
2236 brw_set_default_access_mode(p, BRW_ALIGN_16);
2237 brw_BFI2(p, dst, src[0], src[1], src[2]);
2238 break;
2239
2240 case BRW_OPCODE_IF:
2241 if (inst->src[0].file != BAD_FILE) {
2242 /* The instruction has an embedded compare (only allowed on gfx6) */
2243 assert(devinfo->ver == 6);
2244 gfx6_IF(p, inst->conditional_mod, src[0], src[1]);
2245 } else {
2246 brw_IF(p, brw_get_default_exec_size(p));
2247 }
2248 break;
2249
2250 case BRW_OPCODE_ELSE:
2251 brw_ELSE(p);
2252 break;
2253 case BRW_OPCODE_ENDIF:
2254 brw_ENDIF(p);
2255 break;
2256
2257 case BRW_OPCODE_DO:
2258 brw_DO(p, brw_get_default_exec_size(p));
2259 break;
2260
2261 case BRW_OPCODE_BREAK:
2262 brw_BREAK(p);
2263 break;
2264 case BRW_OPCODE_CONTINUE:
2265 brw_CONT(p);
2266 break;
2267
2268 case BRW_OPCODE_WHILE:
2269 brw_WHILE(p);
2270 loop_count++;
2271 break;
2272
2273 case SHADER_OPCODE_RCP:
2274 case SHADER_OPCODE_RSQ:
2275 case SHADER_OPCODE_SQRT:
2276 case SHADER_OPCODE_EXP2:
2277 case SHADER_OPCODE_LOG2:
2278 case SHADER_OPCODE_SIN:
2279 case SHADER_OPCODE_COS:
2280 assert(inst->conditional_mod == BRW_CONDITIONAL_NONE);
2281 if (devinfo->ver >= 6) {
2282 assert(inst->mlen == 0);
2283 assert(devinfo->ver >= 7 || inst->exec_size == 8);
2284 gfx6_math(p, dst, brw_math_function(inst->opcode),
2285 src[0], brw_null_reg());
2286 } else {
2287 assert(inst->mlen >= 1);
2288 assert(devinfo->ver == 5 || devinfo->is_g4x || inst->exec_size == 8);
2289 gfx4_math(p, dst,
2290 brw_math_function(inst->opcode),
2291 inst->base_mrf, src[0],
2292 BRW_MATH_PRECISION_FULL);
2293 send_count++;
2294 }
2295 break;
2296 case SHADER_OPCODE_INT_QUOTIENT:
2297 case SHADER_OPCODE_INT_REMAINDER:
2298 case SHADER_OPCODE_POW:
2299 assert(devinfo->verx10 < 125);
2300 assert(inst->conditional_mod == BRW_CONDITIONAL_NONE);
2301 if (devinfo->ver >= 6) {
2302 assert(inst->mlen == 0);
2303 assert((devinfo->ver >= 7 && inst->opcode == SHADER_OPCODE_POW) ||
2304 inst->exec_size == 8);
2305 gfx6_math(p, dst, brw_math_function(inst->opcode), src[0], src[1]);
2306 } else {
2307 assert(inst->mlen >= 1);
2308 assert(inst->exec_size == 8);
2309 gfx4_math(p, dst, brw_math_function(inst->opcode),
2310 inst->base_mrf, src[0],
2311 BRW_MATH_PRECISION_FULL);
2312 send_count++;
2313 }
2314 break;
2315 case FS_OPCODE_LINTERP:
2316 multiple_instructions_emitted = generate_linterp(inst, dst, src);
2317 break;
2318 case FS_OPCODE_PIXEL_X:
2319 assert(src[0].type == BRW_REGISTER_TYPE_UW);
2320 assert(src[1].type == BRW_REGISTER_TYPE_UW);
2321 src[0].subnr = 0 * type_sz(src[0].type);
2322 if (src[1].file == BRW_IMMEDIATE_VALUE) {
2323 assert(src[1].ud == 0);
2324 brw_MOV(p, dst, stride(src[0], 8, 4, 1));
2325 } else {
2326 /* Coarse pixel case */
2327 brw_ADD(p, dst, stride(src[0], 8, 4, 1), src[1]);
2328 }
2329 break;
2330 case FS_OPCODE_PIXEL_Y:
2331 assert(src[0].type == BRW_REGISTER_TYPE_UW);
2332 assert(src[1].type == BRW_REGISTER_TYPE_UW);
2333 src[0].subnr = 4 * type_sz(src[0].type);
2334 if (src[1].file == BRW_IMMEDIATE_VALUE) {
2335 assert(src[1].ud == 0);
2336 brw_MOV(p, dst, stride(src[0], 8, 4, 1));
2337 } else {
2338 /* Coarse pixel case */
2339 brw_ADD(p, dst, stride(src[0], 8, 4, 1), src[1]);
2340 }
2341 break;
2342
2343 case SHADER_OPCODE_SEND:
2344 generate_send(inst, dst, src[0], src[1], src[2],
2345 inst->ex_mlen > 0 ? src[3] : brw_null_reg());
2346 if ((inst->desc & 0xff) == BRW_BTI_STATELESS ||
2347 (inst->desc & 0xff) == GFX8_BTI_STATELESS_NON_COHERENT) {
2348 if (inst->size_written)
2349 fill_count++;
2350 else
2351 spill_count++;
2352 } else {
2353 send_count++;
2354 }
2355 break;
2356
2357 case SHADER_OPCODE_GET_BUFFER_SIZE:
2358 generate_get_buffer_size(inst, dst, src[0], src[1]);
2359 send_count++;
2360 break;
2361 case SHADER_OPCODE_TEX:
2362 case FS_OPCODE_TXB:
2363 case SHADER_OPCODE_TXD:
2364 case SHADER_OPCODE_TXF:
2365 case SHADER_OPCODE_TXF_CMS:
2366 case SHADER_OPCODE_TXL:
2367 case SHADER_OPCODE_TXS:
2368 case SHADER_OPCODE_LOD:
2369 case SHADER_OPCODE_TG4:
2370 case SHADER_OPCODE_SAMPLEINFO:
2371 assert(inst->src[0].file == BAD_FILE);
2372 generate_tex(inst, dst, src[1], src[2]);
2373 send_count++;
2374 break;
2375
2376 case FS_OPCODE_DDX_COARSE:
2377 case FS_OPCODE_DDX_FINE:
2378 generate_ddx(inst, dst, src[0]);
2379 break;
2380 case FS_OPCODE_DDY_COARSE:
2381 case FS_OPCODE_DDY_FINE:
2382 generate_ddy(inst, dst, src[0]);
2383 break;
2384
2385 case SHADER_OPCODE_GFX4_SCRATCH_WRITE:
2386 generate_scratch_write(inst, src[0]);
2387 spill_count++;
2388 break;
2389
2390 case SHADER_OPCODE_GFX4_SCRATCH_READ:
2391 generate_scratch_read(inst, dst);
2392 fill_count++;
2393 break;
2394
2395 case SHADER_OPCODE_GFX7_SCRATCH_READ:
2396 generate_scratch_read_gfx7(inst, dst);
2397 fill_count++;
2398 break;
2399
2400 case SHADER_OPCODE_SCRATCH_HEADER:
2401 generate_scratch_header(inst, dst);
2402 break;
2403
2404 case SHADER_OPCODE_MOV_INDIRECT:
2405 generate_mov_indirect(inst, dst, src[0], src[1]);
2406 break;
2407
2408 case SHADER_OPCODE_MOV_RELOC_IMM:
2409 assert(src[0].file == BRW_IMMEDIATE_VALUE);
2410 brw_MOV_reloc_imm(p, dst, dst.type, src[0].ud);
2411 break;
2412
2413 case SHADER_OPCODE_URB_READ_SIMD8:
2414 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
2415 generate_urb_read(inst, dst, src[0]);
2416 send_count++;
2417 break;
2418
2419 case SHADER_OPCODE_URB_WRITE_SIMD8:
2420 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
2421 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
2422 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
2423 generate_urb_write(inst, src[0]);
2424 send_count++;
2425 break;
2426
2427 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
2428 assert(inst->force_writemask_all);
2429 generate_uniform_pull_constant_load(inst, dst, src[0], src[1]);
2430 send_count++;
2431 break;
2432
2433 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GFX7:
2434 assert(inst->force_writemask_all);
2435 generate_uniform_pull_constant_load_gfx7(inst, dst, src[0], src[1]);
2436 send_count++;
2437 break;
2438
2439 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GFX4:
2440 generate_varying_pull_constant_load_gfx4(inst, dst, src[0]);
2441 send_count++;
2442 break;
2443
2444 case FS_OPCODE_REP_FB_WRITE:
2445 case FS_OPCODE_FB_WRITE:
2446 generate_fb_write(inst, src[0]);
2447 send_count++;
2448 break;
2449
2450 case FS_OPCODE_FB_READ:
2451 generate_fb_read(inst, dst, src[0]);
2452 send_count++;
2453 break;
2454
2455 case BRW_OPCODE_HALT:
2456 generate_halt(inst);
2457 break;
2458
2459 case SHADER_OPCODE_SHADER_TIME_ADD:
2460 generate_shader_time_add(inst, src[0], src[1], src[2]);
2461 break;
2462
2463 case SHADER_OPCODE_INTERLOCK:
2464 case SHADER_OPCODE_MEMORY_FENCE: {
2465 assert(src[1].file == BRW_IMMEDIATE_VALUE);
2466 assert(src[2].file == BRW_IMMEDIATE_VALUE);
2467
2468 const enum opcode send_op = inst->opcode == SHADER_OPCODE_INTERLOCK ?
2469 BRW_OPCODE_SENDC : BRW_OPCODE_SEND;
2470
2471 brw_memory_fence(p, dst, src[0], send_op,
2472 brw_message_target(inst->sfid),
2473 /* commit_enable */ src[1].ud,
2474 /* bti */ src[2].ud);
2475 send_count++;
2476 break;
2477 }
2478
2479 case FS_OPCODE_SCHEDULING_FENCE:
2480 if (inst->sources == 0 && swsb.regdist == 0 &&
2481 swsb.mode == TGL_SBID_NULL) {
2482 if (unlikely(debug_flag))
2483 disasm_info->use_tail = true;
2484 break;
2485 }
2486
2487 if (devinfo->ver >= 12) {
2488 /* Use the available SWSB information to stall. A single SYNC is
2489 * sufficient since if there were multiple dependencies, the
2490 * scoreboard algorithm already injected other SYNCs before this
2491 * instruction.
2492 */
2493 brw_SYNC(p, TGL_SYNC_NOP);
2494 } else {
2495 for (unsigned i = 0; i < inst->sources; i++) {
2496 /* Emit a MOV to force a stall until the instruction producing the
2497 * registers finishes.
2498 */
2499 brw_MOV(p, retype(brw_null_reg(), BRW_REGISTER_TYPE_UW),
2500 retype(src[i], BRW_REGISTER_TYPE_UW));
2501 }
2502
2503 if (inst->sources > 1)
2504 multiple_instructions_emitted = true;
2505 }
2506
2507 break;
2508
2509 case SHADER_OPCODE_FIND_LIVE_CHANNEL: {
2510 const struct brw_reg mask =
2511 brw_stage_has_packed_dispatch(devinfo, stage,
2512 prog_data) ? brw_imm_ud(~0u) :
2513 stage == MESA_SHADER_FRAGMENT ? brw_vmask_reg() :
2514 brw_dmask_reg();
2515 brw_find_live_channel(p, dst, mask);
2516 break;
2517 }
2518 case FS_OPCODE_LOAD_LIVE_CHANNELS: {
2519 assert(devinfo->ver >= 8);
2520 assert(inst->force_writemask_all && inst->group == 0);
2521 assert(inst->dst.file == BAD_FILE);
2522 brw_set_default_exec_size(p, BRW_EXECUTE_1);
2523 brw_MOV(p, retype(brw_flag_subreg(inst->flag_subreg),
2524 BRW_REGISTER_TYPE_UD),
2525 retype(brw_mask_reg(0), BRW_REGISTER_TYPE_UD));
2526 break;
2527 }
2528 case SHADER_OPCODE_BROADCAST:
2529 assert(inst->force_writemask_all);
2530 brw_broadcast(p, dst, src[0], src[1]);
2531 break;
2532
2533 case SHADER_OPCODE_SHUFFLE:
2534 generate_shuffle(inst, dst, src[0], src[1]);
2535 break;
2536
2537 case SHADER_OPCODE_SEL_EXEC:
2538 assert(inst->force_writemask_all);
2539 if (type_sz(dst.type) > 4 && !devinfo->has_64bit_float) {
2540 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
2541 brw_MOV(p, subscript(dst, BRW_REGISTER_TYPE_UD, 0),
2542 subscript(src[1], BRW_REGISTER_TYPE_UD, 0));
2543 brw_set_default_swsb(p, tgl_swsb_null());
2544 brw_MOV(p, subscript(dst, BRW_REGISTER_TYPE_UD, 1),
2545 subscript(src[1], BRW_REGISTER_TYPE_UD, 1));
2546 brw_set_default_mask_control(p, BRW_MASK_ENABLE);
2547 brw_MOV(p, subscript(dst, BRW_REGISTER_TYPE_UD, 0),
2548 subscript(src[0], BRW_REGISTER_TYPE_UD, 0));
2549 brw_MOV(p, subscript(dst, BRW_REGISTER_TYPE_UD, 1),
2550 subscript(src[0], BRW_REGISTER_TYPE_UD, 1));
2551 } else {
2552 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
2553 brw_MOV(p, dst, src[1]);
2554 brw_set_default_mask_control(p, BRW_MASK_ENABLE);
2555 brw_set_default_swsb(p, tgl_swsb_null());
2556 brw_MOV(p, dst, src[0]);
2557 }
2558 break;
2559
2560 case SHADER_OPCODE_QUAD_SWIZZLE:
2561 assert(src[1].file == BRW_IMMEDIATE_VALUE);
2562 assert(src[1].type == BRW_REGISTER_TYPE_UD);
2563 generate_quad_swizzle(inst, dst, src[0], src[1].ud);
2564 break;
2565
2566 case SHADER_OPCODE_CLUSTER_BROADCAST: {
2567 assert(!src[0].negate && !src[0].abs);
2568 assert(src[1].file == BRW_IMMEDIATE_VALUE);
2569 assert(src[1].type == BRW_REGISTER_TYPE_UD);
2570 assert(src[2].file == BRW_IMMEDIATE_VALUE);
2571 assert(src[2].type == BRW_REGISTER_TYPE_UD);
2572 const unsigned component = src[1].ud;
2573 const unsigned cluster_size = src[2].ud;
2574 unsigned vstride = cluster_size;
2575 unsigned width = cluster_size;
2576
2577 /* The maximum exec_size is 32, but the maximum width is only 16. */
2578 if (inst->exec_size == width) {
2579 vstride = 0;
2580 width = 1;
2581 }
2582
2583 struct brw_reg strided = stride(suboffset(src[0], component),
2584 vstride, width, 0);
2585 if (type_sz(src[0].type) > 4 &&
2586 (devinfo->is_cherryview || intel_device_info_is_9lp(devinfo) ||
2587 !devinfo->has_64bit_float)) {
2588 /* IVB has an issue (which we found empirically) where it reads
2589 * two address register components per channel for indirectly
2590 * addressed 64-bit sources.
2591 *
2592 * From the Cherryview PRM Vol 7. "Register Region Restrictions":
2593 *
2594 * "When source or destination datatype is 64b or operation is
2595 * integer DWord multiply, indirect addressing must not be
2596 * used."
2597 *
2598 * To work around both of these, we do two integer MOVs insead of
2599 * one 64-bit MOV. Because no double value should ever cross a
2600 * register boundary, it's safe to use the immediate offset in the
2601 * indirect here to handle adding 4 bytes to the offset and avoid
2602 * the extra ADD to the register file.
2603 */
2604 assert(src[0].type == dst.type);
2605 brw_MOV(p, subscript(dst, BRW_REGISTER_TYPE_D, 0),
2606 subscript(strided, BRW_REGISTER_TYPE_D, 0));
2607 brw_set_default_swsb(p, tgl_swsb_null());
2608 brw_MOV(p, subscript(dst, BRW_REGISTER_TYPE_D, 1),
2609 subscript(strided, BRW_REGISTER_TYPE_D, 1));
2610 } else {
2611 brw_MOV(p, dst, strided);
2612 }
2613 break;
2614 }
2615
2616 case FS_OPCODE_SET_SAMPLE_ID:
2617 generate_set_sample_id(inst, dst, src[0], src[1]);
2618 break;
2619
2620 case FS_OPCODE_PACK_HALF_2x16_SPLIT:
2621 generate_pack_half_2x16_split(inst, dst, src[0], src[1]);
2622 break;
2623
2624 case SHADER_OPCODE_HALT_TARGET:
2625 /* This is the place where the final HALT needs to be inserted if
2626 * we've emitted any discards. If not, this will emit no code.
2627 */
2628 if (!patch_halt_jumps()) {
2629 if (unlikely(debug_flag)) {
2630 disasm_info->use_tail = true;
2631 }
2632 }
2633 break;
2634
2635 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
2636 generate_pixel_interpolator_query(inst, dst, src[0], src[1],
2637 GFX7_PIXEL_INTERPOLATOR_LOC_SAMPLE);
2638 send_count++;
2639 break;
2640
2641 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
2642 generate_pixel_interpolator_query(inst, dst, src[0], src[1],
2643 GFX7_PIXEL_INTERPOLATOR_LOC_SHARED_OFFSET);
2644 send_count++;
2645 break;
2646
2647 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
2648 generate_pixel_interpolator_query(inst, dst, src[0], src[1],
2649 GFX7_PIXEL_INTERPOLATOR_LOC_PER_SLOT_OFFSET);
2650 send_count++;
2651 break;
2652
2653 case CS_OPCODE_CS_TERMINATE:
2654 generate_cs_terminate(inst, src[0]);
2655 send_count++;
2656 break;
2657
2658 case SHADER_OPCODE_BARRIER:
2659 generate_barrier(inst, src[0]);
2660 send_count++;
2661 break;
2662
2663 case BRW_OPCODE_DIM:
2664 assert(devinfo->is_haswell);
2665 assert(src[0].type == BRW_REGISTER_TYPE_DF);
2666 assert(dst.type == BRW_REGISTER_TYPE_DF);
2667 brw_DIM(p, dst, retype(src[0], BRW_REGISTER_TYPE_F));
2668 break;
2669
2670 case SHADER_OPCODE_RND_MODE: {
2671 assert(src[0].file == BRW_IMMEDIATE_VALUE);
2672 /*
2673 * Changes the floating point rounding mode updating the control
2674 * register field defined at cr0.0[5-6] bits.
2675 */
2676 enum brw_rnd_mode mode =
2677 (enum brw_rnd_mode) (src[0].d << BRW_CR0_RND_MODE_SHIFT);
2678 brw_float_controls_mode(p, mode, BRW_CR0_RND_MODE_MASK);
2679 }
2680 break;
2681
2682 case SHADER_OPCODE_FLOAT_CONTROL_MODE:
2683 assert(src[0].file == BRW_IMMEDIATE_VALUE);
2684 assert(src[1].file == BRW_IMMEDIATE_VALUE);
2685 brw_float_controls_mode(p, src[0].d, src[1].d);
2686 break;
2687
2688 case SHADER_OPCODE_GET_DSS_ID:
2689 /* The Slice, Dual-SubSlice, SubSlice, EU, and Thread IDs are all
2690 * stored in sr0.0. Normally, for reading from HW regs, we'd just do
2691 * this in the IR and let the back-end generate some code but these
2692 * live in the state register which tends to have special rules.
2693 *
2694 * For convenience, we combine Slice ID and Dual-SubSlice ID into a
2695 * single ID.
2696 */
2697 if (devinfo->ver == 12) {
2698 /* There is a SWSB restriction that requires that any time sr0 is
2699 * accessed both the instruction doing the access and the next one
2700 * have SWSB set to RegDist(1).
2701 */
2702 if (brw_get_default_swsb(p).mode != TGL_SBID_NULL)
2703 brw_SYNC(p, TGL_SYNC_NOP);
2704 brw_set_default_swsb(p, tgl_swsb_regdist(1));
2705 brw_SHR(p, dst, brw_sr0_reg(0), brw_imm_ud(9));
2706 brw_set_default_swsb(p, tgl_swsb_regdist(1));
2707 brw_AND(p, dst, dst, brw_imm_ud(0x1f));
2708 } else {
2709 /* These move around basically every hardware generation, so don't
2710 * do any >= checks and fail if the platform hasn't explicitly
2711 * been enabled here.
2712 */
2713 unreachable("Unsupported platform");
2714 }
2715 break;
2716
2717 default:
2718 unreachable("Unsupported opcode");
2719
2720 case SHADER_OPCODE_LOAD_PAYLOAD:
2721 unreachable("Should be lowered by lower_load_payload()");
2722 }
2723
2724 if (multiple_instructions_emitted)
2725 continue;
2726
2727 if (inst->no_dd_clear || inst->no_dd_check || inst->conditional_mod) {
2728 assert(p->next_insn_offset == last_insn_offset + 16 ||
2729 !"conditional_mod, no_dd_check, or no_dd_clear set for IR "
2730 "emitting more than 1 instruction");
2731
2732 brw_inst *last = &p->store[last_insn_offset / 16];
2733
2734 if (inst->conditional_mod)
2735 brw_inst_set_cond_modifier(p->devinfo, last, inst->conditional_mod);
2736 if (devinfo->ver < 12) {
2737 brw_inst_set_no_dd_clear(p->devinfo, last, inst->no_dd_clear);
2738 brw_inst_set_no_dd_check(p->devinfo, last, inst->no_dd_check);
2739 }
2740 }
2741 }
2742
2743 brw_set_uip_jip(p, start_offset);
2744
2745 /* end of program sentinel */
2746 disasm_new_inst_group(disasm_info, p->next_insn_offset);
2747
2748 #ifndef NDEBUG
2749 bool validated =
2750 #else
2751 if (unlikely(debug_flag))
2752 #endif
2753 brw_validate_instructions(devinfo, p->store,
2754 start_offset,
2755 p->next_insn_offset,
2756 disasm_info);
2757
2758 int before_size = p->next_insn_offset - start_offset;
2759 brw_compact_instructions(p, start_offset, disasm_info);
2760 int after_size = p->next_insn_offset - start_offset;
2761
2762 if (unlikely(debug_flag)) {
2763 unsigned char sha1[21];
2764 char sha1buf[41];
2765
2766 _mesa_sha1_compute(p->store + start_offset / sizeof(brw_inst),
2767 after_size, sha1);
2768 _mesa_sha1_format(sha1buf, sha1);
2769
2770 fprintf(stderr, "Native code for %s (sha1 %s)\n"
2771 "SIMD%d shader: %d instructions. %d loops. %u cycles. "
2772 "%d:%d spills:fills, %u sends, "
2773 "scheduled with mode %s. "
2774 "Promoted %u constants. "
2775 "Compacted %d to %d bytes (%.0f%%)\n",
2776 shader_name, sha1buf,
2777 dispatch_width, before_size / 16,
2778 loop_count, perf.latency,
2779 spill_count, fill_count, send_count,
2780 shader_stats.scheduler_mode,
2781 shader_stats.promoted_constants,
2782 before_size, after_size,
2783 100.0f * (before_size - after_size) / before_size);
2784
2785 /* overriding the shader makes disasm_info invalid */
2786 if (!brw_try_override_assembly(p, start_offset, sha1buf)) {
2787 dump_assembly(p->store, start_offset, p->next_insn_offset,
2788 disasm_info, perf.block_latency);
2789 } else {
2790 fprintf(stderr, "Successfully overrode shader with sha1 %s\n\n", sha1buf);
2791 }
2792 }
2793 ralloc_free(disasm_info);
2794 #ifndef NDEBUG
2795 if (!validated && !debug_flag) {
2796 fprintf(stderr,
2797 "Validation failed. Rerun with INTEL_DEBUG=shaders to get more information.\n");
2798 }
2799 #endif
2800 assert(validated);
2801
2802 brw_shader_debug_log(compiler, log_data,
2803 "%s SIMD%d shader: %d inst, %d loops, %u cycles, "
2804 "%d:%d spills:fills, %u sends, "
2805 "scheduled with mode %s, "
2806 "Promoted %u constants, "
2807 "compacted %d to %d bytes.\n",
2808 _mesa_shader_stage_to_abbrev(stage),
2809 dispatch_width, before_size / 16 - nop_count,
2810 loop_count, perf.latency,
2811 spill_count, fill_count, send_count,
2812 shader_stats.scheduler_mode,
2813 shader_stats.promoted_constants,
2814 before_size, after_size);
2815 if (stats) {
2816 stats->dispatch_width = dispatch_width;
2817 stats->instructions = before_size / 16 - nop_count;
2818 stats->sends = send_count;
2819 stats->loops = loop_count;
2820 stats->cycles = perf.latency;
2821 stats->spills = spill_count;
2822 stats->fills = fill_count;
2823 }
2824
2825 return start_offset;
2826 }
2827
2828 void
add_const_data(void * data,unsigned size)2829 fs_generator::add_const_data(void *data, unsigned size)
2830 {
2831 assert(prog_data->const_data_size == 0);
2832 if (size > 0) {
2833 prog_data->const_data_size = size;
2834 prog_data->const_data_offset = brw_append_data(p, data, size, 32);
2835 }
2836 }
2837
2838 void
add_resume_sbt(unsigned num_resume_shaders,uint64_t * sbt)2839 fs_generator::add_resume_sbt(unsigned num_resume_shaders, uint64_t *sbt)
2840 {
2841 assert(brw_shader_stage_is_bindless(stage));
2842 struct brw_bs_prog_data *bs_prog_data = brw_bs_prog_data(prog_data);
2843 if (num_resume_shaders > 0) {
2844 bs_prog_data->resume_sbt_offset =
2845 brw_append_data(p, sbt, num_resume_shaders * sizeof(uint64_t), 32);
2846 for (unsigned i = 0; i < num_resume_shaders; i++) {
2847 size_t offset = bs_prog_data->resume_sbt_offset + i * sizeof(*sbt);
2848 assert(offset <= UINT32_MAX);
2849 brw_add_reloc(p, BRW_SHADER_RELOC_SHADER_START_OFFSET,
2850 BRW_SHADER_RELOC_TYPE_U32,
2851 (uint32_t)offset, (uint32_t)sbt[i]);
2852 }
2853 }
2854 }
2855
2856 const unsigned *
get_assembly()2857 fs_generator::get_assembly()
2858 {
2859 prog_data->relocs = brw_get_shader_relocs(p, &prog_data->num_relocs);
2860
2861 return brw_get_program(p, &prog_data->program_size);
2862 }
2863