1 //===- TypeBasedAliasAnalysis.cpp - Type-Based Alias Analysis -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the TypeBasedAliasAnalysis pass, which implements
10 // metadata-based TBAA.
11 //
12 // In LLVM IR, memory does not have types, so LLVM's own type system is not
13 // suitable for doing TBAA. Instead, metadata is added to the IR to describe
14 // a type system of a higher level language. This can be used to implement
15 // typical C/C++ TBAA, but it can also be used to implement custom alias
16 // analysis behavior for other languages.
17 //
18 // We now support two types of metadata format: scalar TBAA and struct-path
19 // aware TBAA. After all testing cases are upgraded to use struct-path aware
20 // TBAA and we can auto-upgrade existing bc files, the support for scalar TBAA
21 // can be dropped.
22 //
23 // The scalar TBAA metadata format is very simple. TBAA MDNodes have up to
24 // three fields, e.g.:
25 // !0 = !{ !"an example type tree" }
26 // !1 = !{ !"int", !0 }
27 // !2 = !{ !"float", !0 }
28 // !3 = !{ !"const float", !2, i64 1 }
29 //
30 // The first field is an identity field. It can be any value, usually
31 // an MDString, which uniquely identifies the type. The most important
32 // name in the tree is the name of the root node. Two trees with
33 // different root node names are entirely disjoint, even if they
34 // have leaves with common names.
35 //
36 // The second field identifies the type's parent node in the tree, or
37 // is null or omitted for a root node. A type is considered to alias
38 // all of its descendants and all of its ancestors in the tree. Also,
39 // a type is considered to alias all types in other trees, so that
40 // bitcode produced from multiple front-ends is handled conservatively.
41 //
42 // If the third field is present, it's an integer which if equal to 1
43 // indicates that the type is "constant" (meaning pointsToConstantMemory
44 // should return true; see
45 // http://llvm.org/docs/AliasAnalysis.html#OtherItfs).
46 //
47 // With struct-path aware TBAA, the MDNodes attached to an instruction using
48 // "!tbaa" are called path tag nodes.
49 //
50 // The path tag node has 4 fields with the last field being optional.
51 //
52 // The first field is the base type node, it can be a struct type node
53 // or a scalar type node. The second field is the access type node, it
54 // must be a scalar type node. The third field is the offset into the base type.
55 // The last field has the same meaning as the last field of our scalar TBAA:
56 // it's an integer which if equal to 1 indicates that the access is "constant".
57 //
58 // The struct type node has a name and a list of pairs, one pair for each member
59 // of the struct. The first element of each pair is a type node (a struct type
60 // node or a scalar type node), specifying the type of the member, the second
61 // element of each pair is the offset of the member.
62 //
63 // Given an example
64 // typedef struct {
65 // short s;
66 // } A;
67 // typedef struct {
68 // uint16_t s;
69 // A a;
70 // } B;
71 //
72 // For an access to B.a.s, we attach !5 (a path tag node) to the load/store
73 // instruction. The base type is !4 (struct B), the access type is !2 (scalar
74 // type short) and the offset is 4.
75 //
76 // !0 = !{!"Simple C/C++ TBAA"}
77 // !1 = !{!"omnipotent char", !0} // Scalar type node
78 // !2 = !{!"short", !1} // Scalar type node
79 // !3 = !{!"A", !2, i64 0} // Struct type node
80 // !4 = !{!"B", !2, i64 0, !3, i64 4}
81 // // Struct type node
82 // !5 = !{!4, !2, i64 4} // Path tag node
83 //
84 // The struct type nodes and the scalar type nodes form a type DAG.
85 // Root (!0)
86 // char (!1) -- edge to Root
87 // short (!2) -- edge to char
88 // A (!3) -- edge with offset 0 to short
89 // B (!4) -- edge with offset 0 to short and edge with offset 4 to A
90 //
91 // To check if two tags (tagX and tagY) can alias, we start from the base type
92 // of tagX, follow the edge with the correct offset in the type DAG and adjust
93 // the offset until we reach the base type of tagY or until we reach the Root
94 // node.
95 // If we reach the base type of tagY, compare the adjusted offset with
96 // offset of tagY, return Alias if the offsets are the same, return NoAlias
97 // otherwise.
98 // If we reach the Root node, perform the above starting from base type of tagY
99 // to see if we reach base type of tagX.
100 //
101 // If they have different roots, they're part of different potentially
102 // unrelated type systems, so we return Alias to be conservative.
103 // If neither node is an ancestor of the other and they have the same root,
104 // then we say NoAlias.
105 //
106 //===----------------------------------------------------------------------===//
107
108 #include "llvm/Analysis/TypeBasedAliasAnalysis.h"
109 #include "llvm/ADT/SetVector.h"
110 #include "llvm/Analysis/AliasAnalysis.h"
111 #include "llvm/Analysis/MemoryLocation.h"
112 #include "llvm/IR/Constants.h"
113 #include "llvm/IR/DerivedTypes.h"
114 #include "llvm/IR/Instruction.h"
115 #include "llvm/IR/LLVMContext.h"
116 #include "llvm/IR/Metadata.h"
117 #include "llvm/InitializePasses.h"
118 #include "llvm/Pass.h"
119 #include "llvm/Support/Casting.h"
120 #include "llvm/Support/CommandLine.h"
121 #include "llvm/Support/ErrorHandling.h"
122 #include <cassert>
123 #include <cstdint>
124
125 using namespace llvm;
126
127 // A handy option for disabling TBAA functionality. The same effect can also be
128 // achieved by stripping the !tbaa tags from IR, but this option is sometimes
129 // more convenient.
130 static cl::opt<bool> EnableTBAA("enable-tbaa", cl::init(true), cl::Hidden);
131
132 namespace {
133
134 /// isNewFormatTypeNode - Return true iff the given type node is in the new
135 /// size-aware format.
isNewFormatTypeNode(const MDNode * N)136 static bool isNewFormatTypeNode(const MDNode *N) {
137 if (N->getNumOperands() < 3)
138 return false;
139 // In the old format the first operand is a string.
140 if (!isa<MDNode>(N->getOperand(0)))
141 return false;
142 return true;
143 }
144
145 /// This is a simple wrapper around an MDNode which provides a higher-level
146 /// interface by hiding the details of how alias analysis information is encoded
147 /// in its operands.
148 template<typename MDNodeTy>
149 class TBAANodeImpl {
150 MDNodeTy *Node = nullptr;
151
152 public:
153 TBAANodeImpl() = default;
TBAANodeImpl(MDNodeTy * N)154 explicit TBAANodeImpl(MDNodeTy *N) : Node(N) {}
155
156 /// getNode - Get the MDNode for this TBAANode.
getNode() const157 MDNodeTy *getNode() const { return Node; }
158
159 /// isNewFormat - Return true iff the wrapped type node is in the new
160 /// size-aware format.
isNewFormat() const161 bool isNewFormat() const { return isNewFormatTypeNode(Node); }
162
163 /// getParent - Get this TBAANode's Alias tree parent.
getParent() const164 TBAANodeImpl<MDNodeTy> getParent() const {
165 if (isNewFormat())
166 return TBAANodeImpl(cast<MDNodeTy>(Node->getOperand(0)));
167
168 if (Node->getNumOperands() < 2)
169 return TBAANodeImpl<MDNodeTy>();
170 MDNodeTy *P = dyn_cast_or_null<MDNodeTy>(Node->getOperand(1));
171 if (!P)
172 return TBAANodeImpl<MDNodeTy>();
173 // Ok, this node has a valid parent. Return it.
174 return TBAANodeImpl<MDNodeTy>(P);
175 }
176
177 /// Test if this TBAANode represents a type for objects which are
178 /// not modified (by any means) in the context where this
179 /// AliasAnalysis is relevant.
isTypeImmutable() const180 bool isTypeImmutable() const {
181 if (Node->getNumOperands() < 3)
182 return false;
183 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(Node->getOperand(2));
184 if (!CI)
185 return false;
186 return CI->getValue()[0];
187 }
188 };
189
190 /// \name Specializations of \c TBAANodeImpl for const and non const qualified
191 /// \c MDNode.
192 /// @{
193 using TBAANode = TBAANodeImpl<const MDNode>;
194 using MutableTBAANode = TBAANodeImpl<MDNode>;
195 /// @}
196
197 /// This is a simple wrapper around an MDNode which provides a
198 /// higher-level interface by hiding the details of how alias analysis
199 /// information is encoded in its operands.
200 template<typename MDNodeTy>
201 class TBAAStructTagNodeImpl {
202 /// This node should be created with createTBAAAccessTag().
203 MDNodeTy *Node;
204
205 public:
TBAAStructTagNodeImpl(MDNodeTy * N)206 explicit TBAAStructTagNodeImpl(MDNodeTy *N) : Node(N) {}
207
208 /// Get the MDNode for this TBAAStructTagNode.
getNode() const209 MDNodeTy *getNode() const { return Node; }
210
211 /// isNewFormat - Return true iff the wrapped access tag is in the new
212 /// size-aware format.
isNewFormat() const213 bool isNewFormat() const {
214 if (Node->getNumOperands() < 4)
215 return false;
216 if (MDNodeTy *AccessType = getAccessType())
217 if (!TBAANodeImpl<MDNodeTy>(AccessType).isNewFormat())
218 return false;
219 return true;
220 }
221
getBaseType() const222 MDNodeTy *getBaseType() const {
223 return dyn_cast_or_null<MDNode>(Node->getOperand(0));
224 }
225
getAccessType() const226 MDNodeTy *getAccessType() const {
227 return dyn_cast_or_null<MDNode>(Node->getOperand(1));
228 }
229
getOffset() const230 uint64_t getOffset() const {
231 return mdconst::extract<ConstantInt>(Node->getOperand(2))->getZExtValue();
232 }
233
getSize() const234 uint64_t getSize() const {
235 if (!isNewFormat())
236 return UINT64_MAX;
237 return mdconst::extract<ConstantInt>(Node->getOperand(3))->getZExtValue();
238 }
239
240 /// Test if this TBAAStructTagNode represents a type for objects
241 /// which are not modified (by any means) in the context where this
242 /// AliasAnalysis is relevant.
isTypeImmutable() const243 bool isTypeImmutable() const {
244 unsigned OpNo = isNewFormat() ? 4 : 3;
245 if (Node->getNumOperands() < OpNo + 1)
246 return false;
247 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(Node->getOperand(OpNo));
248 if (!CI)
249 return false;
250 return CI->getValue()[0];
251 }
252 };
253
254 /// \name Specializations of \c TBAAStructTagNodeImpl for const and non const
255 /// qualified \c MDNods.
256 /// @{
257 using TBAAStructTagNode = TBAAStructTagNodeImpl<const MDNode>;
258 using MutableTBAAStructTagNode = TBAAStructTagNodeImpl<MDNode>;
259 /// @}
260
261 /// This is a simple wrapper around an MDNode which provides a
262 /// higher-level interface by hiding the details of how alias analysis
263 /// information is encoded in its operands.
264 class TBAAStructTypeNode {
265 /// This node should be created with createTBAATypeNode().
266 const MDNode *Node = nullptr;
267
268 public:
269 TBAAStructTypeNode() = default;
TBAAStructTypeNode(const MDNode * N)270 explicit TBAAStructTypeNode(const MDNode *N) : Node(N) {}
271
272 /// Get the MDNode for this TBAAStructTypeNode.
getNode() const273 const MDNode *getNode() const { return Node; }
274
275 /// isNewFormat - Return true iff the wrapped type node is in the new
276 /// size-aware format.
isNewFormat() const277 bool isNewFormat() const { return isNewFormatTypeNode(Node); }
278
operator ==(const TBAAStructTypeNode & Other) const279 bool operator==(const TBAAStructTypeNode &Other) const {
280 return getNode() == Other.getNode();
281 }
282
283 /// getId - Return type identifier.
getId() const284 Metadata *getId() const {
285 return Node->getOperand(isNewFormat() ? 2 : 0);
286 }
287
getNumFields() const288 unsigned getNumFields() const {
289 unsigned FirstFieldOpNo = isNewFormat() ? 3 : 1;
290 unsigned NumOpsPerField = isNewFormat() ? 3 : 2;
291 return (getNode()->getNumOperands() - FirstFieldOpNo) / NumOpsPerField;
292 }
293
getFieldType(unsigned FieldIndex) const294 TBAAStructTypeNode getFieldType(unsigned FieldIndex) const {
295 unsigned FirstFieldOpNo = isNewFormat() ? 3 : 1;
296 unsigned NumOpsPerField = isNewFormat() ? 3 : 2;
297 unsigned OpIndex = FirstFieldOpNo + FieldIndex * NumOpsPerField;
298 auto *TypeNode = cast<MDNode>(getNode()->getOperand(OpIndex));
299 return TBAAStructTypeNode(TypeNode);
300 }
301
302 /// Get this TBAAStructTypeNode's field in the type DAG with
303 /// given offset. Update the offset to be relative to the field type.
getField(uint64_t & Offset) const304 TBAAStructTypeNode getField(uint64_t &Offset) const {
305 bool NewFormat = isNewFormat();
306 if (NewFormat) {
307 // New-format root and scalar type nodes have no fields.
308 if (Node->getNumOperands() < 6)
309 return TBAAStructTypeNode();
310 } else {
311 // Parent can be omitted for the root node.
312 if (Node->getNumOperands() < 2)
313 return TBAAStructTypeNode();
314
315 // Fast path for a scalar type node and a struct type node with a single
316 // field.
317 if (Node->getNumOperands() <= 3) {
318 uint64_t Cur = Node->getNumOperands() == 2
319 ? 0
320 : mdconst::extract<ConstantInt>(Node->getOperand(2))
321 ->getZExtValue();
322 Offset -= Cur;
323 MDNode *P = dyn_cast_or_null<MDNode>(Node->getOperand(1));
324 if (!P)
325 return TBAAStructTypeNode();
326 return TBAAStructTypeNode(P);
327 }
328 }
329
330 // Assume the offsets are in order. We return the previous field if
331 // the current offset is bigger than the given offset.
332 unsigned FirstFieldOpNo = NewFormat ? 3 : 1;
333 unsigned NumOpsPerField = NewFormat ? 3 : 2;
334 unsigned TheIdx = 0;
335 for (unsigned Idx = FirstFieldOpNo; Idx < Node->getNumOperands();
336 Idx += NumOpsPerField) {
337 uint64_t Cur = mdconst::extract<ConstantInt>(Node->getOperand(Idx + 1))
338 ->getZExtValue();
339 if (Cur > Offset) {
340 assert(Idx >= FirstFieldOpNo + NumOpsPerField &&
341 "TBAAStructTypeNode::getField should have an offset match!");
342 TheIdx = Idx - NumOpsPerField;
343 break;
344 }
345 }
346 // Move along the last field.
347 if (TheIdx == 0)
348 TheIdx = Node->getNumOperands() - NumOpsPerField;
349 uint64_t Cur = mdconst::extract<ConstantInt>(Node->getOperand(TheIdx + 1))
350 ->getZExtValue();
351 Offset -= Cur;
352 MDNode *P = dyn_cast_or_null<MDNode>(Node->getOperand(TheIdx));
353 if (!P)
354 return TBAAStructTypeNode();
355 return TBAAStructTypeNode(P);
356 }
357 };
358
359 } // end anonymous namespace
360
361 /// Check the first operand of the tbaa tag node, if it is a MDNode, we treat
362 /// it as struct-path aware TBAA format, otherwise, we treat it as scalar TBAA
363 /// format.
isStructPathTBAA(const MDNode * MD)364 static bool isStructPathTBAA(const MDNode *MD) {
365 // Anonymous TBAA root starts with a MDNode and dragonegg uses it as
366 // a TBAA tag.
367 return isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3;
368 }
369
alias(const MemoryLocation & LocA,const MemoryLocation & LocB,AAQueryInfo & AAQI)370 AliasResult TypeBasedAAResult::alias(const MemoryLocation &LocA,
371 const MemoryLocation &LocB,
372 AAQueryInfo &AAQI) {
373 if (!EnableTBAA)
374 return AAResultBase::alias(LocA, LocB, AAQI);
375
376 // If accesses may alias, chain to the next AliasAnalysis.
377 if (Aliases(LocA.AATags.TBAA, LocB.AATags.TBAA))
378 return AAResultBase::alias(LocA, LocB, AAQI);
379
380 // Otherwise return a definitive result.
381 return NoAlias;
382 }
383
pointsToConstantMemory(const MemoryLocation & Loc,AAQueryInfo & AAQI,bool OrLocal)384 bool TypeBasedAAResult::pointsToConstantMemory(const MemoryLocation &Loc,
385 AAQueryInfo &AAQI,
386 bool OrLocal) {
387 if (!EnableTBAA)
388 return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal);
389
390 const MDNode *M = Loc.AATags.TBAA;
391 if (!M)
392 return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal);
393
394 // If this is an "immutable" type, we can assume the pointer is pointing
395 // to constant memory.
396 if ((!isStructPathTBAA(M) && TBAANode(M).isTypeImmutable()) ||
397 (isStructPathTBAA(M) && TBAAStructTagNode(M).isTypeImmutable()))
398 return true;
399
400 return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal);
401 }
402
403 FunctionModRefBehavior
getModRefBehavior(const CallBase * Call)404 TypeBasedAAResult::getModRefBehavior(const CallBase *Call) {
405 if (!EnableTBAA)
406 return AAResultBase::getModRefBehavior(Call);
407
408 FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
409
410 // If this is an "immutable" type, we can assume the call doesn't write
411 // to memory.
412 if (const MDNode *M = Call->getMetadata(LLVMContext::MD_tbaa))
413 if ((!isStructPathTBAA(M) && TBAANode(M).isTypeImmutable()) ||
414 (isStructPathTBAA(M) && TBAAStructTagNode(M).isTypeImmutable()))
415 Min = FMRB_OnlyReadsMemory;
416
417 return FunctionModRefBehavior(AAResultBase::getModRefBehavior(Call) & Min);
418 }
419
getModRefBehavior(const Function * F)420 FunctionModRefBehavior TypeBasedAAResult::getModRefBehavior(const Function *F) {
421 // Functions don't have metadata. Just chain to the next implementation.
422 return AAResultBase::getModRefBehavior(F);
423 }
424
getModRefInfo(const CallBase * Call,const MemoryLocation & Loc,AAQueryInfo & AAQI)425 ModRefInfo TypeBasedAAResult::getModRefInfo(const CallBase *Call,
426 const MemoryLocation &Loc,
427 AAQueryInfo &AAQI) {
428 if (!EnableTBAA)
429 return AAResultBase::getModRefInfo(Call, Loc, AAQI);
430
431 if (const MDNode *L = Loc.AATags.TBAA)
432 if (const MDNode *M = Call->getMetadata(LLVMContext::MD_tbaa))
433 if (!Aliases(L, M))
434 return ModRefInfo::NoModRef;
435
436 return AAResultBase::getModRefInfo(Call, Loc, AAQI);
437 }
438
getModRefInfo(const CallBase * Call1,const CallBase * Call2,AAQueryInfo & AAQI)439 ModRefInfo TypeBasedAAResult::getModRefInfo(const CallBase *Call1,
440 const CallBase *Call2,
441 AAQueryInfo &AAQI) {
442 if (!EnableTBAA)
443 return AAResultBase::getModRefInfo(Call1, Call2, AAQI);
444
445 if (const MDNode *M1 = Call1->getMetadata(LLVMContext::MD_tbaa))
446 if (const MDNode *M2 = Call2->getMetadata(LLVMContext::MD_tbaa))
447 if (!Aliases(M1, M2))
448 return ModRefInfo::NoModRef;
449
450 return AAResultBase::getModRefInfo(Call1, Call2, AAQI);
451 }
452
isTBAAVtableAccess() const453 bool MDNode::isTBAAVtableAccess() const {
454 if (!isStructPathTBAA(this)) {
455 if (getNumOperands() < 1)
456 return false;
457 if (MDString *Tag1 = dyn_cast<MDString>(getOperand(0))) {
458 if (Tag1->getString() == "vtable pointer")
459 return true;
460 }
461 return false;
462 }
463
464 // For struct-path aware TBAA, we use the access type of the tag.
465 TBAAStructTagNode Tag(this);
466 TBAAStructTypeNode AccessType(Tag.getAccessType());
467 if(auto *Id = dyn_cast<MDString>(AccessType.getId()))
468 if (Id->getString() == "vtable pointer")
469 return true;
470 return false;
471 }
472
473 static bool matchAccessTags(const MDNode *A, const MDNode *B,
474 const MDNode **GenericTag = nullptr);
475
getMostGenericTBAA(MDNode * A,MDNode * B)476 MDNode *MDNode::getMostGenericTBAA(MDNode *A, MDNode *B) {
477 const MDNode *GenericTag;
478 matchAccessTags(A, B, &GenericTag);
479 return const_cast<MDNode*>(GenericTag);
480 }
481
getLeastCommonType(const MDNode * A,const MDNode * B)482 static const MDNode *getLeastCommonType(const MDNode *A, const MDNode *B) {
483 if (!A || !B)
484 return nullptr;
485
486 if (A == B)
487 return A;
488
489 SmallSetVector<const MDNode *, 4> PathA;
490 TBAANode TA(A);
491 while (TA.getNode()) {
492 if (PathA.count(TA.getNode()))
493 report_fatal_error("Cycle found in TBAA metadata.");
494 PathA.insert(TA.getNode());
495 TA = TA.getParent();
496 }
497
498 SmallSetVector<const MDNode *, 4> PathB;
499 TBAANode TB(B);
500 while (TB.getNode()) {
501 if (PathB.count(TB.getNode()))
502 report_fatal_error("Cycle found in TBAA metadata.");
503 PathB.insert(TB.getNode());
504 TB = TB.getParent();
505 }
506
507 int IA = PathA.size() - 1;
508 int IB = PathB.size() - 1;
509
510 const MDNode *Ret = nullptr;
511 while (IA >= 0 && IB >= 0) {
512 if (PathA[IA] == PathB[IB])
513 Ret = PathA[IA];
514 else
515 break;
516 --IA;
517 --IB;
518 }
519
520 return Ret;
521 }
522
getAAMetadata(AAMDNodes & N,bool Merge) const523 void Instruction::getAAMetadata(AAMDNodes &N, bool Merge) const {
524 if (Merge) {
525 N.TBAA =
526 MDNode::getMostGenericTBAA(N.TBAA, getMetadata(LLVMContext::MD_tbaa));
527 N.TBAAStruct = nullptr;
528 N.Scope = MDNode::getMostGenericAliasScope(
529 N.Scope, getMetadata(LLVMContext::MD_alias_scope));
530 N.NoAlias =
531 MDNode::intersect(N.NoAlias, getMetadata(LLVMContext::MD_noalias));
532 } else {
533 N.TBAA = getMetadata(LLVMContext::MD_tbaa);
534 N.TBAAStruct = getMetadata(LLVMContext::MD_tbaa_struct);
535 N.Scope = getMetadata(LLVMContext::MD_alias_scope);
536 N.NoAlias = getMetadata(LLVMContext::MD_noalias);
537 }
538 }
539
createAccessTag(const MDNode * AccessType)540 static const MDNode *createAccessTag(const MDNode *AccessType) {
541 // If there is no access type or the access type is the root node, then
542 // we don't have any useful access tag to return.
543 if (!AccessType || AccessType->getNumOperands() < 2)
544 return nullptr;
545
546 Type *Int64 = IntegerType::get(AccessType->getContext(), 64);
547 auto *OffsetNode = ConstantAsMetadata::get(ConstantInt::get(Int64, 0));
548
549 if (TBAAStructTypeNode(AccessType).isNewFormat()) {
550 // TODO: Take access ranges into account when matching access tags and
551 // fix this code to generate actual access sizes for generic tags.
552 uint64_t AccessSize = UINT64_MAX;
553 auto *SizeNode =
554 ConstantAsMetadata::get(ConstantInt::get(Int64, AccessSize));
555 Metadata *Ops[] = {const_cast<MDNode*>(AccessType),
556 const_cast<MDNode*>(AccessType),
557 OffsetNode, SizeNode};
558 return MDNode::get(AccessType->getContext(), Ops);
559 }
560
561 Metadata *Ops[] = {const_cast<MDNode*>(AccessType),
562 const_cast<MDNode*>(AccessType),
563 OffsetNode};
564 return MDNode::get(AccessType->getContext(), Ops);
565 }
566
hasField(TBAAStructTypeNode BaseType,TBAAStructTypeNode FieldType)567 static bool hasField(TBAAStructTypeNode BaseType,
568 TBAAStructTypeNode FieldType) {
569 for (unsigned I = 0, E = BaseType.getNumFields(); I != E; ++I) {
570 TBAAStructTypeNode T = BaseType.getFieldType(I);
571 if (T == FieldType || hasField(T, FieldType))
572 return true;
573 }
574 return false;
575 }
576
577 /// Return true if for two given accesses, one of the accessed objects may be a
578 /// subobject of the other. The \p BaseTag and \p SubobjectTag parameters
579 /// describe the accesses to the base object and the subobject respectively.
580 /// \p CommonType must be the metadata node describing the common type of the
581 /// accessed objects. On return, \p MayAlias is set to true iff these accesses
582 /// may alias and \p Generic, if not null, points to the most generic access
583 /// tag for the given two.
mayBeAccessToSubobjectOf(TBAAStructTagNode BaseTag,TBAAStructTagNode SubobjectTag,const MDNode * CommonType,const MDNode ** GenericTag,bool & MayAlias)584 static bool mayBeAccessToSubobjectOf(TBAAStructTagNode BaseTag,
585 TBAAStructTagNode SubobjectTag,
586 const MDNode *CommonType,
587 const MDNode **GenericTag,
588 bool &MayAlias) {
589 // If the base object is of the least common type, then this may be an access
590 // to its subobject.
591 if (BaseTag.getAccessType() == BaseTag.getBaseType() &&
592 BaseTag.getAccessType() == CommonType) {
593 if (GenericTag)
594 *GenericTag = createAccessTag(CommonType);
595 MayAlias = true;
596 return true;
597 }
598
599 // If the access to the base object is through a field of the subobject's
600 // type, then this may be an access to that field. To check for that we start
601 // from the base type, follow the edge with the correct offset in the type DAG
602 // and adjust the offset until we reach the field type or until we reach the
603 // access type.
604 bool NewFormat = BaseTag.isNewFormat();
605 TBAAStructTypeNode BaseType(BaseTag.getBaseType());
606 uint64_t OffsetInBase = BaseTag.getOffset();
607
608 for (;;) {
609 // In the old format there is no distinction between fields and parent
610 // types, so in this case we consider all nodes up to the root.
611 if (!BaseType.getNode()) {
612 assert(!NewFormat && "Did not see access type in access path!");
613 break;
614 }
615
616 if (BaseType.getNode() == SubobjectTag.getBaseType()) {
617 bool SameMemberAccess = OffsetInBase == SubobjectTag.getOffset();
618 if (GenericTag) {
619 *GenericTag = SameMemberAccess ? SubobjectTag.getNode() :
620 createAccessTag(CommonType);
621 }
622 MayAlias = SameMemberAccess;
623 return true;
624 }
625
626 // With new-format nodes we stop at the access type.
627 if (NewFormat && BaseType.getNode() == BaseTag.getAccessType())
628 break;
629
630 // Follow the edge with the correct offset. Offset will be adjusted to
631 // be relative to the field type.
632 BaseType = BaseType.getField(OffsetInBase);
633 }
634
635 // If the base object has a direct or indirect field of the subobject's type,
636 // then this may be an access to that field. We need this to check now that
637 // we support aggregates as access types.
638 if (NewFormat) {
639 // TBAAStructTypeNode BaseAccessType(BaseTag.getAccessType());
640 TBAAStructTypeNode FieldType(SubobjectTag.getBaseType());
641 if (hasField(BaseType, FieldType)) {
642 if (GenericTag)
643 *GenericTag = createAccessTag(CommonType);
644 MayAlias = true;
645 return true;
646 }
647 }
648
649 return false;
650 }
651
652 /// matchTags - Return true if the given couple of accesses are allowed to
653 /// overlap. If \arg GenericTag is not null, then on return it points to the
654 /// most generic access descriptor for the given two.
matchAccessTags(const MDNode * A,const MDNode * B,const MDNode ** GenericTag)655 static bool matchAccessTags(const MDNode *A, const MDNode *B,
656 const MDNode **GenericTag) {
657 if (A == B) {
658 if (GenericTag)
659 *GenericTag = A;
660 return true;
661 }
662
663 // Accesses with no TBAA information may alias with any other accesses.
664 if (!A || !B) {
665 if (GenericTag)
666 *GenericTag = nullptr;
667 return true;
668 }
669
670 // Verify that both input nodes are struct-path aware. Auto-upgrade should
671 // have taken care of this.
672 assert(isStructPathTBAA(A) && "Access A is not struct-path aware!");
673 assert(isStructPathTBAA(B) && "Access B is not struct-path aware!");
674
675 TBAAStructTagNode TagA(A), TagB(B);
676 const MDNode *CommonType = getLeastCommonType(TagA.getAccessType(),
677 TagB.getAccessType());
678
679 // If the final access types have different roots, they're part of different
680 // potentially unrelated type systems, so we must be conservative.
681 if (!CommonType) {
682 if (GenericTag)
683 *GenericTag = nullptr;
684 return true;
685 }
686
687 // If one of the accessed objects may be a subobject of the other, then such
688 // accesses may alias.
689 bool MayAlias;
690 if (mayBeAccessToSubobjectOf(/* BaseTag= */ TagA, /* SubobjectTag= */ TagB,
691 CommonType, GenericTag, MayAlias) ||
692 mayBeAccessToSubobjectOf(/* BaseTag= */ TagB, /* SubobjectTag= */ TagA,
693 CommonType, GenericTag, MayAlias))
694 return MayAlias;
695
696 // Otherwise, we've proved there's no alias.
697 if (GenericTag)
698 *GenericTag = createAccessTag(CommonType);
699 return false;
700 }
701
702 /// Aliases - Test whether the access represented by tag A may alias the
703 /// access represented by tag B.
Aliases(const MDNode * A,const MDNode * B) const704 bool TypeBasedAAResult::Aliases(const MDNode *A, const MDNode *B) const {
705 return matchAccessTags(A, B);
706 }
707
708 AnalysisKey TypeBasedAA::Key;
709
run(Function & F,FunctionAnalysisManager & AM)710 TypeBasedAAResult TypeBasedAA::run(Function &F, FunctionAnalysisManager &AM) {
711 return TypeBasedAAResult();
712 }
713
714 char TypeBasedAAWrapperPass::ID = 0;
715 INITIALIZE_PASS(TypeBasedAAWrapperPass, "tbaa", "Type-Based Alias Analysis",
716 false, true)
717
createTypeBasedAAWrapperPass()718 ImmutablePass *llvm::createTypeBasedAAWrapperPass() {
719 return new TypeBasedAAWrapperPass();
720 }
721
TypeBasedAAWrapperPass()722 TypeBasedAAWrapperPass::TypeBasedAAWrapperPass() : ImmutablePass(ID) {
723 initializeTypeBasedAAWrapperPassPass(*PassRegistry::getPassRegistry());
724 }
725
doInitialization(Module & M)726 bool TypeBasedAAWrapperPass::doInitialization(Module &M) {
727 Result.reset(new TypeBasedAAResult());
728 return false;
729 }
730
doFinalization(Module & M)731 bool TypeBasedAAWrapperPass::doFinalization(Module &M) {
732 Result.reset();
733 return false;
734 }
735
getAnalysisUsage(AnalysisUsage & AU) const736 void TypeBasedAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
737 AU.setPreservesAll();
738 }
739