1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018 Intel Corporation */
3
4 #include <linux/module.h>
5 #include <linux/types.h>
6 #include <linux/if_vlan.h>
7 #include <linux/aer.h>
8 #include <linux/tcp.h>
9 #include <linux/udp.h>
10 #include <linux/ip.h>
11 #include <linux/pm_runtime.h>
12 #include <net/pkt_sched.h>
13
14 #include <net/ipv6.h>
15
16 #include "igc.h"
17 #include "igc_hw.h"
18 #include "igc_tsn.h"
19
20 #define DRV_SUMMARY "Intel(R) 2.5G Ethernet Linux Driver"
21
22 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)
23
24 static int debug = -1;
25
26 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
27 MODULE_DESCRIPTION(DRV_SUMMARY);
28 MODULE_LICENSE("GPL v2");
29 module_param(debug, int, 0);
30 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
31
32 char igc_driver_name[] = "igc";
33 static const char igc_driver_string[] = DRV_SUMMARY;
34 static const char igc_copyright[] =
35 "Copyright(c) 2018 Intel Corporation.";
36
37 static const struct igc_info *igc_info_tbl[] = {
38 [board_base] = &igc_base_info,
39 };
40
41 static const struct pci_device_id igc_pci_tbl[] = {
42 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LM), board_base },
43 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_V), board_base },
44 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_I), board_base },
45 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I220_V), board_base },
46 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K), board_base },
47 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K2), board_base },
48 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LMVP), board_base },
49 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_IT), board_base },
50 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_LM), board_base },
51 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_V), board_base },
52 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_IT), board_base },
53 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I221_V), board_base },
54 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_BLANK_NVM), board_base },
55 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_BLANK_NVM), board_base },
56 /* required last entry */
57 {0, }
58 };
59
60 MODULE_DEVICE_TABLE(pci, igc_pci_tbl);
61
62 enum latency_range {
63 lowest_latency = 0,
64 low_latency = 1,
65 bulk_latency = 2,
66 latency_invalid = 255
67 };
68
igc_reset(struct igc_adapter * adapter)69 void igc_reset(struct igc_adapter *adapter)
70 {
71 struct net_device *dev = adapter->netdev;
72 struct igc_hw *hw = &adapter->hw;
73 struct igc_fc_info *fc = &hw->fc;
74 u32 pba, hwm;
75
76 /* Repartition PBA for greater than 9k MTU if required */
77 pba = IGC_PBA_34K;
78
79 /* flow control settings
80 * The high water mark must be low enough to fit one full frame
81 * after transmitting the pause frame. As such we must have enough
82 * space to allow for us to complete our current transmit and then
83 * receive the frame that is in progress from the link partner.
84 * Set it to:
85 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
86 */
87 hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
88
89 fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */
90 fc->low_water = fc->high_water - 16;
91 fc->pause_time = 0xFFFF;
92 fc->send_xon = 1;
93 fc->current_mode = fc->requested_mode;
94
95 hw->mac.ops.reset_hw(hw);
96
97 if (hw->mac.ops.init_hw(hw))
98 netdev_err(dev, "Error on hardware initialization\n");
99
100 /* Re-establish EEE setting */
101 igc_set_eee_i225(hw, true, true, true);
102
103 if (!netif_running(adapter->netdev))
104 igc_power_down_phy_copper_base(&adapter->hw);
105
106 /* Re-enable PTP, where applicable. */
107 igc_ptp_reset(adapter);
108
109 /* Re-enable TSN offloading, where applicable. */
110 igc_tsn_offload_apply(adapter);
111
112 igc_get_phy_info(hw);
113 }
114
115 /**
116 * igc_power_up_link - Power up the phy link
117 * @adapter: address of board private structure
118 */
igc_power_up_link(struct igc_adapter * adapter)119 static void igc_power_up_link(struct igc_adapter *adapter)
120 {
121 igc_reset_phy(&adapter->hw);
122
123 igc_power_up_phy_copper(&adapter->hw);
124
125 igc_setup_link(&adapter->hw);
126 }
127
128 /**
129 * igc_release_hw_control - release control of the h/w to f/w
130 * @adapter: address of board private structure
131 *
132 * igc_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
133 * For ASF and Pass Through versions of f/w this means that the
134 * driver is no longer loaded.
135 */
igc_release_hw_control(struct igc_adapter * adapter)136 static void igc_release_hw_control(struct igc_adapter *adapter)
137 {
138 struct igc_hw *hw = &adapter->hw;
139 u32 ctrl_ext;
140
141 if (!pci_device_is_present(adapter->pdev))
142 return;
143
144 /* Let firmware take over control of h/w */
145 ctrl_ext = rd32(IGC_CTRL_EXT);
146 wr32(IGC_CTRL_EXT,
147 ctrl_ext & ~IGC_CTRL_EXT_DRV_LOAD);
148 }
149
150 /**
151 * igc_get_hw_control - get control of the h/w from f/w
152 * @adapter: address of board private structure
153 *
154 * igc_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
155 * For ASF and Pass Through versions of f/w this means that
156 * the driver is loaded.
157 */
igc_get_hw_control(struct igc_adapter * adapter)158 static void igc_get_hw_control(struct igc_adapter *adapter)
159 {
160 struct igc_hw *hw = &adapter->hw;
161 u32 ctrl_ext;
162
163 /* Let firmware know the driver has taken over */
164 ctrl_ext = rd32(IGC_CTRL_EXT);
165 wr32(IGC_CTRL_EXT,
166 ctrl_ext | IGC_CTRL_EXT_DRV_LOAD);
167 }
168
169 /**
170 * igc_clean_tx_ring - Free Tx Buffers
171 * @tx_ring: ring to be cleaned
172 */
igc_clean_tx_ring(struct igc_ring * tx_ring)173 static void igc_clean_tx_ring(struct igc_ring *tx_ring)
174 {
175 u16 i = tx_ring->next_to_clean;
176 struct igc_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
177
178 while (i != tx_ring->next_to_use) {
179 union igc_adv_tx_desc *eop_desc, *tx_desc;
180
181 /* Free all the Tx ring sk_buffs */
182 dev_kfree_skb_any(tx_buffer->skb);
183
184 /* unmap skb header data */
185 dma_unmap_single(tx_ring->dev,
186 dma_unmap_addr(tx_buffer, dma),
187 dma_unmap_len(tx_buffer, len),
188 DMA_TO_DEVICE);
189
190 /* check for eop_desc to determine the end of the packet */
191 eop_desc = tx_buffer->next_to_watch;
192 tx_desc = IGC_TX_DESC(tx_ring, i);
193
194 /* unmap remaining buffers */
195 while (tx_desc != eop_desc) {
196 tx_buffer++;
197 tx_desc++;
198 i++;
199 if (unlikely(i == tx_ring->count)) {
200 i = 0;
201 tx_buffer = tx_ring->tx_buffer_info;
202 tx_desc = IGC_TX_DESC(tx_ring, 0);
203 }
204
205 /* unmap any remaining paged data */
206 if (dma_unmap_len(tx_buffer, len))
207 dma_unmap_page(tx_ring->dev,
208 dma_unmap_addr(tx_buffer, dma),
209 dma_unmap_len(tx_buffer, len),
210 DMA_TO_DEVICE);
211 }
212
213 tx_buffer->next_to_watch = NULL;
214
215 /* move us one more past the eop_desc for start of next pkt */
216 tx_buffer++;
217 i++;
218 if (unlikely(i == tx_ring->count)) {
219 i = 0;
220 tx_buffer = tx_ring->tx_buffer_info;
221 }
222 }
223
224 /* reset BQL for queue */
225 netdev_tx_reset_queue(txring_txq(tx_ring));
226
227 /* reset next_to_use and next_to_clean */
228 tx_ring->next_to_use = 0;
229 tx_ring->next_to_clean = 0;
230 }
231
232 /**
233 * igc_free_tx_resources - Free Tx Resources per Queue
234 * @tx_ring: Tx descriptor ring for a specific queue
235 *
236 * Free all transmit software resources
237 */
igc_free_tx_resources(struct igc_ring * tx_ring)238 void igc_free_tx_resources(struct igc_ring *tx_ring)
239 {
240 igc_clean_tx_ring(tx_ring);
241
242 vfree(tx_ring->tx_buffer_info);
243 tx_ring->tx_buffer_info = NULL;
244
245 /* if not set, then don't free */
246 if (!tx_ring->desc)
247 return;
248
249 dma_free_coherent(tx_ring->dev, tx_ring->size,
250 tx_ring->desc, tx_ring->dma);
251
252 tx_ring->desc = NULL;
253 }
254
255 /**
256 * igc_free_all_tx_resources - Free Tx Resources for All Queues
257 * @adapter: board private structure
258 *
259 * Free all transmit software resources
260 */
igc_free_all_tx_resources(struct igc_adapter * adapter)261 static void igc_free_all_tx_resources(struct igc_adapter *adapter)
262 {
263 int i;
264
265 for (i = 0; i < adapter->num_tx_queues; i++)
266 igc_free_tx_resources(adapter->tx_ring[i]);
267 }
268
269 /**
270 * igc_clean_all_tx_rings - Free Tx Buffers for all queues
271 * @adapter: board private structure
272 */
igc_clean_all_tx_rings(struct igc_adapter * adapter)273 static void igc_clean_all_tx_rings(struct igc_adapter *adapter)
274 {
275 int i;
276
277 for (i = 0; i < adapter->num_tx_queues; i++)
278 if (adapter->tx_ring[i])
279 igc_clean_tx_ring(adapter->tx_ring[i]);
280 }
281
282 /**
283 * igc_setup_tx_resources - allocate Tx resources (Descriptors)
284 * @tx_ring: tx descriptor ring (for a specific queue) to setup
285 *
286 * Return 0 on success, negative on failure
287 */
igc_setup_tx_resources(struct igc_ring * tx_ring)288 int igc_setup_tx_resources(struct igc_ring *tx_ring)
289 {
290 struct net_device *ndev = tx_ring->netdev;
291 struct device *dev = tx_ring->dev;
292 int size = 0;
293
294 size = sizeof(struct igc_tx_buffer) * tx_ring->count;
295 tx_ring->tx_buffer_info = vzalloc(size);
296 if (!tx_ring->tx_buffer_info)
297 goto err;
298
299 /* round up to nearest 4K */
300 tx_ring->size = tx_ring->count * sizeof(union igc_adv_tx_desc);
301 tx_ring->size = ALIGN(tx_ring->size, 4096);
302
303 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
304 &tx_ring->dma, GFP_KERNEL);
305
306 if (!tx_ring->desc)
307 goto err;
308
309 tx_ring->next_to_use = 0;
310 tx_ring->next_to_clean = 0;
311
312 return 0;
313
314 err:
315 vfree(tx_ring->tx_buffer_info);
316 netdev_err(ndev, "Unable to allocate memory for Tx descriptor ring\n");
317 return -ENOMEM;
318 }
319
320 /**
321 * igc_setup_all_tx_resources - wrapper to allocate Tx resources for all queues
322 * @adapter: board private structure
323 *
324 * Return 0 on success, negative on failure
325 */
igc_setup_all_tx_resources(struct igc_adapter * adapter)326 static int igc_setup_all_tx_resources(struct igc_adapter *adapter)
327 {
328 struct net_device *dev = adapter->netdev;
329 int i, err = 0;
330
331 for (i = 0; i < adapter->num_tx_queues; i++) {
332 err = igc_setup_tx_resources(adapter->tx_ring[i]);
333 if (err) {
334 netdev_err(dev, "Error on Tx queue %u setup\n", i);
335 for (i--; i >= 0; i--)
336 igc_free_tx_resources(adapter->tx_ring[i]);
337 break;
338 }
339 }
340
341 return err;
342 }
343
344 /**
345 * igc_clean_rx_ring - Free Rx Buffers per Queue
346 * @rx_ring: ring to free buffers from
347 */
igc_clean_rx_ring(struct igc_ring * rx_ring)348 static void igc_clean_rx_ring(struct igc_ring *rx_ring)
349 {
350 u16 i = rx_ring->next_to_clean;
351
352 dev_kfree_skb(rx_ring->skb);
353 rx_ring->skb = NULL;
354
355 /* Free all the Rx ring sk_buffs */
356 while (i != rx_ring->next_to_alloc) {
357 struct igc_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
358
359 /* Invalidate cache lines that may have been written to by
360 * device so that we avoid corrupting memory.
361 */
362 dma_sync_single_range_for_cpu(rx_ring->dev,
363 buffer_info->dma,
364 buffer_info->page_offset,
365 igc_rx_bufsz(rx_ring),
366 DMA_FROM_DEVICE);
367
368 /* free resources associated with mapping */
369 dma_unmap_page_attrs(rx_ring->dev,
370 buffer_info->dma,
371 igc_rx_pg_size(rx_ring),
372 DMA_FROM_DEVICE,
373 IGC_RX_DMA_ATTR);
374 __page_frag_cache_drain(buffer_info->page,
375 buffer_info->pagecnt_bias);
376
377 i++;
378 if (i == rx_ring->count)
379 i = 0;
380 }
381
382 rx_ring->next_to_alloc = 0;
383 rx_ring->next_to_clean = 0;
384 rx_ring->next_to_use = 0;
385 }
386
387 /**
388 * igc_clean_all_rx_rings - Free Rx Buffers for all queues
389 * @adapter: board private structure
390 */
igc_clean_all_rx_rings(struct igc_adapter * adapter)391 static void igc_clean_all_rx_rings(struct igc_adapter *adapter)
392 {
393 int i;
394
395 for (i = 0; i < adapter->num_rx_queues; i++)
396 if (adapter->rx_ring[i])
397 igc_clean_rx_ring(adapter->rx_ring[i]);
398 }
399
400 /**
401 * igc_free_rx_resources - Free Rx Resources
402 * @rx_ring: ring to clean the resources from
403 *
404 * Free all receive software resources
405 */
igc_free_rx_resources(struct igc_ring * rx_ring)406 void igc_free_rx_resources(struct igc_ring *rx_ring)
407 {
408 igc_clean_rx_ring(rx_ring);
409
410 vfree(rx_ring->rx_buffer_info);
411 rx_ring->rx_buffer_info = NULL;
412
413 /* if not set, then don't free */
414 if (!rx_ring->desc)
415 return;
416
417 dma_free_coherent(rx_ring->dev, rx_ring->size,
418 rx_ring->desc, rx_ring->dma);
419
420 rx_ring->desc = NULL;
421 }
422
423 /**
424 * igc_free_all_rx_resources - Free Rx Resources for All Queues
425 * @adapter: board private structure
426 *
427 * Free all receive software resources
428 */
igc_free_all_rx_resources(struct igc_adapter * adapter)429 static void igc_free_all_rx_resources(struct igc_adapter *adapter)
430 {
431 int i;
432
433 for (i = 0; i < adapter->num_rx_queues; i++)
434 igc_free_rx_resources(adapter->rx_ring[i]);
435 }
436
437 /**
438 * igc_setup_rx_resources - allocate Rx resources (Descriptors)
439 * @rx_ring: rx descriptor ring (for a specific queue) to setup
440 *
441 * Returns 0 on success, negative on failure
442 */
igc_setup_rx_resources(struct igc_ring * rx_ring)443 int igc_setup_rx_resources(struct igc_ring *rx_ring)
444 {
445 struct net_device *ndev = rx_ring->netdev;
446 struct device *dev = rx_ring->dev;
447 int size, desc_len;
448
449 size = sizeof(struct igc_rx_buffer) * rx_ring->count;
450 rx_ring->rx_buffer_info = vzalloc(size);
451 if (!rx_ring->rx_buffer_info)
452 goto err;
453
454 desc_len = sizeof(union igc_adv_rx_desc);
455
456 /* Round up to nearest 4K */
457 rx_ring->size = rx_ring->count * desc_len;
458 rx_ring->size = ALIGN(rx_ring->size, 4096);
459
460 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
461 &rx_ring->dma, GFP_KERNEL);
462
463 if (!rx_ring->desc)
464 goto err;
465
466 rx_ring->next_to_alloc = 0;
467 rx_ring->next_to_clean = 0;
468 rx_ring->next_to_use = 0;
469
470 return 0;
471
472 err:
473 vfree(rx_ring->rx_buffer_info);
474 rx_ring->rx_buffer_info = NULL;
475 netdev_err(ndev, "Unable to allocate memory for Rx descriptor ring\n");
476 return -ENOMEM;
477 }
478
479 /**
480 * igc_setup_all_rx_resources - wrapper to allocate Rx resources
481 * (Descriptors) for all queues
482 * @adapter: board private structure
483 *
484 * Return 0 on success, negative on failure
485 */
igc_setup_all_rx_resources(struct igc_adapter * adapter)486 static int igc_setup_all_rx_resources(struct igc_adapter *adapter)
487 {
488 struct net_device *dev = adapter->netdev;
489 int i, err = 0;
490
491 for (i = 0; i < adapter->num_rx_queues; i++) {
492 err = igc_setup_rx_resources(adapter->rx_ring[i]);
493 if (err) {
494 netdev_err(dev, "Error on Rx queue %u setup\n", i);
495 for (i--; i >= 0; i--)
496 igc_free_rx_resources(adapter->rx_ring[i]);
497 break;
498 }
499 }
500
501 return err;
502 }
503
504 /**
505 * igc_configure_rx_ring - Configure a receive ring after Reset
506 * @adapter: board private structure
507 * @ring: receive ring to be configured
508 *
509 * Configure the Rx unit of the MAC after a reset.
510 */
igc_configure_rx_ring(struct igc_adapter * adapter,struct igc_ring * ring)511 static void igc_configure_rx_ring(struct igc_adapter *adapter,
512 struct igc_ring *ring)
513 {
514 struct igc_hw *hw = &adapter->hw;
515 union igc_adv_rx_desc *rx_desc;
516 int reg_idx = ring->reg_idx;
517 u32 srrctl = 0, rxdctl = 0;
518 u64 rdba = ring->dma;
519
520 /* disable the queue */
521 wr32(IGC_RXDCTL(reg_idx), 0);
522
523 /* Set DMA base address registers */
524 wr32(IGC_RDBAL(reg_idx),
525 rdba & 0x00000000ffffffffULL);
526 wr32(IGC_RDBAH(reg_idx), rdba >> 32);
527 wr32(IGC_RDLEN(reg_idx),
528 ring->count * sizeof(union igc_adv_rx_desc));
529
530 /* initialize head and tail */
531 ring->tail = adapter->io_addr + IGC_RDT(reg_idx);
532 wr32(IGC_RDH(reg_idx), 0);
533 writel(0, ring->tail);
534
535 /* reset next-to- use/clean to place SW in sync with hardware */
536 ring->next_to_clean = 0;
537 ring->next_to_use = 0;
538
539 /* set descriptor configuration */
540 srrctl = IGC_RX_HDR_LEN << IGC_SRRCTL_BSIZEHDRSIZE_SHIFT;
541 if (ring_uses_large_buffer(ring))
542 srrctl |= IGC_RXBUFFER_3072 >> IGC_SRRCTL_BSIZEPKT_SHIFT;
543 else
544 srrctl |= IGC_RXBUFFER_2048 >> IGC_SRRCTL_BSIZEPKT_SHIFT;
545 srrctl |= IGC_SRRCTL_DESCTYPE_ADV_ONEBUF;
546
547 wr32(IGC_SRRCTL(reg_idx), srrctl);
548
549 rxdctl |= IGC_RX_PTHRESH;
550 rxdctl |= IGC_RX_HTHRESH << 8;
551 rxdctl |= IGC_RX_WTHRESH << 16;
552
553 /* initialize rx_buffer_info */
554 memset(ring->rx_buffer_info, 0,
555 sizeof(struct igc_rx_buffer) * ring->count);
556
557 /* initialize Rx descriptor 0 */
558 rx_desc = IGC_RX_DESC(ring, 0);
559 rx_desc->wb.upper.length = 0;
560
561 /* enable receive descriptor fetching */
562 rxdctl |= IGC_RXDCTL_QUEUE_ENABLE;
563
564 wr32(IGC_RXDCTL(reg_idx), rxdctl);
565 }
566
567 /**
568 * igc_configure_rx - Configure receive Unit after Reset
569 * @adapter: board private structure
570 *
571 * Configure the Rx unit of the MAC after a reset.
572 */
igc_configure_rx(struct igc_adapter * adapter)573 static void igc_configure_rx(struct igc_adapter *adapter)
574 {
575 int i;
576
577 /* Setup the HW Rx Head and Tail Descriptor Pointers and
578 * the Base and Length of the Rx Descriptor Ring
579 */
580 for (i = 0; i < adapter->num_rx_queues; i++)
581 igc_configure_rx_ring(adapter, adapter->rx_ring[i]);
582 }
583
584 /**
585 * igc_configure_tx_ring - Configure transmit ring after Reset
586 * @adapter: board private structure
587 * @ring: tx ring to configure
588 *
589 * Configure a transmit ring after a reset.
590 */
igc_configure_tx_ring(struct igc_adapter * adapter,struct igc_ring * ring)591 static void igc_configure_tx_ring(struct igc_adapter *adapter,
592 struct igc_ring *ring)
593 {
594 struct igc_hw *hw = &adapter->hw;
595 int reg_idx = ring->reg_idx;
596 u64 tdba = ring->dma;
597 u32 txdctl = 0;
598
599 /* disable the queue */
600 wr32(IGC_TXDCTL(reg_idx), 0);
601 wrfl();
602 mdelay(10);
603
604 wr32(IGC_TDLEN(reg_idx),
605 ring->count * sizeof(union igc_adv_tx_desc));
606 wr32(IGC_TDBAL(reg_idx),
607 tdba & 0x00000000ffffffffULL);
608 wr32(IGC_TDBAH(reg_idx), tdba >> 32);
609
610 ring->tail = adapter->io_addr + IGC_TDT(reg_idx);
611 wr32(IGC_TDH(reg_idx), 0);
612 writel(0, ring->tail);
613
614 txdctl |= IGC_TX_PTHRESH;
615 txdctl |= IGC_TX_HTHRESH << 8;
616 txdctl |= IGC_TX_WTHRESH << 16;
617
618 txdctl |= IGC_TXDCTL_QUEUE_ENABLE;
619 wr32(IGC_TXDCTL(reg_idx), txdctl);
620 }
621
622 /**
623 * igc_configure_tx - Configure transmit Unit after Reset
624 * @adapter: board private structure
625 *
626 * Configure the Tx unit of the MAC after a reset.
627 */
igc_configure_tx(struct igc_adapter * adapter)628 static void igc_configure_tx(struct igc_adapter *adapter)
629 {
630 int i;
631
632 for (i = 0; i < adapter->num_tx_queues; i++)
633 igc_configure_tx_ring(adapter, adapter->tx_ring[i]);
634 }
635
636 /**
637 * igc_setup_mrqc - configure the multiple receive queue control registers
638 * @adapter: Board private structure
639 */
igc_setup_mrqc(struct igc_adapter * adapter)640 static void igc_setup_mrqc(struct igc_adapter *adapter)
641 {
642 struct igc_hw *hw = &adapter->hw;
643 u32 j, num_rx_queues;
644 u32 mrqc, rxcsum;
645 u32 rss_key[10];
646
647 netdev_rss_key_fill(rss_key, sizeof(rss_key));
648 for (j = 0; j < 10; j++)
649 wr32(IGC_RSSRK(j), rss_key[j]);
650
651 num_rx_queues = adapter->rss_queues;
652
653 if (adapter->rss_indir_tbl_init != num_rx_queues) {
654 for (j = 0; j < IGC_RETA_SIZE; j++)
655 adapter->rss_indir_tbl[j] =
656 (j * num_rx_queues) / IGC_RETA_SIZE;
657 adapter->rss_indir_tbl_init = num_rx_queues;
658 }
659 igc_write_rss_indir_tbl(adapter);
660
661 /* Disable raw packet checksumming so that RSS hash is placed in
662 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
663 * offloads as they are enabled by default
664 */
665 rxcsum = rd32(IGC_RXCSUM);
666 rxcsum |= IGC_RXCSUM_PCSD;
667
668 /* Enable Receive Checksum Offload for SCTP */
669 rxcsum |= IGC_RXCSUM_CRCOFL;
670
671 /* Don't need to set TUOFL or IPOFL, they default to 1 */
672 wr32(IGC_RXCSUM, rxcsum);
673
674 /* Generate RSS hash based on packet types, TCP/UDP
675 * port numbers and/or IPv4/v6 src and dst addresses
676 */
677 mrqc = IGC_MRQC_RSS_FIELD_IPV4 |
678 IGC_MRQC_RSS_FIELD_IPV4_TCP |
679 IGC_MRQC_RSS_FIELD_IPV6 |
680 IGC_MRQC_RSS_FIELD_IPV6_TCP |
681 IGC_MRQC_RSS_FIELD_IPV6_TCP_EX;
682
683 if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV4_UDP)
684 mrqc |= IGC_MRQC_RSS_FIELD_IPV4_UDP;
685 if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV6_UDP)
686 mrqc |= IGC_MRQC_RSS_FIELD_IPV6_UDP;
687
688 mrqc |= IGC_MRQC_ENABLE_RSS_MQ;
689
690 wr32(IGC_MRQC, mrqc);
691 }
692
693 /**
694 * igc_setup_rctl - configure the receive control registers
695 * @adapter: Board private structure
696 */
igc_setup_rctl(struct igc_adapter * adapter)697 static void igc_setup_rctl(struct igc_adapter *adapter)
698 {
699 struct igc_hw *hw = &adapter->hw;
700 u32 rctl;
701
702 rctl = rd32(IGC_RCTL);
703
704 rctl &= ~(3 << IGC_RCTL_MO_SHIFT);
705 rctl &= ~(IGC_RCTL_LBM_TCVR | IGC_RCTL_LBM_MAC);
706
707 rctl |= IGC_RCTL_EN | IGC_RCTL_BAM | IGC_RCTL_RDMTS_HALF |
708 (hw->mac.mc_filter_type << IGC_RCTL_MO_SHIFT);
709
710 /* enable stripping of CRC. Newer features require
711 * that the HW strips the CRC.
712 */
713 rctl |= IGC_RCTL_SECRC;
714
715 /* disable store bad packets and clear size bits. */
716 rctl &= ~(IGC_RCTL_SBP | IGC_RCTL_SZ_256);
717
718 /* enable LPE to allow for reception of jumbo frames */
719 rctl |= IGC_RCTL_LPE;
720
721 /* disable queue 0 to prevent tail write w/o re-config */
722 wr32(IGC_RXDCTL(0), 0);
723
724 /* This is useful for sniffing bad packets. */
725 if (adapter->netdev->features & NETIF_F_RXALL) {
726 /* UPE and MPE will be handled by normal PROMISC logic
727 * in set_rx_mode
728 */
729 rctl |= (IGC_RCTL_SBP | /* Receive bad packets */
730 IGC_RCTL_BAM | /* RX All Bcast Pkts */
731 IGC_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
732
733 rctl &= ~(IGC_RCTL_DPF | /* Allow filtered pause */
734 IGC_RCTL_CFIEN); /* Disable VLAN CFIEN Filter */
735 }
736
737 wr32(IGC_RCTL, rctl);
738 }
739
740 /**
741 * igc_setup_tctl - configure the transmit control registers
742 * @adapter: Board private structure
743 */
igc_setup_tctl(struct igc_adapter * adapter)744 static void igc_setup_tctl(struct igc_adapter *adapter)
745 {
746 struct igc_hw *hw = &adapter->hw;
747 u32 tctl;
748
749 /* disable queue 0 which icould be enabled by default */
750 wr32(IGC_TXDCTL(0), 0);
751
752 /* Program the Transmit Control Register */
753 tctl = rd32(IGC_TCTL);
754 tctl &= ~IGC_TCTL_CT;
755 tctl |= IGC_TCTL_PSP | IGC_TCTL_RTLC |
756 (IGC_COLLISION_THRESHOLD << IGC_CT_SHIFT);
757
758 /* Enable transmits */
759 tctl |= IGC_TCTL_EN;
760
761 wr32(IGC_TCTL, tctl);
762 }
763
764 /**
765 * igc_set_mac_filter_hw() - Set MAC address filter in hardware
766 * @adapter: Pointer to adapter where the filter should be set
767 * @index: Filter index
768 * @type: MAC address filter type (source or destination)
769 * @addr: MAC address
770 * @queue: If non-negative, queue assignment feature is enabled and frames
771 * matching the filter are enqueued onto 'queue'. Otherwise, queue
772 * assignment is disabled.
773 */
igc_set_mac_filter_hw(struct igc_adapter * adapter,int index,enum igc_mac_filter_type type,const u8 * addr,int queue)774 static void igc_set_mac_filter_hw(struct igc_adapter *adapter, int index,
775 enum igc_mac_filter_type type,
776 const u8 *addr, int queue)
777 {
778 struct net_device *dev = adapter->netdev;
779 struct igc_hw *hw = &adapter->hw;
780 u32 ral, rah;
781
782 if (WARN_ON(index >= hw->mac.rar_entry_count))
783 return;
784
785 ral = le32_to_cpup((__le32 *)(addr));
786 rah = le16_to_cpup((__le16 *)(addr + 4));
787
788 if (type == IGC_MAC_FILTER_TYPE_SRC) {
789 rah &= ~IGC_RAH_ASEL_MASK;
790 rah |= IGC_RAH_ASEL_SRC_ADDR;
791 }
792
793 if (queue >= 0) {
794 rah &= ~IGC_RAH_QSEL_MASK;
795 rah |= (queue << IGC_RAH_QSEL_SHIFT);
796 rah |= IGC_RAH_QSEL_ENABLE;
797 }
798
799 rah |= IGC_RAH_AV;
800
801 wr32(IGC_RAL(index), ral);
802 wr32(IGC_RAH(index), rah);
803
804 netdev_dbg(dev, "MAC address filter set in HW: index %d", index);
805 }
806
807 /**
808 * igc_clear_mac_filter_hw() - Clear MAC address filter in hardware
809 * @adapter: Pointer to adapter where the filter should be cleared
810 * @index: Filter index
811 */
igc_clear_mac_filter_hw(struct igc_adapter * adapter,int index)812 static void igc_clear_mac_filter_hw(struct igc_adapter *adapter, int index)
813 {
814 struct net_device *dev = adapter->netdev;
815 struct igc_hw *hw = &adapter->hw;
816
817 if (WARN_ON(index >= hw->mac.rar_entry_count))
818 return;
819
820 wr32(IGC_RAL(index), 0);
821 wr32(IGC_RAH(index), 0);
822
823 netdev_dbg(dev, "MAC address filter cleared in HW: index %d", index);
824 }
825
826 /* Set default MAC address for the PF in the first RAR entry */
igc_set_default_mac_filter(struct igc_adapter * adapter)827 static void igc_set_default_mac_filter(struct igc_adapter *adapter)
828 {
829 struct net_device *dev = adapter->netdev;
830 u8 *addr = adapter->hw.mac.addr;
831
832 netdev_dbg(dev, "Set default MAC address filter: address %pM", addr);
833
834 igc_set_mac_filter_hw(adapter, 0, IGC_MAC_FILTER_TYPE_DST, addr, -1);
835 }
836
837 /**
838 * igc_set_mac - Change the Ethernet Address of the NIC
839 * @netdev: network interface device structure
840 * @p: pointer to an address structure
841 *
842 * Returns 0 on success, negative on failure
843 */
igc_set_mac(struct net_device * netdev,void * p)844 static int igc_set_mac(struct net_device *netdev, void *p)
845 {
846 struct igc_adapter *adapter = netdev_priv(netdev);
847 struct igc_hw *hw = &adapter->hw;
848 struct sockaddr *addr = p;
849
850 if (!is_valid_ether_addr(addr->sa_data))
851 return -EADDRNOTAVAIL;
852
853 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
854 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
855
856 /* set the correct pool for the new PF MAC address in entry 0 */
857 igc_set_default_mac_filter(adapter);
858
859 return 0;
860 }
861
862 /**
863 * igc_write_mc_addr_list - write multicast addresses to MTA
864 * @netdev: network interface device structure
865 *
866 * Writes multicast address list to the MTA hash table.
867 * Returns: -ENOMEM on failure
868 * 0 on no addresses written
869 * X on writing X addresses to MTA
870 **/
igc_write_mc_addr_list(struct net_device * netdev)871 static int igc_write_mc_addr_list(struct net_device *netdev)
872 {
873 struct igc_adapter *adapter = netdev_priv(netdev);
874 struct igc_hw *hw = &adapter->hw;
875 struct netdev_hw_addr *ha;
876 u8 *mta_list;
877 int i;
878
879 if (netdev_mc_empty(netdev)) {
880 /* nothing to program, so clear mc list */
881 igc_update_mc_addr_list(hw, NULL, 0);
882 return 0;
883 }
884
885 mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
886 if (!mta_list)
887 return -ENOMEM;
888
889 /* The shared function expects a packed array of only addresses. */
890 i = 0;
891 netdev_for_each_mc_addr(ha, netdev)
892 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
893
894 igc_update_mc_addr_list(hw, mta_list, i);
895 kfree(mta_list);
896
897 return netdev_mc_count(netdev);
898 }
899
igc_tx_launchtime(struct igc_adapter * adapter,ktime_t txtime)900 static __le32 igc_tx_launchtime(struct igc_adapter *adapter, ktime_t txtime)
901 {
902 ktime_t cycle_time = adapter->cycle_time;
903 ktime_t base_time = adapter->base_time;
904 u32 launchtime;
905
906 /* FIXME: when using ETF together with taprio, we may have a
907 * case where 'delta' is larger than the cycle_time, this may
908 * cause problems if we don't read the current value of
909 * IGC_BASET, as the value writen into the launchtime
910 * descriptor field may be misinterpreted.
911 */
912 div_s64_rem(ktime_sub_ns(txtime, base_time), cycle_time, &launchtime);
913
914 return cpu_to_le32(launchtime);
915 }
916
igc_tx_ctxtdesc(struct igc_ring * tx_ring,struct igc_tx_buffer * first,u32 vlan_macip_lens,u32 type_tucmd,u32 mss_l4len_idx)917 static void igc_tx_ctxtdesc(struct igc_ring *tx_ring,
918 struct igc_tx_buffer *first,
919 u32 vlan_macip_lens, u32 type_tucmd,
920 u32 mss_l4len_idx)
921 {
922 struct igc_adv_tx_context_desc *context_desc;
923 u16 i = tx_ring->next_to_use;
924
925 context_desc = IGC_TX_CTXTDESC(tx_ring, i);
926
927 i++;
928 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
929
930 /* set bits to identify this as an advanced context descriptor */
931 type_tucmd |= IGC_TXD_CMD_DEXT | IGC_ADVTXD_DTYP_CTXT;
932
933 /* For i225, context index must be unique per ring. */
934 if (test_bit(IGC_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
935 mss_l4len_idx |= tx_ring->reg_idx << 4;
936
937 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
938 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
939 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
940
941 /* We assume there is always a valid Tx time available. Invalid times
942 * should have been handled by the upper layers.
943 */
944 if (tx_ring->launchtime_enable) {
945 struct igc_adapter *adapter = netdev_priv(tx_ring->netdev);
946 ktime_t txtime = first->skb->tstamp;
947
948 first->skb->tstamp = ktime_set(0, 0);
949 context_desc->launch_time = igc_tx_launchtime(adapter,
950 txtime);
951 } else {
952 context_desc->launch_time = 0;
953 }
954 }
955
igc_ipv6_csum_is_sctp(struct sk_buff * skb)956 static inline bool igc_ipv6_csum_is_sctp(struct sk_buff *skb)
957 {
958 unsigned int offset = 0;
959
960 ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL);
961
962 return offset == skb_checksum_start_offset(skb);
963 }
964
igc_tx_csum(struct igc_ring * tx_ring,struct igc_tx_buffer * first)965 static void igc_tx_csum(struct igc_ring *tx_ring, struct igc_tx_buffer *first)
966 {
967 struct sk_buff *skb = first->skb;
968 u32 vlan_macip_lens = 0;
969 u32 type_tucmd = 0;
970
971 if (skb->ip_summed != CHECKSUM_PARTIAL) {
972 csum_failed:
973 if (!(first->tx_flags & IGC_TX_FLAGS_VLAN) &&
974 !tx_ring->launchtime_enable)
975 return;
976 goto no_csum;
977 }
978
979 switch (skb->csum_offset) {
980 case offsetof(struct tcphdr, check):
981 type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP;
982 fallthrough;
983 case offsetof(struct udphdr, check):
984 break;
985 case offsetof(struct sctphdr, checksum):
986 /* validate that this is actually an SCTP request */
987 if ((first->protocol == htons(ETH_P_IP) &&
988 (ip_hdr(skb)->protocol == IPPROTO_SCTP)) ||
989 (first->protocol == htons(ETH_P_IPV6) &&
990 igc_ipv6_csum_is_sctp(skb))) {
991 type_tucmd = IGC_ADVTXD_TUCMD_L4T_SCTP;
992 break;
993 }
994 fallthrough;
995 default:
996 skb_checksum_help(skb);
997 goto csum_failed;
998 }
999
1000 /* update TX checksum flag */
1001 first->tx_flags |= IGC_TX_FLAGS_CSUM;
1002 vlan_macip_lens = skb_checksum_start_offset(skb) -
1003 skb_network_offset(skb);
1004 no_csum:
1005 vlan_macip_lens |= skb_network_offset(skb) << IGC_ADVTXD_MACLEN_SHIFT;
1006 vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK;
1007
1008 igc_tx_ctxtdesc(tx_ring, first, vlan_macip_lens, type_tucmd, 0);
1009 }
1010
__igc_maybe_stop_tx(struct igc_ring * tx_ring,const u16 size)1011 static int __igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
1012 {
1013 struct net_device *netdev = tx_ring->netdev;
1014
1015 netif_stop_subqueue(netdev, tx_ring->queue_index);
1016
1017 /* memory barriier comment */
1018 smp_mb();
1019
1020 /* We need to check again in a case another CPU has just
1021 * made room available.
1022 */
1023 if (igc_desc_unused(tx_ring) < size)
1024 return -EBUSY;
1025
1026 /* A reprieve! */
1027 netif_wake_subqueue(netdev, tx_ring->queue_index);
1028
1029 u64_stats_update_begin(&tx_ring->tx_syncp2);
1030 tx_ring->tx_stats.restart_queue2++;
1031 u64_stats_update_end(&tx_ring->tx_syncp2);
1032
1033 return 0;
1034 }
1035
igc_maybe_stop_tx(struct igc_ring * tx_ring,const u16 size)1036 static inline int igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
1037 {
1038 if (igc_desc_unused(tx_ring) >= size)
1039 return 0;
1040 return __igc_maybe_stop_tx(tx_ring, size);
1041 }
1042
1043 #define IGC_SET_FLAG(_input, _flag, _result) \
1044 (((_flag) <= (_result)) ? \
1045 ((u32)((_input) & (_flag)) * ((_result) / (_flag))) : \
1046 ((u32)((_input) & (_flag)) / ((_flag) / (_result))))
1047
igc_tx_cmd_type(struct sk_buff * skb,u32 tx_flags)1048 static u32 igc_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
1049 {
1050 /* set type for advanced descriptor with frame checksum insertion */
1051 u32 cmd_type = IGC_ADVTXD_DTYP_DATA |
1052 IGC_ADVTXD_DCMD_DEXT |
1053 IGC_ADVTXD_DCMD_IFCS;
1054
1055 /* set segmentation bits for TSO */
1056 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSO,
1057 (IGC_ADVTXD_DCMD_TSE));
1058
1059 /* set timestamp bit if present */
1060 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP,
1061 (IGC_ADVTXD_MAC_TSTAMP));
1062
1063 return cmd_type;
1064 }
1065
igc_tx_olinfo_status(struct igc_ring * tx_ring,union igc_adv_tx_desc * tx_desc,u32 tx_flags,unsigned int paylen)1066 static void igc_tx_olinfo_status(struct igc_ring *tx_ring,
1067 union igc_adv_tx_desc *tx_desc,
1068 u32 tx_flags, unsigned int paylen)
1069 {
1070 u32 olinfo_status = paylen << IGC_ADVTXD_PAYLEN_SHIFT;
1071
1072 /* insert L4 checksum */
1073 olinfo_status |= (tx_flags & IGC_TX_FLAGS_CSUM) *
1074 ((IGC_TXD_POPTS_TXSM << 8) /
1075 IGC_TX_FLAGS_CSUM);
1076
1077 /* insert IPv4 checksum */
1078 olinfo_status |= (tx_flags & IGC_TX_FLAGS_IPV4) *
1079 (((IGC_TXD_POPTS_IXSM << 8)) /
1080 IGC_TX_FLAGS_IPV4);
1081
1082 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
1083 }
1084
igc_tx_map(struct igc_ring * tx_ring,struct igc_tx_buffer * first,const u8 hdr_len)1085 static int igc_tx_map(struct igc_ring *tx_ring,
1086 struct igc_tx_buffer *first,
1087 const u8 hdr_len)
1088 {
1089 struct sk_buff *skb = first->skb;
1090 struct igc_tx_buffer *tx_buffer;
1091 union igc_adv_tx_desc *tx_desc;
1092 u32 tx_flags = first->tx_flags;
1093 skb_frag_t *frag;
1094 u16 i = tx_ring->next_to_use;
1095 unsigned int data_len, size;
1096 dma_addr_t dma;
1097 u32 cmd_type = igc_tx_cmd_type(skb, tx_flags);
1098
1099 tx_desc = IGC_TX_DESC(tx_ring, i);
1100
1101 igc_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
1102
1103 size = skb_headlen(skb);
1104 data_len = skb->data_len;
1105
1106 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1107
1108 tx_buffer = first;
1109
1110 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1111 if (dma_mapping_error(tx_ring->dev, dma))
1112 goto dma_error;
1113
1114 /* record length, and DMA address */
1115 dma_unmap_len_set(tx_buffer, len, size);
1116 dma_unmap_addr_set(tx_buffer, dma, dma);
1117
1118 tx_desc->read.buffer_addr = cpu_to_le64(dma);
1119
1120 while (unlikely(size > IGC_MAX_DATA_PER_TXD)) {
1121 tx_desc->read.cmd_type_len =
1122 cpu_to_le32(cmd_type ^ IGC_MAX_DATA_PER_TXD);
1123
1124 i++;
1125 tx_desc++;
1126 if (i == tx_ring->count) {
1127 tx_desc = IGC_TX_DESC(tx_ring, 0);
1128 i = 0;
1129 }
1130 tx_desc->read.olinfo_status = 0;
1131
1132 dma += IGC_MAX_DATA_PER_TXD;
1133 size -= IGC_MAX_DATA_PER_TXD;
1134
1135 tx_desc->read.buffer_addr = cpu_to_le64(dma);
1136 }
1137
1138 if (likely(!data_len))
1139 break;
1140
1141 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
1142
1143 i++;
1144 tx_desc++;
1145 if (i == tx_ring->count) {
1146 tx_desc = IGC_TX_DESC(tx_ring, 0);
1147 i = 0;
1148 }
1149 tx_desc->read.olinfo_status = 0;
1150
1151 size = skb_frag_size(frag);
1152 data_len -= size;
1153
1154 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
1155 size, DMA_TO_DEVICE);
1156
1157 tx_buffer = &tx_ring->tx_buffer_info[i];
1158 }
1159
1160 /* write last descriptor with RS and EOP bits */
1161 cmd_type |= size | IGC_TXD_DCMD;
1162 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
1163
1164 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1165
1166 /* set the timestamp */
1167 first->time_stamp = jiffies;
1168
1169 skb_tx_timestamp(skb);
1170
1171 /* Force memory writes to complete before letting h/w know there
1172 * are new descriptors to fetch. (Only applicable for weak-ordered
1173 * memory model archs, such as IA-64).
1174 *
1175 * We also need this memory barrier to make certain all of the
1176 * status bits have been updated before next_to_watch is written.
1177 */
1178 wmb();
1179
1180 /* set next_to_watch value indicating a packet is present */
1181 first->next_to_watch = tx_desc;
1182
1183 i++;
1184 if (i == tx_ring->count)
1185 i = 0;
1186
1187 tx_ring->next_to_use = i;
1188
1189 /* Make sure there is space in the ring for the next send. */
1190 igc_maybe_stop_tx(tx_ring, DESC_NEEDED);
1191
1192 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
1193 writel(i, tx_ring->tail);
1194 }
1195
1196 return 0;
1197 dma_error:
1198 netdev_err(tx_ring->netdev, "TX DMA map failed\n");
1199 tx_buffer = &tx_ring->tx_buffer_info[i];
1200
1201 /* clear dma mappings for failed tx_buffer_info map */
1202 while (tx_buffer != first) {
1203 if (dma_unmap_len(tx_buffer, len))
1204 dma_unmap_page(tx_ring->dev,
1205 dma_unmap_addr(tx_buffer, dma),
1206 dma_unmap_len(tx_buffer, len),
1207 DMA_TO_DEVICE);
1208 dma_unmap_len_set(tx_buffer, len, 0);
1209
1210 if (i-- == 0)
1211 i += tx_ring->count;
1212 tx_buffer = &tx_ring->tx_buffer_info[i];
1213 }
1214
1215 if (dma_unmap_len(tx_buffer, len))
1216 dma_unmap_single(tx_ring->dev,
1217 dma_unmap_addr(tx_buffer, dma),
1218 dma_unmap_len(tx_buffer, len),
1219 DMA_TO_DEVICE);
1220 dma_unmap_len_set(tx_buffer, len, 0);
1221
1222 dev_kfree_skb_any(tx_buffer->skb);
1223 tx_buffer->skb = NULL;
1224
1225 tx_ring->next_to_use = i;
1226
1227 return -1;
1228 }
1229
igc_tso(struct igc_ring * tx_ring,struct igc_tx_buffer * first,u8 * hdr_len)1230 static int igc_tso(struct igc_ring *tx_ring,
1231 struct igc_tx_buffer *first,
1232 u8 *hdr_len)
1233 {
1234 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
1235 struct sk_buff *skb = first->skb;
1236 union {
1237 struct iphdr *v4;
1238 struct ipv6hdr *v6;
1239 unsigned char *hdr;
1240 } ip;
1241 union {
1242 struct tcphdr *tcp;
1243 struct udphdr *udp;
1244 unsigned char *hdr;
1245 } l4;
1246 u32 paylen, l4_offset;
1247 int err;
1248
1249 if (skb->ip_summed != CHECKSUM_PARTIAL)
1250 return 0;
1251
1252 if (!skb_is_gso(skb))
1253 return 0;
1254
1255 err = skb_cow_head(skb, 0);
1256 if (err < 0)
1257 return err;
1258
1259 ip.hdr = skb_network_header(skb);
1260 l4.hdr = skb_checksum_start(skb);
1261
1262 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
1263 type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP;
1264
1265 /* initialize outer IP header fields */
1266 if (ip.v4->version == 4) {
1267 unsigned char *csum_start = skb_checksum_start(skb);
1268 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
1269
1270 /* IP header will have to cancel out any data that
1271 * is not a part of the outer IP header
1272 */
1273 ip.v4->check = csum_fold(csum_partial(trans_start,
1274 csum_start - trans_start,
1275 0));
1276 type_tucmd |= IGC_ADVTXD_TUCMD_IPV4;
1277
1278 ip.v4->tot_len = 0;
1279 first->tx_flags |= IGC_TX_FLAGS_TSO |
1280 IGC_TX_FLAGS_CSUM |
1281 IGC_TX_FLAGS_IPV4;
1282 } else {
1283 ip.v6->payload_len = 0;
1284 first->tx_flags |= IGC_TX_FLAGS_TSO |
1285 IGC_TX_FLAGS_CSUM;
1286 }
1287
1288 /* determine offset of inner transport header */
1289 l4_offset = l4.hdr - skb->data;
1290
1291 /* remove payload length from inner checksum */
1292 paylen = skb->len - l4_offset;
1293 if (type_tucmd & IGC_ADVTXD_TUCMD_L4T_TCP) {
1294 /* compute length of segmentation header */
1295 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
1296 csum_replace_by_diff(&l4.tcp->check,
1297 (__force __wsum)htonl(paylen));
1298 } else {
1299 /* compute length of segmentation header */
1300 *hdr_len = sizeof(*l4.udp) + l4_offset;
1301 csum_replace_by_diff(&l4.udp->check,
1302 (__force __wsum)htonl(paylen));
1303 }
1304
1305 /* update gso size and bytecount with header size */
1306 first->gso_segs = skb_shinfo(skb)->gso_segs;
1307 first->bytecount += (first->gso_segs - 1) * *hdr_len;
1308
1309 /* MSS L4LEN IDX */
1310 mss_l4len_idx = (*hdr_len - l4_offset) << IGC_ADVTXD_L4LEN_SHIFT;
1311 mss_l4len_idx |= skb_shinfo(skb)->gso_size << IGC_ADVTXD_MSS_SHIFT;
1312
1313 /* VLAN MACLEN IPLEN */
1314 vlan_macip_lens = l4.hdr - ip.hdr;
1315 vlan_macip_lens |= (ip.hdr - skb->data) << IGC_ADVTXD_MACLEN_SHIFT;
1316 vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK;
1317
1318 igc_tx_ctxtdesc(tx_ring, first, vlan_macip_lens,
1319 type_tucmd, mss_l4len_idx);
1320
1321 return 1;
1322 }
1323
igc_xmit_frame_ring(struct sk_buff * skb,struct igc_ring * tx_ring)1324 static netdev_tx_t igc_xmit_frame_ring(struct sk_buff *skb,
1325 struct igc_ring *tx_ring)
1326 {
1327 u16 count = TXD_USE_COUNT(skb_headlen(skb));
1328 __be16 protocol = vlan_get_protocol(skb);
1329 struct igc_tx_buffer *first;
1330 u32 tx_flags = 0;
1331 unsigned short f;
1332 u8 hdr_len = 0;
1333 int tso = 0;
1334
1335 /* need: 1 descriptor per page * PAGE_SIZE/IGC_MAX_DATA_PER_TXD,
1336 * + 1 desc for skb_headlen/IGC_MAX_DATA_PER_TXD,
1337 * + 2 desc gap to keep tail from touching head,
1338 * + 1 desc for context descriptor,
1339 * otherwise try next time
1340 */
1341 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1342 count += TXD_USE_COUNT(skb_frag_size(
1343 &skb_shinfo(skb)->frags[f]));
1344
1345 if (igc_maybe_stop_tx(tx_ring, count + 3)) {
1346 /* this is a hard error */
1347 return NETDEV_TX_BUSY;
1348 }
1349
1350 /* record the location of the first descriptor for this packet */
1351 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
1352 first->skb = skb;
1353 first->bytecount = skb->len;
1354 first->gso_segs = 1;
1355
1356 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
1357 struct igc_adapter *adapter = netdev_priv(tx_ring->netdev);
1358
1359 /* FIXME: add support for retrieving timestamps from
1360 * the other timer registers before skipping the
1361 * timestamping request.
1362 */
1363 if (adapter->tstamp_config.tx_type == HWTSTAMP_TX_ON &&
1364 !test_and_set_bit_lock(__IGC_PTP_TX_IN_PROGRESS,
1365 &adapter->state)) {
1366 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1367 tx_flags |= IGC_TX_FLAGS_TSTAMP;
1368
1369 adapter->ptp_tx_skb = skb_get(skb);
1370 adapter->ptp_tx_start = jiffies;
1371 } else {
1372 adapter->tx_hwtstamp_skipped++;
1373 }
1374 }
1375
1376 /* record initial flags and protocol */
1377 first->tx_flags = tx_flags;
1378 first->protocol = protocol;
1379
1380 tso = igc_tso(tx_ring, first, &hdr_len);
1381 if (tso < 0)
1382 goto out_drop;
1383 else if (!tso)
1384 igc_tx_csum(tx_ring, first);
1385
1386 igc_tx_map(tx_ring, first, hdr_len);
1387
1388 return NETDEV_TX_OK;
1389
1390 out_drop:
1391 dev_kfree_skb_any(first->skb);
1392 first->skb = NULL;
1393
1394 return NETDEV_TX_OK;
1395 }
1396
igc_tx_queue_mapping(struct igc_adapter * adapter,struct sk_buff * skb)1397 static inline struct igc_ring *igc_tx_queue_mapping(struct igc_adapter *adapter,
1398 struct sk_buff *skb)
1399 {
1400 unsigned int r_idx = skb->queue_mapping;
1401
1402 if (r_idx >= adapter->num_tx_queues)
1403 r_idx = r_idx % adapter->num_tx_queues;
1404
1405 return adapter->tx_ring[r_idx];
1406 }
1407
igc_xmit_frame(struct sk_buff * skb,struct net_device * netdev)1408 static netdev_tx_t igc_xmit_frame(struct sk_buff *skb,
1409 struct net_device *netdev)
1410 {
1411 struct igc_adapter *adapter = netdev_priv(netdev);
1412
1413 /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
1414 * in order to meet this minimum size requirement.
1415 */
1416 if (skb->len < 17) {
1417 if (skb_padto(skb, 17))
1418 return NETDEV_TX_OK;
1419 skb->len = 17;
1420 }
1421
1422 return igc_xmit_frame_ring(skb, igc_tx_queue_mapping(adapter, skb));
1423 }
1424
igc_rx_checksum(struct igc_ring * ring,union igc_adv_rx_desc * rx_desc,struct sk_buff * skb)1425 static void igc_rx_checksum(struct igc_ring *ring,
1426 union igc_adv_rx_desc *rx_desc,
1427 struct sk_buff *skb)
1428 {
1429 skb_checksum_none_assert(skb);
1430
1431 /* Ignore Checksum bit is set */
1432 if (igc_test_staterr(rx_desc, IGC_RXD_STAT_IXSM))
1433 return;
1434
1435 /* Rx checksum disabled via ethtool */
1436 if (!(ring->netdev->features & NETIF_F_RXCSUM))
1437 return;
1438
1439 /* TCP/UDP checksum error bit is set */
1440 if (igc_test_staterr(rx_desc,
1441 IGC_RXDEXT_STATERR_L4E |
1442 IGC_RXDEXT_STATERR_IPE)) {
1443 /* work around errata with sctp packets where the TCPE aka
1444 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
1445 * packets (aka let the stack check the crc32c)
1446 */
1447 if (!(skb->len == 60 &&
1448 test_bit(IGC_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
1449 u64_stats_update_begin(&ring->rx_syncp);
1450 ring->rx_stats.csum_err++;
1451 u64_stats_update_end(&ring->rx_syncp);
1452 }
1453 /* let the stack verify checksum errors */
1454 return;
1455 }
1456 /* It must be a TCP or UDP packet with a valid checksum */
1457 if (igc_test_staterr(rx_desc, IGC_RXD_STAT_TCPCS |
1458 IGC_RXD_STAT_UDPCS))
1459 skb->ip_summed = CHECKSUM_UNNECESSARY;
1460
1461 netdev_dbg(ring->netdev, "cksum success: bits %08X\n",
1462 le32_to_cpu(rx_desc->wb.upper.status_error));
1463 }
1464
igc_rx_hash(struct igc_ring * ring,union igc_adv_rx_desc * rx_desc,struct sk_buff * skb)1465 static inline void igc_rx_hash(struct igc_ring *ring,
1466 union igc_adv_rx_desc *rx_desc,
1467 struct sk_buff *skb)
1468 {
1469 if (ring->netdev->features & NETIF_F_RXHASH)
1470 skb_set_hash(skb,
1471 le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
1472 PKT_HASH_TYPE_L3);
1473 }
1474
1475 /**
1476 * igc_process_skb_fields - Populate skb header fields from Rx descriptor
1477 * @rx_ring: rx descriptor ring packet is being transacted on
1478 * @rx_desc: pointer to the EOP Rx descriptor
1479 * @skb: pointer to current skb being populated
1480 *
1481 * This function checks the ring, descriptor, and packet information in order
1482 * to populate the hash, checksum, VLAN, protocol, and other fields within the
1483 * skb.
1484 */
igc_process_skb_fields(struct igc_ring * rx_ring,union igc_adv_rx_desc * rx_desc,struct sk_buff * skb)1485 static void igc_process_skb_fields(struct igc_ring *rx_ring,
1486 union igc_adv_rx_desc *rx_desc,
1487 struct sk_buff *skb)
1488 {
1489 igc_rx_hash(rx_ring, rx_desc, skb);
1490
1491 igc_rx_checksum(rx_ring, rx_desc, skb);
1492
1493 skb_record_rx_queue(skb, rx_ring->queue_index);
1494
1495 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1496 }
1497
igc_get_rx_buffer(struct igc_ring * rx_ring,const unsigned int size)1498 static struct igc_rx_buffer *igc_get_rx_buffer(struct igc_ring *rx_ring,
1499 const unsigned int size)
1500 {
1501 struct igc_rx_buffer *rx_buffer;
1502
1503 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
1504 prefetchw(rx_buffer->page);
1505
1506 /* we are reusing so sync this buffer for CPU use */
1507 dma_sync_single_range_for_cpu(rx_ring->dev,
1508 rx_buffer->dma,
1509 rx_buffer->page_offset,
1510 size,
1511 DMA_FROM_DEVICE);
1512
1513 rx_buffer->pagecnt_bias--;
1514
1515 return rx_buffer;
1516 }
1517
1518 /**
1519 * igc_add_rx_frag - Add contents of Rx buffer to sk_buff
1520 * @rx_ring: rx descriptor ring to transact packets on
1521 * @rx_buffer: buffer containing page to add
1522 * @skb: sk_buff to place the data into
1523 * @size: size of buffer to be added
1524 *
1525 * This function will add the data contained in rx_buffer->page to the skb.
1526 */
igc_add_rx_frag(struct igc_ring * rx_ring,struct igc_rx_buffer * rx_buffer,struct sk_buff * skb,unsigned int size)1527 static void igc_add_rx_frag(struct igc_ring *rx_ring,
1528 struct igc_rx_buffer *rx_buffer,
1529 struct sk_buff *skb,
1530 unsigned int size)
1531 {
1532 #if (PAGE_SIZE < 8192)
1533 unsigned int truesize = igc_rx_pg_size(rx_ring) / 2;
1534
1535 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1536 rx_buffer->page_offset, size, truesize);
1537 rx_buffer->page_offset ^= truesize;
1538 #else
1539 unsigned int truesize = ring_uses_build_skb(rx_ring) ?
1540 SKB_DATA_ALIGN(IGC_SKB_PAD + size) :
1541 SKB_DATA_ALIGN(size);
1542 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1543 rx_buffer->page_offset, size, truesize);
1544 rx_buffer->page_offset += truesize;
1545 #endif
1546 }
1547
igc_build_skb(struct igc_ring * rx_ring,struct igc_rx_buffer * rx_buffer,union igc_adv_rx_desc * rx_desc,unsigned int size)1548 static struct sk_buff *igc_build_skb(struct igc_ring *rx_ring,
1549 struct igc_rx_buffer *rx_buffer,
1550 union igc_adv_rx_desc *rx_desc,
1551 unsigned int size)
1552 {
1553 void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
1554 #if (PAGE_SIZE < 8192)
1555 unsigned int truesize = igc_rx_pg_size(rx_ring) / 2;
1556 #else
1557 unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1558 SKB_DATA_ALIGN(IGC_SKB_PAD + size);
1559 #endif
1560 struct sk_buff *skb;
1561
1562 /* prefetch first cache line of first page */
1563 net_prefetch(va);
1564
1565 /* build an skb around the page buffer */
1566 skb = build_skb(va - IGC_SKB_PAD, truesize);
1567 if (unlikely(!skb))
1568 return NULL;
1569
1570 /* update pointers within the skb to store the data */
1571 skb_reserve(skb, IGC_SKB_PAD);
1572 __skb_put(skb, size);
1573
1574 /* update buffer offset */
1575 #if (PAGE_SIZE < 8192)
1576 rx_buffer->page_offset ^= truesize;
1577 #else
1578 rx_buffer->page_offset += truesize;
1579 #endif
1580
1581 return skb;
1582 }
1583
igc_construct_skb(struct igc_ring * rx_ring,struct igc_rx_buffer * rx_buffer,union igc_adv_rx_desc * rx_desc,unsigned int size)1584 static struct sk_buff *igc_construct_skb(struct igc_ring *rx_ring,
1585 struct igc_rx_buffer *rx_buffer,
1586 union igc_adv_rx_desc *rx_desc,
1587 unsigned int size)
1588 {
1589 void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
1590 #if (PAGE_SIZE < 8192)
1591 unsigned int truesize = igc_rx_pg_size(rx_ring) / 2;
1592 #else
1593 unsigned int truesize = SKB_DATA_ALIGN(size);
1594 #endif
1595 unsigned int headlen;
1596 struct sk_buff *skb;
1597
1598 /* prefetch first cache line of first page */
1599 net_prefetch(va);
1600
1601 /* allocate a skb to store the frags */
1602 skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGC_RX_HDR_LEN);
1603 if (unlikely(!skb))
1604 return NULL;
1605
1606 if (unlikely(igc_test_staterr(rx_desc, IGC_RXDADV_STAT_TSIP))) {
1607 igc_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
1608 va += IGC_TS_HDR_LEN;
1609 size -= IGC_TS_HDR_LEN;
1610 }
1611
1612 /* Determine available headroom for copy */
1613 headlen = size;
1614 if (headlen > IGC_RX_HDR_LEN)
1615 headlen = eth_get_headlen(skb->dev, va, IGC_RX_HDR_LEN);
1616
1617 /* align pull length to size of long to optimize memcpy performance */
1618 memcpy(__skb_put(skb, headlen), va, ALIGN(headlen, sizeof(long)));
1619
1620 /* update all of the pointers */
1621 size -= headlen;
1622 if (size) {
1623 skb_add_rx_frag(skb, 0, rx_buffer->page,
1624 (va + headlen) - page_address(rx_buffer->page),
1625 size, truesize);
1626 #if (PAGE_SIZE < 8192)
1627 rx_buffer->page_offset ^= truesize;
1628 #else
1629 rx_buffer->page_offset += truesize;
1630 #endif
1631 } else {
1632 rx_buffer->pagecnt_bias++;
1633 }
1634
1635 return skb;
1636 }
1637
1638 /**
1639 * igc_reuse_rx_page - page flip buffer and store it back on the ring
1640 * @rx_ring: rx descriptor ring to store buffers on
1641 * @old_buff: donor buffer to have page reused
1642 *
1643 * Synchronizes page for reuse by the adapter
1644 */
igc_reuse_rx_page(struct igc_ring * rx_ring,struct igc_rx_buffer * old_buff)1645 static void igc_reuse_rx_page(struct igc_ring *rx_ring,
1646 struct igc_rx_buffer *old_buff)
1647 {
1648 u16 nta = rx_ring->next_to_alloc;
1649 struct igc_rx_buffer *new_buff;
1650
1651 new_buff = &rx_ring->rx_buffer_info[nta];
1652
1653 /* update, and store next to alloc */
1654 nta++;
1655 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1656
1657 /* Transfer page from old buffer to new buffer.
1658 * Move each member individually to avoid possible store
1659 * forwarding stalls.
1660 */
1661 new_buff->dma = old_buff->dma;
1662 new_buff->page = old_buff->page;
1663 new_buff->page_offset = old_buff->page_offset;
1664 new_buff->pagecnt_bias = old_buff->pagecnt_bias;
1665 }
1666
igc_page_is_reserved(struct page * page)1667 static inline bool igc_page_is_reserved(struct page *page)
1668 {
1669 return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
1670 }
1671
igc_can_reuse_rx_page(struct igc_rx_buffer * rx_buffer)1672 static bool igc_can_reuse_rx_page(struct igc_rx_buffer *rx_buffer)
1673 {
1674 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1675 struct page *page = rx_buffer->page;
1676
1677 /* avoid re-using remote pages */
1678 if (unlikely(igc_page_is_reserved(page)))
1679 return false;
1680
1681 #if (PAGE_SIZE < 8192)
1682 /* if we are only owner of page we can reuse it */
1683 if (unlikely((page_ref_count(page) - pagecnt_bias) > 1))
1684 return false;
1685 #else
1686 #define IGC_LAST_OFFSET \
1687 (SKB_WITH_OVERHEAD(PAGE_SIZE) - IGC_RXBUFFER_2048)
1688
1689 if (rx_buffer->page_offset > IGC_LAST_OFFSET)
1690 return false;
1691 #endif
1692
1693 /* If we have drained the page fragment pool we need to update
1694 * the pagecnt_bias and page count so that we fully restock the
1695 * number of references the driver holds.
1696 */
1697 if (unlikely(!pagecnt_bias)) {
1698 page_ref_add(page, USHRT_MAX);
1699 rx_buffer->pagecnt_bias = USHRT_MAX;
1700 }
1701
1702 return true;
1703 }
1704
1705 /**
1706 * igc_is_non_eop - process handling of non-EOP buffers
1707 * @rx_ring: Rx ring being processed
1708 * @rx_desc: Rx descriptor for current buffer
1709 *
1710 * This function updates next to clean. If the buffer is an EOP buffer
1711 * this function exits returning false, otherwise it will place the
1712 * sk_buff in the next buffer to be chained and return true indicating
1713 * that this is in fact a non-EOP buffer.
1714 */
igc_is_non_eop(struct igc_ring * rx_ring,union igc_adv_rx_desc * rx_desc)1715 static bool igc_is_non_eop(struct igc_ring *rx_ring,
1716 union igc_adv_rx_desc *rx_desc)
1717 {
1718 u32 ntc = rx_ring->next_to_clean + 1;
1719
1720 /* fetch, update, and store next to clean */
1721 ntc = (ntc < rx_ring->count) ? ntc : 0;
1722 rx_ring->next_to_clean = ntc;
1723
1724 prefetch(IGC_RX_DESC(rx_ring, ntc));
1725
1726 if (likely(igc_test_staterr(rx_desc, IGC_RXD_STAT_EOP)))
1727 return false;
1728
1729 return true;
1730 }
1731
1732 /**
1733 * igc_cleanup_headers - Correct corrupted or empty headers
1734 * @rx_ring: rx descriptor ring packet is being transacted on
1735 * @rx_desc: pointer to the EOP Rx descriptor
1736 * @skb: pointer to current skb being fixed
1737 *
1738 * Address the case where we are pulling data in on pages only
1739 * and as such no data is present in the skb header.
1740 *
1741 * In addition if skb is not at least 60 bytes we need to pad it so that
1742 * it is large enough to qualify as a valid Ethernet frame.
1743 *
1744 * Returns true if an error was encountered and skb was freed.
1745 */
igc_cleanup_headers(struct igc_ring * rx_ring,union igc_adv_rx_desc * rx_desc,struct sk_buff * skb)1746 static bool igc_cleanup_headers(struct igc_ring *rx_ring,
1747 union igc_adv_rx_desc *rx_desc,
1748 struct sk_buff *skb)
1749 {
1750 if (unlikely(igc_test_staterr(rx_desc, IGC_RXDEXT_STATERR_RXE))) {
1751 struct net_device *netdev = rx_ring->netdev;
1752
1753 if (!(netdev->features & NETIF_F_RXALL)) {
1754 dev_kfree_skb_any(skb);
1755 return true;
1756 }
1757 }
1758
1759 /* if eth_skb_pad returns an error the skb was freed */
1760 if (eth_skb_pad(skb))
1761 return true;
1762
1763 return false;
1764 }
1765
igc_put_rx_buffer(struct igc_ring * rx_ring,struct igc_rx_buffer * rx_buffer)1766 static void igc_put_rx_buffer(struct igc_ring *rx_ring,
1767 struct igc_rx_buffer *rx_buffer)
1768 {
1769 if (igc_can_reuse_rx_page(rx_buffer)) {
1770 /* hand second half of page back to the ring */
1771 igc_reuse_rx_page(rx_ring, rx_buffer);
1772 } else {
1773 /* We are not reusing the buffer so unmap it and free
1774 * any references we are holding to it
1775 */
1776 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
1777 igc_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
1778 IGC_RX_DMA_ATTR);
1779 __page_frag_cache_drain(rx_buffer->page,
1780 rx_buffer->pagecnt_bias);
1781 }
1782
1783 /* clear contents of rx_buffer */
1784 rx_buffer->page = NULL;
1785 }
1786
igc_rx_offset(struct igc_ring * rx_ring)1787 static inline unsigned int igc_rx_offset(struct igc_ring *rx_ring)
1788 {
1789 return ring_uses_build_skb(rx_ring) ? IGC_SKB_PAD : 0;
1790 }
1791
igc_alloc_mapped_page(struct igc_ring * rx_ring,struct igc_rx_buffer * bi)1792 static bool igc_alloc_mapped_page(struct igc_ring *rx_ring,
1793 struct igc_rx_buffer *bi)
1794 {
1795 struct page *page = bi->page;
1796 dma_addr_t dma;
1797
1798 /* since we are recycling buffers we should seldom need to alloc */
1799 if (likely(page))
1800 return true;
1801
1802 /* alloc new page for storage */
1803 page = dev_alloc_pages(igc_rx_pg_order(rx_ring));
1804 if (unlikely(!page)) {
1805 rx_ring->rx_stats.alloc_failed++;
1806 return false;
1807 }
1808
1809 /* map page for use */
1810 dma = dma_map_page_attrs(rx_ring->dev, page, 0,
1811 igc_rx_pg_size(rx_ring),
1812 DMA_FROM_DEVICE,
1813 IGC_RX_DMA_ATTR);
1814
1815 /* if mapping failed free memory back to system since
1816 * there isn't much point in holding memory we can't use
1817 */
1818 if (dma_mapping_error(rx_ring->dev, dma)) {
1819 __free_page(page);
1820
1821 rx_ring->rx_stats.alloc_failed++;
1822 return false;
1823 }
1824
1825 bi->dma = dma;
1826 bi->page = page;
1827 bi->page_offset = igc_rx_offset(rx_ring);
1828 bi->pagecnt_bias = 1;
1829
1830 return true;
1831 }
1832
1833 /**
1834 * igc_alloc_rx_buffers - Replace used receive buffers; packet split
1835 * @rx_ring: rx descriptor ring
1836 * @cleaned_count: number of buffers to clean
1837 */
igc_alloc_rx_buffers(struct igc_ring * rx_ring,u16 cleaned_count)1838 static void igc_alloc_rx_buffers(struct igc_ring *rx_ring, u16 cleaned_count)
1839 {
1840 union igc_adv_rx_desc *rx_desc;
1841 u16 i = rx_ring->next_to_use;
1842 struct igc_rx_buffer *bi;
1843 u16 bufsz;
1844
1845 /* nothing to do */
1846 if (!cleaned_count)
1847 return;
1848
1849 rx_desc = IGC_RX_DESC(rx_ring, i);
1850 bi = &rx_ring->rx_buffer_info[i];
1851 i -= rx_ring->count;
1852
1853 bufsz = igc_rx_bufsz(rx_ring);
1854
1855 do {
1856 if (!igc_alloc_mapped_page(rx_ring, bi))
1857 break;
1858
1859 /* sync the buffer for use by the device */
1860 dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
1861 bi->page_offset, bufsz,
1862 DMA_FROM_DEVICE);
1863
1864 /* Refresh the desc even if buffer_addrs didn't change
1865 * because each write-back erases this info.
1866 */
1867 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
1868
1869 rx_desc++;
1870 bi++;
1871 i++;
1872 if (unlikely(!i)) {
1873 rx_desc = IGC_RX_DESC(rx_ring, 0);
1874 bi = rx_ring->rx_buffer_info;
1875 i -= rx_ring->count;
1876 }
1877
1878 /* clear the length for the next_to_use descriptor */
1879 rx_desc->wb.upper.length = 0;
1880
1881 cleaned_count--;
1882 } while (cleaned_count);
1883
1884 i += rx_ring->count;
1885
1886 if (rx_ring->next_to_use != i) {
1887 /* record the next descriptor to use */
1888 rx_ring->next_to_use = i;
1889
1890 /* update next to alloc since we have filled the ring */
1891 rx_ring->next_to_alloc = i;
1892
1893 /* Force memory writes to complete before letting h/w
1894 * know there are new descriptors to fetch. (Only
1895 * applicable for weak-ordered memory model archs,
1896 * such as IA-64).
1897 */
1898 wmb();
1899 writel(i, rx_ring->tail);
1900 }
1901 }
1902
igc_clean_rx_irq(struct igc_q_vector * q_vector,const int budget)1903 static int igc_clean_rx_irq(struct igc_q_vector *q_vector, const int budget)
1904 {
1905 unsigned int total_bytes = 0, total_packets = 0;
1906 struct igc_ring *rx_ring = q_vector->rx.ring;
1907 struct sk_buff *skb = rx_ring->skb;
1908 u16 cleaned_count = igc_desc_unused(rx_ring);
1909
1910 while (likely(total_packets < budget)) {
1911 union igc_adv_rx_desc *rx_desc;
1912 struct igc_rx_buffer *rx_buffer;
1913 unsigned int size;
1914
1915 /* return some buffers to hardware, one at a time is too slow */
1916 if (cleaned_count >= IGC_RX_BUFFER_WRITE) {
1917 igc_alloc_rx_buffers(rx_ring, cleaned_count);
1918 cleaned_count = 0;
1919 }
1920
1921 rx_desc = IGC_RX_DESC(rx_ring, rx_ring->next_to_clean);
1922 size = le16_to_cpu(rx_desc->wb.upper.length);
1923 if (!size)
1924 break;
1925
1926 /* This memory barrier is needed to keep us from reading
1927 * any other fields out of the rx_desc until we know the
1928 * descriptor has been written back
1929 */
1930 dma_rmb();
1931
1932 rx_buffer = igc_get_rx_buffer(rx_ring, size);
1933
1934 /* retrieve a buffer from the ring */
1935 if (skb)
1936 igc_add_rx_frag(rx_ring, rx_buffer, skb, size);
1937 else if (ring_uses_build_skb(rx_ring))
1938 skb = igc_build_skb(rx_ring, rx_buffer, rx_desc, size);
1939 else
1940 skb = igc_construct_skb(rx_ring, rx_buffer,
1941 rx_desc, size);
1942
1943 /* exit if we failed to retrieve a buffer */
1944 if (!skb) {
1945 rx_ring->rx_stats.alloc_failed++;
1946 rx_buffer->pagecnt_bias++;
1947 break;
1948 }
1949
1950 igc_put_rx_buffer(rx_ring, rx_buffer);
1951 cleaned_count++;
1952
1953 /* fetch next buffer in frame if non-eop */
1954 if (igc_is_non_eop(rx_ring, rx_desc))
1955 continue;
1956
1957 /* verify the packet layout is correct */
1958 if (igc_cleanup_headers(rx_ring, rx_desc, skb)) {
1959 skb = NULL;
1960 continue;
1961 }
1962
1963 /* probably a little skewed due to removing CRC */
1964 total_bytes += skb->len;
1965
1966 /* populate checksum, VLAN, and protocol */
1967 igc_process_skb_fields(rx_ring, rx_desc, skb);
1968
1969 napi_gro_receive(&q_vector->napi, skb);
1970
1971 /* reset skb pointer */
1972 skb = NULL;
1973
1974 /* update budget accounting */
1975 total_packets++;
1976 }
1977
1978 /* place incomplete frames back on ring for completion */
1979 rx_ring->skb = skb;
1980
1981 u64_stats_update_begin(&rx_ring->rx_syncp);
1982 rx_ring->rx_stats.packets += total_packets;
1983 rx_ring->rx_stats.bytes += total_bytes;
1984 u64_stats_update_end(&rx_ring->rx_syncp);
1985 q_vector->rx.total_packets += total_packets;
1986 q_vector->rx.total_bytes += total_bytes;
1987
1988 if (cleaned_count)
1989 igc_alloc_rx_buffers(rx_ring, cleaned_count);
1990
1991 return total_packets;
1992 }
1993
1994 /**
1995 * igc_clean_tx_irq - Reclaim resources after transmit completes
1996 * @q_vector: pointer to q_vector containing needed info
1997 * @napi_budget: Used to determine if we are in netpoll
1998 *
1999 * returns true if ring is completely cleaned
2000 */
igc_clean_tx_irq(struct igc_q_vector * q_vector,int napi_budget)2001 static bool igc_clean_tx_irq(struct igc_q_vector *q_vector, int napi_budget)
2002 {
2003 struct igc_adapter *adapter = q_vector->adapter;
2004 unsigned int total_bytes = 0, total_packets = 0;
2005 unsigned int budget = q_vector->tx.work_limit;
2006 struct igc_ring *tx_ring = q_vector->tx.ring;
2007 unsigned int i = tx_ring->next_to_clean;
2008 struct igc_tx_buffer *tx_buffer;
2009 union igc_adv_tx_desc *tx_desc;
2010
2011 if (test_bit(__IGC_DOWN, &adapter->state))
2012 return true;
2013
2014 tx_buffer = &tx_ring->tx_buffer_info[i];
2015 tx_desc = IGC_TX_DESC(tx_ring, i);
2016 i -= tx_ring->count;
2017
2018 do {
2019 union igc_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
2020
2021 /* if next_to_watch is not set then there is no work pending */
2022 if (!eop_desc)
2023 break;
2024
2025 /* prevent any other reads prior to eop_desc */
2026 smp_rmb();
2027
2028 /* if DD is not set pending work has not been completed */
2029 if (!(eop_desc->wb.status & cpu_to_le32(IGC_TXD_STAT_DD)))
2030 break;
2031
2032 /* clear next_to_watch to prevent false hangs */
2033 tx_buffer->next_to_watch = NULL;
2034
2035 /* update the statistics for this packet */
2036 total_bytes += tx_buffer->bytecount;
2037 total_packets += tx_buffer->gso_segs;
2038
2039 /* free the skb */
2040 napi_consume_skb(tx_buffer->skb, napi_budget);
2041
2042 /* unmap skb header data */
2043 dma_unmap_single(tx_ring->dev,
2044 dma_unmap_addr(tx_buffer, dma),
2045 dma_unmap_len(tx_buffer, len),
2046 DMA_TO_DEVICE);
2047
2048 /* clear tx_buffer data */
2049 dma_unmap_len_set(tx_buffer, len, 0);
2050
2051 /* clear last DMA location and unmap remaining buffers */
2052 while (tx_desc != eop_desc) {
2053 tx_buffer++;
2054 tx_desc++;
2055 i++;
2056 if (unlikely(!i)) {
2057 i -= tx_ring->count;
2058 tx_buffer = tx_ring->tx_buffer_info;
2059 tx_desc = IGC_TX_DESC(tx_ring, 0);
2060 }
2061
2062 /* unmap any remaining paged data */
2063 if (dma_unmap_len(tx_buffer, len)) {
2064 dma_unmap_page(tx_ring->dev,
2065 dma_unmap_addr(tx_buffer, dma),
2066 dma_unmap_len(tx_buffer, len),
2067 DMA_TO_DEVICE);
2068 dma_unmap_len_set(tx_buffer, len, 0);
2069 }
2070 }
2071
2072 /* move us one more past the eop_desc for start of next pkt */
2073 tx_buffer++;
2074 tx_desc++;
2075 i++;
2076 if (unlikely(!i)) {
2077 i -= tx_ring->count;
2078 tx_buffer = tx_ring->tx_buffer_info;
2079 tx_desc = IGC_TX_DESC(tx_ring, 0);
2080 }
2081
2082 /* issue prefetch for next Tx descriptor */
2083 prefetch(tx_desc);
2084
2085 /* update budget accounting */
2086 budget--;
2087 } while (likely(budget));
2088
2089 netdev_tx_completed_queue(txring_txq(tx_ring),
2090 total_packets, total_bytes);
2091
2092 i += tx_ring->count;
2093 tx_ring->next_to_clean = i;
2094 u64_stats_update_begin(&tx_ring->tx_syncp);
2095 tx_ring->tx_stats.bytes += total_bytes;
2096 tx_ring->tx_stats.packets += total_packets;
2097 u64_stats_update_end(&tx_ring->tx_syncp);
2098 q_vector->tx.total_bytes += total_bytes;
2099 q_vector->tx.total_packets += total_packets;
2100
2101 if (test_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
2102 struct igc_hw *hw = &adapter->hw;
2103
2104 /* Detect a transmit hang in hardware, this serializes the
2105 * check with the clearing of time_stamp and movement of i
2106 */
2107 clear_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
2108 if (tx_buffer->next_to_watch &&
2109 time_after(jiffies, tx_buffer->time_stamp +
2110 (adapter->tx_timeout_factor * HZ)) &&
2111 !(rd32(IGC_STATUS) & IGC_STATUS_TXOFF)) {
2112 /* detected Tx unit hang */
2113 netdev_err(tx_ring->netdev,
2114 "Detected Tx Unit Hang\n"
2115 " Tx Queue <%d>\n"
2116 " TDH <%x>\n"
2117 " TDT <%x>\n"
2118 " next_to_use <%x>\n"
2119 " next_to_clean <%x>\n"
2120 "buffer_info[next_to_clean]\n"
2121 " time_stamp <%lx>\n"
2122 " next_to_watch <%p>\n"
2123 " jiffies <%lx>\n"
2124 " desc.status <%x>\n",
2125 tx_ring->queue_index,
2126 rd32(IGC_TDH(tx_ring->reg_idx)),
2127 readl(tx_ring->tail),
2128 tx_ring->next_to_use,
2129 tx_ring->next_to_clean,
2130 tx_buffer->time_stamp,
2131 tx_buffer->next_to_watch,
2132 jiffies,
2133 tx_buffer->next_to_watch->wb.status);
2134 netif_stop_subqueue(tx_ring->netdev,
2135 tx_ring->queue_index);
2136
2137 /* we are about to reset, no point in enabling stuff */
2138 return true;
2139 }
2140 }
2141
2142 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
2143 if (unlikely(total_packets &&
2144 netif_carrier_ok(tx_ring->netdev) &&
2145 igc_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
2146 /* Make sure that anybody stopping the queue after this
2147 * sees the new next_to_clean.
2148 */
2149 smp_mb();
2150 if (__netif_subqueue_stopped(tx_ring->netdev,
2151 tx_ring->queue_index) &&
2152 !(test_bit(__IGC_DOWN, &adapter->state))) {
2153 netif_wake_subqueue(tx_ring->netdev,
2154 tx_ring->queue_index);
2155
2156 u64_stats_update_begin(&tx_ring->tx_syncp);
2157 tx_ring->tx_stats.restart_queue++;
2158 u64_stats_update_end(&tx_ring->tx_syncp);
2159 }
2160 }
2161
2162 return !!budget;
2163 }
2164
igc_find_mac_filter(struct igc_adapter * adapter,enum igc_mac_filter_type type,const u8 * addr)2165 static int igc_find_mac_filter(struct igc_adapter *adapter,
2166 enum igc_mac_filter_type type, const u8 *addr)
2167 {
2168 struct igc_hw *hw = &adapter->hw;
2169 int max_entries = hw->mac.rar_entry_count;
2170 u32 ral, rah;
2171 int i;
2172
2173 for (i = 0; i < max_entries; i++) {
2174 ral = rd32(IGC_RAL(i));
2175 rah = rd32(IGC_RAH(i));
2176
2177 if (!(rah & IGC_RAH_AV))
2178 continue;
2179 if (!!(rah & IGC_RAH_ASEL_SRC_ADDR) != type)
2180 continue;
2181 if ((rah & IGC_RAH_RAH_MASK) !=
2182 le16_to_cpup((__le16 *)(addr + 4)))
2183 continue;
2184 if (ral != le32_to_cpup((__le32 *)(addr)))
2185 continue;
2186
2187 return i;
2188 }
2189
2190 return -1;
2191 }
2192
igc_get_avail_mac_filter_slot(struct igc_adapter * adapter)2193 static int igc_get_avail_mac_filter_slot(struct igc_adapter *adapter)
2194 {
2195 struct igc_hw *hw = &adapter->hw;
2196 int max_entries = hw->mac.rar_entry_count;
2197 u32 rah;
2198 int i;
2199
2200 for (i = 0; i < max_entries; i++) {
2201 rah = rd32(IGC_RAH(i));
2202
2203 if (!(rah & IGC_RAH_AV))
2204 return i;
2205 }
2206
2207 return -1;
2208 }
2209
2210 /**
2211 * igc_add_mac_filter() - Add MAC address filter
2212 * @adapter: Pointer to adapter where the filter should be added
2213 * @type: MAC address filter type (source or destination)
2214 * @addr: MAC address
2215 * @queue: If non-negative, queue assignment feature is enabled and frames
2216 * matching the filter are enqueued onto 'queue'. Otherwise, queue
2217 * assignment is disabled.
2218 *
2219 * Return: 0 in case of success, negative errno code otherwise.
2220 */
igc_add_mac_filter(struct igc_adapter * adapter,enum igc_mac_filter_type type,const u8 * addr,int queue)2221 static int igc_add_mac_filter(struct igc_adapter *adapter,
2222 enum igc_mac_filter_type type, const u8 *addr,
2223 int queue)
2224 {
2225 struct net_device *dev = adapter->netdev;
2226 int index;
2227
2228 index = igc_find_mac_filter(adapter, type, addr);
2229 if (index >= 0)
2230 goto update_filter;
2231
2232 index = igc_get_avail_mac_filter_slot(adapter);
2233 if (index < 0)
2234 return -ENOSPC;
2235
2236 netdev_dbg(dev, "Add MAC address filter: index %d type %s address %pM queue %d\n",
2237 index, type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src",
2238 addr, queue);
2239
2240 update_filter:
2241 igc_set_mac_filter_hw(adapter, index, type, addr, queue);
2242 return 0;
2243 }
2244
2245 /**
2246 * igc_del_mac_filter() - Delete MAC address filter
2247 * @adapter: Pointer to adapter where the filter should be deleted from
2248 * @type: MAC address filter type (source or destination)
2249 * @addr: MAC address
2250 */
igc_del_mac_filter(struct igc_adapter * adapter,enum igc_mac_filter_type type,const u8 * addr)2251 static void igc_del_mac_filter(struct igc_adapter *adapter,
2252 enum igc_mac_filter_type type, const u8 *addr)
2253 {
2254 struct net_device *dev = adapter->netdev;
2255 int index;
2256
2257 index = igc_find_mac_filter(adapter, type, addr);
2258 if (index < 0)
2259 return;
2260
2261 if (index == 0) {
2262 /* If this is the default filter, we don't actually delete it.
2263 * We just reset to its default value i.e. disable queue
2264 * assignment.
2265 */
2266 netdev_dbg(dev, "Disable default MAC filter queue assignment");
2267
2268 igc_set_mac_filter_hw(adapter, 0, type, addr, -1);
2269 } else {
2270 netdev_dbg(dev, "Delete MAC address filter: index %d type %s address %pM\n",
2271 index,
2272 type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src",
2273 addr);
2274
2275 igc_clear_mac_filter_hw(adapter, index);
2276 }
2277 }
2278
2279 /**
2280 * igc_add_vlan_prio_filter() - Add VLAN priority filter
2281 * @adapter: Pointer to adapter where the filter should be added
2282 * @prio: VLAN priority value
2283 * @queue: Queue number which matching frames are assigned to
2284 *
2285 * Return: 0 in case of success, negative errno code otherwise.
2286 */
igc_add_vlan_prio_filter(struct igc_adapter * adapter,int prio,int queue)2287 static int igc_add_vlan_prio_filter(struct igc_adapter *adapter, int prio,
2288 int queue)
2289 {
2290 struct net_device *dev = adapter->netdev;
2291 struct igc_hw *hw = &adapter->hw;
2292 u32 vlanpqf;
2293
2294 vlanpqf = rd32(IGC_VLANPQF);
2295
2296 if (vlanpqf & IGC_VLANPQF_VALID(prio)) {
2297 netdev_dbg(dev, "VLAN priority filter already in use\n");
2298 return -EEXIST;
2299 }
2300
2301 vlanpqf |= IGC_VLANPQF_QSEL(prio, queue);
2302 vlanpqf |= IGC_VLANPQF_VALID(prio);
2303
2304 wr32(IGC_VLANPQF, vlanpqf);
2305
2306 netdev_dbg(dev, "Add VLAN priority filter: prio %d queue %d\n",
2307 prio, queue);
2308 return 0;
2309 }
2310
2311 /**
2312 * igc_del_vlan_prio_filter() - Delete VLAN priority filter
2313 * @adapter: Pointer to adapter where the filter should be deleted from
2314 * @prio: VLAN priority value
2315 */
igc_del_vlan_prio_filter(struct igc_adapter * adapter,int prio)2316 static void igc_del_vlan_prio_filter(struct igc_adapter *adapter, int prio)
2317 {
2318 struct igc_hw *hw = &adapter->hw;
2319 u32 vlanpqf;
2320
2321 vlanpqf = rd32(IGC_VLANPQF);
2322
2323 vlanpqf &= ~IGC_VLANPQF_VALID(prio);
2324 vlanpqf &= ~IGC_VLANPQF_QSEL(prio, IGC_VLANPQF_QUEUE_MASK);
2325
2326 wr32(IGC_VLANPQF, vlanpqf);
2327
2328 netdev_dbg(adapter->netdev, "Delete VLAN priority filter: prio %d\n",
2329 prio);
2330 }
2331
igc_get_avail_etype_filter_slot(struct igc_adapter * adapter)2332 static int igc_get_avail_etype_filter_slot(struct igc_adapter *adapter)
2333 {
2334 struct igc_hw *hw = &adapter->hw;
2335 int i;
2336
2337 for (i = 0; i < MAX_ETYPE_FILTER; i++) {
2338 u32 etqf = rd32(IGC_ETQF(i));
2339
2340 if (!(etqf & IGC_ETQF_FILTER_ENABLE))
2341 return i;
2342 }
2343
2344 return -1;
2345 }
2346
2347 /**
2348 * igc_add_etype_filter() - Add ethertype filter
2349 * @adapter: Pointer to adapter where the filter should be added
2350 * @etype: Ethertype value
2351 * @queue: If non-negative, queue assignment feature is enabled and frames
2352 * matching the filter are enqueued onto 'queue'. Otherwise, queue
2353 * assignment is disabled.
2354 *
2355 * Return: 0 in case of success, negative errno code otherwise.
2356 */
igc_add_etype_filter(struct igc_adapter * adapter,u16 etype,int queue)2357 static int igc_add_etype_filter(struct igc_adapter *adapter, u16 etype,
2358 int queue)
2359 {
2360 struct igc_hw *hw = &adapter->hw;
2361 int index;
2362 u32 etqf;
2363
2364 index = igc_get_avail_etype_filter_slot(adapter);
2365 if (index < 0)
2366 return -ENOSPC;
2367
2368 etqf = rd32(IGC_ETQF(index));
2369
2370 etqf &= ~IGC_ETQF_ETYPE_MASK;
2371 etqf |= etype;
2372
2373 if (queue >= 0) {
2374 etqf &= ~IGC_ETQF_QUEUE_MASK;
2375 etqf |= (queue << IGC_ETQF_QUEUE_SHIFT);
2376 etqf |= IGC_ETQF_QUEUE_ENABLE;
2377 }
2378
2379 etqf |= IGC_ETQF_FILTER_ENABLE;
2380
2381 wr32(IGC_ETQF(index), etqf);
2382
2383 netdev_dbg(adapter->netdev, "Add ethertype filter: etype %04x queue %d\n",
2384 etype, queue);
2385 return 0;
2386 }
2387
igc_find_etype_filter(struct igc_adapter * adapter,u16 etype)2388 static int igc_find_etype_filter(struct igc_adapter *adapter, u16 etype)
2389 {
2390 struct igc_hw *hw = &adapter->hw;
2391 int i;
2392
2393 for (i = 0; i < MAX_ETYPE_FILTER; i++) {
2394 u32 etqf = rd32(IGC_ETQF(i));
2395
2396 if ((etqf & IGC_ETQF_ETYPE_MASK) == etype)
2397 return i;
2398 }
2399
2400 return -1;
2401 }
2402
2403 /**
2404 * igc_del_etype_filter() - Delete ethertype filter
2405 * @adapter: Pointer to adapter where the filter should be deleted from
2406 * @etype: Ethertype value
2407 */
igc_del_etype_filter(struct igc_adapter * adapter,u16 etype)2408 static void igc_del_etype_filter(struct igc_adapter *adapter, u16 etype)
2409 {
2410 struct igc_hw *hw = &adapter->hw;
2411 int index;
2412
2413 index = igc_find_etype_filter(adapter, etype);
2414 if (index < 0)
2415 return;
2416
2417 wr32(IGC_ETQF(index), 0);
2418
2419 netdev_dbg(adapter->netdev, "Delete ethertype filter: etype %04x\n",
2420 etype);
2421 }
2422
igc_enable_nfc_rule(struct igc_adapter * adapter,const struct igc_nfc_rule * rule)2423 static int igc_enable_nfc_rule(struct igc_adapter *adapter,
2424 const struct igc_nfc_rule *rule)
2425 {
2426 int err;
2427
2428 if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) {
2429 err = igc_add_etype_filter(adapter, rule->filter.etype,
2430 rule->action);
2431 if (err)
2432 return err;
2433 }
2434
2435 if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR) {
2436 err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC,
2437 rule->filter.src_addr, rule->action);
2438 if (err)
2439 return err;
2440 }
2441
2442 if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR) {
2443 err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST,
2444 rule->filter.dst_addr, rule->action);
2445 if (err)
2446 return err;
2447 }
2448
2449 if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) {
2450 int prio = (rule->filter.vlan_tci & VLAN_PRIO_MASK) >>
2451 VLAN_PRIO_SHIFT;
2452
2453 err = igc_add_vlan_prio_filter(adapter, prio, rule->action);
2454 if (err)
2455 return err;
2456 }
2457
2458 return 0;
2459 }
2460
igc_disable_nfc_rule(struct igc_adapter * adapter,const struct igc_nfc_rule * rule)2461 static void igc_disable_nfc_rule(struct igc_adapter *adapter,
2462 const struct igc_nfc_rule *rule)
2463 {
2464 if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE)
2465 igc_del_etype_filter(adapter, rule->filter.etype);
2466
2467 if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) {
2468 int prio = (rule->filter.vlan_tci & VLAN_PRIO_MASK) >>
2469 VLAN_PRIO_SHIFT;
2470
2471 igc_del_vlan_prio_filter(adapter, prio);
2472 }
2473
2474 if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR)
2475 igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC,
2476 rule->filter.src_addr);
2477
2478 if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR)
2479 igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST,
2480 rule->filter.dst_addr);
2481 }
2482
2483 /**
2484 * igc_get_nfc_rule() - Get NFC rule
2485 * @adapter: Pointer to adapter
2486 * @location: Rule location
2487 *
2488 * Context: Expects adapter->nfc_rule_lock to be held by caller.
2489 *
2490 * Return: Pointer to NFC rule at @location. If not found, NULL.
2491 */
igc_get_nfc_rule(struct igc_adapter * adapter,u32 location)2492 struct igc_nfc_rule *igc_get_nfc_rule(struct igc_adapter *adapter,
2493 u32 location)
2494 {
2495 struct igc_nfc_rule *rule;
2496
2497 list_for_each_entry(rule, &adapter->nfc_rule_list, list) {
2498 if (rule->location == location)
2499 return rule;
2500 if (rule->location > location)
2501 break;
2502 }
2503
2504 return NULL;
2505 }
2506
2507 /**
2508 * igc_del_nfc_rule() - Delete NFC rule
2509 * @adapter: Pointer to adapter
2510 * @rule: Pointer to rule to be deleted
2511 *
2512 * Disable NFC rule in hardware and delete it from adapter.
2513 *
2514 * Context: Expects adapter->nfc_rule_lock to be held by caller.
2515 */
igc_del_nfc_rule(struct igc_adapter * adapter,struct igc_nfc_rule * rule)2516 void igc_del_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule)
2517 {
2518 igc_disable_nfc_rule(adapter, rule);
2519
2520 list_del(&rule->list);
2521 adapter->nfc_rule_count--;
2522
2523 kfree(rule);
2524 }
2525
igc_flush_nfc_rules(struct igc_adapter * adapter)2526 static void igc_flush_nfc_rules(struct igc_adapter *adapter)
2527 {
2528 struct igc_nfc_rule *rule, *tmp;
2529
2530 mutex_lock(&adapter->nfc_rule_lock);
2531
2532 list_for_each_entry_safe(rule, tmp, &adapter->nfc_rule_list, list)
2533 igc_del_nfc_rule(adapter, rule);
2534
2535 mutex_unlock(&adapter->nfc_rule_lock);
2536 }
2537
2538 /**
2539 * igc_add_nfc_rule() - Add NFC rule
2540 * @adapter: Pointer to adapter
2541 * @rule: Pointer to rule to be added
2542 *
2543 * Enable NFC rule in hardware and add it to adapter.
2544 *
2545 * Context: Expects adapter->nfc_rule_lock to be held by caller.
2546 *
2547 * Return: 0 on success, negative errno on failure.
2548 */
igc_add_nfc_rule(struct igc_adapter * adapter,struct igc_nfc_rule * rule)2549 int igc_add_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule)
2550 {
2551 struct igc_nfc_rule *pred, *cur;
2552 int err;
2553
2554 err = igc_enable_nfc_rule(adapter, rule);
2555 if (err)
2556 return err;
2557
2558 pred = NULL;
2559 list_for_each_entry(cur, &adapter->nfc_rule_list, list) {
2560 if (cur->location >= rule->location)
2561 break;
2562 pred = cur;
2563 }
2564
2565 list_add(&rule->list, pred ? &pred->list : &adapter->nfc_rule_list);
2566 adapter->nfc_rule_count++;
2567 return 0;
2568 }
2569
igc_restore_nfc_rules(struct igc_adapter * adapter)2570 static void igc_restore_nfc_rules(struct igc_adapter *adapter)
2571 {
2572 struct igc_nfc_rule *rule;
2573
2574 mutex_lock(&adapter->nfc_rule_lock);
2575
2576 list_for_each_entry_reverse(rule, &adapter->nfc_rule_list, list)
2577 igc_enable_nfc_rule(adapter, rule);
2578
2579 mutex_unlock(&adapter->nfc_rule_lock);
2580 }
2581
igc_uc_sync(struct net_device * netdev,const unsigned char * addr)2582 static int igc_uc_sync(struct net_device *netdev, const unsigned char *addr)
2583 {
2584 struct igc_adapter *adapter = netdev_priv(netdev);
2585
2586 return igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr, -1);
2587 }
2588
igc_uc_unsync(struct net_device * netdev,const unsigned char * addr)2589 static int igc_uc_unsync(struct net_device *netdev, const unsigned char *addr)
2590 {
2591 struct igc_adapter *adapter = netdev_priv(netdev);
2592
2593 igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr);
2594 return 0;
2595 }
2596
2597 /**
2598 * igc_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2599 * @netdev: network interface device structure
2600 *
2601 * The set_rx_mode entry point is called whenever the unicast or multicast
2602 * address lists or the network interface flags are updated. This routine is
2603 * responsible for configuring the hardware for proper unicast, multicast,
2604 * promiscuous mode, and all-multi behavior.
2605 */
igc_set_rx_mode(struct net_device * netdev)2606 static void igc_set_rx_mode(struct net_device *netdev)
2607 {
2608 struct igc_adapter *adapter = netdev_priv(netdev);
2609 struct igc_hw *hw = &adapter->hw;
2610 u32 rctl = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
2611 int count;
2612
2613 /* Check for Promiscuous and All Multicast modes */
2614 if (netdev->flags & IFF_PROMISC) {
2615 rctl |= IGC_RCTL_UPE | IGC_RCTL_MPE;
2616 } else {
2617 if (netdev->flags & IFF_ALLMULTI) {
2618 rctl |= IGC_RCTL_MPE;
2619 } else {
2620 /* Write addresses to the MTA, if the attempt fails
2621 * then we should just turn on promiscuous mode so
2622 * that we can at least receive multicast traffic
2623 */
2624 count = igc_write_mc_addr_list(netdev);
2625 if (count < 0)
2626 rctl |= IGC_RCTL_MPE;
2627 }
2628 }
2629
2630 /* Write addresses to available RAR registers, if there is not
2631 * sufficient space to store all the addresses then enable
2632 * unicast promiscuous mode
2633 */
2634 if (__dev_uc_sync(netdev, igc_uc_sync, igc_uc_unsync))
2635 rctl |= IGC_RCTL_UPE;
2636
2637 /* update state of unicast and multicast */
2638 rctl |= rd32(IGC_RCTL) & ~(IGC_RCTL_UPE | IGC_RCTL_MPE);
2639 wr32(IGC_RCTL, rctl);
2640
2641 #if (PAGE_SIZE < 8192)
2642 if (adapter->max_frame_size <= IGC_MAX_FRAME_BUILD_SKB)
2643 rlpml = IGC_MAX_FRAME_BUILD_SKB;
2644 #endif
2645 wr32(IGC_RLPML, rlpml);
2646 }
2647
2648 /**
2649 * igc_configure - configure the hardware for RX and TX
2650 * @adapter: private board structure
2651 */
igc_configure(struct igc_adapter * adapter)2652 static void igc_configure(struct igc_adapter *adapter)
2653 {
2654 struct net_device *netdev = adapter->netdev;
2655 int i = 0;
2656
2657 igc_get_hw_control(adapter);
2658 igc_set_rx_mode(netdev);
2659
2660 igc_setup_tctl(adapter);
2661 igc_setup_mrqc(adapter);
2662 igc_setup_rctl(adapter);
2663
2664 igc_set_default_mac_filter(adapter);
2665 igc_restore_nfc_rules(adapter);
2666
2667 igc_configure_tx(adapter);
2668 igc_configure_rx(adapter);
2669
2670 igc_rx_fifo_flush_base(&adapter->hw);
2671
2672 /* call igc_desc_unused which always leaves
2673 * at least 1 descriptor unused to make sure
2674 * next_to_use != next_to_clean
2675 */
2676 for (i = 0; i < adapter->num_rx_queues; i++) {
2677 struct igc_ring *ring = adapter->rx_ring[i];
2678
2679 igc_alloc_rx_buffers(ring, igc_desc_unused(ring));
2680 }
2681 }
2682
2683 /**
2684 * igc_write_ivar - configure ivar for given MSI-X vector
2685 * @hw: pointer to the HW structure
2686 * @msix_vector: vector number we are allocating to a given ring
2687 * @index: row index of IVAR register to write within IVAR table
2688 * @offset: column offset of in IVAR, should be multiple of 8
2689 *
2690 * The IVAR table consists of 2 columns,
2691 * each containing an cause allocation for an Rx and Tx ring, and a
2692 * variable number of rows depending on the number of queues supported.
2693 */
igc_write_ivar(struct igc_hw * hw,int msix_vector,int index,int offset)2694 static void igc_write_ivar(struct igc_hw *hw, int msix_vector,
2695 int index, int offset)
2696 {
2697 u32 ivar = array_rd32(IGC_IVAR0, index);
2698
2699 /* clear any bits that are currently set */
2700 ivar &= ~((u32)0xFF << offset);
2701
2702 /* write vector and valid bit */
2703 ivar |= (msix_vector | IGC_IVAR_VALID) << offset;
2704
2705 array_wr32(IGC_IVAR0, index, ivar);
2706 }
2707
igc_assign_vector(struct igc_q_vector * q_vector,int msix_vector)2708 static void igc_assign_vector(struct igc_q_vector *q_vector, int msix_vector)
2709 {
2710 struct igc_adapter *adapter = q_vector->adapter;
2711 struct igc_hw *hw = &adapter->hw;
2712 int rx_queue = IGC_N0_QUEUE;
2713 int tx_queue = IGC_N0_QUEUE;
2714
2715 if (q_vector->rx.ring)
2716 rx_queue = q_vector->rx.ring->reg_idx;
2717 if (q_vector->tx.ring)
2718 tx_queue = q_vector->tx.ring->reg_idx;
2719
2720 switch (hw->mac.type) {
2721 case igc_i225:
2722 if (rx_queue > IGC_N0_QUEUE)
2723 igc_write_ivar(hw, msix_vector,
2724 rx_queue >> 1,
2725 (rx_queue & 0x1) << 4);
2726 if (tx_queue > IGC_N0_QUEUE)
2727 igc_write_ivar(hw, msix_vector,
2728 tx_queue >> 1,
2729 ((tx_queue & 0x1) << 4) + 8);
2730 q_vector->eims_value = BIT(msix_vector);
2731 break;
2732 default:
2733 WARN_ONCE(hw->mac.type != igc_i225, "Wrong MAC type\n");
2734 break;
2735 }
2736
2737 /* add q_vector eims value to global eims_enable_mask */
2738 adapter->eims_enable_mask |= q_vector->eims_value;
2739
2740 /* configure q_vector to set itr on first interrupt */
2741 q_vector->set_itr = 1;
2742 }
2743
2744 /**
2745 * igc_configure_msix - Configure MSI-X hardware
2746 * @adapter: Pointer to adapter structure
2747 *
2748 * igc_configure_msix sets up the hardware to properly
2749 * generate MSI-X interrupts.
2750 */
igc_configure_msix(struct igc_adapter * adapter)2751 static void igc_configure_msix(struct igc_adapter *adapter)
2752 {
2753 struct igc_hw *hw = &adapter->hw;
2754 int i, vector = 0;
2755 u32 tmp;
2756
2757 adapter->eims_enable_mask = 0;
2758
2759 /* set vector for other causes, i.e. link changes */
2760 switch (hw->mac.type) {
2761 case igc_i225:
2762 /* Turn on MSI-X capability first, or our settings
2763 * won't stick. And it will take days to debug.
2764 */
2765 wr32(IGC_GPIE, IGC_GPIE_MSIX_MODE |
2766 IGC_GPIE_PBA | IGC_GPIE_EIAME |
2767 IGC_GPIE_NSICR);
2768
2769 /* enable msix_other interrupt */
2770 adapter->eims_other = BIT(vector);
2771 tmp = (vector++ | IGC_IVAR_VALID) << 8;
2772
2773 wr32(IGC_IVAR_MISC, tmp);
2774 break;
2775 default:
2776 /* do nothing, since nothing else supports MSI-X */
2777 break;
2778 } /* switch (hw->mac.type) */
2779
2780 adapter->eims_enable_mask |= adapter->eims_other;
2781
2782 for (i = 0; i < adapter->num_q_vectors; i++)
2783 igc_assign_vector(adapter->q_vector[i], vector++);
2784
2785 wrfl();
2786 }
2787
2788 /**
2789 * igc_irq_enable - Enable default interrupt generation settings
2790 * @adapter: board private structure
2791 */
igc_irq_enable(struct igc_adapter * adapter)2792 static void igc_irq_enable(struct igc_adapter *adapter)
2793 {
2794 struct igc_hw *hw = &adapter->hw;
2795
2796 if (adapter->msix_entries) {
2797 u32 ims = IGC_IMS_LSC | IGC_IMS_DOUTSYNC | IGC_IMS_DRSTA;
2798 u32 regval = rd32(IGC_EIAC);
2799
2800 wr32(IGC_EIAC, regval | adapter->eims_enable_mask);
2801 regval = rd32(IGC_EIAM);
2802 wr32(IGC_EIAM, regval | adapter->eims_enable_mask);
2803 wr32(IGC_EIMS, adapter->eims_enable_mask);
2804 wr32(IGC_IMS, ims);
2805 } else {
2806 wr32(IGC_IMS, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
2807 wr32(IGC_IAM, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
2808 }
2809 }
2810
2811 /**
2812 * igc_irq_disable - Mask off interrupt generation on the NIC
2813 * @adapter: board private structure
2814 */
igc_irq_disable(struct igc_adapter * adapter)2815 static void igc_irq_disable(struct igc_adapter *adapter)
2816 {
2817 struct igc_hw *hw = &adapter->hw;
2818
2819 if (adapter->msix_entries) {
2820 u32 regval = rd32(IGC_EIAM);
2821
2822 wr32(IGC_EIAM, regval & ~adapter->eims_enable_mask);
2823 wr32(IGC_EIMC, adapter->eims_enable_mask);
2824 regval = rd32(IGC_EIAC);
2825 wr32(IGC_EIAC, regval & ~adapter->eims_enable_mask);
2826 }
2827
2828 wr32(IGC_IAM, 0);
2829 wr32(IGC_IMC, ~0);
2830 wrfl();
2831
2832 if (adapter->msix_entries) {
2833 int vector = 0, i;
2834
2835 synchronize_irq(adapter->msix_entries[vector++].vector);
2836
2837 for (i = 0; i < adapter->num_q_vectors; i++)
2838 synchronize_irq(adapter->msix_entries[vector++].vector);
2839 } else {
2840 synchronize_irq(adapter->pdev->irq);
2841 }
2842 }
2843
igc_set_flag_queue_pairs(struct igc_adapter * adapter,const u32 max_rss_queues)2844 void igc_set_flag_queue_pairs(struct igc_adapter *adapter,
2845 const u32 max_rss_queues)
2846 {
2847 /* Determine if we need to pair queues. */
2848 /* If rss_queues > half of max_rss_queues, pair the queues in
2849 * order to conserve interrupts due to limited supply.
2850 */
2851 if (adapter->rss_queues > (max_rss_queues / 2))
2852 adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
2853 else
2854 adapter->flags &= ~IGC_FLAG_QUEUE_PAIRS;
2855 }
2856
igc_get_max_rss_queues(struct igc_adapter * adapter)2857 unsigned int igc_get_max_rss_queues(struct igc_adapter *adapter)
2858 {
2859 return IGC_MAX_RX_QUEUES;
2860 }
2861
igc_init_queue_configuration(struct igc_adapter * adapter)2862 static void igc_init_queue_configuration(struct igc_adapter *adapter)
2863 {
2864 u32 max_rss_queues;
2865
2866 max_rss_queues = igc_get_max_rss_queues(adapter);
2867 adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
2868
2869 igc_set_flag_queue_pairs(adapter, max_rss_queues);
2870 }
2871
2872 /**
2873 * igc_reset_q_vector - Reset config for interrupt vector
2874 * @adapter: board private structure to initialize
2875 * @v_idx: Index of vector to be reset
2876 *
2877 * If NAPI is enabled it will delete any references to the
2878 * NAPI struct. This is preparation for igc_free_q_vector.
2879 */
igc_reset_q_vector(struct igc_adapter * adapter,int v_idx)2880 static void igc_reset_q_vector(struct igc_adapter *adapter, int v_idx)
2881 {
2882 struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
2883
2884 /* if we're coming from igc_set_interrupt_capability, the vectors are
2885 * not yet allocated
2886 */
2887 if (!q_vector)
2888 return;
2889
2890 if (q_vector->tx.ring)
2891 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
2892
2893 if (q_vector->rx.ring)
2894 adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
2895
2896 netif_napi_del(&q_vector->napi);
2897 }
2898
2899 /**
2900 * igc_free_q_vector - Free memory allocated for specific interrupt vector
2901 * @adapter: board private structure to initialize
2902 * @v_idx: Index of vector to be freed
2903 *
2904 * This function frees the memory allocated to the q_vector.
2905 */
igc_free_q_vector(struct igc_adapter * adapter,int v_idx)2906 static void igc_free_q_vector(struct igc_adapter *adapter, int v_idx)
2907 {
2908 struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
2909
2910 adapter->q_vector[v_idx] = NULL;
2911
2912 /* igc_get_stats64() might access the rings on this vector,
2913 * we must wait a grace period before freeing it.
2914 */
2915 if (q_vector)
2916 kfree_rcu(q_vector, rcu);
2917 }
2918
2919 /**
2920 * igc_free_q_vectors - Free memory allocated for interrupt vectors
2921 * @adapter: board private structure to initialize
2922 *
2923 * This function frees the memory allocated to the q_vectors. In addition if
2924 * NAPI is enabled it will delete any references to the NAPI struct prior
2925 * to freeing the q_vector.
2926 */
igc_free_q_vectors(struct igc_adapter * adapter)2927 static void igc_free_q_vectors(struct igc_adapter *adapter)
2928 {
2929 int v_idx = adapter->num_q_vectors;
2930
2931 adapter->num_tx_queues = 0;
2932 adapter->num_rx_queues = 0;
2933 adapter->num_q_vectors = 0;
2934
2935 while (v_idx--) {
2936 igc_reset_q_vector(adapter, v_idx);
2937 igc_free_q_vector(adapter, v_idx);
2938 }
2939 }
2940
2941 /**
2942 * igc_update_itr - update the dynamic ITR value based on statistics
2943 * @q_vector: pointer to q_vector
2944 * @ring_container: ring info to update the itr for
2945 *
2946 * Stores a new ITR value based on packets and byte
2947 * counts during the last interrupt. The advantage of per interrupt
2948 * computation is faster updates and more accurate ITR for the current
2949 * traffic pattern. Constants in this function were computed
2950 * based on theoretical maximum wire speed and thresholds were set based
2951 * on testing data as well as attempting to minimize response time
2952 * while increasing bulk throughput.
2953 * NOTE: These calculations are only valid when operating in a single-
2954 * queue environment.
2955 */
igc_update_itr(struct igc_q_vector * q_vector,struct igc_ring_container * ring_container)2956 static void igc_update_itr(struct igc_q_vector *q_vector,
2957 struct igc_ring_container *ring_container)
2958 {
2959 unsigned int packets = ring_container->total_packets;
2960 unsigned int bytes = ring_container->total_bytes;
2961 u8 itrval = ring_container->itr;
2962
2963 /* no packets, exit with status unchanged */
2964 if (packets == 0)
2965 return;
2966
2967 switch (itrval) {
2968 case lowest_latency:
2969 /* handle TSO and jumbo frames */
2970 if (bytes / packets > 8000)
2971 itrval = bulk_latency;
2972 else if ((packets < 5) && (bytes > 512))
2973 itrval = low_latency;
2974 break;
2975 case low_latency: /* 50 usec aka 20000 ints/s */
2976 if (bytes > 10000) {
2977 /* this if handles the TSO accounting */
2978 if (bytes / packets > 8000)
2979 itrval = bulk_latency;
2980 else if ((packets < 10) || ((bytes / packets) > 1200))
2981 itrval = bulk_latency;
2982 else if ((packets > 35))
2983 itrval = lowest_latency;
2984 } else if (bytes / packets > 2000) {
2985 itrval = bulk_latency;
2986 } else if (packets <= 2 && bytes < 512) {
2987 itrval = lowest_latency;
2988 }
2989 break;
2990 case bulk_latency: /* 250 usec aka 4000 ints/s */
2991 if (bytes > 25000) {
2992 if (packets > 35)
2993 itrval = low_latency;
2994 } else if (bytes < 1500) {
2995 itrval = low_latency;
2996 }
2997 break;
2998 }
2999
3000 /* clear work counters since we have the values we need */
3001 ring_container->total_bytes = 0;
3002 ring_container->total_packets = 0;
3003
3004 /* write updated itr to ring container */
3005 ring_container->itr = itrval;
3006 }
3007
igc_set_itr(struct igc_q_vector * q_vector)3008 static void igc_set_itr(struct igc_q_vector *q_vector)
3009 {
3010 struct igc_adapter *adapter = q_vector->adapter;
3011 u32 new_itr = q_vector->itr_val;
3012 u8 current_itr = 0;
3013
3014 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
3015 switch (adapter->link_speed) {
3016 case SPEED_10:
3017 case SPEED_100:
3018 current_itr = 0;
3019 new_itr = IGC_4K_ITR;
3020 goto set_itr_now;
3021 default:
3022 break;
3023 }
3024
3025 igc_update_itr(q_vector, &q_vector->tx);
3026 igc_update_itr(q_vector, &q_vector->rx);
3027
3028 current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
3029
3030 /* conservative mode (itr 3) eliminates the lowest_latency setting */
3031 if (current_itr == lowest_latency &&
3032 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
3033 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
3034 current_itr = low_latency;
3035
3036 switch (current_itr) {
3037 /* counts and packets in update_itr are dependent on these numbers */
3038 case lowest_latency:
3039 new_itr = IGC_70K_ITR; /* 70,000 ints/sec */
3040 break;
3041 case low_latency:
3042 new_itr = IGC_20K_ITR; /* 20,000 ints/sec */
3043 break;
3044 case bulk_latency:
3045 new_itr = IGC_4K_ITR; /* 4,000 ints/sec */
3046 break;
3047 default:
3048 break;
3049 }
3050
3051 set_itr_now:
3052 if (new_itr != q_vector->itr_val) {
3053 /* this attempts to bias the interrupt rate towards Bulk
3054 * by adding intermediate steps when interrupt rate is
3055 * increasing
3056 */
3057 new_itr = new_itr > q_vector->itr_val ?
3058 max((new_itr * q_vector->itr_val) /
3059 (new_itr + (q_vector->itr_val >> 2)),
3060 new_itr) : new_itr;
3061 /* Don't write the value here; it resets the adapter's
3062 * internal timer, and causes us to delay far longer than
3063 * we should between interrupts. Instead, we write the ITR
3064 * value at the beginning of the next interrupt so the timing
3065 * ends up being correct.
3066 */
3067 q_vector->itr_val = new_itr;
3068 q_vector->set_itr = 1;
3069 }
3070 }
3071
igc_reset_interrupt_capability(struct igc_adapter * adapter)3072 static void igc_reset_interrupt_capability(struct igc_adapter *adapter)
3073 {
3074 int v_idx = adapter->num_q_vectors;
3075
3076 if (adapter->msix_entries) {
3077 pci_disable_msix(adapter->pdev);
3078 kfree(adapter->msix_entries);
3079 adapter->msix_entries = NULL;
3080 } else if (adapter->flags & IGC_FLAG_HAS_MSI) {
3081 pci_disable_msi(adapter->pdev);
3082 }
3083
3084 while (v_idx--)
3085 igc_reset_q_vector(adapter, v_idx);
3086 }
3087
3088 /**
3089 * igc_set_interrupt_capability - set MSI or MSI-X if supported
3090 * @adapter: Pointer to adapter structure
3091 * @msix: boolean value for MSI-X capability
3092 *
3093 * Attempt to configure interrupts using the best available
3094 * capabilities of the hardware and kernel.
3095 */
igc_set_interrupt_capability(struct igc_adapter * adapter,bool msix)3096 static void igc_set_interrupt_capability(struct igc_adapter *adapter,
3097 bool msix)
3098 {
3099 int numvecs, i;
3100 int err;
3101
3102 if (!msix)
3103 goto msi_only;
3104 adapter->flags |= IGC_FLAG_HAS_MSIX;
3105
3106 /* Number of supported queues. */
3107 adapter->num_rx_queues = adapter->rss_queues;
3108
3109 adapter->num_tx_queues = adapter->rss_queues;
3110
3111 /* start with one vector for every Rx queue */
3112 numvecs = adapter->num_rx_queues;
3113
3114 /* if Tx handler is separate add 1 for every Tx queue */
3115 if (!(adapter->flags & IGC_FLAG_QUEUE_PAIRS))
3116 numvecs += adapter->num_tx_queues;
3117
3118 /* store the number of vectors reserved for queues */
3119 adapter->num_q_vectors = numvecs;
3120
3121 /* add 1 vector for link status interrupts */
3122 numvecs++;
3123
3124 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
3125 GFP_KERNEL);
3126
3127 if (!adapter->msix_entries)
3128 return;
3129
3130 /* populate entry values */
3131 for (i = 0; i < numvecs; i++)
3132 adapter->msix_entries[i].entry = i;
3133
3134 err = pci_enable_msix_range(adapter->pdev,
3135 adapter->msix_entries,
3136 numvecs,
3137 numvecs);
3138 if (err > 0)
3139 return;
3140
3141 kfree(adapter->msix_entries);
3142 adapter->msix_entries = NULL;
3143
3144 igc_reset_interrupt_capability(adapter);
3145
3146 msi_only:
3147 adapter->flags &= ~IGC_FLAG_HAS_MSIX;
3148
3149 adapter->rss_queues = 1;
3150 adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
3151 adapter->num_rx_queues = 1;
3152 adapter->num_tx_queues = 1;
3153 adapter->num_q_vectors = 1;
3154 if (!pci_enable_msi(adapter->pdev))
3155 adapter->flags |= IGC_FLAG_HAS_MSI;
3156 }
3157
3158 /**
3159 * igc_update_ring_itr - update the dynamic ITR value based on packet size
3160 * @q_vector: pointer to q_vector
3161 *
3162 * Stores a new ITR value based on strictly on packet size. This
3163 * algorithm is less sophisticated than that used in igc_update_itr,
3164 * due to the difficulty of synchronizing statistics across multiple
3165 * receive rings. The divisors and thresholds used by this function
3166 * were determined based on theoretical maximum wire speed and testing
3167 * data, in order to minimize response time while increasing bulk
3168 * throughput.
3169 * NOTE: This function is called only when operating in a multiqueue
3170 * receive environment.
3171 */
igc_update_ring_itr(struct igc_q_vector * q_vector)3172 static void igc_update_ring_itr(struct igc_q_vector *q_vector)
3173 {
3174 struct igc_adapter *adapter = q_vector->adapter;
3175 int new_val = q_vector->itr_val;
3176 int avg_wire_size = 0;
3177 unsigned int packets;
3178
3179 /* For non-gigabit speeds, just fix the interrupt rate at 4000
3180 * ints/sec - ITR timer value of 120 ticks.
3181 */
3182 switch (adapter->link_speed) {
3183 case SPEED_10:
3184 case SPEED_100:
3185 new_val = IGC_4K_ITR;
3186 goto set_itr_val;
3187 default:
3188 break;
3189 }
3190
3191 packets = q_vector->rx.total_packets;
3192 if (packets)
3193 avg_wire_size = q_vector->rx.total_bytes / packets;
3194
3195 packets = q_vector->tx.total_packets;
3196 if (packets)
3197 avg_wire_size = max_t(u32, avg_wire_size,
3198 q_vector->tx.total_bytes / packets);
3199
3200 /* if avg_wire_size isn't set no work was done */
3201 if (!avg_wire_size)
3202 goto clear_counts;
3203
3204 /* Add 24 bytes to size to account for CRC, preamble, and gap */
3205 avg_wire_size += 24;
3206
3207 /* Don't starve jumbo frames */
3208 avg_wire_size = min(avg_wire_size, 3000);
3209
3210 /* Give a little boost to mid-size frames */
3211 if (avg_wire_size > 300 && avg_wire_size < 1200)
3212 new_val = avg_wire_size / 3;
3213 else
3214 new_val = avg_wire_size / 2;
3215
3216 /* conservative mode (itr 3) eliminates the lowest_latency setting */
3217 if (new_val < IGC_20K_ITR &&
3218 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
3219 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
3220 new_val = IGC_20K_ITR;
3221
3222 set_itr_val:
3223 if (new_val != q_vector->itr_val) {
3224 q_vector->itr_val = new_val;
3225 q_vector->set_itr = 1;
3226 }
3227 clear_counts:
3228 q_vector->rx.total_bytes = 0;
3229 q_vector->rx.total_packets = 0;
3230 q_vector->tx.total_bytes = 0;
3231 q_vector->tx.total_packets = 0;
3232 }
3233
igc_ring_irq_enable(struct igc_q_vector * q_vector)3234 static void igc_ring_irq_enable(struct igc_q_vector *q_vector)
3235 {
3236 struct igc_adapter *adapter = q_vector->adapter;
3237 struct igc_hw *hw = &adapter->hw;
3238
3239 if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
3240 (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
3241 if (adapter->num_q_vectors == 1)
3242 igc_set_itr(q_vector);
3243 else
3244 igc_update_ring_itr(q_vector);
3245 }
3246
3247 if (!test_bit(__IGC_DOWN, &adapter->state)) {
3248 if (adapter->msix_entries)
3249 wr32(IGC_EIMS, q_vector->eims_value);
3250 else
3251 igc_irq_enable(adapter);
3252 }
3253 }
3254
igc_add_ring(struct igc_ring * ring,struct igc_ring_container * head)3255 static void igc_add_ring(struct igc_ring *ring,
3256 struct igc_ring_container *head)
3257 {
3258 head->ring = ring;
3259 head->count++;
3260 }
3261
3262 /**
3263 * igc_cache_ring_register - Descriptor ring to register mapping
3264 * @adapter: board private structure to initialize
3265 *
3266 * Once we know the feature-set enabled for the device, we'll cache
3267 * the register offset the descriptor ring is assigned to.
3268 */
igc_cache_ring_register(struct igc_adapter * adapter)3269 static void igc_cache_ring_register(struct igc_adapter *adapter)
3270 {
3271 int i = 0, j = 0;
3272
3273 switch (adapter->hw.mac.type) {
3274 case igc_i225:
3275 default:
3276 for (; i < adapter->num_rx_queues; i++)
3277 adapter->rx_ring[i]->reg_idx = i;
3278 for (; j < adapter->num_tx_queues; j++)
3279 adapter->tx_ring[j]->reg_idx = j;
3280 break;
3281 }
3282 }
3283
3284 /**
3285 * igc_poll - NAPI Rx polling callback
3286 * @napi: napi polling structure
3287 * @budget: count of how many packets we should handle
3288 */
igc_poll(struct napi_struct * napi,int budget)3289 static int igc_poll(struct napi_struct *napi, int budget)
3290 {
3291 struct igc_q_vector *q_vector = container_of(napi,
3292 struct igc_q_vector,
3293 napi);
3294 bool clean_complete = true;
3295 int work_done = 0;
3296
3297 if (q_vector->tx.ring)
3298 clean_complete = igc_clean_tx_irq(q_vector, budget);
3299
3300 if (q_vector->rx.ring) {
3301 int cleaned = igc_clean_rx_irq(q_vector, budget);
3302
3303 work_done += cleaned;
3304 if (cleaned >= budget)
3305 clean_complete = false;
3306 }
3307
3308 /* If all work not completed, return budget and keep polling */
3309 if (!clean_complete)
3310 return budget;
3311
3312 /* Exit the polling mode, but don't re-enable interrupts if stack might
3313 * poll us due to busy-polling
3314 */
3315 if (likely(napi_complete_done(napi, work_done)))
3316 igc_ring_irq_enable(q_vector);
3317
3318 return min(work_done, budget - 1);
3319 }
3320
3321 /**
3322 * igc_alloc_q_vector - Allocate memory for a single interrupt vector
3323 * @adapter: board private structure to initialize
3324 * @v_count: q_vectors allocated on adapter, used for ring interleaving
3325 * @v_idx: index of vector in adapter struct
3326 * @txr_count: total number of Tx rings to allocate
3327 * @txr_idx: index of first Tx ring to allocate
3328 * @rxr_count: total number of Rx rings to allocate
3329 * @rxr_idx: index of first Rx ring to allocate
3330 *
3331 * We allocate one q_vector. If allocation fails we return -ENOMEM.
3332 */
igc_alloc_q_vector(struct igc_adapter * adapter,unsigned int v_count,unsigned int v_idx,unsigned int txr_count,unsigned int txr_idx,unsigned int rxr_count,unsigned int rxr_idx)3333 static int igc_alloc_q_vector(struct igc_adapter *adapter,
3334 unsigned int v_count, unsigned int v_idx,
3335 unsigned int txr_count, unsigned int txr_idx,
3336 unsigned int rxr_count, unsigned int rxr_idx)
3337 {
3338 struct igc_q_vector *q_vector;
3339 struct igc_ring *ring;
3340 int ring_count;
3341
3342 /* igc only supports 1 Tx and/or 1 Rx queue per vector */
3343 if (txr_count > 1 || rxr_count > 1)
3344 return -ENOMEM;
3345
3346 ring_count = txr_count + rxr_count;
3347
3348 /* allocate q_vector and rings */
3349 q_vector = adapter->q_vector[v_idx];
3350 if (!q_vector)
3351 q_vector = kzalloc(struct_size(q_vector, ring, ring_count),
3352 GFP_KERNEL);
3353 else
3354 memset(q_vector, 0, struct_size(q_vector, ring, ring_count));
3355 if (!q_vector)
3356 return -ENOMEM;
3357
3358 /* initialize NAPI */
3359 netif_napi_add(adapter->netdev, &q_vector->napi,
3360 igc_poll, 64);
3361
3362 /* tie q_vector and adapter together */
3363 adapter->q_vector[v_idx] = q_vector;
3364 q_vector->adapter = adapter;
3365
3366 /* initialize work limits */
3367 q_vector->tx.work_limit = adapter->tx_work_limit;
3368
3369 /* initialize ITR configuration */
3370 q_vector->itr_register = adapter->io_addr + IGC_EITR(0);
3371 q_vector->itr_val = IGC_START_ITR;
3372
3373 /* initialize pointer to rings */
3374 ring = q_vector->ring;
3375
3376 /* initialize ITR */
3377 if (rxr_count) {
3378 /* rx or rx/tx vector */
3379 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
3380 q_vector->itr_val = adapter->rx_itr_setting;
3381 } else {
3382 /* tx only vector */
3383 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
3384 q_vector->itr_val = adapter->tx_itr_setting;
3385 }
3386
3387 if (txr_count) {
3388 /* assign generic ring traits */
3389 ring->dev = &adapter->pdev->dev;
3390 ring->netdev = adapter->netdev;
3391
3392 /* configure backlink on ring */
3393 ring->q_vector = q_vector;
3394
3395 /* update q_vector Tx values */
3396 igc_add_ring(ring, &q_vector->tx);
3397
3398 /* apply Tx specific ring traits */
3399 ring->count = adapter->tx_ring_count;
3400 ring->queue_index = txr_idx;
3401
3402 /* assign ring to adapter */
3403 adapter->tx_ring[txr_idx] = ring;
3404
3405 /* push pointer to next ring */
3406 ring++;
3407 }
3408
3409 if (rxr_count) {
3410 /* assign generic ring traits */
3411 ring->dev = &adapter->pdev->dev;
3412 ring->netdev = adapter->netdev;
3413
3414 /* configure backlink on ring */
3415 ring->q_vector = q_vector;
3416
3417 /* update q_vector Rx values */
3418 igc_add_ring(ring, &q_vector->rx);
3419
3420 /* apply Rx specific ring traits */
3421 ring->count = adapter->rx_ring_count;
3422 ring->queue_index = rxr_idx;
3423
3424 /* assign ring to adapter */
3425 adapter->rx_ring[rxr_idx] = ring;
3426 }
3427
3428 return 0;
3429 }
3430
3431 /**
3432 * igc_alloc_q_vectors - Allocate memory for interrupt vectors
3433 * @adapter: board private structure to initialize
3434 *
3435 * We allocate one q_vector per queue interrupt. If allocation fails we
3436 * return -ENOMEM.
3437 */
igc_alloc_q_vectors(struct igc_adapter * adapter)3438 static int igc_alloc_q_vectors(struct igc_adapter *adapter)
3439 {
3440 int rxr_remaining = adapter->num_rx_queues;
3441 int txr_remaining = adapter->num_tx_queues;
3442 int rxr_idx = 0, txr_idx = 0, v_idx = 0;
3443 int q_vectors = adapter->num_q_vectors;
3444 int err;
3445
3446 if (q_vectors >= (rxr_remaining + txr_remaining)) {
3447 for (; rxr_remaining; v_idx++) {
3448 err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
3449 0, 0, 1, rxr_idx);
3450
3451 if (err)
3452 goto err_out;
3453
3454 /* update counts and index */
3455 rxr_remaining--;
3456 rxr_idx++;
3457 }
3458 }
3459
3460 for (; v_idx < q_vectors; v_idx++) {
3461 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
3462 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
3463
3464 err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
3465 tqpv, txr_idx, rqpv, rxr_idx);
3466
3467 if (err)
3468 goto err_out;
3469
3470 /* update counts and index */
3471 rxr_remaining -= rqpv;
3472 txr_remaining -= tqpv;
3473 rxr_idx++;
3474 txr_idx++;
3475 }
3476
3477 return 0;
3478
3479 err_out:
3480 adapter->num_tx_queues = 0;
3481 adapter->num_rx_queues = 0;
3482 adapter->num_q_vectors = 0;
3483
3484 while (v_idx--)
3485 igc_free_q_vector(adapter, v_idx);
3486
3487 return -ENOMEM;
3488 }
3489
3490 /**
3491 * igc_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
3492 * @adapter: Pointer to adapter structure
3493 * @msix: boolean for MSI-X capability
3494 *
3495 * This function initializes the interrupts and allocates all of the queues.
3496 */
igc_init_interrupt_scheme(struct igc_adapter * adapter,bool msix)3497 static int igc_init_interrupt_scheme(struct igc_adapter *adapter, bool msix)
3498 {
3499 struct net_device *dev = adapter->netdev;
3500 int err = 0;
3501
3502 igc_set_interrupt_capability(adapter, msix);
3503
3504 err = igc_alloc_q_vectors(adapter);
3505 if (err) {
3506 netdev_err(dev, "Unable to allocate memory for vectors\n");
3507 goto err_alloc_q_vectors;
3508 }
3509
3510 igc_cache_ring_register(adapter);
3511
3512 return 0;
3513
3514 err_alloc_q_vectors:
3515 igc_reset_interrupt_capability(adapter);
3516 return err;
3517 }
3518
3519 /**
3520 * igc_sw_init - Initialize general software structures (struct igc_adapter)
3521 * @adapter: board private structure to initialize
3522 *
3523 * igc_sw_init initializes the Adapter private data structure.
3524 * Fields are initialized based on PCI device information and
3525 * OS network device settings (MTU size).
3526 */
igc_sw_init(struct igc_adapter * adapter)3527 static int igc_sw_init(struct igc_adapter *adapter)
3528 {
3529 struct net_device *netdev = adapter->netdev;
3530 struct pci_dev *pdev = adapter->pdev;
3531 struct igc_hw *hw = &adapter->hw;
3532
3533 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
3534
3535 /* set default ring sizes */
3536 adapter->tx_ring_count = IGC_DEFAULT_TXD;
3537 adapter->rx_ring_count = IGC_DEFAULT_RXD;
3538
3539 /* set default ITR values */
3540 adapter->rx_itr_setting = IGC_DEFAULT_ITR;
3541 adapter->tx_itr_setting = IGC_DEFAULT_ITR;
3542
3543 /* set default work limits */
3544 adapter->tx_work_limit = IGC_DEFAULT_TX_WORK;
3545
3546 /* adjust max frame to be at least the size of a standard frame */
3547 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
3548 VLAN_HLEN;
3549 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3550
3551 mutex_init(&adapter->nfc_rule_lock);
3552 INIT_LIST_HEAD(&adapter->nfc_rule_list);
3553 adapter->nfc_rule_count = 0;
3554
3555 spin_lock_init(&adapter->stats64_lock);
3556 /* Assume MSI-X interrupts, will be checked during IRQ allocation */
3557 adapter->flags |= IGC_FLAG_HAS_MSIX;
3558
3559 igc_init_queue_configuration(adapter);
3560
3561 /* This call may decrease the number of queues */
3562 if (igc_init_interrupt_scheme(adapter, true)) {
3563 netdev_err(netdev, "Unable to allocate memory for queues\n");
3564 return -ENOMEM;
3565 }
3566
3567 /* Explicitly disable IRQ since the NIC can be in any state. */
3568 igc_irq_disable(adapter);
3569
3570 set_bit(__IGC_DOWN, &adapter->state);
3571
3572 return 0;
3573 }
3574
3575 /**
3576 * igc_up - Open the interface and prepare it to handle traffic
3577 * @adapter: board private structure
3578 */
igc_up(struct igc_adapter * adapter)3579 void igc_up(struct igc_adapter *adapter)
3580 {
3581 struct igc_hw *hw = &adapter->hw;
3582 int i = 0;
3583
3584 /* hardware has been reset, we need to reload some things */
3585 igc_configure(adapter);
3586
3587 clear_bit(__IGC_DOWN, &adapter->state);
3588
3589 for (i = 0; i < adapter->num_q_vectors; i++)
3590 napi_enable(&adapter->q_vector[i]->napi);
3591
3592 if (adapter->msix_entries)
3593 igc_configure_msix(adapter);
3594 else
3595 igc_assign_vector(adapter->q_vector[0], 0);
3596
3597 /* Clear any pending interrupts. */
3598 rd32(IGC_ICR);
3599 igc_irq_enable(adapter);
3600
3601 netif_tx_start_all_queues(adapter->netdev);
3602
3603 /* start the watchdog. */
3604 hw->mac.get_link_status = 1;
3605 schedule_work(&adapter->watchdog_task);
3606 }
3607
3608 /**
3609 * igc_update_stats - Update the board statistics counters
3610 * @adapter: board private structure
3611 */
igc_update_stats(struct igc_adapter * adapter)3612 void igc_update_stats(struct igc_adapter *adapter)
3613 {
3614 struct rtnl_link_stats64 *net_stats = &adapter->stats64;
3615 struct pci_dev *pdev = adapter->pdev;
3616 struct igc_hw *hw = &adapter->hw;
3617 u64 _bytes, _packets;
3618 u64 bytes, packets;
3619 unsigned int start;
3620 u32 mpc;
3621 int i;
3622
3623 /* Prevent stats update while adapter is being reset, or if the pci
3624 * connection is down.
3625 */
3626 if (adapter->link_speed == 0)
3627 return;
3628 if (pci_channel_offline(pdev))
3629 return;
3630
3631 packets = 0;
3632 bytes = 0;
3633
3634 rcu_read_lock();
3635 for (i = 0; i < adapter->num_rx_queues; i++) {
3636 struct igc_ring *ring = adapter->rx_ring[i];
3637 u32 rqdpc = rd32(IGC_RQDPC(i));
3638
3639 if (hw->mac.type >= igc_i225)
3640 wr32(IGC_RQDPC(i), 0);
3641
3642 if (rqdpc) {
3643 ring->rx_stats.drops += rqdpc;
3644 net_stats->rx_fifo_errors += rqdpc;
3645 }
3646
3647 do {
3648 start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
3649 _bytes = ring->rx_stats.bytes;
3650 _packets = ring->rx_stats.packets;
3651 } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
3652 bytes += _bytes;
3653 packets += _packets;
3654 }
3655
3656 net_stats->rx_bytes = bytes;
3657 net_stats->rx_packets = packets;
3658
3659 packets = 0;
3660 bytes = 0;
3661 for (i = 0; i < adapter->num_tx_queues; i++) {
3662 struct igc_ring *ring = adapter->tx_ring[i];
3663
3664 do {
3665 start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
3666 _bytes = ring->tx_stats.bytes;
3667 _packets = ring->tx_stats.packets;
3668 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
3669 bytes += _bytes;
3670 packets += _packets;
3671 }
3672 net_stats->tx_bytes = bytes;
3673 net_stats->tx_packets = packets;
3674 rcu_read_unlock();
3675
3676 /* read stats registers */
3677 adapter->stats.crcerrs += rd32(IGC_CRCERRS);
3678 adapter->stats.gprc += rd32(IGC_GPRC);
3679 adapter->stats.gorc += rd32(IGC_GORCL);
3680 rd32(IGC_GORCH); /* clear GORCL */
3681 adapter->stats.bprc += rd32(IGC_BPRC);
3682 adapter->stats.mprc += rd32(IGC_MPRC);
3683 adapter->stats.roc += rd32(IGC_ROC);
3684
3685 adapter->stats.prc64 += rd32(IGC_PRC64);
3686 adapter->stats.prc127 += rd32(IGC_PRC127);
3687 adapter->stats.prc255 += rd32(IGC_PRC255);
3688 adapter->stats.prc511 += rd32(IGC_PRC511);
3689 adapter->stats.prc1023 += rd32(IGC_PRC1023);
3690 adapter->stats.prc1522 += rd32(IGC_PRC1522);
3691 adapter->stats.tlpic += rd32(IGC_TLPIC);
3692 adapter->stats.rlpic += rd32(IGC_RLPIC);
3693
3694 mpc = rd32(IGC_MPC);
3695 adapter->stats.mpc += mpc;
3696 net_stats->rx_fifo_errors += mpc;
3697 adapter->stats.scc += rd32(IGC_SCC);
3698 adapter->stats.ecol += rd32(IGC_ECOL);
3699 adapter->stats.mcc += rd32(IGC_MCC);
3700 adapter->stats.latecol += rd32(IGC_LATECOL);
3701 adapter->stats.dc += rd32(IGC_DC);
3702 adapter->stats.rlec += rd32(IGC_RLEC);
3703 adapter->stats.xonrxc += rd32(IGC_XONRXC);
3704 adapter->stats.xontxc += rd32(IGC_XONTXC);
3705 adapter->stats.xoffrxc += rd32(IGC_XOFFRXC);
3706 adapter->stats.xofftxc += rd32(IGC_XOFFTXC);
3707 adapter->stats.fcruc += rd32(IGC_FCRUC);
3708 adapter->stats.gptc += rd32(IGC_GPTC);
3709 adapter->stats.gotc += rd32(IGC_GOTCL);
3710 rd32(IGC_GOTCH); /* clear GOTCL */
3711 adapter->stats.rnbc += rd32(IGC_RNBC);
3712 adapter->stats.ruc += rd32(IGC_RUC);
3713 adapter->stats.rfc += rd32(IGC_RFC);
3714 adapter->stats.rjc += rd32(IGC_RJC);
3715 adapter->stats.tor += rd32(IGC_TORH);
3716 adapter->stats.tot += rd32(IGC_TOTH);
3717 adapter->stats.tpr += rd32(IGC_TPR);
3718
3719 adapter->stats.ptc64 += rd32(IGC_PTC64);
3720 adapter->stats.ptc127 += rd32(IGC_PTC127);
3721 adapter->stats.ptc255 += rd32(IGC_PTC255);
3722 adapter->stats.ptc511 += rd32(IGC_PTC511);
3723 adapter->stats.ptc1023 += rd32(IGC_PTC1023);
3724 adapter->stats.ptc1522 += rd32(IGC_PTC1522);
3725
3726 adapter->stats.mptc += rd32(IGC_MPTC);
3727 adapter->stats.bptc += rd32(IGC_BPTC);
3728
3729 adapter->stats.tpt += rd32(IGC_TPT);
3730 adapter->stats.colc += rd32(IGC_COLC);
3731 adapter->stats.colc += rd32(IGC_RERC);
3732
3733 adapter->stats.algnerrc += rd32(IGC_ALGNERRC);
3734
3735 adapter->stats.tsctc += rd32(IGC_TSCTC);
3736
3737 adapter->stats.iac += rd32(IGC_IAC);
3738
3739 /* Fill out the OS statistics structure */
3740 net_stats->multicast = adapter->stats.mprc;
3741 net_stats->collisions = adapter->stats.colc;
3742
3743 /* Rx Errors */
3744
3745 /* RLEC on some newer hardware can be incorrect so build
3746 * our own version based on RUC and ROC
3747 */
3748 net_stats->rx_errors = adapter->stats.rxerrc +
3749 adapter->stats.crcerrs + adapter->stats.algnerrc +
3750 adapter->stats.ruc + adapter->stats.roc +
3751 adapter->stats.cexterr;
3752 net_stats->rx_length_errors = adapter->stats.ruc +
3753 adapter->stats.roc;
3754 net_stats->rx_crc_errors = adapter->stats.crcerrs;
3755 net_stats->rx_frame_errors = adapter->stats.algnerrc;
3756 net_stats->rx_missed_errors = adapter->stats.mpc;
3757
3758 /* Tx Errors */
3759 net_stats->tx_errors = adapter->stats.ecol +
3760 adapter->stats.latecol;
3761 net_stats->tx_aborted_errors = adapter->stats.ecol;
3762 net_stats->tx_window_errors = adapter->stats.latecol;
3763 net_stats->tx_carrier_errors = adapter->stats.tncrs;
3764
3765 /* Tx Dropped needs to be maintained elsewhere */
3766
3767 /* Management Stats */
3768 adapter->stats.mgptc += rd32(IGC_MGTPTC);
3769 adapter->stats.mgprc += rd32(IGC_MGTPRC);
3770 adapter->stats.mgpdc += rd32(IGC_MGTPDC);
3771 }
3772
3773 /**
3774 * igc_down - Close the interface
3775 * @adapter: board private structure
3776 */
igc_down(struct igc_adapter * adapter)3777 void igc_down(struct igc_adapter *adapter)
3778 {
3779 struct net_device *netdev = adapter->netdev;
3780 struct igc_hw *hw = &adapter->hw;
3781 u32 tctl, rctl;
3782 int i = 0;
3783
3784 set_bit(__IGC_DOWN, &adapter->state);
3785
3786 igc_ptp_suspend(adapter);
3787
3788 if (pci_device_is_present(adapter->pdev)) {
3789 /* disable receives in the hardware */
3790 rctl = rd32(IGC_RCTL);
3791 wr32(IGC_RCTL, rctl & ~IGC_RCTL_EN);
3792 /* flush and sleep below */
3793 }
3794 /* set trans_start so we don't get spurious watchdogs during reset */
3795 netif_trans_update(netdev);
3796
3797 netif_carrier_off(netdev);
3798 netif_tx_stop_all_queues(netdev);
3799
3800 if (pci_device_is_present(adapter->pdev)) {
3801 /* disable transmits in the hardware */
3802 tctl = rd32(IGC_TCTL);
3803 tctl &= ~IGC_TCTL_EN;
3804 wr32(IGC_TCTL, tctl);
3805 /* flush both disables and wait for them to finish */
3806 wrfl();
3807 usleep_range(10000, 20000);
3808
3809 igc_irq_disable(adapter);
3810 }
3811
3812 adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
3813
3814 for (i = 0; i < adapter->num_q_vectors; i++) {
3815 if (adapter->q_vector[i]) {
3816 napi_synchronize(&adapter->q_vector[i]->napi);
3817 napi_disable(&adapter->q_vector[i]->napi);
3818 }
3819 }
3820
3821 del_timer_sync(&adapter->watchdog_timer);
3822 del_timer_sync(&adapter->phy_info_timer);
3823
3824 /* record the stats before reset*/
3825 spin_lock(&adapter->stats64_lock);
3826 igc_update_stats(adapter);
3827 spin_unlock(&adapter->stats64_lock);
3828
3829 adapter->link_speed = 0;
3830 adapter->link_duplex = 0;
3831
3832 if (!pci_channel_offline(adapter->pdev))
3833 igc_reset(adapter);
3834
3835 /* clear VLAN promisc flag so VFTA will be updated if necessary */
3836 adapter->flags &= ~IGC_FLAG_VLAN_PROMISC;
3837
3838 igc_clean_all_tx_rings(adapter);
3839 igc_clean_all_rx_rings(adapter);
3840 }
3841
igc_reinit_locked(struct igc_adapter * adapter)3842 void igc_reinit_locked(struct igc_adapter *adapter)
3843 {
3844 while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
3845 usleep_range(1000, 2000);
3846 igc_down(adapter);
3847 igc_up(adapter);
3848 clear_bit(__IGC_RESETTING, &adapter->state);
3849 }
3850
igc_reset_task(struct work_struct * work)3851 static void igc_reset_task(struct work_struct *work)
3852 {
3853 struct igc_adapter *adapter;
3854
3855 adapter = container_of(work, struct igc_adapter, reset_task);
3856
3857 rtnl_lock();
3858 /* If we're already down or resetting, just bail */
3859 if (test_bit(__IGC_DOWN, &adapter->state) ||
3860 test_bit(__IGC_RESETTING, &adapter->state)) {
3861 rtnl_unlock();
3862 return;
3863 }
3864
3865 igc_rings_dump(adapter);
3866 igc_regs_dump(adapter);
3867 netdev_err(adapter->netdev, "Reset adapter\n");
3868 igc_reinit_locked(adapter);
3869 rtnl_unlock();
3870 }
3871
3872 /**
3873 * igc_change_mtu - Change the Maximum Transfer Unit
3874 * @netdev: network interface device structure
3875 * @new_mtu: new value for maximum frame size
3876 *
3877 * Returns 0 on success, negative on failure
3878 */
igc_change_mtu(struct net_device * netdev,int new_mtu)3879 static int igc_change_mtu(struct net_device *netdev, int new_mtu)
3880 {
3881 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
3882 struct igc_adapter *adapter = netdev_priv(netdev);
3883
3884 /* adjust max frame to be at least the size of a standard frame */
3885 if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
3886 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
3887
3888 while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
3889 usleep_range(1000, 2000);
3890
3891 /* igc_down has a dependency on max_frame_size */
3892 adapter->max_frame_size = max_frame;
3893
3894 if (netif_running(netdev))
3895 igc_down(adapter);
3896
3897 netdev_dbg(netdev, "changing MTU from %d to %d\n", netdev->mtu, new_mtu);
3898 netdev->mtu = new_mtu;
3899
3900 if (netif_running(netdev))
3901 igc_up(adapter);
3902 else
3903 igc_reset(adapter);
3904
3905 clear_bit(__IGC_RESETTING, &adapter->state);
3906
3907 return 0;
3908 }
3909
3910 /**
3911 * igc_get_stats64 - Get System Network Statistics
3912 * @netdev: network interface device structure
3913 * @stats: rtnl_link_stats64 pointer
3914 *
3915 * Returns the address of the device statistics structure.
3916 * The statistics are updated here and also from the timer callback.
3917 */
igc_get_stats64(struct net_device * netdev,struct rtnl_link_stats64 * stats)3918 static void igc_get_stats64(struct net_device *netdev,
3919 struct rtnl_link_stats64 *stats)
3920 {
3921 struct igc_adapter *adapter = netdev_priv(netdev);
3922
3923 spin_lock(&adapter->stats64_lock);
3924 if (!test_bit(__IGC_RESETTING, &adapter->state))
3925 igc_update_stats(adapter);
3926 memcpy(stats, &adapter->stats64, sizeof(*stats));
3927 spin_unlock(&adapter->stats64_lock);
3928 }
3929
igc_fix_features(struct net_device * netdev,netdev_features_t features)3930 static netdev_features_t igc_fix_features(struct net_device *netdev,
3931 netdev_features_t features)
3932 {
3933 /* Since there is no support for separate Rx/Tx vlan accel
3934 * enable/disable make sure Tx flag is always in same state as Rx.
3935 */
3936 if (features & NETIF_F_HW_VLAN_CTAG_RX)
3937 features |= NETIF_F_HW_VLAN_CTAG_TX;
3938 else
3939 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
3940
3941 return features;
3942 }
3943
igc_set_features(struct net_device * netdev,netdev_features_t features)3944 static int igc_set_features(struct net_device *netdev,
3945 netdev_features_t features)
3946 {
3947 netdev_features_t changed = netdev->features ^ features;
3948 struct igc_adapter *adapter = netdev_priv(netdev);
3949
3950 /* Add VLAN support */
3951 if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
3952 return 0;
3953
3954 if (!(features & NETIF_F_NTUPLE))
3955 igc_flush_nfc_rules(adapter);
3956
3957 netdev->features = features;
3958
3959 if (netif_running(netdev))
3960 igc_reinit_locked(adapter);
3961 else
3962 igc_reset(adapter);
3963
3964 return 1;
3965 }
3966
3967 static netdev_features_t
igc_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3968 igc_features_check(struct sk_buff *skb, struct net_device *dev,
3969 netdev_features_t features)
3970 {
3971 unsigned int network_hdr_len, mac_hdr_len;
3972
3973 /* Make certain the headers can be described by a context descriptor */
3974 mac_hdr_len = skb_network_header(skb) - skb->data;
3975 if (unlikely(mac_hdr_len > IGC_MAX_MAC_HDR_LEN))
3976 return features & ~(NETIF_F_HW_CSUM |
3977 NETIF_F_SCTP_CRC |
3978 NETIF_F_HW_VLAN_CTAG_TX |
3979 NETIF_F_TSO |
3980 NETIF_F_TSO6);
3981
3982 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
3983 if (unlikely(network_hdr_len > IGC_MAX_NETWORK_HDR_LEN))
3984 return features & ~(NETIF_F_HW_CSUM |
3985 NETIF_F_SCTP_CRC |
3986 NETIF_F_TSO |
3987 NETIF_F_TSO6);
3988
3989 /* We can only support IPv4 TSO in tunnels if we can mangle the
3990 * inner IP ID field, so strip TSO if MANGLEID is not supported.
3991 */
3992 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
3993 features &= ~NETIF_F_TSO;
3994
3995 return features;
3996 }
3997
igc_tsync_interrupt(struct igc_adapter * adapter)3998 static void igc_tsync_interrupt(struct igc_adapter *adapter)
3999 {
4000 struct igc_hw *hw = &adapter->hw;
4001 u32 tsicr = rd32(IGC_TSICR);
4002 u32 ack = 0;
4003
4004 if (tsicr & IGC_TSICR_TXTS) {
4005 /* retrieve hardware timestamp */
4006 schedule_work(&adapter->ptp_tx_work);
4007 ack |= IGC_TSICR_TXTS;
4008 }
4009
4010 /* acknowledge the interrupts */
4011 wr32(IGC_TSICR, ack);
4012 }
4013
4014 /**
4015 * igc_msix_other - msix other interrupt handler
4016 * @irq: interrupt number
4017 * @data: pointer to a q_vector
4018 */
igc_msix_other(int irq,void * data)4019 static irqreturn_t igc_msix_other(int irq, void *data)
4020 {
4021 struct igc_adapter *adapter = data;
4022 struct igc_hw *hw = &adapter->hw;
4023 u32 icr = rd32(IGC_ICR);
4024
4025 /* reading ICR causes bit 31 of EICR to be cleared */
4026 if (icr & IGC_ICR_DRSTA)
4027 schedule_work(&adapter->reset_task);
4028
4029 if (icr & IGC_ICR_DOUTSYNC) {
4030 /* HW is reporting DMA is out of sync */
4031 adapter->stats.doosync++;
4032 }
4033
4034 if (icr & IGC_ICR_LSC) {
4035 hw->mac.get_link_status = 1;
4036 /* guard against interrupt when we're going down */
4037 if (!test_bit(__IGC_DOWN, &adapter->state))
4038 mod_timer(&adapter->watchdog_timer, jiffies + 1);
4039 }
4040
4041 if (icr & IGC_ICR_TS)
4042 igc_tsync_interrupt(adapter);
4043
4044 wr32(IGC_EIMS, adapter->eims_other);
4045
4046 return IRQ_HANDLED;
4047 }
4048
igc_write_itr(struct igc_q_vector * q_vector)4049 static void igc_write_itr(struct igc_q_vector *q_vector)
4050 {
4051 u32 itr_val = q_vector->itr_val & IGC_QVECTOR_MASK;
4052
4053 if (!q_vector->set_itr)
4054 return;
4055
4056 if (!itr_val)
4057 itr_val = IGC_ITR_VAL_MASK;
4058
4059 itr_val |= IGC_EITR_CNT_IGNR;
4060
4061 writel(itr_val, q_vector->itr_register);
4062 q_vector->set_itr = 0;
4063 }
4064
igc_msix_ring(int irq,void * data)4065 static irqreturn_t igc_msix_ring(int irq, void *data)
4066 {
4067 struct igc_q_vector *q_vector = data;
4068
4069 /* Write the ITR value calculated from the previous interrupt. */
4070 igc_write_itr(q_vector);
4071
4072 napi_schedule(&q_vector->napi);
4073
4074 return IRQ_HANDLED;
4075 }
4076
4077 /**
4078 * igc_request_msix - Initialize MSI-X interrupts
4079 * @adapter: Pointer to adapter structure
4080 *
4081 * igc_request_msix allocates MSI-X vectors and requests interrupts from the
4082 * kernel.
4083 */
igc_request_msix(struct igc_adapter * adapter)4084 static int igc_request_msix(struct igc_adapter *adapter)
4085 {
4086 unsigned int num_q_vectors = adapter->num_q_vectors;
4087 int i = 0, err = 0, vector = 0, free_vector = 0;
4088 struct net_device *netdev = adapter->netdev;
4089
4090 err = request_irq(adapter->msix_entries[vector].vector,
4091 &igc_msix_other, 0, netdev->name, adapter);
4092 if (err)
4093 goto err_out;
4094
4095 if (num_q_vectors > MAX_Q_VECTORS) {
4096 num_q_vectors = MAX_Q_VECTORS;
4097 dev_warn(&adapter->pdev->dev,
4098 "The number of queue vectors (%d) is higher than max allowed (%d)\n",
4099 adapter->num_q_vectors, MAX_Q_VECTORS);
4100 }
4101 for (i = 0; i < num_q_vectors; i++) {
4102 struct igc_q_vector *q_vector = adapter->q_vector[i];
4103
4104 vector++;
4105
4106 q_vector->itr_register = adapter->io_addr + IGC_EITR(vector);
4107
4108 if (q_vector->rx.ring && q_vector->tx.ring)
4109 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
4110 q_vector->rx.ring->queue_index);
4111 else if (q_vector->tx.ring)
4112 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
4113 q_vector->tx.ring->queue_index);
4114 else if (q_vector->rx.ring)
4115 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
4116 q_vector->rx.ring->queue_index);
4117 else
4118 sprintf(q_vector->name, "%s-unused", netdev->name);
4119
4120 err = request_irq(adapter->msix_entries[vector].vector,
4121 igc_msix_ring, 0, q_vector->name,
4122 q_vector);
4123 if (err)
4124 goto err_free;
4125 }
4126
4127 igc_configure_msix(adapter);
4128 return 0;
4129
4130 err_free:
4131 /* free already assigned IRQs */
4132 free_irq(adapter->msix_entries[free_vector++].vector, adapter);
4133
4134 vector--;
4135 for (i = 0; i < vector; i++) {
4136 free_irq(adapter->msix_entries[free_vector++].vector,
4137 adapter->q_vector[i]);
4138 }
4139 err_out:
4140 return err;
4141 }
4142
4143 /**
4144 * igc_clear_interrupt_scheme - reset the device to a state of no interrupts
4145 * @adapter: Pointer to adapter structure
4146 *
4147 * This function resets the device so that it has 0 rx queues, tx queues, and
4148 * MSI-X interrupts allocated.
4149 */
igc_clear_interrupt_scheme(struct igc_adapter * adapter)4150 static void igc_clear_interrupt_scheme(struct igc_adapter *adapter)
4151 {
4152 igc_free_q_vectors(adapter);
4153 igc_reset_interrupt_capability(adapter);
4154 }
4155
4156 /* Need to wait a few seconds after link up to get diagnostic information from
4157 * the phy
4158 */
igc_update_phy_info(struct timer_list * t)4159 static void igc_update_phy_info(struct timer_list *t)
4160 {
4161 struct igc_adapter *adapter = from_timer(adapter, t, phy_info_timer);
4162
4163 igc_get_phy_info(&adapter->hw);
4164 }
4165
4166 /**
4167 * igc_has_link - check shared code for link and determine up/down
4168 * @adapter: pointer to driver private info
4169 */
igc_has_link(struct igc_adapter * adapter)4170 bool igc_has_link(struct igc_adapter *adapter)
4171 {
4172 struct igc_hw *hw = &adapter->hw;
4173 bool link_active = false;
4174
4175 /* get_link_status is set on LSC (link status) interrupt or
4176 * rx sequence error interrupt. get_link_status will stay
4177 * false until the igc_check_for_link establishes link
4178 * for copper adapters ONLY
4179 */
4180 switch (hw->phy.media_type) {
4181 case igc_media_type_copper:
4182 if (!hw->mac.get_link_status)
4183 return true;
4184 hw->mac.ops.check_for_link(hw);
4185 link_active = !hw->mac.get_link_status;
4186 break;
4187 default:
4188 case igc_media_type_unknown:
4189 break;
4190 }
4191
4192 if (hw->mac.type == igc_i225 &&
4193 hw->phy.id == I225_I_PHY_ID) {
4194 if (!netif_carrier_ok(adapter->netdev)) {
4195 adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
4196 } else if (!(adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)) {
4197 adapter->flags |= IGC_FLAG_NEED_LINK_UPDATE;
4198 adapter->link_check_timeout = jiffies;
4199 }
4200 }
4201
4202 return link_active;
4203 }
4204
4205 /**
4206 * igc_watchdog - Timer Call-back
4207 * @t: timer for the watchdog
4208 */
igc_watchdog(struct timer_list * t)4209 static void igc_watchdog(struct timer_list *t)
4210 {
4211 struct igc_adapter *adapter = from_timer(adapter, t, watchdog_timer);
4212 /* Do the rest outside of interrupt context */
4213 schedule_work(&adapter->watchdog_task);
4214 }
4215
igc_watchdog_task(struct work_struct * work)4216 static void igc_watchdog_task(struct work_struct *work)
4217 {
4218 struct igc_adapter *adapter = container_of(work,
4219 struct igc_adapter,
4220 watchdog_task);
4221 struct net_device *netdev = adapter->netdev;
4222 struct igc_hw *hw = &adapter->hw;
4223 struct igc_phy_info *phy = &hw->phy;
4224 u16 phy_data, retry_count = 20;
4225 u32 link;
4226 int i;
4227
4228 link = igc_has_link(adapter);
4229
4230 if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE) {
4231 if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
4232 adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
4233 else
4234 link = false;
4235 }
4236
4237 if (link) {
4238 /* Cancel scheduled suspend requests. */
4239 pm_runtime_resume(netdev->dev.parent);
4240
4241 if (!netif_carrier_ok(netdev)) {
4242 u32 ctrl;
4243
4244 hw->mac.ops.get_speed_and_duplex(hw,
4245 &adapter->link_speed,
4246 &adapter->link_duplex);
4247
4248 ctrl = rd32(IGC_CTRL);
4249 /* Link status message must follow this format */
4250 netdev_info(netdev,
4251 "NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
4252 adapter->link_speed,
4253 adapter->link_duplex == FULL_DUPLEX ?
4254 "Full" : "Half",
4255 (ctrl & IGC_CTRL_TFCE) &&
4256 (ctrl & IGC_CTRL_RFCE) ? "RX/TX" :
4257 (ctrl & IGC_CTRL_RFCE) ? "RX" :
4258 (ctrl & IGC_CTRL_TFCE) ? "TX" : "None");
4259
4260 /* disable EEE if enabled */
4261 if ((adapter->flags & IGC_FLAG_EEE) &&
4262 adapter->link_duplex == HALF_DUPLEX) {
4263 netdev_info(netdev,
4264 "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex\n");
4265 adapter->hw.dev_spec._base.eee_enable = false;
4266 adapter->flags &= ~IGC_FLAG_EEE;
4267 }
4268
4269 /* check if SmartSpeed worked */
4270 igc_check_downshift(hw);
4271 if (phy->speed_downgraded)
4272 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
4273
4274 /* adjust timeout factor according to speed/duplex */
4275 adapter->tx_timeout_factor = 1;
4276 switch (adapter->link_speed) {
4277 case SPEED_10:
4278 adapter->tx_timeout_factor = 14;
4279 break;
4280 case SPEED_100:
4281 /* maybe add some timeout factor ? */
4282 break;
4283 }
4284
4285 if (adapter->link_speed != SPEED_1000)
4286 goto no_wait;
4287
4288 /* wait for Remote receiver status OK */
4289 retry_read_status:
4290 if (!igc_read_phy_reg(hw, PHY_1000T_STATUS,
4291 &phy_data)) {
4292 if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
4293 retry_count) {
4294 msleep(100);
4295 retry_count--;
4296 goto retry_read_status;
4297 } else if (!retry_count) {
4298 netdev_err(netdev, "exceed max 2 second\n");
4299 }
4300 } else {
4301 netdev_err(netdev, "read 1000Base-T Status Reg\n");
4302 }
4303 no_wait:
4304 netif_carrier_on(netdev);
4305
4306 /* link state has changed, schedule phy info update */
4307 if (!test_bit(__IGC_DOWN, &adapter->state))
4308 mod_timer(&adapter->phy_info_timer,
4309 round_jiffies(jiffies + 2 * HZ));
4310 }
4311 } else {
4312 if (netif_carrier_ok(netdev)) {
4313 adapter->link_speed = 0;
4314 adapter->link_duplex = 0;
4315
4316 /* Links status message must follow this format */
4317 netdev_info(netdev, "NIC Link is Down\n");
4318 netif_carrier_off(netdev);
4319
4320 /* link state has changed, schedule phy info update */
4321 if (!test_bit(__IGC_DOWN, &adapter->state))
4322 mod_timer(&adapter->phy_info_timer,
4323 round_jiffies(jiffies + 2 * HZ));
4324
4325 /* link is down, time to check for alternate media */
4326 if (adapter->flags & IGC_FLAG_MAS_ENABLE) {
4327 if (adapter->flags & IGC_FLAG_MEDIA_RESET) {
4328 schedule_work(&adapter->reset_task);
4329 /* return immediately */
4330 return;
4331 }
4332 }
4333 pm_schedule_suspend(netdev->dev.parent,
4334 MSEC_PER_SEC * 5);
4335
4336 /* also check for alternate media here */
4337 } else if (!netif_carrier_ok(netdev) &&
4338 (adapter->flags & IGC_FLAG_MAS_ENABLE)) {
4339 if (adapter->flags & IGC_FLAG_MEDIA_RESET) {
4340 schedule_work(&adapter->reset_task);
4341 /* return immediately */
4342 return;
4343 }
4344 }
4345 }
4346
4347 spin_lock(&adapter->stats64_lock);
4348 igc_update_stats(adapter);
4349 spin_unlock(&adapter->stats64_lock);
4350
4351 for (i = 0; i < adapter->num_tx_queues; i++) {
4352 struct igc_ring *tx_ring = adapter->tx_ring[i];
4353
4354 if (!netif_carrier_ok(netdev)) {
4355 /* We've lost link, so the controller stops DMA,
4356 * but we've got queued Tx work that's never going
4357 * to get done, so reset controller to flush Tx.
4358 * (Do the reset outside of interrupt context).
4359 */
4360 if (igc_desc_unused(tx_ring) + 1 < tx_ring->count) {
4361 adapter->tx_timeout_count++;
4362 schedule_work(&adapter->reset_task);
4363 /* return immediately since reset is imminent */
4364 return;
4365 }
4366 }
4367
4368 /* Force detection of hung controller every watchdog period */
4369 set_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
4370 }
4371
4372 /* Cause software interrupt to ensure Rx ring is cleaned */
4373 if (adapter->flags & IGC_FLAG_HAS_MSIX) {
4374 u32 eics = 0;
4375
4376 for (i = 0; i < adapter->num_q_vectors; i++)
4377 eics |= adapter->q_vector[i]->eims_value;
4378 wr32(IGC_EICS, eics);
4379 } else {
4380 wr32(IGC_ICS, IGC_ICS_RXDMT0);
4381 }
4382
4383 igc_ptp_tx_hang(adapter);
4384
4385 /* Reset the timer */
4386 if (!test_bit(__IGC_DOWN, &adapter->state)) {
4387 if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)
4388 mod_timer(&adapter->watchdog_timer,
4389 round_jiffies(jiffies + HZ));
4390 else
4391 mod_timer(&adapter->watchdog_timer,
4392 round_jiffies(jiffies + 2 * HZ));
4393 }
4394 }
4395
4396 /**
4397 * igc_intr_msi - Interrupt Handler
4398 * @irq: interrupt number
4399 * @data: pointer to a network interface device structure
4400 */
igc_intr_msi(int irq,void * data)4401 static irqreturn_t igc_intr_msi(int irq, void *data)
4402 {
4403 struct igc_adapter *adapter = data;
4404 struct igc_q_vector *q_vector = adapter->q_vector[0];
4405 struct igc_hw *hw = &adapter->hw;
4406 /* read ICR disables interrupts using IAM */
4407 u32 icr = rd32(IGC_ICR);
4408
4409 igc_write_itr(q_vector);
4410
4411 if (icr & IGC_ICR_DRSTA)
4412 schedule_work(&adapter->reset_task);
4413
4414 if (icr & IGC_ICR_DOUTSYNC) {
4415 /* HW is reporting DMA is out of sync */
4416 adapter->stats.doosync++;
4417 }
4418
4419 if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
4420 hw->mac.get_link_status = 1;
4421 if (!test_bit(__IGC_DOWN, &adapter->state))
4422 mod_timer(&adapter->watchdog_timer, jiffies + 1);
4423 }
4424
4425 if (icr & IGC_ICR_TS)
4426 igc_tsync_interrupt(adapter);
4427
4428 napi_schedule(&q_vector->napi);
4429
4430 return IRQ_HANDLED;
4431 }
4432
4433 /**
4434 * igc_intr - Legacy Interrupt Handler
4435 * @irq: interrupt number
4436 * @data: pointer to a network interface device structure
4437 */
igc_intr(int irq,void * data)4438 static irqreturn_t igc_intr(int irq, void *data)
4439 {
4440 struct igc_adapter *adapter = data;
4441 struct igc_q_vector *q_vector = adapter->q_vector[0];
4442 struct igc_hw *hw = &adapter->hw;
4443 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
4444 * need for the IMC write
4445 */
4446 u32 icr = rd32(IGC_ICR);
4447
4448 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
4449 * not set, then the adapter didn't send an interrupt
4450 */
4451 if (!(icr & IGC_ICR_INT_ASSERTED))
4452 return IRQ_NONE;
4453
4454 igc_write_itr(q_vector);
4455
4456 if (icr & IGC_ICR_DRSTA)
4457 schedule_work(&adapter->reset_task);
4458
4459 if (icr & IGC_ICR_DOUTSYNC) {
4460 /* HW is reporting DMA is out of sync */
4461 adapter->stats.doosync++;
4462 }
4463
4464 if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
4465 hw->mac.get_link_status = 1;
4466 /* guard against interrupt when we're going down */
4467 if (!test_bit(__IGC_DOWN, &adapter->state))
4468 mod_timer(&adapter->watchdog_timer, jiffies + 1);
4469 }
4470
4471 if (icr & IGC_ICR_TS)
4472 igc_tsync_interrupt(adapter);
4473
4474 napi_schedule(&q_vector->napi);
4475
4476 return IRQ_HANDLED;
4477 }
4478
igc_free_irq(struct igc_adapter * adapter)4479 static void igc_free_irq(struct igc_adapter *adapter)
4480 {
4481 if (adapter->msix_entries) {
4482 int vector = 0, i;
4483
4484 free_irq(adapter->msix_entries[vector++].vector, adapter);
4485
4486 for (i = 0; i < adapter->num_q_vectors; i++)
4487 free_irq(adapter->msix_entries[vector++].vector,
4488 adapter->q_vector[i]);
4489 } else {
4490 free_irq(adapter->pdev->irq, adapter);
4491 }
4492 }
4493
4494 /**
4495 * igc_request_irq - initialize interrupts
4496 * @adapter: Pointer to adapter structure
4497 *
4498 * Attempts to configure interrupts using the best available
4499 * capabilities of the hardware and kernel.
4500 */
igc_request_irq(struct igc_adapter * adapter)4501 static int igc_request_irq(struct igc_adapter *adapter)
4502 {
4503 struct net_device *netdev = adapter->netdev;
4504 struct pci_dev *pdev = adapter->pdev;
4505 int err = 0;
4506
4507 if (adapter->flags & IGC_FLAG_HAS_MSIX) {
4508 err = igc_request_msix(adapter);
4509 if (!err)
4510 goto request_done;
4511 /* fall back to MSI */
4512 igc_free_all_tx_resources(adapter);
4513 igc_free_all_rx_resources(adapter);
4514
4515 igc_clear_interrupt_scheme(adapter);
4516 err = igc_init_interrupt_scheme(adapter, false);
4517 if (err)
4518 goto request_done;
4519 igc_setup_all_tx_resources(adapter);
4520 igc_setup_all_rx_resources(adapter);
4521 igc_configure(adapter);
4522 }
4523
4524 igc_assign_vector(adapter->q_vector[0], 0);
4525
4526 if (adapter->flags & IGC_FLAG_HAS_MSI) {
4527 err = request_irq(pdev->irq, &igc_intr_msi, 0,
4528 netdev->name, adapter);
4529 if (!err)
4530 goto request_done;
4531
4532 /* fall back to legacy interrupts */
4533 igc_reset_interrupt_capability(adapter);
4534 adapter->flags &= ~IGC_FLAG_HAS_MSI;
4535 }
4536
4537 err = request_irq(pdev->irq, &igc_intr, IRQF_SHARED,
4538 netdev->name, adapter);
4539
4540 if (err)
4541 netdev_err(netdev, "Error %d getting interrupt\n", err);
4542
4543 request_done:
4544 return err;
4545 }
4546
4547 /**
4548 * __igc_open - Called when a network interface is made active
4549 * @netdev: network interface device structure
4550 * @resuming: boolean indicating if the device is resuming
4551 *
4552 * Returns 0 on success, negative value on failure
4553 *
4554 * The open entry point is called when a network interface is made
4555 * active by the system (IFF_UP). At this point all resources needed
4556 * for transmit and receive operations are allocated, the interrupt
4557 * handler is registered with the OS, the watchdog timer is started,
4558 * and the stack is notified that the interface is ready.
4559 */
__igc_open(struct net_device * netdev,bool resuming)4560 static int __igc_open(struct net_device *netdev, bool resuming)
4561 {
4562 struct igc_adapter *adapter = netdev_priv(netdev);
4563 struct pci_dev *pdev = adapter->pdev;
4564 struct igc_hw *hw = &adapter->hw;
4565 int err = 0;
4566 int i = 0;
4567
4568 /* disallow open during test */
4569
4570 if (test_bit(__IGC_TESTING, &adapter->state)) {
4571 WARN_ON(resuming);
4572 return -EBUSY;
4573 }
4574
4575 if (!resuming)
4576 pm_runtime_get_sync(&pdev->dev);
4577
4578 netif_carrier_off(netdev);
4579
4580 /* allocate transmit descriptors */
4581 err = igc_setup_all_tx_resources(adapter);
4582 if (err)
4583 goto err_setup_tx;
4584
4585 /* allocate receive descriptors */
4586 err = igc_setup_all_rx_resources(adapter);
4587 if (err)
4588 goto err_setup_rx;
4589
4590 igc_power_up_link(adapter);
4591
4592 igc_configure(adapter);
4593
4594 err = igc_request_irq(adapter);
4595 if (err)
4596 goto err_req_irq;
4597
4598 /* Notify the stack of the actual queue counts. */
4599 err = netif_set_real_num_tx_queues(netdev, adapter->num_tx_queues);
4600 if (err)
4601 goto err_set_queues;
4602
4603 err = netif_set_real_num_rx_queues(netdev, adapter->num_rx_queues);
4604 if (err)
4605 goto err_set_queues;
4606
4607 clear_bit(__IGC_DOWN, &adapter->state);
4608
4609 for (i = 0; i < adapter->num_q_vectors; i++)
4610 napi_enable(&adapter->q_vector[i]->napi);
4611
4612 /* Clear any pending interrupts. */
4613 rd32(IGC_ICR);
4614 igc_irq_enable(adapter);
4615
4616 if (!resuming)
4617 pm_runtime_put(&pdev->dev);
4618
4619 netif_tx_start_all_queues(netdev);
4620
4621 /* start the watchdog. */
4622 hw->mac.get_link_status = 1;
4623 schedule_work(&adapter->watchdog_task);
4624
4625 return IGC_SUCCESS;
4626
4627 err_set_queues:
4628 igc_free_irq(adapter);
4629 err_req_irq:
4630 igc_release_hw_control(adapter);
4631 igc_power_down_phy_copper_base(&adapter->hw);
4632 igc_free_all_rx_resources(adapter);
4633 err_setup_rx:
4634 igc_free_all_tx_resources(adapter);
4635 err_setup_tx:
4636 igc_reset(adapter);
4637 if (!resuming)
4638 pm_runtime_put(&pdev->dev);
4639
4640 return err;
4641 }
4642
igc_open(struct net_device * netdev)4643 int igc_open(struct net_device *netdev)
4644 {
4645 return __igc_open(netdev, false);
4646 }
4647
4648 /**
4649 * __igc_close - Disables a network interface
4650 * @netdev: network interface device structure
4651 * @suspending: boolean indicating the device is suspending
4652 *
4653 * Returns 0, this is not allowed to fail
4654 *
4655 * The close entry point is called when an interface is de-activated
4656 * by the OS. The hardware is still under the driver's control, but
4657 * needs to be disabled. A global MAC reset is issued to stop the
4658 * hardware, and all transmit and receive resources are freed.
4659 */
__igc_close(struct net_device * netdev,bool suspending)4660 static int __igc_close(struct net_device *netdev, bool suspending)
4661 {
4662 struct igc_adapter *adapter = netdev_priv(netdev);
4663 struct pci_dev *pdev = adapter->pdev;
4664
4665 WARN_ON(test_bit(__IGC_RESETTING, &adapter->state));
4666
4667 if (!suspending)
4668 pm_runtime_get_sync(&pdev->dev);
4669
4670 igc_down(adapter);
4671
4672 igc_release_hw_control(adapter);
4673
4674 igc_free_irq(adapter);
4675
4676 igc_free_all_tx_resources(adapter);
4677 igc_free_all_rx_resources(adapter);
4678
4679 if (!suspending)
4680 pm_runtime_put_sync(&pdev->dev);
4681
4682 return 0;
4683 }
4684
igc_close(struct net_device * netdev)4685 int igc_close(struct net_device *netdev)
4686 {
4687 if (netif_device_present(netdev) || netdev->dismantle)
4688 return __igc_close(netdev, false);
4689 return 0;
4690 }
4691
4692 /**
4693 * igc_ioctl - Access the hwtstamp interface
4694 * @netdev: network interface device structure
4695 * @ifr: interface request data
4696 * @cmd: ioctl command
4697 **/
igc_ioctl(struct net_device * netdev,struct ifreq * ifr,int cmd)4698 static int igc_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4699 {
4700 switch (cmd) {
4701 case SIOCGHWTSTAMP:
4702 return igc_ptp_get_ts_config(netdev, ifr);
4703 case SIOCSHWTSTAMP:
4704 return igc_ptp_set_ts_config(netdev, ifr);
4705 default:
4706 return -EOPNOTSUPP;
4707 }
4708 }
4709
igc_save_launchtime_params(struct igc_adapter * adapter,int queue,bool enable)4710 static int igc_save_launchtime_params(struct igc_adapter *adapter, int queue,
4711 bool enable)
4712 {
4713 struct igc_ring *ring;
4714 int i;
4715
4716 if (queue < 0 || queue >= adapter->num_tx_queues)
4717 return -EINVAL;
4718
4719 ring = adapter->tx_ring[queue];
4720 ring->launchtime_enable = enable;
4721
4722 if (adapter->base_time)
4723 return 0;
4724
4725 adapter->cycle_time = NSEC_PER_SEC;
4726
4727 for (i = 0; i < adapter->num_tx_queues; i++) {
4728 ring = adapter->tx_ring[i];
4729 ring->start_time = 0;
4730 ring->end_time = NSEC_PER_SEC;
4731 }
4732
4733 return 0;
4734 }
4735
is_base_time_past(ktime_t base_time,const struct timespec64 * now)4736 static bool is_base_time_past(ktime_t base_time, const struct timespec64 *now)
4737 {
4738 struct timespec64 b;
4739
4740 b = ktime_to_timespec64(base_time);
4741
4742 return timespec64_compare(now, &b) > 0;
4743 }
4744
validate_schedule(struct igc_adapter * adapter,const struct tc_taprio_qopt_offload * qopt)4745 static bool validate_schedule(struct igc_adapter *adapter,
4746 const struct tc_taprio_qopt_offload *qopt)
4747 {
4748 int queue_uses[IGC_MAX_TX_QUEUES] = { };
4749 struct timespec64 now;
4750 size_t n;
4751
4752 if (qopt->cycle_time_extension)
4753 return false;
4754
4755 igc_ptp_read(adapter, &now);
4756
4757 /* If we program the controller's BASET registers with a time
4758 * in the future, it will hold all the packets until that
4759 * time, causing a lot of TX Hangs, so to avoid that, we
4760 * reject schedules that would start in the future.
4761 */
4762 if (!is_base_time_past(qopt->base_time, &now))
4763 return false;
4764
4765 for (n = 0; n < qopt->num_entries; n++) {
4766 const struct tc_taprio_sched_entry *e;
4767 int i;
4768
4769 e = &qopt->entries[n];
4770
4771 /* i225 only supports "global" frame preemption
4772 * settings.
4773 */
4774 if (e->command != TC_TAPRIO_CMD_SET_GATES)
4775 return false;
4776
4777 for (i = 0; i < adapter->num_tx_queues; i++) {
4778 if (e->gate_mask & BIT(i))
4779 queue_uses[i]++;
4780
4781 if (queue_uses[i] > 1)
4782 return false;
4783 }
4784 }
4785
4786 return true;
4787 }
4788
igc_tsn_enable_launchtime(struct igc_adapter * adapter,struct tc_etf_qopt_offload * qopt)4789 static int igc_tsn_enable_launchtime(struct igc_adapter *adapter,
4790 struct tc_etf_qopt_offload *qopt)
4791 {
4792 struct igc_hw *hw = &adapter->hw;
4793 int err;
4794
4795 if (hw->mac.type != igc_i225)
4796 return -EOPNOTSUPP;
4797
4798 err = igc_save_launchtime_params(adapter, qopt->queue, qopt->enable);
4799 if (err)
4800 return err;
4801
4802 return igc_tsn_offload_apply(adapter);
4803 }
4804
igc_save_qbv_schedule(struct igc_adapter * adapter,struct tc_taprio_qopt_offload * qopt)4805 static int igc_save_qbv_schedule(struct igc_adapter *adapter,
4806 struct tc_taprio_qopt_offload *qopt)
4807 {
4808 u32 start_time = 0, end_time = 0;
4809 size_t n;
4810
4811 if (!qopt->enable) {
4812 adapter->base_time = 0;
4813 return 0;
4814 }
4815
4816 if (adapter->base_time)
4817 return -EALREADY;
4818
4819 if (!validate_schedule(adapter, qopt))
4820 return -EINVAL;
4821
4822 adapter->cycle_time = qopt->cycle_time;
4823 adapter->base_time = qopt->base_time;
4824
4825 /* FIXME: be a little smarter about cases when the gate for a
4826 * queue stays open for more than one entry.
4827 */
4828 for (n = 0; n < qopt->num_entries; n++) {
4829 struct tc_taprio_sched_entry *e = &qopt->entries[n];
4830 int i;
4831
4832 end_time += e->interval;
4833
4834 for (i = 0; i < adapter->num_tx_queues; i++) {
4835 struct igc_ring *ring = adapter->tx_ring[i];
4836
4837 if (!(e->gate_mask & BIT(i)))
4838 continue;
4839
4840 ring->start_time = start_time;
4841 ring->end_time = end_time;
4842 }
4843
4844 start_time += e->interval;
4845 }
4846
4847 return 0;
4848 }
4849
igc_tsn_enable_qbv_scheduling(struct igc_adapter * adapter,struct tc_taprio_qopt_offload * qopt)4850 static int igc_tsn_enable_qbv_scheduling(struct igc_adapter *adapter,
4851 struct tc_taprio_qopt_offload *qopt)
4852 {
4853 struct igc_hw *hw = &adapter->hw;
4854 int err;
4855
4856 if (hw->mac.type != igc_i225)
4857 return -EOPNOTSUPP;
4858
4859 err = igc_save_qbv_schedule(adapter, qopt);
4860 if (err)
4861 return err;
4862
4863 return igc_tsn_offload_apply(adapter);
4864 }
4865
igc_setup_tc(struct net_device * dev,enum tc_setup_type type,void * type_data)4866 static int igc_setup_tc(struct net_device *dev, enum tc_setup_type type,
4867 void *type_data)
4868 {
4869 struct igc_adapter *adapter = netdev_priv(dev);
4870
4871 switch (type) {
4872 case TC_SETUP_QDISC_TAPRIO:
4873 return igc_tsn_enable_qbv_scheduling(adapter, type_data);
4874
4875 case TC_SETUP_QDISC_ETF:
4876 return igc_tsn_enable_launchtime(adapter, type_data);
4877
4878 default:
4879 return -EOPNOTSUPP;
4880 }
4881 }
4882
4883 static const struct net_device_ops igc_netdev_ops = {
4884 .ndo_open = igc_open,
4885 .ndo_stop = igc_close,
4886 .ndo_start_xmit = igc_xmit_frame,
4887 .ndo_set_rx_mode = igc_set_rx_mode,
4888 .ndo_set_mac_address = igc_set_mac,
4889 .ndo_change_mtu = igc_change_mtu,
4890 .ndo_get_stats64 = igc_get_stats64,
4891 .ndo_fix_features = igc_fix_features,
4892 .ndo_set_features = igc_set_features,
4893 .ndo_features_check = igc_features_check,
4894 .ndo_do_ioctl = igc_ioctl,
4895 .ndo_setup_tc = igc_setup_tc,
4896 };
4897
4898 /* PCIe configuration access */
igc_read_pci_cfg(struct igc_hw * hw,u32 reg,u16 * value)4899 void igc_read_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value)
4900 {
4901 struct igc_adapter *adapter = hw->back;
4902
4903 pci_read_config_word(adapter->pdev, reg, value);
4904 }
4905
igc_write_pci_cfg(struct igc_hw * hw,u32 reg,u16 * value)4906 void igc_write_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value)
4907 {
4908 struct igc_adapter *adapter = hw->back;
4909
4910 pci_write_config_word(adapter->pdev, reg, *value);
4911 }
4912
igc_read_pcie_cap_reg(struct igc_hw * hw,u32 reg,u16 * value)4913 s32 igc_read_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value)
4914 {
4915 struct igc_adapter *adapter = hw->back;
4916
4917 if (!pci_is_pcie(adapter->pdev))
4918 return -IGC_ERR_CONFIG;
4919
4920 pcie_capability_read_word(adapter->pdev, reg, value);
4921
4922 return IGC_SUCCESS;
4923 }
4924
igc_write_pcie_cap_reg(struct igc_hw * hw,u32 reg,u16 * value)4925 s32 igc_write_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value)
4926 {
4927 struct igc_adapter *adapter = hw->back;
4928
4929 if (!pci_is_pcie(adapter->pdev))
4930 return -IGC_ERR_CONFIG;
4931
4932 pcie_capability_write_word(adapter->pdev, reg, *value);
4933
4934 return IGC_SUCCESS;
4935 }
4936
igc_rd32(struct igc_hw * hw,u32 reg)4937 u32 igc_rd32(struct igc_hw *hw, u32 reg)
4938 {
4939 struct igc_adapter *igc = container_of(hw, struct igc_adapter, hw);
4940 u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
4941 u32 value = 0;
4942
4943 value = readl(&hw_addr[reg]);
4944
4945 /* reads should not return all F's */
4946 if (!(~value) && (!reg || !(~readl(hw_addr)))) {
4947 struct net_device *netdev = igc->netdev;
4948
4949 hw->hw_addr = NULL;
4950 netif_device_detach(netdev);
4951 netdev_err(netdev, "PCIe link lost, device now detached\n");
4952 WARN(pci_device_is_present(igc->pdev),
4953 "igc: Failed to read reg 0x%x!\n", reg);
4954 }
4955
4956 return value;
4957 }
4958
igc_set_spd_dplx(struct igc_adapter * adapter,u32 spd,u8 dplx)4959 int igc_set_spd_dplx(struct igc_adapter *adapter, u32 spd, u8 dplx)
4960 {
4961 struct igc_mac_info *mac = &adapter->hw.mac;
4962
4963 mac->autoneg = 0;
4964
4965 /* Make sure dplx is at most 1 bit and lsb of speed is not set
4966 * for the switch() below to work
4967 */
4968 if ((spd & 1) || (dplx & ~1))
4969 goto err_inval;
4970
4971 switch (spd + dplx) {
4972 case SPEED_10 + DUPLEX_HALF:
4973 mac->forced_speed_duplex = ADVERTISE_10_HALF;
4974 break;
4975 case SPEED_10 + DUPLEX_FULL:
4976 mac->forced_speed_duplex = ADVERTISE_10_FULL;
4977 break;
4978 case SPEED_100 + DUPLEX_HALF:
4979 mac->forced_speed_duplex = ADVERTISE_100_HALF;
4980 break;
4981 case SPEED_100 + DUPLEX_FULL:
4982 mac->forced_speed_duplex = ADVERTISE_100_FULL;
4983 break;
4984 case SPEED_1000 + DUPLEX_FULL:
4985 mac->autoneg = 1;
4986 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
4987 break;
4988 case SPEED_1000 + DUPLEX_HALF: /* not supported */
4989 goto err_inval;
4990 case SPEED_2500 + DUPLEX_FULL:
4991 mac->autoneg = 1;
4992 adapter->hw.phy.autoneg_advertised = ADVERTISE_2500_FULL;
4993 break;
4994 case SPEED_2500 + DUPLEX_HALF: /* not supported */
4995 default:
4996 goto err_inval;
4997 }
4998
4999 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
5000 adapter->hw.phy.mdix = AUTO_ALL_MODES;
5001
5002 return 0;
5003
5004 err_inval:
5005 netdev_err(adapter->netdev, "Unsupported Speed/Duplex configuration\n");
5006 return -EINVAL;
5007 }
5008
5009 /**
5010 * igc_probe - Device Initialization Routine
5011 * @pdev: PCI device information struct
5012 * @ent: entry in igc_pci_tbl
5013 *
5014 * Returns 0 on success, negative on failure
5015 *
5016 * igc_probe initializes an adapter identified by a pci_dev structure.
5017 * The OS initialization, configuring the adapter private structure,
5018 * and a hardware reset occur.
5019 */
igc_probe(struct pci_dev * pdev,const struct pci_device_id * ent)5020 static int igc_probe(struct pci_dev *pdev,
5021 const struct pci_device_id *ent)
5022 {
5023 struct igc_adapter *adapter;
5024 struct net_device *netdev;
5025 struct igc_hw *hw;
5026 const struct igc_info *ei = igc_info_tbl[ent->driver_data];
5027 int err, pci_using_dac;
5028
5029 err = pci_enable_device_mem(pdev);
5030 if (err)
5031 return err;
5032
5033 pci_using_dac = 0;
5034 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
5035 if (!err) {
5036 pci_using_dac = 1;
5037 } else {
5038 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
5039 if (err) {
5040 dev_err(&pdev->dev,
5041 "No usable DMA configuration, aborting\n");
5042 goto err_dma;
5043 }
5044 }
5045
5046 err = pci_request_mem_regions(pdev, igc_driver_name);
5047 if (err)
5048 goto err_pci_reg;
5049
5050 pci_enable_pcie_error_reporting(pdev);
5051
5052 pci_set_master(pdev);
5053
5054 err = -ENOMEM;
5055 netdev = alloc_etherdev_mq(sizeof(struct igc_adapter),
5056 IGC_MAX_TX_QUEUES);
5057
5058 if (!netdev)
5059 goto err_alloc_etherdev;
5060
5061 SET_NETDEV_DEV(netdev, &pdev->dev);
5062
5063 pci_set_drvdata(pdev, netdev);
5064 adapter = netdev_priv(netdev);
5065 adapter->netdev = netdev;
5066 adapter->pdev = pdev;
5067 hw = &adapter->hw;
5068 hw->back = adapter;
5069 adapter->port_num = hw->bus.func;
5070 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
5071
5072 err = pci_save_state(pdev);
5073 if (err)
5074 goto err_ioremap;
5075
5076 err = -EIO;
5077 adapter->io_addr = ioremap(pci_resource_start(pdev, 0),
5078 pci_resource_len(pdev, 0));
5079 if (!adapter->io_addr)
5080 goto err_ioremap;
5081
5082 /* hw->hw_addr can be zeroed, so use adapter->io_addr for unmap */
5083 hw->hw_addr = adapter->io_addr;
5084
5085 netdev->netdev_ops = &igc_netdev_ops;
5086 igc_ethtool_set_ops(netdev);
5087 netdev->watchdog_timeo = 5 * HZ;
5088
5089 netdev->mem_start = pci_resource_start(pdev, 0);
5090 netdev->mem_end = pci_resource_end(pdev, 0);
5091
5092 /* PCI config space info */
5093 hw->vendor_id = pdev->vendor;
5094 hw->device_id = pdev->device;
5095 hw->revision_id = pdev->revision;
5096 hw->subsystem_vendor_id = pdev->subsystem_vendor;
5097 hw->subsystem_device_id = pdev->subsystem_device;
5098
5099 /* Copy the default MAC and PHY function pointers */
5100 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
5101 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
5102
5103 /* Initialize skew-specific constants */
5104 err = ei->get_invariants(hw);
5105 if (err)
5106 goto err_sw_init;
5107
5108 /* Add supported features to the features list*/
5109 netdev->features |= NETIF_F_SG;
5110 netdev->features |= NETIF_F_TSO;
5111 netdev->features |= NETIF_F_TSO6;
5112 netdev->features |= NETIF_F_TSO_ECN;
5113 netdev->features |= NETIF_F_RXCSUM;
5114 netdev->features |= NETIF_F_HW_CSUM;
5115 netdev->features |= NETIF_F_SCTP_CRC;
5116 netdev->features |= NETIF_F_HW_TC;
5117
5118 #define IGC_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
5119 NETIF_F_GSO_GRE_CSUM | \
5120 NETIF_F_GSO_IPXIP4 | \
5121 NETIF_F_GSO_IPXIP6 | \
5122 NETIF_F_GSO_UDP_TUNNEL | \
5123 NETIF_F_GSO_UDP_TUNNEL_CSUM)
5124
5125 netdev->gso_partial_features = IGC_GSO_PARTIAL_FEATURES;
5126 netdev->features |= NETIF_F_GSO_PARTIAL | IGC_GSO_PARTIAL_FEATURES;
5127
5128 /* setup the private structure */
5129 err = igc_sw_init(adapter);
5130 if (err)
5131 goto err_sw_init;
5132
5133 /* copy netdev features into list of user selectable features */
5134 netdev->hw_features |= NETIF_F_NTUPLE;
5135 netdev->hw_features |= netdev->features;
5136
5137 if (pci_using_dac)
5138 netdev->features |= NETIF_F_HIGHDMA;
5139
5140 /* MTU range: 68 - 9216 */
5141 netdev->min_mtu = ETH_MIN_MTU;
5142 netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
5143
5144 /* before reading the NVM, reset the controller to put the device in a
5145 * known good starting state
5146 */
5147 hw->mac.ops.reset_hw(hw);
5148
5149 if (igc_get_flash_presence_i225(hw)) {
5150 if (hw->nvm.ops.validate(hw) < 0) {
5151 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
5152 err = -EIO;
5153 goto err_eeprom;
5154 }
5155 }
5156
5157 if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
5158 /* copy the MAC address out of the NVM */
5159 if (hw->mac.ops.read_mac_addr(hw))
5160 dev_err(&pdev->dev, "NVM Read Error\n");
5161 }
5162
5163 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
5164
5165 if (!is_valid_ether_addr(netdev->dev_addr)) {
5166 dev_err(&pdev->dev, "Invalid MAC Address\n");
5167 err = -EIO;
5168 goto err_eeprom;
5169 }
5170
5171 /* configure RXPBSIZE and TXPBSIZE */
5172 wr32(IGC_RXPBS, I225_RXPBSIZE_DEFAULT);
5173 wr32(IGC_TXPBS, I225_TXPBSIZE_DEFAULT);
5174
5175 timer_setup(&adapter->watchdog_timer, igc_watchdog, 0);
5176 timer_setup(&adapter->phy_info_timer, igc_update_phy_info, 0);
5177
5178 INIT_WORK(&adapter->reset_task, igc_reset_task);
5179 INIT_WORK(&adapter->watchdog_task, igc_watchdog_task);
5180
5181 /* Initialize link properties that are user-changeable */
5182 adapter->fc_autoneg = true;
5183 hw->mac.autoneg = true;
5184 hw->phy.autoneg_advertised = 0xaf;
5185
5186 hw->fc.requested_mode = igc_fc_default;
5187 hw->fc.current_mode = igc_fc_default;
5188
5189 /* By default, support wake on port A */
5190 adapter->flags |= IGC_FLAG_WOL_SUPPORTED;
5191
5192 /* initialize the wol settings based on the eeprom settings */
5193 if (adapter->flags & IGC_FLAG_WOL_SUPPORTED)
5194 adapter->wol |= IGC_WUFC_MAG;
5195
5196 device_set_wakeup_enable(&adapter->pdev->dev,
5197 adapter->flags & IGC_FLAG_WOL_SUPPORTED);
5198
5199 igc_ptp_init(adapter);
5200
5201 /* reset the hardware with the new settings */
5202 igc_reset(adapter);
5203
5204 /* let the f/w know that the h/w is now under the control of the
5205 * driver.
5206 */
5207 igc_get_hw_control(adapter);
5208
5209 strncpy(netdev->name, "eth%d", IFNAMSIZ);
5210 err = register_netdev(netdev);
5211 if (err)
5212 goto err_register;
5213
5214 /* carrier off reporting is important to ethtool even BEFORE open */
5215 netif_carrier_off(netdev);
5216
5217 /* Check if Media Autosense is enabled */
5218 adapter->ei = *ei;
5219
5220 /* print pcie link status and MAC address */
5221 pcie_print_link_status(pdev);
5222 netdev_info(netdev, "MAC: %pM\n", netdev->dev_addr);
5223
5224 dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE);
5225 /* Disable EEE for internal PHY devices */
5226 hw->dev_spec._base.eee_enable = false;
5227 adapter->flags &= ~IGC_FLAG_EEE;
5228 igc_set_eee_i225(hw, false, false, false);
5229
5230 pm_runtime_put_noidle(&pdev->dev);
5231
5232 return 0;
5233
5234 err_register:
5235 igc_release_hw_control(adapter);
5236 err_eeprom:
5237 if (!igc_check_reset_block(hw))
5238 igc_reset_phy(hw);
5239 err_sw_init:
5240 igc_clear_interrupt_scheme(adapter);
5241 iounmap(adapter->io_addr);
5242 err_ioremap:
5243 free_netdev(netdev);
5244 err_alloc_etherdev:
5245 pci_disable_pcie_error_reporting(pdev);
5246 pci_release_mem_regions(pdev);
5247 err_pci_reg:
5248 err_dma:
5249 pci_disable_device(pdev);
5250 return err;
5251 }
5252
5253 /**
5254 * igc_remove - Device Removal Routine
5255 * @pdev: PCI device information struct
5256 *
5257 * igc_remove is called by the PCI subsystem to alert the driver
5258 * that it should release a PCI device. This could be caused by a
5259 * Hot-Plug event, or because the driver is going to be removed from
5260 * memory.
5261 */
igc_remove(struct pci_dev * pdev)5262 static void igc_remove(struct pci_dev *pdev)
5263 {
5264 struct net_device *netdev = pci_get_drvdata(pdev);
5265 struct igc_adapter *adapter = netdev_priv(netdev);
5266
5267 pm_runtime_get_noresume(&pdev->dev);
5268
5269 igc_flush_nfc_rules(adapter);
5270
5271 igc_ptp_stop(adapter);
5272
5273 set_bit(__IGC_DOWN, &adapter->state);
5274
5275 del_timer_sync(&adapter->watchdog_timer);
5276 del_timer_sync(&adapter->phy_info_timer);
5277
5278 cancel_work_sync(&adapter->reset_task);
5279 cancel_work_sync(&adapter->watchdog_task);
5280
5281 /* Release control of h/w to f/w. If f/w is AMT enabled, this
5282 * would have already happened in close and is redundant.
5283 */
5284 igc_release_hw_control(adapter);
5285 unregister_netdev(netdev);
5286
5287 igc_clear_interrupt_scheme(adapter);
5288 pci_iounmap(pdev, adapter->io_addr);
5289 pci_release_mem_regions(pdev);
5290
5291 free_netdev(netdev);
5292
5293 pci_disable_pcie_error_reporting(pdev);
5294
5295 pci_disable_device(pdev);
5296 }
5297
__igc_shutdown(struct pci_dev * pdev,bool * enable_wake,bool runtime)5298 static int __igc_shutdown(struct pci_dev *pdev, bool *enable_wake,
5299 bool runtime)
5300 {
5301 struct net_device *netdev = pci_get_drvdata(pdev);
5302 struct igc_adapter *adapter = netdev_priv(netdev);
5303 u32 wufc = runtime ? IGC_WUFC_LNKC : adapter->wol;
5304 struct igc_hw *hw = &adapter->hw;
5305 u32 ctrl, rctl, status;
5306 bool wake;
5307
5308 rtnl_lock();
5309 netif_device_detach(netdev);
5310
5311 if (netif_running(netdev))
5312 __igc_close(netdev, true);
5313
5314 igc_ptp_suspend(adapter);
5315
5316 igc_clear_interrupt_scheme(adapter);
5317 rtnl_unlock();
5318
5319 status = rd32(IGC_STATUS);
5320 if (status & IGC_STATUS_LU)
5321 wufc &= ~IGC_WUFC_LNKC;
5322
5323 if (wufc) {
5324 igc_setup_rctl(adapter);
5325 igc_set_rx_mode(netdev);
5326
5327 /* turn on all-multi mode if wake on multicast is enabled */
5328 if (wufc & IGC_WUFC_MC) {
5329 rctl = rd32(IGC_RCTL);
5330 rctl |= IGC_RCTL_MPE;
5331 wr32(IGC_RCTL, rctl);
5332 }
5333
5334 ctrl = rd32(IGC_CTRL);
5335 ctrl |= IGC_CTRL_ADVD3WUC;
5336 wr32(IGC_CTRL, ctrl);
5337
5338 /* Allow time for pending master requests to run */
5339 igc_disable_pcie_master(hw);
5340
5341 wr32(IGC_WUC, IGC_WUC_PME_EN);
5342 wr32(IGC_WUFC, wufc);
5343 } else {
5344 wr32(IGC_WUC, 0);
5345 wr32(IGC_WUFC, 0);
5346 }
5347
5348 wake = wufc || adapter->en_mng_pt;
5349 if (!wake)
5350 igc_power_down_phy_copper_base(&adapter->hw);
5351 else
5352 igc_power_up_link(adapter);
5353
5354 if (enable_wake)
5355 *enable_wake = wake;
5356
5357 /* Release control of h/w to f/w. If f/w is AMT enabled, this
5358 * would have already happened in close and is redundant.
5359 */
5360 igc_release_hw_control(adapter);
5361
5362 pci_disable_device(pdev);
5363
5364 return 0;
5365 }
5366
5367 #ifdef CONFIG_PM
igc_runtime_suspend(struct device * dev)5368 static int __maybe_unused igc_runtime_suspend(struct device *dev)
5369 {
5370 return __igc_shutdown(to_pci_dev(dev), NULL, 1);
5371 }
5372
igc_deliver_wake_packet(struct net_device * netdev)5373 static void igc_deliver_wake_packet(struct net_device *netdev)
5374 {
5375 struct igc_adapter *adapter = netdev_priv(netdev);
5376 struct igc_hw *hw = &adapter->hw;
5377 struct sk_buff *skb;
5378 u32 wupl;
5379
5380 wupl = rd32(IGC_WUPL) & IGC_WUPL_MASK;
5381
5382 /* WUPM stores only the first 128 bytes of the wake packet.
5383 * Read the packet only if we have the whole thing.
5384 */
5385 if (wupl == 0 || wupl > IGC_WUPM_BYTES)
5386 return;
5387
5388 skb = netdev_alloc_skb_ip_align(netdev, IGC_WUPM_BYTES);
5389 if (!skb)
5390 return;
5391
5392 skb_put(skb, wupl);
5393
5394 /* Ensure reads are 32-bit aligned */
5395 wupl = roundup(wupl, 4);
5396
5397 memcpy_fromio(skb->data, hw->hw_addr + IGC_WUPM_REG(0), wupl);
5398
5399 skb->protocol = eth_type_trans(skb, netdev);
5400 netif_rx(skb);
5401 }
5402
igc_resume(struct device * dev)5403 static int __maybe_unused igc_resume(struct device *dev)
5404 {
5405 struct pci_dev *pdev = to_pci_dev(dev);
5406 struct net_device *netdev = pci_get_drvdata(pdev);
5407 struct igc_adapter *adapter = netdev_priv(netdev);
5408 struct igc_hw *hw = &adapter->hw;
5409 u32 err, val;
5410
5411 pci_set_power_state(pdev, PCI_D0);
5412 pci_restore_state(pdev);
5413 pci_save_state(pdev);
5414
5415 if (!pci_device_is_present(pdev))
5416 return -ENODEV;
5417 err = pci_enable_device_mem(pdev);
5418 if (err) {
5419 netdev_err(netdev, "Cannot enable PCI device from suspend\n");
5420 return err;
5421 }
5422 pci_set_master(pdev);
5423
5424 pci_enable_wake(pdev, PCI_D3hot, 0);
5425 pci_enable_wake(pdev, PCI_D3cold, 0);
5426
5427 if (igc_init_interrupt_scheme(adapter, true)) {
5428 netdev_err(netdev, "Unable to allocate memory for queues\n");
5429 return -ENOMEM;
5430 }
5431
5432 igc_reset(adapter);
5433
5434 /* let the f/w know that the h/w is now under the control of the
5435 * driver.
5436 */
5437 igc_get_hw_control(adapter);
5438
5439 val = rd32(IGC_WUS);
5440 if (val & WAKE_PKT_WUS)
5441 igc_deliver_wake_packet(netdev);
5442
5443 wr32(IGC_WUS, ~0);
5444
5445 rtnl_lock();
5446 if (!err && netif_running(netdev))
5447 err = __igc_open(netdev, true);
5448
5449 if (!err)
5450 netif_device_attach(netdev);
5451 rtnl_unlock();
5452
5453 return err;
5454 }
5455
igc_runtime_resume(struct device * dev)5456 static int __maybe_unused igc_runtime_resume(struct device *dev)
5457 {
5458 return igc_resume(dev);
5459 }
5460
igc_suspend(struct device * dev)5461 static int __maybe_unused igc_suspend(struct device *dev)
5462 {
5463 return __igc_shutdown(to_pci_dev(dev), NULL, 0);
5464 }
5465
igc_runtime_idle(struct device * dev)5466 static int __maybe_unused igc_runtime_idle(struct device *dev)
5467 {
5468 struct net_device *netdev = dev_get_drvdata(dev);
5469 struct igc_adapter *adapter = netdev_priv(netdev);
5470
5471 if (!igc_has_link(adapter))
5472 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
5473
5474 return -EBUSY;
5475 }
5476 #endif /* CONFIG_PM */
5477
igc_shutdown(struct pci_dev * pdev)5478 static void igc_shutdown(struct pci_dev *pdev)
5479 {
5480 bool wake;
5481
5482 __igc_shutdown(pdev, &wake, 0);
5483
5484 if (system_state == SYSTEM_POWER_OFF) {
5485 pci_wake_from_d3(pdev, wake);
5486 pci_set_power_state(pdev, PCI_D3hot);
5487 }
5488 }
5489
5490 /**
5491 * igc_io_error_detected - called when PCI error is detected
5492 * @pdev: Pointer to PCI device
5493 * @state: The current PCI connection state
5494 *
5495 * This function is called after a PCI bus error affecting
5496 * this device has been detected.
5497 **/
igc_io_error_detected(struct pci_dev * pdev,pci_channel_state_t state)5498 static pci_ers_result_t igc_io_error_detected(struct pci_dev *pdev,
5499 pci_channel_state_t state)
5500 {
5501 struct net_device *netdev = pci_get_drvdata(pdev);
5502 struct igc_adapter *adapter = netdev_priv(netdev);
5503
5504 netif_device_detach(netdev);
5505
5506 if (state == pci_channel_io_perm_failure)
5507 return PCI_ERS_RESULT_DISCONNECT;
5508
5509 if (netif_running(netdev))
5510 igc_down(adapter);
5511 pci_disable_device(pdev);
5512
5513 /* Request a slot reset. */
5514 return PCI_ERS_RESULT_NEED_RESET;
5515 }
5516
5517 /**
5518 * igc_io_slot_reset - called after the PCI bus has been reset.
5519 * @pdev: Pointer to PCI device
5520 *
5521 * Restart the card from scratch, as if from a cold-boot. Implementation
5522 * resembles the first-half of the igc_resume routine.
5523 **/
igc_io_slot_reset(struct pci_dev * pdev)5524 static pci_ers_result_t igc_io_slot_reset(struct pci_dev *pdev)
5525 {
5526 struct net_device *netdev = pci_get_drvdata(pdev);
5527 struct igc_adapter *adapter = netdev_priv(netdev);
5528 struct igc_hw *hw = &adapter->hw;
5529 pci_ers_result_t result;
5530
5531 if (pci_enable_device_mem(pdev)) {
5532 netdev_err(netdev, "Could not re-enable PCI device after reset\n");
5533 result = PCI_ERS_RESULT_DISCONNECT;
5534 } else {
5535 pci_set_master(pdev);
5536 pci_restore_state(pdev);
5537 pci_save_state(pdev);
5538
5539 pci_enable_wake(pdev, PCI_D3hot, 0);
5540 pci_enable_wake(pdev, PCI_D3cold, 0);
5541
5542 /* In case of PCI error, adapter loses its HW address
5543 * so we should re-assign it here.
5544 */
5545 hw->hw_addr = adapter->io_addr;
5546
5547 igc_reset(adapter);
5548 wr32(IGC_WUS, ~0);
5549 result = PCI_ERS_RESULT_RECOVERED;
5550 }
5551
5552 return result;
5553 }
5554
5555 /**
5556 * igc_io_resume - called when traffic can start to flow again.
5557 * @pdev: Pointer to PCI device
5558 *
5559 * This callback is called when the error recovery driver tells us that
5560 * its OK to resume normal operation. Implementation resembles the
5561 * second-half of the igc_resume routine.
5562 */
igc_io_resume(struct pci_dev * pdev)5563 static void igc_io_resume(struct pci_dev *pdev)
5564 {
5565 struct net_device *netdev = pci_get_drvdata(pdev);
5566 struct igc_adapter *adapter = netdev_priv(netdev);
5567
5568 rtnl_lock();
5569 if (netif_running(netdev)) {
5570 if (igc_open(netdev)) {
5571 netdev_err(netdev, "igc_open failed after reset\n");
5572 return;
5573 }
5574 }
5575
5576 netif_device_attach(netdev);
5577
5578 /* let the f/w know that the h/w is now under the control of the
5579 * driver.
5580 */
5581 igc_get_hw_control(adapter);
5582 rtnl_unlock();
5583 }
5584
5585 static const struct pci_error_handlers igc_err_handler = {
5586 .error_detected = igc_io_error_detected,
5587 .slot_reset = igc_io_slot_reset,
5588 .resume = igc_io_resume,
5589 };
5590
5591 #ifdef CONFIG_PM
5592 static const struct dev_pm_ops igc_pm_ops = {
5593 SET_SYSTEM_SLEEP_PM_OPS(igc_suspend, igc_resume)
5594 SET_RUNTIME_PM_OPS(igc_runtime_suspend, igc_runtime_resume,
5595 igc_runtime_idle)
5596 };
5597 #endif
5598
5599 static struct pci_driver igc_driver = {
5600 .name = igc_driver_name,
5601 .id_table = igc_pci_tbl,
5602 .probe = igc_probe,
5603 .remove = igc_remove,
5604 #ifdef CONFIG_PM
5605 .driver.pm = &igc_pm_ops,
5606 #endif
5607 .shutdown = igc_shutdown,
5608 .err_handler = &igc_err_handler,
5609 };
5610
5611 /**
5612 * igc_reinit_queues - return error
5613 * @adapter: pointer to adapter structure
5614 */
igc_reinit_queues(struct igc_adapter * adapter)5615 int igc_reinit_queues(struct igc_adapter *adapter)
5616 {
5617 struct net_device *netdev = adapter->netdev;
5618 int err = 0;
5619
5620 if (netif_running(netdev))
5621 igc_close(netdev);
5622
5623 igc_reset_interrupt_capability(adapter);
5624
5625 if (igc_init_interrupt_scheme(adapter, true)) {
5626 netdev_err(netdev, "Unable to allocate memory for queues\n");
5627 return -ENOMEM;
5628 }
5629
5630 if (netif_running(netdev))
5631 err = igc_open(netdev);
5632
5633 return err;
5634 }
5635
5636 /**
5637 * igc_get_hw_dev - return device
5638 * @hw: pointer to hardware structure
5639 *
5640 * used by hardware layer to print debugging information
5641 */
igc_get_hw_dev(struct igc_hw * hw)5642 struct net_device *igc_get_hw_dev(struct igc_hw *hw)
5643 {
5644 struct igc_adapter *adapter = hw->back;
5645
5646 return adapter->netdev;
5647 }
5648
5649 /**
5650 * igc_init_module - Driver Registration Routine
5651 *
5652 * igc_init_module is the first routine called when the driver is
5653 * loaded. All it does is register with the PCI subsystem.
5654 */
igc_init_module(void)5655 static int __init igc_init_module(void)
5656 {
5657 int ret;
5658
5659 pr_info("%s\n", igc_driver_string);
5660 pr_info("%s\n", igc_copyright);
5661
5662 ret = pci_register_driver(&igc_driver);
5663 return ret;
5664 }
5665
5666 module_init(igc_init_module);
5667
5668 /**
5669 * igc_exit_module - Driver Exit Cleanup Routine
5670 *
5671 * igc_exit_module is called just before the driver is removed
5672 * from memory.
5673 */
igc_exit_module(void)5674 static void __exit igc_exit_module(void)
5675 {
5676 pci_unregister_driver(&igc_driver);
5677 }
5678
5679 module_exit(igc_exit_module);
5680 /* igc_main.c */
5681