• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //  Copyright (c) 2000-2011 Joerg Walter, Mathias Koch, David Bellot
2 //
3 //  Distributed under the Boost Software License, Version 1.0. (See
4 //  accompanying file LICENSE_1_0.txt or copy at
5 //  http://www.boost.org/LICENSE_1_0.txt)
6 //
7 //  The authors gratefully acknowledge the support of
8 //  GeNeSys mbH & Co. KG in producing this work.
9 
10 #ifndef _BOOST_UBLAS_BLAS_
11 #define _BOOST_UBLAS_BLAS_
12 
13 #include <boost/numeric/ublas/traits.hpp>
14 
15 namespace boost { namespace numeric { namespace ublas {
16 
17 
18     /** Interface and implementation of BLAS level 1
19      * This includes functions which perform \b vector-vector operations.
20      * More information about BLAS can be found at
21      * <a href="http://en.wikipedia.org/wiki/BLAS">http://en.wikipedia.org/wiki/BLAS</a>
22      */
23     namespace blas_1 {
24 
25         /** 1-Norm: \f$\sum_i |x_i|\f$ (also called \f$\mathcal{L}_1\f$ or Manhattan norm)
26      *
27      * \param v a vector or vector expression
28      * \return the 1-Norm with type of the vector's type
29      *
30      * \tparam V type of the vector (not needed by default)
31      */
32         template<class V>
33         typename type_traits<typename V::value_type>::real_type
asum(const V & v)34         asum (const V &v) {
35             return norm_1 (v);
36         }
37 
38         /** 2-Norm: \f$\sum_i |x_i|^2\f$ (also called \f$\mathcal{L}_2\f$ or Euclidean norm)
39      *
40      * \param v a vector or vector expression
41      * \return the 2-Norm with type of the vector's type
42      *
43      * \tparam V type of the vector (not needed by default)
44      */
45         template<class V>
46         typename type_traits<typename V::value_type>::real_type
nrm2(const V & v)47         nrm2 (const V &v) {
48             return norm_2 (v);
49         }
50 
51         /** Infinite-norm: \f$\max_i |x_i|\f$ (also called \f$\mathcal{L}_\infty\f$ norm)
52      *
53      * \param v a vector or vector expression
54      * \return the Infinite-Norm with type of the vector's type
55      *
56      * \tparam V type of the vector (not needed by default)
57      */
58         template<class V>
59         typename type_traits<typename V::value_type>::real_type
amax(const V & v)60         amax (const V &v) {
61             return norm_inf (v);
62         }
63 
64         /** Inner product of vectors \f$v_1\f$ and \f$v_2\f$
65      *
66      * \param v1 first vector of the inner product
67      * \param v2 second vector of the inner product
68      * \return the inner product of the type of the most generic type of the 2 vectors
69      *
70      * \tparam V1 type of first vector (not needed by default)
71      * \tparam V2 type of second vector (not needed by default)
72      */
73         template<class V1, class V2>
74         typename promote_traits<typename V1::value_type, typename V2::value_type>::promote_type
dot(const V1 & v1,const V2 & v2)75         dot (const V1 &v1, const V2 &v2) {
76             return inner_prod (v1, v2);
77         }
78 
79         /** Copy vector \f$v_2\f$ to \f$v_1\f$
80      *
81      * \param v1 target vector
82      * \param v2 source vector
83      * \return a reference to the target vector
84      *
85      * \tparam V1 type of first vector (not needed by default)
86      * \tparam V2 type of second vector (not needed by default)
87      */
88         template<class V1, class V2>
copy(V1 & v1,const V2 & v2)89         V1 & copy (V1 &v1, const V2 &v2)
90     {
91             return v1.assign (v2);
92         }
93 
94         /** Swap vectors \f$v_1\f$ and \f$v_2\f$
95      *
96      * \param v1 first vector
97      * \param v2 second vector
98      *
99          * \tparam V1 type of first vector (not needed by default)
100      * \tparam V2 type of second vector (not needed by default)
101      */
102     template<class V1, class V2>
swap(V1 & v1,V2 & v2)103         void swap (V1 &v1, V2 &v2)
104     {
105             v1.swap (v2);
106         }
107 
108         /** scale vector \f$v\f$ with scalar \f$t\f$
109      *
110      * \param v vector to be scaled
111      * \param t the scalar
112      * \return \c t*v
113      *
114      * \tparam V type of the vector (not needed by default)
115      * \tparam T type of the scalar (not needed by default)
116      */
117         template<class V, class T>
scal(V & v,const T & t)118         V & scal (V &v, const T &t)
119     {
120             return v *= t;
121         }
122 
123         /** Compute \f$v_1= v_1 +  t.v_2\f$
124      *
125      * \param v1 target and first vector
126      * \param t the scalar
127      * \param v2 second vector
128      * \return a reference to the first and target vector
129      *
130      * \tparam V1 type of the first vector (not needed by default)
131      * \tparam T type of the scalar (not needed by default)
132      * \tparam V2 type of the second vector (not needed by default)
133      */
134         template<class V1, class T, class V2>
axpy(V1 & v1,const T & t,const V2 & v2)135         V1 & axpy (V1 &v1, const T &t, const V2 &v2)
136     {
137             return v1.plus_assign (t * v2);
138         }
139 
140     /** Performs rotation of points in the plane and assign the result to the first vector
141      *
142      * Each point is defined as a pair \c v1(i) and \c v2(i), being respectively
143      * the \f$x\f$ and \f$y\f$ coordinates. The parameters \c t1 and \t2 are respectively
144      * the cosine and sine of the angle of the rotation.
145      * Results are not returned but directly written into \c v1.
146      *
147      * \param t1 cosine of the rotation
148      * \param v1 vector of \f$x\f$ values
149      * \param t2 sine of the rotation
150      * \param v2 vector of \f$y\f$ values
151      *
152      * \tparam T1 type of the cosine value (not needed by default)
153      * \tparam V1 type of the \f$x\f$ vector (not needed by default)
154      * \tparam T2 type of the sine value (not needed by default)
155      * \tparam V2 type of the \f$y\f$ vector (not needed by default)
156      */
157         template<class T1, class V1, class T2, class V2>
rot(const T1 & t1,V1 & v1,const T2 & t2,V2 & v2)158         void rot (const T1 &t1, V1 &v1, const T2 &t2, V2 &v2)
159     {
160             typedef typename promote_traits<typename V1::value_type, typename V2::value_type>::promote_type promote_type;
161             vector<promote_type> vt (t1 * v1 + t2 * v2);
162             v2.assign (- t2 * v1 + t1 * v2);
163             v1.assign (vt);
164         }
165 
166     }
167 
168     /** \brief Interface and implementation of BLAS level 2
169      * This includes functions which perform \b matrix-vector operations.
170      * More information about BLAS can be found at
171      * <a href="http://en.wikipedia.org/wiki/BLAS">http://en.wikipedia.org/wiki/BLAS</a>
172      */
173     namespace blas_2 {
174 
175        /** \brief multiply vector \c v with triangular matrix \c m
176     *
177     * \param v a vector
178     * \param m a triangular matrix
179     * \return the result of the product
180     *
181     * \tparam V type of the vector (not needed by default)
182     * \tparam M type of the matrix (not needed by default)
183         */
184         template<class V, class M>
tmv(V & v,const M & m)185         V & tmv (V &v, const M &m)
186     {
187             return v = prod (m, v);
188         }
189 
190         /** \brief solve \f$m.x = v\f$ in place, where \c m is a triangular matrix
191      *
192      * \param v a vector
193      * \param m a matrix
194      * \param C (this parameter is not needed)
195      * \return a result vector from the above operation
196      *
197      * \tparam V type of the vector (not needed by default)
198      * \tparam M type of the matrix (not needed by default)
199      * \tparam C n/a
200          */
201         template<class V, class M, class C>
tsv(V & v,const M & m,C)202         V & tsv (V &v, const M &m, C)
203     {
204             return v = solve (m, v, C ());
205         }
206 
207         /** \brief compute \f$ v_1 = t_1.v_1 + t_2.(m.v_2)\f$, a general matrix-vector product
208      *
209      * \param v1 a vector
210      * \param t1 a scalar
211      * \param t2 another scalar
212      * \param m a matrix
213      * \param v2 another vector
214      * \return the vector \c v1 with the result from the above operation
215      *
216      * \tparam V1 type of first vector (not needed by default)
217      * \tparam T1 type of first scalar (not needed by default)
218      * \tparam T2 type of second scalar (not needed by default)
219      * \tparam M type of matrix (not needed by default)
220      * \tparam V2 type of second vector (not needed by default)
221          */
222         template<class V1, class T1, class T2, class M, class V2>
gmv(V1 & v1,const T1 & t1,const T2 & t2,const M & m,const V2 & v2)223         V1 & gmv (V1 &v1, const T1 &t1, const T2 &t2, const M &m, const V2 &v2)
224     {
225             return v1 = t1 * v1 + t2 * prod (m, v2);
226         }
227 
228         /** \brief Rank 1 update: \f$ m = m + t.(v_1.v_2^T)\f$
229      *
230      * \param m a matrix
231      * \param t a scalar
232      * \param v1 a vector
233      * \param v2 another vector
234      * \return a matrix with the result from the above operation
235      *
236      * \tparam M type of matrix (not needed by default)
237      * \tparam T type of scalar (not needed by default)
238      * \tparam V1 type of first vector (not needed by default)
239      * \tparam V2type of second vector (not needed by default)
240      */
241         template<class M, class T, class V1, class V2>
gr(M & m,const T & t,const V1 & v1,const V2 & v2)242         M & gr (M &m, const T &t, const V1 &v1, const V2 &v2)
243     {
244 #ifndef BOOST_UBLAS_SIMPLE_ET_DEBUG
245             return m += t * outer_prod (v1, v2);
246 #else
247             return m = m + t * outer_prod (v1, v2);
248 #endif
249         }
250 
251         /** \brief symmetric rank 1 update: \f$m = m + t.(v.v^T)\f$
252      *
253      * \param m a matrix
254      * \param t a scalar
255      * \param v a vector
256      * \return a matrix with the result from the above operation
257      *
258      * \tparam M type of matrix (not needed by default)
259      * \tparam T type of scalar (not needed by default)
260      * \tparam V type of vector (not needed by default)
261      */
262         template<class M, class T, class V>
sr(M & m,const T & t,const V & v)263         M & sr (M &m, const T &t, const V &v)
264     {
265 #ifndef BOOST_UBLAS_SIMPLE_ET_DEBUG
266             return m += t * outer_prod (v, v);
267 #else
268             return m = m + t * outer_prod (v, v);
269 #endif
270         }
271 
272         /** \brief hermitian rank 1 update: \f$m = m + t.(v.v^H)\f$
273      *
274      * \param m a matrix
275      * \param t a scalar
276      * \param v a vector
277      * \return a matrix with the result from the above operation
278      *
279      * \tparam M type of matrix (not needed by default)
280      * \tparam T type of scalar (not needed by default)
281      * \tparam V type of vector (not needed by default)
282      */
283         template<class M, class T, class V>
hr(M & m,const T & t,const V & v)284         M & hr (M &m, const T &t, const V &v)
285     {
286 #ifndef BOOST_UBLAS_SIMPLE_ET_DEBUG
287             return m += t * outer_prod (v, conj (v));
288 #else
289             return m = m + t * outer_prod (v, conj (v));
290 #endif
291         }
292 
293          /** \brief symmetric rank 2 update: \f$ m=m+ t.(v_1.v_2^T + v_2.v_1^T)\f$
294       *
295       * \param m a matrix
296       * \param t a scalar
297       * \param v1 a vector
298       * \param v2 another vector
299       * \return a matrix with the result from the above operation
300       *
301       * \tparam M type of matrix (not needed by default)
302       * \tparam T type of scalar (not needed by default)
303       * \tparam V1 type of first vector (not needed by default)
304       * \tparam V2type of second vector (not needed by default)
305           */
306         template<class M, class T, class V1, class V2>
sr2(M & m,const T & t,const V1 & v1,const V2 & v2)307         M & sr2 (M &m, const T &t, const V1 &v1, const V2 &v2)
308     {
309 #ifndef BOOST_UBLAS_SIMPLE_ET_DEBUG
310             return m += t * (outer_prod (v1, v2) + outer_prod (v2, v1));
311 #else
312             return m = m + t * (outer_prod (v1, v2) + outer_prod (v2, v1));
313 #endif
314         }
315 
316         /** \brief hermitian rank 2 update: \f$m=m+t.(v_1.v_2^H) + v_2.(t.v_1)^H)\f$
317      *
318      * \param m a matrix
319      * \param t a scalar
320      * \param v1 a vector
321      * \param v2 another vector
322      * \return a matrix with the result from the above operation
323      *
324      * \tparam M type of matrix (not needed by default)
325      * \tparam T type of scalar (not needed by default)
326      * \tparam V1 type of first vector (not needed by default)
327      * \tparam V2type of second vector (not needed by default)
328          */
329         template<class M, class T, class V1, class V2>
hr2(M & m,const T & t,const V1 & v1,const V2 & v2)330         M & hr2 (M &m, const T &t, const V1 &v1, const V2 &v2)
331     {
332 #ifndef BOOST_UBLAS_SIMPLE_ET_DEBUG
333             return m += t * outer_prod (v1, conj (v2)) + type_traits<T>::conj (t) * outer_prod (v2, conj (v1));
334 #else
335             return m = m + t * outer_prod (v1, conj (v2)) + type_traits<T>::conj (t) * outer_prod (v2, conj (v1));
336 #endif
337         }
338 
339     }
340 
341     /** \brief Interface and implementation of BLAS level 3
342      * This includes functions which perform \b matrix-matrix operations.
343      * More information about BLAS can be found at
344      * <a href="http://en.wikipedia.org/wiki/BLAS">http://en.wikipedia.org/wiki/BLAS</a>
345      */
346     namespace blas_3 {
347 
348         /** \brief triangular matrix multiplication \f$m_1=t.m_2.m_3\f$ where \f$m_2\f$ and \f$m_3\f$ are triangular
349      *
350      * \param m1 a matrix for storing result
351      * \param t a scalar
352      * \param m2 a triangular matrix
353      * \param m3 a triangular matrix
354      * \return the matrix \c m1
355      *
356      * \tparam M1 type of the result matrix (not needed by default)
357      * \tparam T type of the scalar (not needed by default)
358      * \tparam M2 type of the first triangular matrix (not needed by default)
359      * \tparam M3 type of the second triangular matrix (not needed by default)
360      *
361         */
362         template<class M1, class T, class M2, class M3>
tmm(M1 & m1,const T & t,const M2 & m2,const M3 & m3)363         M1 & tmm (M1 &m1, const T &t, const M2 &m2, const M3 &m3)
364     {
365             return m1 = t * prod (m2, m3);
366         }
367 
368         /** \brief triangular solve \f$ m_2.x = t.m_1\f$ in place, \f$m_2\f$ is a triangular matrix
369      *
370      * \param m1 a matrix
371      * \param t a scalar
372      * \param m2 a triangular matrix
373      * \param C (not used)
374      * \return the \f$m_1\f$ matrix
375      *
376      * \tparam M1 type of the first matrix (not needed by default)
377      * \tparam T type of the scalar (not needed by default)
378      * \tparam M2 type of the triangular matrix (not needed by default)
379      * \tparam C (n/a)
380          */
381         template<class M1, class T, class M2, class C>
tsm(M1 & m1,const T & t,const M2 & m2,C)382         M1 & tsm (M1 &m1, const T &t, const M2 &m2, C)
383     {
384             return m1 = solve (m2, t * m1, C ());
385         }
386 
387         /** \brief general matrix multiplication \f$m_1=t_1.m_1 + t_2.m_2.m_3\f$
388      *
389      * \param m1 first matrix
390      * \param t1 first scalar
391      * \param t2 second scalar
392      * \param m2 second matrix
393      * \param m3 third matrix
394      * \return the matrix \c m1
395      *
396      * \tparam M1 type of the first matrix (not needed by default)
397      * \tparam T1 type of the first scalar (not needed by default)
398      * \tparam T2 type of the second scalar (not needed by default)
399      * \tparam M2 type of the second matrix (not needed by default)
400      * \tparam M3 type of the third matrix (not needed by default)
401          */
402         template<class M1, class T1, class T2, class M2, class M3>
gmm(M1 & m1,const T1 & t1,const T2 & t2,const M2 & m2,const M3 & m3)403         M1 & gmm (M1 &m1, const T1 &t1, const T2 &t2, const M2 &m2, const M3 &m3)
404     {
405             return m1 = t1 * m1 + t2 * prod (m2, m3);
406         }
407 
408         /** \brief symmetric rank \a k update: \f$m_1=t.m_1+t_2.(m_2.m_2^T)\f$
409      *
410      * \param m1 first matrix
411      * \param t1 first scalar
412      * \param t2 second scalar
413      * \param m2 second matrix
414      * \return matrix \c m1
415      *
416      * \tparam M1 type of the first matrix (not needed by default)
417      * \tparam T1 type of the first scalar (not needed by default)
418      * \tparam T2 type of the second scalar (not needed by default)
419      * \tparam M2 type of the second matrix (not needed by default)
420      * \todo use opb_prod()
421          */
422         template<class M1, class T1, class T2, class M2>
srk(M1 & m1,const T1 & t1,const T2 & t2,const M2 & m2)423         M1 & srk (M1 &m1, const T1 &t1, const T2 &t2, const M2 &m2)
424     {
425             return m1 = t1 * m1 + t2 * prod (m2, trans (m2));
426         }
427 
428         /** \brief hermitian rank \a k update: \f$m_1=t.m_1+t_2.(m_2.m2^H)\f$
429      *
430      * \param m1 first matrix
431      * \param t1 first scalar
432      * \param t2 second scalar
433      * \param m2 second matrix
434      * \return matrix \c m1
435      *
436      * \tparam M1 type of the first matrix (not needed by default)
437      * \tparam T1 type of the first scalar (not needed by default)
438      * \tparam T2 type of the second scalar (not needed by default)
439      * \tparam M2 type of the second matrix (not needed by default)
440      * \todo use opb_prod()
441          */
442         template<class M1, class T1, class T2, class M2>
hrk(M1 & m1,const T1 & t1,const T2 & t2,const M2 & m2)443         M1 & hrk (M1 &m1, const T1 &t1, const T2 &t2, const M2 &m2)
444     {
445             return m1 = t1 * m1 + t2 * prod (m2, herm (m2));
446         }
447 
448         /** \brief generalized symmetric rank \a k update: \f$m_1=t_1.m_1+t_2.(m_2.m3^T)+t_2.(m_3.m2^T)\f$
449      *
450      * \param m1 first matrix
451      * \param t1 first scalar
452      * \param t2 second scalar
453      * \param m2 second matrix
454      * \param m3 third matrix
455      * \return matrix \c m1
456      *
457      * \tparam M1 type of the first matrix (not needed by default)
458      * \tparam T1 type of the first scalar (not needed by default)
459      * \tparam T2 type of the second scalar (not needed by default)
460      * \tparam M2 type of the second matrix (not needed by default)
461      * \tparam M3 type of the third matrix (not needed by default)
462      * \todo use opb_prod()
463          */
464         template<class M1, class T1, class T2, class M2, class M3>
sr2k(M1 & m1,const T1 & t1,const T2 & t2,const M2 & m2,const M3 & m3)465         M1 & sr2k (M1 &m1, const T1 &t1, const T2 &t2, const M2 &m2, const M3 &m3)
466     {
467             return m1 = t1 * m1 + t2 * (prod (m2, trans (m3)) + prod (m3, trans (m2)));
468         }
469 
470         /** \brief generalized hermitian rank \a k update: * \f$m_1=t_1.m_1+t_2.(m_2.m_3^H)+(m_3.(t_2.m_2)^H)\f$
471      *
472      * \param m1 first matrix
473      * \param t1 first scalar
474      * \param t2 second scalar
475      * \param m2 second matrix
476      * \param m3 third matrix
477      * \return matrix \c m1
478      *
479      * \tparam M1 type of the first matrix (not needed by default)
480      * \tparam T1 type of the first scalar (not needed by default)
481      * \tparam T2 type of the second scalar (not needed by default)
482      * \tparam M2 type of the second matrix (not needed by default)
483      * \tparam M3 type of the third matrix (not needed by default)
484      * \todo use opb_prod()
485          */
486         template<class M1, class T1, class T2, class M2, class M3>
hr2k(M1 & m1,const T1 & t1,const T2 & t2,const M2 & m2,const M3 & m3)487         M1 & hr2k (M1 &m1, const T1 &t1, const T2 &t2, const M2 &m2, const M3 &m3)
488     {
489             return m1 =
490               t1 * m1
491             + t2 * prod (m2, herm (m3))
492             + type_traits<T2>::conj (t2) * prod (m3, herm (m2));
493         }
494 
495     }
496 
497 }}}
498 
499 #endif
500