1 /*
2 * Copyright (c) 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "common/intel_l3_config.h"
25
26 #include "brw_context.h"
27 #include "brw_defines.h"
28 #include "brw_state.h"
29 #include "brw_batch.h"
30
31 /**
32 * Calculate the desired L3 partitioning based on the current state of the
33 * pipeline. For now this simply returns the conservative defaults calculated
34 * by get_default_l3_weights(), but we could probably do better by gathering
35 * more statistics from the pipeline state (e.g. guess of expected URB usage
36 * and bound surfaces), or by using feed-back from performance counters.
37 */
38 static struct intel_l3_weights
get_pipeline_state_l3_weights(const struct brw_context * brw)39 get_pipeline_state_l3_weights(const struct brw_context *brw)
40 {
41 const struct brw_stage_state *stage_states[] = {
42 [MESA_SHADER_VERTEX] = &brw->vs.base,
43 [MESA_SHADER_TESS_CTRL] = &brw->tcs.base,
44 [MESA_SHADER_TESS_EVAL] = &brw->tes.base,
45 [MESA_SHADER_GEOMETRY] = &brw->gs.base,
46 [MESA_SHADER_FRAGMENT] = &brw->wm.base,
47 [MESA_SHADER_COMPUTE] = &brw->cs.base
48 };
49 bool needs_dc = false, needs_slm = false;
50
51 for (unsigned i = 0; i < ARRAY_SIZE(stage_states); i++) {
52 const struct gl_program *prog =
53 brw->ctx._Shader->CurrentProgram[stage_states[i]->stage];
54 const struct brw_stage_prog_data *prog_data = stage_states[i]->prog_data;
55
56 needs_dc |= (prog && (prog->sh.data->NumAtomicBuffers ||
57 prog->sh.data->NumShaderStorageBlocks ||
58 prog->info.num_images)) ||
59 (prog_data && prog_data->total_scratch);
60 needs_slm |= prog_data && prog_data->total_shared;
61 }
62
63 return intel_get_default_l3_weights(&brw->screen->devinfo,
64 needs_dc, needs_slm);
65 }
66
67 /**
68 * Program the hardware to use the specified L3 configuration.
69 */
70 static void
setup_l3_config(struct brw_context * brw,const struct intel_l3_config * cfg)71 setup_l3_config(struct brw_context *brw, const struct intel_l3_config *cfg)
72 {
73 const struct intel_device_info *devinfo = &brw->screen->devinfo;
74 const bool has_dc = cfg->n[INTEL_L3P_DC] || cfg->n[INTEL_L3P_ALL];
75 const bool has_is = cfg->n[INTEL_L3P_IS] || cfg->n[INTEL_L3P_RO] ||
76 cfg->n[INTEL_L3P_ALL];
77 const bool has_c = cfg->n[INTEL_L3P_C] || cfg->n[INTEL_L3P_RO] ||
78 cfg->n[INTEL_L3P_ALL];
79 const bool has_t = cfg->n[INTEL_L3P_T] || cfg->n[INTEL_L3P_RO] ||
80 cfg->n[INTEL_L3P_ALL];
81 const bool has_slm = cfg->n[INTEL_L3P_SLM];
82
83 /* According to the hardware docs, the L3 partitioning can only be changed
84 * while the pipeline is completely drained and the caches are flushed,
85 * which involves a first PIPE_CONTROL flush which stalls the pipeline...
86 */
87 brw_emit_pipe_control_flush(brw,
88 PIPE_CONTROL_DATA_CACHE_FLUSH |
89 PIPE_CONTROL_CS_STALL);
90
91 /* ...followed by a second pipelined PIPE_CONTROL that initiates
92 * invalidation of the relevant caches. Note that because RO invalidation
93 * happens at the top of the pipeline (i.e. right away as the PIPE_CONTROL
94 * command is processed by the CS) we cannot combine it with the previous
95 * stalling flush as the hardware documentation suggests, because that
96 * would cause the CS to stall on previous rendering *after* RO
97 * invalidation and wouldn't prevent the RO caches from being polluted by
98 * concurrent rendering before the stall completes. This intentionally
99 * doesn't implement the SKL+ hardware workaround suggesting to enable CS
100 * stall on PIPE_CONTROLs with the texture cache invalidation bit set for
101 * GPGPU workloads because the previous and subsequent PIPE_CONTROLs
102 * already guarantee that there is no concurrent GPGPU kernel execution
103 * (see SKL HSD 2132585).
104 */
105 brw_emit_pipe_control_flush(brw,
106 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
107 PIPE_CONTROL_CONST_CACHE_INVALIDATE |
108 PIPE_CONTROL_INSTRUCTION_INVALIDATE |
109 PIPE_CONTROL_STATE_CACHE_INVALIDATE);
110
111 /* Now send a third stalling flush to make sure that invalidation is
112 * complete when the L3 configuration registers are modified.
113 */
114 brw_emit_pipe_control_flush(brw,
115 PIPE_CONTROL_DATA_CACHE_FLUSH |
116 PIPE_CONTROL_CS_STALL);
117
118 if (devinfo->ver >= 8) {
119 assert(!cfg->n[INTEL_L3P_IS] && !cfg->n[INTEL_L3P_C] && !cfg->n[INTEL_L3P_T]);
120
121 const unsigned imm_data = (
122 (devinfo->ver < 11 && has_slm ? GFX8_L3CNTLREG_SLM_ENABLE : 0) |
123 (devinfo->ver == 11 ? GFX11_L3CNTLREG_USE_FULL_WAYS : 0) |
124 SET_FIELD(cfg->n[INTEL_L3P_URB], GFX8_L3CNTLREG_URB_ALLOC) |
125 SET_FIELD(cfg->n[INTEL_L3P_RO], GFX8_L3CNTLREG_RO_ALLOC) |
126 SET_FIELD(cfg->n[INTEL_L3P_DC], GFX8_L3CNTLREG_DC_ALLOC) |
127 SET_FIELD(cfg->n[INTEL_L3P_ALL], GFX8_L3CNTLREG_ALL_ALLOC));
128
129 /* Set up the L3 partitioning. */
130 brw_load_register_imm32(brw, GFX8_L3CNTLREG, imm_data);
131 } else {
132 assert(!cfg->n[INTEL_L3P_ALL]);
133
134 /* When enabled SLM only uses a portion of the L3 on half of the banks,
135 * the matching space on the remaining banks has to be allocated to a
136 * client (URB for all validated configurations) set to the
137 * lower-bandwidth 2-bank address hashing mode.
138 */
139 const bool urb_low_bw = has_slm && !devinfo->is_baytrail;
140 assert(!urb_low_bw || cfg->n[INTEL_L3P_URB] == cfg->n[INTEL_L3P_SLM]);
141
142 /* Minimum number of ways that can be allocated to the URB. */
143 const unsigned n0_urb = (devinfo->is_baytrail ? 32 : 0);
144 assert(cfg->n[INTEL_L3P_URB] >= n0_urb);
145
146 BEGIN_BATCH(7);
147 OUT_BATCH(MI_LOAD_REGISTER_IMM | (7 - 2));
148
149 /* Demote any clients with no ways assigned to LLC. */
150 OUT_BATCH(GFX7_L3SQCREG1);
151 OUT_BATCH((devinfo->is_haswell ? HSW_L3SQCREG1_SQGHPCI_DEFAULT :
152 devinfo->is_baytrail ? VLV_L3SQCREG1_SQGHPCI_DEFAULT :
153 IVB_L3SQCREG1_SQGHPCI_DEFAULT) |
154 (has_dc ? 0 : GFX7_L3SQCREG1_CONV_DC_UC) |
155 (has_is ? 0 : GFX7_L3SQCREG1_CONV_IS_UC) |
156 (has_c ? 0 : GFX7_L3SQCREG1_CONV_C_UC) |
157 (has_t ? 0 : GFX7_L3SQCREG1_CONV_T_UC));
158
159 /* Set up the L3 partitioning. */
160 OUT_BATCH(GFX7_L3CNTLREG2);
161 OUT_BATCH((has_slm ? GFX7_L3CNTLREG2_SLM_ENABLE : 0) |
162 SET_FIELD(cfg->n[INTEL_L3P_URB] - n0_urb, GFX7_L3CNTLREG2_URB_ALLOC) |
163 (urb_low_bw ? GFX7_L3CNTLREG2_URB_LOW_BW : 0) |
164 SET_FIELD(cfg->n[INTEL_L3P_ALL], GFX7_L3CNTLREG2_ALL_ALLOC) |
165 SET_FIELD(cfg->n[INTEL_L3P_RO], GFX7_L3CNTLREG2_RO_ALLOC) |
166 SET_FIELD(cfg->n[INTEL_L3P_DC], GFX7_L3CNTLREG2_DC_ALLOC));
167 OUT_BATCH(GFX7_L3CNTLREG3);
168 OUT_BATCH(SET_FIELD(cfg->n[INTEL_L3P_IS], GFX7_L3CNTLREG3_IS_ALLOC) |
169 SET_FIELD(cfg->n[INTEL_L3P_C], GFX7_L3CNTLREG3_C_ALLOC) |
170 SET_FIELD(cfg->n[INTEL_L3P_T], GFX7_L3CNTLREG3_T_ALLOC));
171
172 ADVANCE_BATCH();
173
174 if (can_do_hsw_l3_atomics(brw->screen)) {
175 /* Enable L3 atomics on HSW if we have a DC partition, otherwise keep
176 * them disabled to avoid crashing the system hard.
177 */
178 BEGIN_BATCH(5);
179 OUT_BATCH(MI_LOAD_REGISTER_IMM | (5 - 2));
180 OUT_BATCH(HSW_SCRATCH1);
181 OUT_BATCH(has_dc ? 0 : HSW_SCRATCH1_L3_ATOMIC_DISABLE);
182 OUT_BATCH(HSW_ROW_CHICKEN3);
183 OUT_BATCH(REG_MASK(HSW_ROW_CHICKEN3_L3_ATOMIC_DISABLE) |
184 (has_dc ? 0 : HSW_ROW_CHICKEN3_L3_ATOMIC_DISABLE));
185 ADVANCE_BATCH();
186 }
187 }
188 }
189
190 /**
191 * Update the URB size in the context state for the specified L3
192 * configuration.
193 */
194 static void
update_urb_size(struct brw_context * brw,const struct intel_l3_config * cfg)195 update_urb_size(struct brw_context *brw, const struct intel_l3_config *cfg)
196 {
197 const struct intel_device_info *devinfo = &brw->screen->devinfo;
198 const unsigned sz = intel_get_l3_config_urb_size(devinfo, cfg);
199
200 if (brw->urb.size != sz) {
201 brw->urb.size = sz;
202 brw->ctx.NewDriverState |= BRW_NEW_URB_SIZE;
203
204 /* If we change the total URB size, reset the individual stage sizes to
205 * zero so that, even if there is no URB size change, gfx7_upload_urb
206 * still re-emits 3DSTATE_URB_*.
207 */
208 brw->urb.vsize = 0;
209 brw->urb.gsize = 0;
210 brw->urb.hsize = 0;
211 brw->urb.dsize = 0;
212 }
213 }
214
215 void
brw_emit_l3_state(struct brw_context * brw)216 brw_emit_l3_state(struct brw_context *brw)
217 {
218 const struct intel_l3_weights w = get_pipeline_state_l3_weights(brw);
219 const float dw = intel_diff_l3_weights(w, intel_get_l3_config_weights(brw->l3.config));
220 /* The distance between any two compatible weight vectors cannot exceed two
221 * due to the triangle inequality.
222 */
223 const float large_dw_threshold = 2.0;
224 /* Somewhat arbitrary, simply makes sure that there will be no repeated
225 * transitions to the same L3 configuration, could probably do better here.
226 */
227 const float small_dw_threshold = 0.5;
228 /* If we're emitting a new batch the caches should already be clean and the
229 * transition should be relatively cheap, so it shouldn't hurt much to use
230 * the smaller threshold. Otherwise use the larger threshold so that we
231 * only reprogram the L3 mid-batch if the most recently programmed
232 * configuration is incompatible with the current pipeline state.
233 */
234 const float dw_threshold = (brw->ctx.NewDriverState & BRW_NEW_BATCH ?
235 small_dw_threshold : large_dw_threshold);
236
237 if (dw > dw_threshold && can_do_pipelined_register_writes(brw->screen)) {
238 const struct intel_l3_config *const cfg =
239 intel_get_l3_config(&brw->screen->devinfo, w);
240
241 setup_l3_config(brw, cfg);
242 update_urb_size(brw, cfg);
243 brw->l3.config = cfg;
244
245 if (INTEL_DEBUG(DEBUG_L3)) {
246 fprintf(stderr, "L3 config transition (%f > %f): ", dw, dw_threshold);
247 intel_dump_l3_config(cfg, stderr);
248 }
249 }
250 }
251
252 const struct brw_tracked_state gfx7_l3_state = {
253 .dirty = {
254 .mesa = 0,
255 .brw = BRW_NEW_BATCH |
256 BRW_NEW_BLORP |
257 BRW_NEW_CS_PROG_DATA |
258 BRW_NEW_FS_PROG_DATA |
259 BRW_NEW_GS_PROG_DATA |
260 BRW_NEW_TCS_PROG_DATA |
261 BRW_NEW_TES_PROG_DATA |
262 BRW_NEW_VS_PROG_DATA,
263 },
264 .emit = brw_emit_l3_state
265 };
266
267 /**
268 * Hack to restore the default L3 configuration.
269 *
270 * This will be called at the end of every batch in order to reset the L3
271 * configuration to the default values for the time being until the kernel is
272 * fixed. Until kernel commit 6702cf16e0ba8b0129f5aa1b6609d4e9c70bc13b
273 * (included in v4.1) we would set the MI_RESTORE_INHIBIT bit when submitting
274 * batch buffers for the default context used by the DDX, which meant that any
275 * context state changed by the GL would leak into the DDX, the assumption
276 * being that the DDX would initialize any state it cares about manually. The
277 * DDX is however not careful enough to program an L3 configuration
278 * explicitly, and it makes assumptions about it (URB size) which won't hold
279 * and cause it to misrender if we let our L3 set-up to leak into the DDX.
280 *
281 * Since v4.1 of the Linux kernel the default context is saved and restored
282 * normally, so it's far less likely for our L3 programming to interfere with
283 * other contexts -- In fact restoring the default L3 configuration at the end
284 * of the batch will be redundant most of the time. A kind of state leak is
285 * still possible though if the context making assumptions about L3 state is
286 * created immediately after our context was active (e.g. without the DDX
287 * default context being scheduled in between) because at present the DRM
288 * doesn't fully initialize the contents of newly created contexts and instead
289 * sets the MI_RESTORE_INHIBIT flag causing it to inherit the state from the
290 * last active context.
291 *
292 * It's possible to realize such a scenario if, say, an X server (or a GL
293 * application using an outdated non-L3-aware Mesa version) is started while
294 * another GL application is running and happens to have modified the L3
295 * configuration, or if no X server is running at all and a GL application
296 * using a non-L3-aware Mesa version is started after another GL application
297 * ran and modified the L3 configuration -- The latter situation can actually
298 * be reproduced easily on IVB in our CI system.
299 */
300 void
gfx7_restore_default_l3_config(struct brw_context * brw)301 gfx7_restore_default_l3_config(struct brw_context *brw)
302 {
303 const struct intel_device_info *devinfo = &brw->screen->devinfo;
304 const struct intel_l3_config *const cfg = intel_get_default_l3_config(devinfo);
305
306 if (cfg != brw->l3.config &&
307 can_do_pipelined_register_writes(brw->screen)) {
308 setup_l3_config(brw, cfg);
309 update_urb_size(brw, cfg);
310 brw->l3.config = cfg;
311 }
312 }
313