1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26 #include <string.h>
27 #include <unistd.h>
28 #include <fcntl.h>
29
30 #include "anv_private.h"
31
32 #include "common/intel_aux_map.h"
33 #include "common/intel_sample_positions.h"
34 #include "genxml/gen_macros.h"
35 #include "genxml/genX_pack.h"
36
37 #include "vk_util.h"
38
39 /**
40 * Compute an \p n x \p m pixel hashing table usable as slice, subslice or
41 * pixel pipe hashing table. The resulting table is the cyclic repetition of
42 * a fixed pattern with periodicity equal to \p period.
43 *
44 * If \p index is specified to be equal to \p period, a 2-way hashing table
45 * will be generated such that indices 0 and 1 are returned for the following
46 * fractions of entries respectively:
47 *
48 * p_0 = ceil(period / 2) / period
49 * p_1 = floor(period / 2) / period
50 *
51 * If \p index is even and less than \p period, a 3-way hashing table will be
52 * generated such that indices 0, 1 and 2 are returned for the following
53 * fractions of entries:
54 *
55 * p_0 = (ceil(period / 2) - 1) / period
56 * p_1 = floor(period / 2) / period
57 * p_2 = 1 / period
58 *
59 * The equations above apply if \p flip is equal to 0, if it is equal to 1 p_0
60 * and p_1 will be swapped for the result. Note that in the context of pixel
61 * pipe hashing this can be always 0 on Gfx12 platforms, since the hardware
62 * transparently remaps logical indices found on the table to physical pixel
63 * pipe indices from the highest to lowest EU count.
64 */
65 UNUSED static void
calculate_pixel_hashing_table(unsigned n,unsigned m,unsigned period,unsigned index,bool flip,uint32_t * p)66 calculate_pixel_hashing_table(unsigned n, unsigned m,
67 unsigned period, unsigned index, bool flip,
68 uint32_t *p)
69 {
70 for (unsigned i = 0; i < n; i++) {
71 for (unsigned j = 0; j < m; j++) {
72 const unsigned k = (i + j) % period;
73 p[j + m * i] = (k == index ? 2 : (k & 1) ^ flip);
74 }
75 }
76 }
77
78 static void
genX(emit_slice_hashing_state)79 genX(emit_slice_hashing_state)(struct anv_device *device,
80 struct anv_batch *batch)
81 {
82 #if GFX_VER == 11
83 assert(device->info.ppipe_subslices[2] == 0);
84
85 if (device->info.ppipe_subslices[0] == device->info.ppipe_subslices[1])
86 return;
87
88 if (!device->slice_hash.alloc_size) {
89 unsigned size = GENX(SLICE_HASH_TABLE_length) * 4;
90 device->slice_hash =
91 anv_state_pool_alloc(&device->dynamic_state_pool, size, 64);
92
93 const bool flip = device->info.ppipe_subslices[0] <
94 device->info.ppipe_subslices[1];
95 struct GENX(SLICE_HASH_TABLE) table;
96 calculate_pixel_hashing_table(16, 16, 3, 3, flip, table.Entry[0]);
97
98 GENX(SLICE_HASH_TABLE_pack)(NULL, device->slice_hash.map, &table);
99 }
100
101 anv_batch_emit(batch, GENX(3DSTATE_SLICE_TABLE_STATE_POINTERS), ptr) {
102 ptr.SliceHashStatePointerValid = true;
103 ptr.SliceHashTableStatePointer = device->slice_hash.offset;
104 }
105
106 anv_batch_emit(batch, GENX(3DSTATE_3D_MODE), mode) {
107 mode.SliceHashingTableEnable = true;
108 }
109 #elif GFX_VERx10 == 120
110 /* For each n calculate ppipes_of[n], equal to the number of pixel pipes
111 * present with n active dual subslices.
112 */
113 unsigned ppipes_of[3] = {};
114
115 for (unsigned n = 0; n < ARRAY_SIZE(ppipes_of); n++) {
116 for (unsigned p = 0; p < ARRAY_SIZE(device->info.ppipe_subslices); p++)
117 ppipes_of[n] += (device->info.ppipe_subslices[p] == n);
118 }
119
120 /* Gfx12 has three pixel pipes. */
121 assert(ppipes_of[0] + ppipes_of[1] + ppipes_of[2] == 3);
122
123 if (ppipes_of[2] == 3 || ppipes_of[0] == 2) {
124 /* All three pixel pipes have the maximum number of active dual
125 * subslices, or there is only one active pixel pipe: Nothing to do.
126 */
127 return;
128 }
129
130 anv_batch_emit(batch, GENX(3DSTATE_SUBSLICE_HASH_TABLE), p) {
131 p.SliceHashControl[0] = TABLE_0;
132
133 if (ppipes_of[2] == 2 && ppipes_of[0] == 1)
134 calculate_pixel_hashing_table(8, 16, 2, 2, 0, p.TwoWayTableEntry[0]);
135 else if (ppipes_of[2] == 1 && ppipes_of[1] == 1 && ppipes_of[0] == 1)
136 calculate_pixel_hashing_table(8, 16, 3, 3, 0, p.TwoWayTableEntry[0]);
137
138 if (ppipes_of[2] == 2 && ppipes_of[1] == 1)
139 calculate_pixel_hashing_table(8, 16, 5, 4, 0, p.ThreeWayTableEntry[0]);
140 else if (ppipes_of[2] == 2 && ppipes_of[0] == 1)
141 calculate_pixel_hashing_table(8, 16, 2, 2, 0, p.ThreeWayTableEntry[0]);
142 else if (ppipes_of[2] == 1 && ppipes_of[1] == 1 && ppipes_of[0] == 1)
143 calculate_pixel_hashing_table(8, 16, 3, 3, 0, p.ThreeWayTableEntry[0]);
144 else
145 unreachable("Illegal fusing.");
146 }
147
148 anv_batch_emit(batch, GENX(3DSTATE_3D_MODE), p) {
149 p.SubsliceHashingTableEnable = true;
150 p.SubsliceHashingTableEnableMask = true;
151 }
152 #endif
153 }
154
155 static VkResult
init_render_queue_state(struct anv_queue * queue)156 init_render_queue_state(struct anv_queue *queue)
157 {
158 struct anv_device *device = queue->device;
159 struct anv_batch batch;
160
161 uint32_t cmds[64];
162 batch.start = batch.next = cmds;
163 batch.end = (void *) cmds + sizeof(cmds);
164
165 anv_batch_emit(&batch, GENX(PIPELINE_SELECT), ps) {
166 #if GFX_VER >= 9
167 ps.MaskBits = GFX_VER >= 12 ? 0x13 : 3;
168 ps.MediaSamplerDOPClockGateEnable = GFX_VER >= 12;
169 #endif
170 ps.PipelineSelection = _3D;
171 }
172
173 #if GFX_VER == 9
174 anv_batch_write_reg(&batch, GENX(CACHE_MODE_1), cm1) {
175 cm1.FloatBlendOptimizationEnable = true;
176 cm1.FloatBlendOptimizationEnableMask = true;
177 cm1.MSCRAWHazardAvoidanceBit = true;
178 cm1.MSCRAWHazardAvoidanceBitMask = true;
179 cm1.PartialResolveDisableInVC = true;
180 cm1.PartialResolveDisableInVCMask = true;
181 }
182 #endif
183
184 anv_batch_emit(&batch, GENX(3DSTATE_AA_LINE_PARAMETERS), aa);
185
186 anv_batch_emit(&batch, GENX(3DSTATE_DRAWING_RECTANGLE), rect) {
187 rect.ClippedDrawingRectangleYMin = 0;
188 rect.ClippedDrawingRectangleXMin = 0;
189 rect.ClippedDrawingRectangleYMax = UINT16_MAX;
190 rect.ClippedDrawingRectangleXMax = UINT16_MAX;
191 rect.DrawingRectangleOriginY = 0;
192 rect.DrawingRectangleOriginX = 0;
193 }
194
195 #if GFX_VER >= 8
196 anv_batch_emit(&batch, GENX(3DSTATE_WM_CHROMAKEY), ck);
197
198 genX(emit_sample_pattern)(&batch, 0, NULL);
199
200 /* The BDW+ docs describe how to use the 3DSTATE_WM_HZ_OP instruction in the
201 * section titled, "Optimized Depth Buffer Clear and/or Stencil Buffer
202 * Clear." It mentions that the packet overrides GPU state for the clear
203 * operation and needs to be reset to 0s to clear the overrides. Depending
204 * on the kernel, we may not get a context with the state for this packet
205 * zeroed. Do it ourselves just in case. We've observed this to prevent a
206 * number of GPU hangs on ICL.
207 */
208 anv_batch_emit(&batch, GENX(3DSTATE_WM_HZ_OP), hzp);
209 #endif
210
211 #if GFX_VER == 11
212 /* The default behavior of bit 5 "Headerless Message for Pre-emptable
213 * Contexts" in SAMPLER MODE register is set to 0, which means
214 * headerless sampler messages are not allowed for pre-emptable
215 * contexts. Set the bit 5 to 1 to allow them.
216 */
217 anv_batch_write_reg(&batch, GENX(SAMPLER_MODE), sm) {
218 sm.HeaderlessMessageforPreemptableContexts = true;
219 sm.HeaderlessMessageforPreemptableContextsMask = true;
220 }
221
222 /* Bit 1 "Enabled Texel Offset Precision Fix" must be set in
223 * HALF_SLICE_CHICKEN7 register.
224 */
225 anv_batch_write_reg(&batch, GENX(HALF_SLICE_CHICKEN7), hsc7) {
226 hsc7.EnabledTexelOffsetPrecisionFix = true;
227 hsc7.EnabledTexelOffsetPrecisionFixMask = true;
228 }
229
230 anv_batch_write_reg(&batch, GENX(TCCNTLREG), tcc) {
231 tcc.L3DataPartialWriteMergingEnable = true;
232 tcc.ColorZPartialWriteMergingEnable = true;
233 tcc.URBPartialWriteMergingEnable = true;
234 tcc.TCDisable = true;
235 }
236 #endif
237 genX(emit_slice_hashing_state)(device, &batch);
238
239 #if GFX_VER >= 11
240 /* hardware specification recommends disabling repacking for
241 * the compatibility with decompression mechanism in display controller.
242 */
243 if (device->info.disable_ccs_repack) {
244 anv_batch_write_reg(&batch, GENX(CACHE_MODE_0), cm0) {
245 cm0.DisableRepackingforCompression = true;
246 cm0.DisableRepackingforCompressionMask = true;
247 }
248 }
249
250 /* an unknown issue is causing vs push constants to become
251 * corrupted during object-level preemption. For now, restrict
252 * to command buffer level preemption to avoid rendering
253 * corruption.
254 */
255 anv_batch_write_reg(&batch, GENX(CS_CHICKEN1), cc1) {
256 cc1.ReplayMode = MidcmdbufferPreemption;
257 cc1.ReplayModeMask = true;
258 }
259
260 #if GFX_VERx10 < 125
261 #define AA_LINE_QUALITY_REG GENX(3D_CHICKEN3)
262 #else
263 #define AA_LINE_QUALITY_REG GENX(CHICKEN_RASTER_1)
264 #endif
265
266 /* Enable the new line drawing algorithm that produces higher quality
267 * lines.
268 */
269 anv_batch_write_reg(&batch, AA_LINE_QUALITY_REG, c3) {
270 c3.AALineQualityFix = true;
271 c3.AALineQualityFixMask = true;
272 }
273 #endif
274
275 #if GFX_VER == 12
276 if (device->info.has_aux_map) {
277 uint64_t aux_base_addr = intel_aux_map_get_base(device->aux_map_ctx);
278 assert(aux_base_addr % (32 * 1024) == 0);
279 anv_batch_emit(&batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
280 lri.RegisterOffset = GENX(GFX_AUX_TABLE_BASE_ADDR_num);
281 lri.DataDWord = aux_base_addr & 0xffffffff;
282 }
283 anv_batch_emit(&batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
284 lri.RegisterOffset = GENX(GFX_AUX_TABLE_BASE_ADDR_num) + 4;
285 lri.DataDWord = aux_base_addr >> 32;
286 }
287 }
288 #endif
289
290 /* Set the "CONSTANT_BUFFER Address Offset Disable" bit, so
291 * 3DSTATE_CONSTANT_XS buffer 0 is an absolute address.
292 *
293 * This is only safe on kernels with context isolation support.
294 */
295 if (GFX_VER >= 8 && device->physical->has_context_isolation) {
296 #if GFX_VER >= 9
297 anv_batch_write_reg(&batch, GENX(CS_DEBUG_MODE2), csdm2) {
298 csdm2.CONSTANT_BUFFERAddressOffsetDisable = true;
299 csdm2.CONSTANT_BUFFERAddressOffsetDisableMask = true;
300 }
301 #elif GFX_VER == 8
302 anv_batch_write_reg(&batch, GENX(INSTPM), instpm) {
303 instpm.CONSTANT_BUFFERAddressOffsetDisable = true;
304 instpm.CONSTANT_BUFFERAddressOffsetDisableMask = true;
305 }
306 #endif
307 }
308
309 #if GFX_VER >= 11
310 /* Starting with GFX version 11, SLM is no longer part of the L3$ config
311 * so it never changes throughout the lifetime of the VkDevice.
312 */
313 const struct intel_l3_config *cfg = intel_get_default_l3_config(&device->info);
314 genX(emit_l3_config)(&batch, device, cfg);
315 device->l3_config = cfg;
316 #endif
317
318 anv_batch_emit(&batch, GENX(MI_BATCH_BUFFER_END), bbe);
319
320 assert(batch.next <= batch.end);
321
322 return anv_queue_submit_simple_batch(queue, &batch);
323 }
324
325 void
genX(init_physical_device_state)326 genX(init_physical_device_state)(ASSERTED struct anv_physical_device *device)
327 {
328 assert(device->info.verx10 == GFX_VERx10);
329 }
330
331 VkResult
genX(init_device_state)332 genX(init_device_state)(struct anv_device *device)
333 {
334 VkResult res;
335
336 device->slice_hash = (struct anv_state) { 0 };
337 for (uint32_t i = 0; i < device->queue_count; i++) {
338 struct anv_queue *queue = &device->queues[i];
339 switch (queue->family->engine_class) {
340 case I915_ENGINE_CLASS_RENDER:
341 res = init_render_queue_state(queue);
342 break;
343 default:
344 res = vk_error(device, VK_ERROR_INITIALIZATION_FAILED);
345 break;
346 }
347 if (res != VK_SUCCESS)
348 return res;
349 }
350
351 return res;
352 }
353
354 void
genX(emit_l3_config)355 genX(emit_l3_config)(struct anv_batch *batch,
356 const struct anv_device *device,
357 const struct intel_l3_config *cfg)
358 {
359 UNUSED const struct intel_device_info *devinfo = &device->info;
360
361 #if GFX_VER >= 8
362
363 #if GFX_VER >= 12
364 #define L3_ALLOCATION_REG GENX(L3ALLOC)
365 #define L3_ALLOCATION_REG_num GENX(L3ALLOC_num)
366 #else
367 #define L3_ALLOCATION_REG GENX(L3CNTLREG)
368 #define L3_ALLOCATION_REG_num GENX(L3CNTLREG_num)
369 #endif
370
371 anv_batch_write_reg(batch, L3_ALLOCATION_REG, l3cr) {
372 if (cfg == NULL) {
373 #if GFX_VER >= 12
374 l3cr.L3FullWayAllocationEnable = true;
375 #else
376 unreachable("Invalid L3$ config");
377 #endif
378 } else {
379 #if GFX_VER < 11
380 l3cr.SLMEnable = cfg->n[INTEL_L3P_SLM];
381 #endif
382 #if GFX_VER == 11
383 /* Wa_1406697149: Bit 9 "Error Detection Behavior Control" must be
384 * set in L3CNTLREG register. The default setting of the bit is not
385 * the desirable behavior.
386 */
387 l3cr.ErrorDetectionBehaviorControl = true;
388 l3cr.UseFullWays = true;
389 #endif /* GFX_VER == 11 */
390 assert(cfg->n[INTEL_L3P_IS] == 0);
391 assert(cfg->n[INTEL_L3P_C] == 0);
392 assert(cfg->n[INTEL_L3P_T] == 0);
393 l3cr.URBAllocation = cfg->n[INTEL_L3P_URB];
394 l3cr.ROAllocation = cfg->n[INTEL_L3P_RO];
395 l3cr.DCAllocation = cfg->n[INTEL_L3P_DC];
396 l3cr.AllAllocation = cfg->n[INTEL_L3P_ALL];
397 }
398 }
399
400 #else /* GFX_VER < 8 */
401
402 const bool has_dc = cfg->n[INTEL_L3P_DC] || cfg->n[INTEL_L3P_ALL];
403 const bool has_is = cfg->n[INTEL_L3P_IS] || cfg->n[INTEL_L3P_RO] ||
404 cfg->n[INTEL_L3P_ALL];
405 const bool has_c = cfg->n[INTEL_L3P_C] || cfg->n[INTEL_L3P_RO] ||
406 cfg->n[INTEL_L3P_ALL];
407 const bool has_t = cfg->n[INTEL_L3P_T] || cfg->n[INTEL_L3P_RO] ||
408 cfg->n[INTEL_L3P_ALL];
409
410 assert(!cfg->n[INTEL_L3P_ALL]);
411
412 /* When enabled SLM only uses a portion of the L3 on half of the banks,
413 * the matching space on the remaining banks has to be allocated to a
414 * client (URB for all validated configurations) set to the
415 * lower-bandwidth 2-bank address hashing mode.
416 */
417 const bool urb_low_bw = cfg->n[INTEL_L3P_SLM] && !devinfo->is_baytrail;
418 assert(!urb_low_bw || cfg->n[INTEL_L3P_URB] == cfg->n[INTEL_L3P_SLM]);
419
420 /* Minimum number of ways that can be allocated to the URB. */
421 const unsigned n0_urb = devinfo->is_baytrail ? 32 : 0;
422 assert(cfg->n[INTEL_L3P_URB] >= n0_urb);
423
424 anv_batch_write_reg(batch, GENX(L3SQCREG1), l3sqc) {
425 l3sqc.ConvertDC_UC = !has_dc;
426 l3sqc.ConvertIS_UC = !has_is;
427 l3sqc.ConvertC_UC = !has_c;
428 l3sqc.ConvertT_UC = !has_t;
429 #if GFX_VERx10 == 75
430 l3sqc.L3SQGeneralPriorityCreditInitialization = SQGPCI_DEFAULT;
431 #else
432 l3sqc.L3SQGeneralPriorityCreditInitialization =
433 devinfo->is_baytrail ? BYT_SQGPCI_DEFAULT : SQGPCI_DEFAULT;
434 #endif
435 l3sqc.L3SQHighPriorityCreditInitialization = SQHPCI_DEFAULT;
436 }
437
438 anv_batch_write_reg(batch, GENX(L3CNTLREG2), l3cr2) {
439 l3cr2.SLMEnable = cfg->n[INTEL_L3P_SLM];
440 l3cr2.URBLowBandwidth = urb_low_bw;
441 l3cr2.URBAllocation = cfg->n[INTEL_L3P_URB] - n0_urb;
442 #if !GFX_VERx10 == 75
443 l3cr2.ALLAllocation = cfg->n[INTEL_L3P_ALL];
444 #endif
445 l3cr2.ROAllocation = cfg->n[INTEL_L3P_RO];
446 l3cr2.DCAllocation = cfg->n[INTEL_L3P_DC];
447 }
448
449 anv_batch_write_reg(batch, GENX(L3CNTLREG3), l3cr3) {
450 l3cr3.ISAllocation = cfg->n[INTEL_L3P_IS];
451 l3cr3.ISLowBandwidth = 0;
452 l3cr3.CAllocation = cfg->n[INTEL_L3P_C];
453 l3cr3.CLowBandwidth = 0;
454 l3cr3.TAllocation = cfg->n[INTEL_L3P_T];
455 l3cr3.TLowBandwidth = 0;
456 }
457
458 #if GFX_VERx10 == 75
459 if (device->physical->cmd_parser_version >= 4) {
460 /* Enable L3 atomics on HSW if we have a DC partition, otherwise keep
461 * them disabled to avoid crashing the system hard.
462 */
463 anv_batch_write_reg(batch, GENX(SCRATCH1), s1) {
464 s1.L3AtomicDisable = !has_dc;
465 }
466 anv_batch_write_reg(batch, GENX(CHICKEN3), c3) {
467 c3.L3AtomicDisableMask = true;
468 c3.L3AtomicDisable = !has_dc;
469 }
470 }
471 #endif /* GFX_VERx10 == 75 */
472
473 #endif /* GFX_VER < 8 */
474 }
475
476 void
genX(emit_multisample)477 genX(emit_multisample)(struct anv_batch *batch, uint32_t samples,
478 const VkSampleLocationEXT *locations)
479 {
480 anv_batch_emit(batch, GENX(3DSTATE_MULTISAMPLE), ms) {
481 ms.NumberofMultisamples = __builtin_ffs(samples) - 1;
482
483 ms.PixelLocation = CENTER;
484 #if GFX_VER >= 8
485 /* The PRM says that this bit is valid only for DX9:
486 *
487 * SW can choose to set this bit only for DX9 API. DX10/OGL API's
488 * should not have any effect by setting or not setting this bit.
489 */
490 ms.PixelPositionOffsetEnable = false;
491 #else
492
493 if (locations) {
494 switch (samples) {
495 case 1:
496 INTEL_SAMPLE_POS_1X_ARRAY(ms.Sample, locations);
497 break;
498 case 2:
499 INTEL_SAMPLE_POS_2X_ARRAY(ms.Sample, locations);
500 break;
501 case 4:
502 INTEL_SAMPLE_POS_4X_ARRAY(ms.Sample, locations);
503 break;
504 case 8:
505 INTEL_SAMPLE_POS_8X_ARRAY(ms.Sample, locations);
506 break;
507 default:
508 break;
509 }
510 } else {
511 switch (samples) {
512 case 1:
513 INTEL_SAMPLE_POS_1X(ms.Sample);
514 break;
515 case 2:
516 INTEL_SAMPLE_POS_2X(ms.Sample);
517 break;
518 case 4:
519 INTEL_SAMPLE_POS_4X(ms.Sample);
520 break;
521 case 8:
522 INTEL_SAMPLE_POS_8X(ms.Sample);
523 break;
524 default:
525 break;
526 }
527 }
528 #endif
529 }
530 }
531
532 #if GFX_VER >= 8
533 void
genX(emit_sample_pattern)534 genX(emit_sample_pattern)(struct anv_batch *batch, uint32_t samples,
535 const VkSampleLocationEXT *locations)
536 {
537 /* See the Vulkan 1.0 spec Table 24.1 "Standard sample locations" and
538 * VkPhysicalDeviceFeatures::standardSampleLocations.
539 */
540 anv_batch_emit(batch, GENX(3DSTATE_SAMPLE_PATTERN), sp) {
541 if (locations) {
542 /* The Skylake PRM Vol. 2a "3DSTATE_SAMPLE_PATTERN" says:
543 *
544 * "When programming the sample offsets (for NUMSAMPLES_4 or _8
545 * and MSRASTMODE_xxx_PATTERN), the order of the samples 0 to 3
546 * (or 7 for 8X, or 15 for 16X) must have monotonically increasing
547 * distance from the pixel center. This is required to get the
548 * correct centroid computation in the device."
549 *
550 * However, the Vulkan spec seems to require that the the samples
551 * occur in the order provided through the API. The standard sample
552 * patterns have the above property that they have monotonically
553 * increasing distances from the center but client-provided ones do
554 * not. As long as this only affects centroid calculations as the
555 * docs say, we should be ok because OpenGL and Vulkan only require
556 * that the centroid be some lit sample and that it's the same for
557 * all samples in a pixel; they have no requirement that it be the
558 * one closest to center.
559 */
560 switch (samples) {
561 case 1:
562 INTEL_SAMPLE_POS_1X_ARRAY(sp._1xSample, locations);
563 break;
564 case 2:
565 INTEL_SAMPLE_POS_2X_ARRAY(sp._2xSample, locations);
566 break;
567 case 4:
568 INTEL_SAMPLE_POS_4X_ARRAY(sp._4xSample, locations);
569 break;
570 case 8:
571 INTEL_SAMPLE_POS_8X_ARRAY(sp._8xSample, locations);
572 break;
573 #if GFX_VER >= 9
574 case 16:
575 INTEL_SAMPLE_POS_16X_ARRAY(sp._16xSample, locations);
576 break;
577 #endif
578 default:
579 break;
580 }
581 } else {
582 INTEL_SAMPLE_POS_1X(sp._1xSample);
583 INTEL_SAMPLE_POS_2X(sp._2xSample);
584 INTEL_SAMPLE_POS_4X(sp._4xSample);
585 INTEL_SAMPLE_POS_8X(sp._8xSample);
586 #if GFX_VER >= 9
587 INTEL_SAMPLE_POS_16X(sp._16xSample);
588 #endif
589 }
590 }
591 }
592 #endif
593
594 #if GFX_VER >= 11
595 void
genX(emit_shading_rate)596 genX(emit_shading_rate)(struct anv_batch *batch,
597 const struct anv_graphics_pipeline *pipeline,
598 struct anv_state cps_states,
599 struct anv_dynamic_state *dynamic_state)
600 {
601 const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline);
602 const bool cps_enable = wm_prog_data && wm_prog_data->per_coarse_pixel_dispatch;
603
604 #if GFX_VER == 11
605 anv_batch_emit(batch, GENX(3DSTATE_CPS), cps) {
606 cps.CoarsePixelShadingMode = cps_enable ? CPS_MODE_CONSTANT : CPS_MODE_NONE;
607 if (cps_enable) {
608 cps.MinCPSizeX = dynamic_state->fragment_shading_rate.width;
609 cps.MinCPSizeY = dynamic_state->fragment_shading_rate.height;
610 }
611 }
612 #elif GFX_VER == 12
613 for (uint32_t i = 0; i < dynamic_state->viewport.count; i++) {
614 uint32_t *cps_state_dwords =
615 cps_states.map + GENX(CPS_STATE_length) * 4 * i;
616 struct GENX(CPS_STATE) cps_state = {
617 .CoarsePixelShadingMode = cps_enable ? CPS_MODE_CONSTANT : CPS_MODE_NONE,
618 };
619
620 if (cps_enable) {
621 cps_state.MinCPSizeX = dynamic_state->fragment_shading_rate.width;
622 cps_state.MinCPSizeY = dynamic_state->fragment_shading_rate.height;
623 }
624
625 GENX(CPS_STATE_pack)(NULL, cps_state_dwords, &cps_state);
626 }
627
628 anv_batch_emit(batch, GENX(3DSTATE_CPS_POINTERS), cps) {
629 cps.CoarsePixelShadingStateArrayPointer = cps_states.offset;
630 }
631 #endif
632 }
633 #endif /* GFX_VER >= 11 */
634
635 static uint32_t
vk_to_intel_tex_filter(VkFilter filter,bool anisotropyEnable)636 vk_to_intel_tex_filter(VkFilter filter, bool anisotropyEnable)
637 {
638 switch (filter) {
639 default:
640 assert(!"Invalid filter");
641 case VK_FILTER_NEAREST:
642 return anisotropyEnable ? MAPFILTER_ANISOTROPIC : MAPFILTER_NEAREST;
643 case VK_FILTER_LINEAR:
644 return anisotropyEnable ? MAPFILTER_ANISOTROPIC : MAPFILTER_LINEAR;
645 }
646 }
647
648 static uint32_t
vk_to_intel_max_anisotropy(float ratio)649 vk_to_intel_max_anisotropy(float ratio)
650 {
651 return (anv_clamp_f(ratio, 2, 16) - 2) / 2;
652 }
653
654 static const uint32_t vk_to_intel_mipmap_mode[] = {
655 [VK_SAMPLER_MIPMAP_MODE_NEAREST] = MIPFILTER_NEAREST,
656 [VK_SAMPLER_MIPMAP_MODE_LINEAR] = MIPFILTER_LINEAR
657 };
658
659 static const uint32_t vk_to_intel_tex_address[] = {
660 [VK_SAMPLER_ADDRESS_MODE_REPEAT] = TCM_WRAP,
661 [VK_SAMPLER_ADDRESS_MODE_MIRRORED_REPEAT] = TCM_MIRROR,
662 [VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE] = TCM_CLAMP,
663 [VK_SAMPLER_ADDRESS_MODE_MIRROR_CLAMP_TO_EDGE] = TCM_MIRROR_ONCE,
664 [VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER] = TCM_CLAMP_BORDER,
665 };
666
667 /* Vulkan specifies the result of shadow comparisons as:
668 * 1 if ref <op> texel,
669 * 0 otherwise.
670 *
671 * The hardware does:
672 * 0 if texel <op> ref,
673 * 1 otherwise.
674 *
675 * So, these look a bit strange because there's both a negation
676 * and swapping of the arguments involved.
677 */
678 static const uint32_t vk_to_intel_shadow_compare_op[] = {
679 [VK_COMPARE_OP_NEVER] = PREFILTEROP_ALWAYS,
680 [VK_COMPARE_OP_LESS] = PREFILTEROP_LEQUAL,
681 [VK_COMPARE_OP_EQUAL] = PREFILTEROP_NOTEQUAL,
682 [VK_COMPARE_OP_LESS_OR_EQUAL] = PREFILTEROP_LESS,
683 [VK_COMPARE_OP_GREATER] = PREFILTEROP_GEQUAL,
684 [VK_COMPARE_OP_NOT_EQUAL] = PREFILTEROP_EQUAL,
685 [VK_COMPARE_OP_GREATER_OR_EQUAL] = PREFILTEROP_GREATER,
686 [VK_COMPARE_OP_ALWAYS] = PREFILTEROP_NEVER,
687 };
688
689 #if GFX_VER >= 9
690 static const uint32_t vk_to_intel_sampler_reduction_mode[] = {
691 [VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE_EXT] = STD_FILTER,
692 [VK_SAMPLER_REDUCTION_MODE_MIN_EXT] = MINIMUM,
693 [VK_SAMPLER_REDUCTION_MODE_MAX_EXT] = MAXIMUM,
694 };
695 #endif
696
genX(CreateSampler)697 VkResult genX(CreateSampler)(
698 VkDevice _device,
699 const VkSamplerCreateInfo* pCreateInfo,
700 const VkAllocationCallbacks* pAllocator,
701 VkSampler* pSampler)
702 {
703 ANV_FROM_HANDLE(anv_device, device, _device);
704 struct anv_sampler *sampler;
705
706 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO);
707
708 sampler = vk_object_zalloc(&device->vk, pAllocator, sizeof(*sampler),
709 VK_OBJECT_TYPE_SAMPLER);
710 if (!sampler)
711 return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
712
713 sampler->n_planes = 1;
714
715 uint32_t border_color_stride = GFX_VERx10 == 75 ? 512 : 64;
716 uint32_t border_color_offset;
717 ASSERTED bool has_custom_color = false;
718 if (pCreateInfo->borderColor <= VK_BORDER_COLOR_INT_OPAQUE_WHITE) {
719 border_color_offset = device->border_colors.offset +
720 pCreateInfo->borderColor *
721 border_color_stride;
722 } else {
723 assert(GFX_VER >= 8);
724 sampler->custom_border_color =
725 anv_state_reserved_pool_alloc(&device->custom_border_colors);
726 border_color_offset = sampler->custom_border_color.offset;
727 }
728
729 #if GFX_VER >= 9
730 unsigned sampler_reduction_mode = STD_FILTER;
731 bool enable_sampler_reduction = false;
732 #endif
733
734 vk_foreach_struct(ext, pCreateInfo->pNext) {
735 switch (ext->sType) {
736 case VK_STRUCTURE_TYPE_SAMPLER_YCBCR_CONVERSION_INFO: {
737 VkSamplerYcbcrConversionInfo *pSamplerConversion =
738 (VkSamplerYcbcrConversionInfo *) ext;
739 ANV_FROM_HANDLE(anv_ycbcr_conversion, conversion,
740 pSamplerConversion->conversion);
741
742 /* Ignore conversion for non-YUV formats. This fulfills a requirement
743 * for clients that want to utilize same code path for images with
744 * external formats (VK_FORMAT_UNDEFINED) and "regular" RGBA images
745 * where format is known.
746 */
747 if (conversion == NULL || !conversion->format->can_ycbcr)
748 break;
749
750 sampler->n_planes = conversion->format->n_planes;
751 sampler->conversion = conversion;
752 break;
753 }
754 #if GFX_VER >= 9
755 case VK_STRUCTURE_TYPE_SAMPLER_REDUCTION_MODE_CREATE_INFO: {
756 VkSamplerReductionModeCreateInfo *sampler_reduction =
757 (VkSamplerReductionModeCreateInfo *) ext;
758 sampler_reduction_mode =
759 vk_to_intel_sampler_reduction_mode[sampler_reduction->reductionMode];
760 enable_sampler_reduction = true;
761 break;
762 }
763 #endif
764 case VK_STRUCTURE_TYPE_SAMPLER_CUSTOM_BORDER_COLOR_CREATE_INFO_EXT: {
765 VkSamplerCustomBorderColorCreateInfoEXT *custom_border_color =
766 (VkSamplerCustomBorderColorCreateInfoEXT *) ext;
767 if (sampler->custom_border_color.map == NULL)
768 break;
769 struct gfx8_border_color *cbc = sampler->custom_border_color.map;
770 if (custom_border_color->format == VK_FORMAT_B4G4R4A4_UNORM_PACK16) {
771 /* B4G4R4A4_UNORM_PACK16 is treated as R4G4B4A4_UNORM_PACK16 with
772 * a swizzle, but this does not carry over to the sampler for
773 * border colors, so we need to do the swizzle ourselves here.
774 */
775 cbc->uint32[0] = custom_border_color->customBorderColor.uint32[2];
776 cbc->uint32[1] = custom_border_color->customBorderColor.uint32[1];
777 cbc->uint32[2] = custom_border_color->customBorderColor.uint32[0];
778 cbc->uint32[3] = custom_border_color->customBorderColor.uint32[3];
779 } else {
780 /* Both structs share the same layout, so just copy them over. */
781 memcpy(cbc, &custom_border_color->customBorderColor,
782 sizeof(VkClearColorValue));
783 }
784 has_custom_color = true;
785 break;
786 }
787 default:
788 anv_debug_ignored_stype(ext->sType);
789 break;
790 }
791 }
792
793 assert((sampler->custom_border_color.map == NULL) || has_custom_color);
794
795 if (device->physical->has_bindless_samplers) {
796 /* If we have bindless, allocate enough samplers. We allocate 32 bytes
797 * for each sampler instead of 16 bytes because we want all bindless
798 * samplers to be 32-byte aligned so we don't have to use indirect
799 * sampler messages on them.
800 */
801 sampler->bindless_state =
802 anv_state_pool_alloc(&device->dynamic_state_pool,
803 sampler->n_planes * 32, 32);
804 }
805
806 for (unsigned p = 0; p < sampler->n_planes; p++) {
807 const bool plane_has_chroma =
808 sampler->conversion && sampler->conversion->format->planes[p].has_chroma;
809 const VkFilter min_filter =
810 plane_has_chroma ? sampler->conversion->chroma_filter : pCreateInfo->minFilter;
811 const VkFilter mag_filter =
812 plane_has_chroma ? sampler->conversion->chroma_filter : pCreateInfo->magFilter;
813 const bool enable_min_filter_addr_rounding = min_filter != VK_FILTER_NEAREST;
814 const bool enable_mag_filter_addr_rounding = mag_filter != VK_FILTER_NEAREST;
815 /* From Broadwell PRM, SAMPLER_STATE:
816 * "Mip Mode Filter must be set to MIPFILTER_NONE for Planar YUV surfaces."
817 */
818 const bool isl_format_is_planar_yuv = sampler->conversion &&
819 isl_format_is_yuv(sampler->conversion->format->planes[0].isl_format) &&
820 isl_format_is_planar(sampler->conversion->format->planes[0].isl_format);
821
822 const uint32_t mip_filter_mode =
823 isl_format_is_planar_yuv ?
824 MIPFILTER_NONE : vk_to_intel_mipmap_mode[pCreateInfo->mipmapMode];
825
826 struct GENX(SAMPLER_STATE) sampler_state = {
827 .SamplerDisable = false,
828 .TextureBorderColorMode = DX10OGL,
829
830 #if GFX_VER >= 11
831 .CPSLODCompensationEnable = true,
832 #endif
833
834 #if GFX_VER >= 8
835 .LODPreClampMode = CLAMP_MODE_OGL,
836 #else
837 .LODPreClampEnable = CLAMP_ENABLE_OGL,
838 #endif
839
840 #if GFX_VER == 8
841 .BaseMipLevel = 0.0,
842 #endif
843 .MipModeFilter = mip_filter_mode,
844 .MagModeFilter = vk_to_intel_tex_filter(mag_filter, pCreateInfo->anisotropyEnable),
845 .MinModeFilter = vk_to_intel_tex_filter(min_filter, pCreateInfo->anisotropyEnable),
846 .TextureLODBias = anv_clamp_f(pCreateInfo->mipLodBias, -16, 15.996),
847 .AnisotropicAlgorithm =
848 pCreateInfo->anisotropyEnable ? EWAApproximation : LEGACY,
849 .MinLOD = anv_clamp_f(pCreateInfo->minLod, 0, 14),
850 .MaxLOD = anv_clamp_f(pCreateInfo->maxLod, 0, 14),
851 .ChromaKeyEnable = 0,
852 .ChromaKeyIndex = 0,
853 .ChromaKeyMode = 0,
854 .ShadowFunction =
855 vk_to_intel_shadow_compare_op[pCreateInfo->compareEnable ?
856 pCreateInfo->compareOp : VK_COMPARE_OP_NEVER],
857 .CubeSurfaceControlMode = OVERRIDE,
858
859 .BorderColorPointer = border_color_offset,
860
861 #if GFX_VER >= 8
862 .LODClampMagnificationMode = MIPNONE,
863 #endif
864
865 .MaximumAnisotropy = vk_to_intel_max_anisotropy(pCreateInfo->maxAnisotropy),
866 .RAddressMinFilterRoundingEnable = enable_min_filter_addr_rounding,
867 .RAddressMagFilterRoundingEnable = enable_mag_filter_addr_rounding,
868 .VAddressMinFilterRoundingEnable = enable_min_filter_addr_rounding,
869 .VAddressMagFilterRoundingEnable = enable_mag_filter_addr_rounding,
870 .UAddressMinFilterRoundingEnable = enable_min_filter_addr_rounding,
871 .UAddressMagFilterRoundingEnable = enable_mag_filter_addr_rounding,
872 .TrilinearFilterQuality = 0,
873 .NonnormalizedCoordinateEnable = pCreateInfo->unnormalizedCoordinates,
874 .TCXAddressControlMode = vk_to_intel_tex_address[pCreateInfo->addressModeU],
875 .TCYAddressControlMode = vk_to_intel_tex_address[pCreateInfo->addressModeV],
876 .TCZAddressControlMode = vk_to_intel_tex_address[pCreateInfo->addressModeW],
877
878 #if GFX_VER >= 9
879 .ReductionType = sampler_reduction_mode,
880 .ReductionTypeEnable = enable_sampler_reduction,
881 #endif
882 };
883
884 GENX(SAMPLER_STATE_pack)(NULL, sampler->state[p], &sampler_state);
885
886 if (sampler->bindless_state.map) {
887 memcpy(sampler->bindless_state.map + p * 32,
888 sampler->state[p], GENX(SAMPLER_STATE_length) * 4);
889 }
890 }
891
892 *pSampler = anv_sampler_to_handle(sampler);
893
894 return VK_SUCCESS;
895 }
896