• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/fs-writeback.c
4  *
5  * Copyright (C) 2002, Linus Torvalds.
6  *
7  * Contains all the functions related to writing back and waiting
8  * upon dirty inodes against superblocks, and writing back dirty
9  * pages against inodes.  ie: data writeback.  Writeout of the
10  * inode itself is not handled here.
11  *
12  * 10Apr2002	Andrew Morton
13  *		Split out of fs/inode.c
14  *		Additions for address_space-based writeback
15  */
16 
17 #include <linux/kernel.h>
18 #include <linux/export.h>
19 #include <linux/spinlock.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/fs.h>
23 #include <linux/mm.h>
24 #include <linux/pagemap.h>
25 #include <linux/kthread.h>
26 #include <linux/writeback.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/tracepoint.h>
30 #include <linux/device.h>
31 #include <linux/memcontrol.h>
32 #include "internal.h"
33 
34 /*
35  * 4MB minimal write chunk size
36  */
37 #define MIN_WRITEBACK_PAGES	(4096UL >> (PAGE_SHIFT - 10))
38 
39 /*
40  * Passed into wb_writeback(), essentially a subset of writeback_control
41  */
42 struct wb_writeback_work {
43 	long nr_pages;
44 	struct super_block *sb;
45 	enum writeback_sync_modes sync_mode;
46 	unsigned int tagged_writepages:1;
47 	unsigned int for_kupdate:1;
48 	unsigned int range_cyclic:1;
49 	unsigned int for_background:1;
50 	unsigned int for_sync:1;	/* sync(2) WB_SYNC_ALL writeback */
51 	unsigned int auto_free:1;	/* free on completion */
52 	enum wb_reason reason;		/* why was writeback initiated? */
53 
54 	struct list_head list;		/* pending work list */
55 	struct wb_completion *done;	/* set if the caller waits */
56 };
57 
58 /*
59  * If an inode is constantly having its pages dirtied, but then the
60  * updates stop dirtytime_expire_interval seconds in the past, it's
61  * possible for the worst case time between when an inode has its
62  * timestamps updated and when they finally get written out to be two
63  * dirtytime_expire_intervals.  We set the default to 12 hours (in
64  * seconds), which means most of the time inodes will have their
65  * timestamps written to disk after 12 hours, but in the worst case a
66  * few inodes might not their timestamps updated for 24 hours.
67  */
68 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
69 
wb_inode(struct list_head * head)70 static inline struct inode *wb_inode(struct list_head *head)
71 {
72 	return list_entry(head, struct inode, i_io_list);
73 }
74 
75 /*
76  * Include the creation of the trace points after defining the
77  * wb_writeback_work structure and inline functions so that the definition
78  * remains local to this file.
79  */
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/writeback.h>
82 
83 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
84 
wb_io_lists_populated(struct bdi_writeback * wb)85 static bool wb_io_lists_populated(struct bdi_writeback *wb)
86 {
87 	if (wb_has_dirty_io(wb)) {
88 		return false;
89 	} else {
90 		set_bit(WB_has_dirty_io, &wb->state);
91 		WARN_ON_ONCE(!wb->avg_write_bandwidth);
92 		atomic_long_add(wb->avg_write_bandwidth,
93 				&wb->bdi->tot_write_bandwidth);
94 		return true;
95 	}
96 }
97 
wb_io_lists_depopulated(struct bdi_writeback * wb)98 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
99 {
100 	if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
101 	    list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
102 		clear_bit(WB_has_dirty_io, &wb->state);
103 		WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
104 					&wb->bdi->tot_write_bandwidth) < 0);
105 	}
106 }
107 
108 /**
109  * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
110  * @inode: inode to be moved
111  * @wb: target bdi_writeback
112  * @head: one of @wb->b_{dirty|io|more_io|dirty_time}
113  *
114  * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
115  * Returns %true if @inode is the first occupant of the !dirty_time IO
116  * lists; otherwise, %false.
117  */
inode_io_list_move_locked(struct inode * inode,struct bdi_writeback * wb,struct list_head * head)118 static bool inode_io_list_move_locked(struct inode *inode,
119 				      struct bdi_writeback *wb,
120 				      struct list_head *head)
121 {
122 	assert_spin_locked(&wb->list_lock);
123 
124 	list_move(&inode->i_io_list, head);
125 
126 	/* dirty_time doesn't count as dirty_io until expiration */
127 	if (head != &wb->b_dirty_time)
128 		return wb_io_lists_populated(wb);
129 
130 	wb_io_lists_depopulated(wb);
131 	return false;
132 }
133 
134 /**
135  * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list
136  * @inode: inode to be removed
137  * @wb: bdi_writeback @inode is being removed from
138  *
139  * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
140  * clear %WB_has_dirty_io if all are empty afterwards.
141  */
inode_io_list_del_locked(struct inode * inode,struct bdi_writeback * wb)142 static void inode_io_list_del_locked(struct inode *inode,
143 				     struct bdi_writeback *wb)
144 {
145 	assert_spin_locked(&wb->list_lock);
146 	assert_spin_locked(&inode->i_lock);
147 
148 	inode->i_state &= ~I_SYNC_QUEUED;
149 	list_del_init(&inode->i_io_list);
150 	wb_io_lists_depopulated(wb);
151 }
152 
wb_wakeup(struct bdi_writeback * wb)153 static void wb_wakeup(struct bdi_writeback *wb)
154 {
155 	spin_lock_bh(&wb->work_lock);
156 	if (test_bit(WB_registered, &wb->state))
157 		mod_delayed_work(bdi_wq, &wb->dwork, 0);
158 	spin_unlock_bh(&wb->work_lock);
159 }
160 
finish_writeback_work(struct bdi_writeback * wb,struct wb_writeback_work * work)161 static void finish_writeback_work(struct bdi_writeback *wb,
162 				  struct wb_writeback_work *work)
163 {
164 	struct wb_completion *done = work->done;
165 
166 	if (work->auto_free)
167 		kfree(work);
168 	if (done) {
169 		wait_queue_head_t *waitq = done->waitq;
170 
171 		/* @done can't be accessed after the following dec */
172 		if (atomic_dec_and_test(&done->cnt))
173 			wake_up_all(waitq);
174 	}
175 }
176 
wb_queue_work(struct bdi_writeback * wb,struct wb_writeback_work * work)177 static void wb_queue_work(struct bdi_writeback *wb,
178 			  struct wb_writeback_work *work)
179 {
180 	trace_writeback_queue(wb, work);
181 
182 	if (work->done)
183 		atomic_inc(&work->done->cnt);
184 
185 	spin_lock_bh(&wb->work_lock);
186 
187 	if (test_bit(WB_registered, &wb->state)) {
188 		list_add_tail(&work->list, &wb->work_list);
189 		mod_delayed_work(bdi_wq, &wb->dwork, 0);
190 	} else
191 		finish_writeback_work(wb, work);
192 
193 	spin_unlock_bh(&wb->work_lock);
194 }
195 
196 /**
197  * wb_wait_for_completion - wait for completion of bdi_writeback_works
198  * @done: target wb_completion
199  *
200  * Wait for one or more work items issued to @bdi with their ->done field
201  * set to @done, which should have been initialized with
202  * DEFINE_WB_COMPLETION().  This function returns after all such work items
203  * are completed.  Work items which are waited upon aren't freed
204  * automatically on completion.
205  */
wb_wait_for_completion(struct wb_completion * done)206 void wb_wait_for_completion(struct wb_completion *done)
207 {
208 	atomic_dec(&done->cnt);		/* put down the initial count */
209 	wait_event(*done->waitq, !atomic_read(&done->cnt));
210 }
211 
212 #ifdef CONFIG_CGROUP_WRITEBACK
213 
214 /*
215  * Parameters for foreign inode detection, see wbc_detach_inode() to see
216  * how they're used.
217  *
218  * These paramters are inherently heuristical as the detection target
219  * itself is fuzzy.  All we want to do is detaching an inode from the
220  * current owner if it's being written to by some other cgroups too much.
221  *
222  * The current cgroup writeback is built on the assumption that multiple
223  * cgroups writing to the same inode concurrently is very rare and a mode
224  * of operation which isn't well supported.  As such, the goal is not
225  * taking too long when a different cgroup takes over an inode while
226  * avoiding too aggressive flip-flops from occasional foreign writes.
227  *
228  * We record, very roughly, 2s worth of IO time history and if more than
229  * half of that is foreign, trigger the switch.  The recording is quantized
230  * to 16 slots.  To avoid tiny writes from swinging the decision too much,
231  * writes smaller than 1/8 of avg size are ignored.
232  */
233 #define WB_FRN_TIME_SHIFT	13	/* 1s = 2^13, upto 8 secs w/ 16bit */
234 #define WB_FRN_TIME_AVG_SHIFT	3	/* avg = avg * 7/8 + new * 1/8 */
235 #define WB_FRN_TIME_CUT_DIV	8	/* ignore rounds < avg / 8 */
236 #define WB_FRN_TIME_PERIOD	(2 * (1 << WB_FRN_TIME_SHIFT))	/* 2s */
237 
238 #define WB_FRN_HIST_SLOTS	16	/* inode->i_wb_frn_history is 16bit */
239 #define WB_FRN_HIST_UNIT	(WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
240 					/* each slot's duration is 2s / 16 */
241 #define WB_FRN_HIST_THR_SLOTS	(WB_FRN_HIST_SLOTS / 2)
242 					/* if foreign slots >= 8, switch */
243 #define WB_FRN_HIST_MAX_SLOTS	(WB_FRN_HIST_THR_SLOTS / 2 + 1)
244 					/* one round can affect upto 5 slots */
245 #define WB_FRN_MAX_IN_FLIGHT	1024	/* don't queue too many concurrently */
246 
247 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
248 static struct workqueue_struct *isw_wq;
249 
__inode_attach_wb(struct inode * inode,struct page * page)250 void __inode_attach_wb(struct inode *inode, struct page *page)
251 {
252 	struct backing_dev_info *bdi = inode_to_bdi(inode);
253 	struct bdi_writeback *wb = NULL;
254 
255 	if (inode_cgwb_enabled(inode)) {
256 		struct cgroup_subsys_state *memcg_css;
257 
258 		if (page) {
259 			memcg_css = mem_cgroup_css_from_page(page);
260 			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
261 		} else {
262 			/* must pin memcg_css, see wb_get_create() */
263 			memcg_css = task_get_css(current, memory_cgrp_id);
264 			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
265 			css_put(memcg_css);
266 		}
267 	}
268 
269 	if (!wb)
270 		wb = &bdi->wb;
271 
272 	/*
273 	 * There may be multiple instances of this function racing to
274 	 * update the same inode.  Use cmpxchg() to tell the winner.
275 	 */
276 	if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
277 		wb_put(wb);
278 }
279 EXPORT_SYMBOL_GPL(__inode_attach_wb);
280 
281 /**
282  * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
283  * @inode: inode of interest with i_lock held
284  *
285  * Returns @inode's wb with its list_lock held.  @inode->i_lock must be
286  * held on entry and is released on return.  The returned wb is guaranteed
287  * to stay @inode's associated wb until its list_lock is released.
288  */
289 static struct bdi_writeback *
locked_inode_to_wb_and_lock_list(struct inode * inode)290 locked_inode_to_wb_and_lock_list(struct inode *inode)
291 	__releases(&inode->i_lock)
292 	__acquires(&wb->list_lock)
293 {
294 	while (true) {
295 		struct bdi_writeback *wb = inode_to_wb(inode);
296 
297 		/*
298 		 * inode_to_wb() association is protected by both
299 		 * @inode->i_lock and @wb->list_lock but list_lock nests
300 		 * outside i_lock.  Drop i_lock and verify that the
301 		 * association hasn't changed after acquiring list_lock.
302 		 */
303 		wb_get(wb);
304 		spin_unlock(&inode->i_lock);
305 		spin_lock(&wb->list_lock);
306 
307 		/* i_wb may have changed inbetween, can't use inode_to_wb() */
308 		if (likely(wb == inode->i_wb)) {
309 			wb_put(wb);	/* @inode already has ref */
310 			return wb;
311 		}
312 
313 		spin_unlock(&wb->list_lock);
314 		wb_put(wb);
315 		cpu_relax();
316 		spin_lock(&inode->i_lock);
317 	}
318 }
319 
320 /**
321  * inode_to_wb_and_lock_list - determine an inode's wb and lock it
322  * @inode: inode of interest
323  *
324  * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
325  * on entry.
326  */
inode_to_wb_and_lock_list(struct inode * inode)327 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
328 	__acquires(&wb->list_lock)
329 {
330 	spin_lock(&inode->i_lock);
331 	return locked_inode_to_wb_and_lock_list(inode);
332 }
333 
334 struct inode_switch_wbs_context {
335 	struct inode		*inode;
336 	struct bdi_writeback	*new_wb;
337 
338 	struct rcu_head		rcu_head;
339 	struct work_struct	work;
340 };
341 
bdi_down_write_wb_switch_rwsem(struct backing_dev_info * bdi)342 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi)
343 {
344 	down_write(&bdi->wb_switch_rwsem);
345 }
346 
bdi_up_write_wb_switch_rwsem(struct backing_dev_info * bdi)347 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi)
348 {
349 	up_write(&bdi->wb_switch_rwsem);
350 }
351 
inode_switch_wbs_work_fn(struct work_struct * work)352 static void inode_switch_wbs_work_fn(struct work_struct *work)
353 {
354 	struct inode_switch_wbs_context *isw =
355 		container_of(work, struct inode_switch_wbs_context, work);
356 	struct inode *inode = isw->inode;
357 	struct backing_dev_info *bdi = inode_to_bdi(inode);
358 	struct address_space *mapping = inode->i_mapping;
359 	struct bdi_writeback *old_wb = inode->i_wb;
360 	struct bdi_writeback *new_wb = isw->new_wb;
361 	XA_STATE(xas, &mapping->i_pages, 0);
362 	struct page *page;
363 	bool switched = false;
364 
365 	/*
366 	 * If @inode switches cgwb membership while sync_inodes_sb() is
367 	 * being issued, sync_inodes_sb() might miss it.  Synchronize.
368 	 */
369 	down_read(&bdi->wb_switch_rwsem);
370 
371 	/*
372 	 * By the time control reaches here, RCU grace period has passed
373 	 * since I_WB_SWITCH assertion and all wb stat update transactions
374 	 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
375 	 * synchronizing against the i_pages lock.
376 	 *
377 	 * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock
378 	 * gives us exclusion against all wb related operations on @inode
379 	 * including IO list manipulations and stat updates.
380 	 */
381 	if (old_wb < new_wb) {
382 		spin_lock(&old_wb->list_lock);
383 		spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
384 	} else {
385 		spin_lock(&new_wb->list_lock);
386 		spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
387 	}
388 	spin_lock(&inode->i_lock);
389 	xa_lock_irq(&mapping->i_pages);
390 
391 	/*
392 	 * Once I_FREEING is visible under i_lock, the eviction path owns
393 	 * the inode and we shouldn't modify ->i_io_list.
394 	 */
395 	if (unlikely(inode->i_state & I_FREEING))
396 		goto skip_switch;
397 
398 	trace_inode_switch_wbs(inode, old_wb, new_wb);
399 
400 	/*
401 	 * Count and transfer stats.  Note that PAGECACHE_TAG_DIRTY points
402 	 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
403 	 * pages actually under writeback.
404 	 */
405 	xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_DIRTY) {
406 		if (PageDirty(page)) {
407 			dec_wb_stat(old_wb, WB_RECLAIMABLE);
408 			inc_wb_stat(new_wb, WB_RECLAIMABLE);
409 		}
410 	}
411 
412 	xas_set(&xas, 0);
413 	xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) {
414 		WARN_ON_ONCE(!PageWriteback(page));
415 		dec_wb_stat(old_wb, WB_WRITEBACK);
416 		inc_wb_stat(new_wb, WB_WRITEBACK);
417 	}
418 
419 	wb_get(new_wb);
420 
421 	/*
422 	 * Transfer to @new_wb's IO list if necessary.  The specific list
423 	 * @inode was on is ignored and the inode is put on ->b_dirty which
424 	 * is always correct including from ->b_dirty_time.  The transfer
425 	 * preserves @inode->dirtied_when ordering.
426 	 */
427 	if (!list_empty(&inode->i_io_list)) {
428 		struct inode *pos;
429 
430 		inode_io_list_del_locked(inode, old_wb);
431 		inode->i_wb = new_wb;
432 		list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
433 			if (time_after_eq(inode->dirtied_when,
434 					  pos->dirtied_when))
435 				break;
436 		inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev);
437 	} else {
438 		inode->i_wb = new_wb;
439 	}
440 
441 	/* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
442 	inode->i_wb_frn_winner = 0;
443 	inode->i_wb_frn_avg_time = 0;
444 	inode->i_wb_frn_history = 0;
445 	switched = true;
446 skip_switch:
447 	/*
448 	 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
449 	 * ensures that the new wb is visible if they see !I_WB_SWITCH.
450 	 */
451 	smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
452 
453 	xa_unlock_irq(&mapping->i_pages);
454 	spin_unlock(&inode->i_lock);
455 	spin_unlock(&new_wb->list_lock);
456 	spin_unlock(&old_wb->list_lock);
457 
458 	up_read(&bdi->wb_switch_rwsem);
459 
460 	if (switched) {
461 		wb_wakeup(new_wb);
462 		wb_put(old_wb);
463 	}
464 	wb_put(new_wb);
465 
466 	iput(inode);
467 	kfree(isw);
468 
469 	atomic_dec(&isw_nr_in_flight);
470 }
471 
inode_switch_wbs_rcu_fn(struct rcu_head * rcu_head)472 static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head)
473 {
474 	struct inode_switch_wbs_context *isw = container_of(rcu_head,
475 				struct inode_switch_wbs_context, rcu_head);
476 
477 	/* needs to grab bh-unsafe locks, bounce to work item */
478 	INIT_WORK(&isw->work, inode_switch_wbs_work_fn);
479 	queue_work(isw_wq, &isw->work);
480 }
481 
482 /**
483  * inode_switch_wbs - change the wb association of an inode
484  * @inode: target inode
485  * @new_wb_id: ID of the new wb
486  *
487  * Switch @inode's wb association to the wb identified by @new_wb_id.  The
488  * switching is performed asynchronously and may fail silently.
489  */
inode_switch_wbs(struct inode * inode,int new_wb_id)490 static void inode_switch_wbs(struct inode *inode, int new_wb_id)
491 {
492 	struct backing_dev_info *bdi = inode_to_bdi(inode);
493 	struct cgroup_subsys_state *memcg_css;
494 	struct inode_switch_wbs_context *isw;
495 
496 	/* noop if seems to be already in progress */
497 	if (inode->i_state & I_WB_SWITCH)
498 		return;
499 
500 	/* avoid queueing a new switch if too many are already in flight */
501 	if (atomic_read(&isw_nr_in_flight) > WB_FRN_MAX_IN_FLIGHT)
502 		return;
503 
504 	isw = kzalloc(sizeof(*isw), GFP_ATOMIC);
505 	if (!isw)
506 		return;
507 
508 	atomic_inc(&isw_nr_in_flight);
509 
510 	/* find and pin the new wb */
511 	rcu_read_lock();
512 	memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
513 	if (memcg_css && !css_tryget(memcg_css))
514 		memcg_css = NULL;
515 	rcu_read_unlock();
516 	if (!memcg_css)
517 		goto out_free;
518 
519 	isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
520 	css_put(memcg_css);
521 	if (!isw->new_wb)
522 		goto out_free;
523 
524 	/* while holding I_WB_SWITCH, no one else can update the association */
525 	spin_lock(&inode->i_lock);
526 	if (!(inode->i_sb->s_flags & SB_ACTIVE) ||
527 	    inode->i_state & (I_WB_SWITCH | I_FREEING) ||
528 	    inode_to_wb(inode) == isw->new_wb) {
529 		spin_unlock(&inode->i_lock);
530 		goto out_free;
531 	}
532 	inode->i_state |= I_WB_SWITCH;
533 	__iget(inode);
534 	spin_unlock(&inode->i_lock);
535 
536 	isw->inode = inode;
537 
538 	/*
539 	 * In addition to synchronizing among switchers, I_WB_SWITCH tells
540 	 * the RCU protected stat update paths to grab the i_page
541 	 * lock so that stat transfer can synchronize against them.
542 	 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
543 	 */
544 	call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn);
545 	return;
546 
547 out_free:
548 	atomic_dec(&isw_nr_in_flight);
549 	if (isw->new_wb)
550 		wb_put(isw->new_wb);
551 	kfree(isw);
552 }
553 
554 /**
555  * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
556  * @wbc: writeback_control of interest
557  * @inode: target inode
558  *
559  * @inode is locked and about to be written back under the control of @wbc.
560  * Record @inode's writeback context into @wbc and unlock the i_lock.  On
561  * writeback completion, wbc_detach_inode() should be called.  This is used
562  * to track the cgroup writeback context.
563  */
wbc_attach_and_unlock_inode(struct writeback_control * wbc,struct inode * inode)564 void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
565 				 struct inode *inode)
566 {
567 	if (!inode_cgwb_enabled(inode)) {
568 		spin_unlock(&inode->i_lock);
569 		return;
570 	}
571 
572 	wbc->wb = inode_to_wb(inode);
573 	wbc->inode = inode;
574 
575 	wbc->wb_id = wbc->wb->memcg_css->id;
576 	wbc->wb_lcand_id = inode->i_wb_frn_winner;
577 	wbc->wb_tcand_id = 0;
578 	wbc->wb_bytes = 0;
579 	wbc->wb_lcand_bytes = 0;
580 	wbc->wb_tcand_bytes = 0;
581 
582 	wb_get(wbc->wb);
583 	spin_unlock(&inode->i_lock);
584 
585 	/*
586 	 * A dying wb indicates that either the blkcg associated with the
587 	 * memcg changed or the associated memcg is dying.  In the first
588 	 * case, a replacement wb should already be available and we should
589 	 * refresh the wb immediately.  In the second case, trying to
590 	 * refresh will keep failing.
591 	 */
592 	if (unlikely(wb_dying(wbc->wb) && !css_is_dying(wbc->wb->memcg_css)))
593 		inode_switch_wbs(inode, wbc->wb_id);
594 }
595 EXPORT_SYMBOL_GPL(wbc_attach_and_unlock_inode);
596 
597 /**
598  * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
599  * @wbc: writeback_control of the just finished writeback
600  *
601  * To be called after a writeback attempt of an inode finishes and undoes
602  * wbc_attach_and_unlock_inode().  Can be called under any context.
603  *
604  * As concurrent write sharing of an inode is expected to be very rare and
605  * memcg only tracks page ownership on first-use basis severely confining
606  * the usefulness of such sharing, cgroup writeback tracks ownership
607  * per-inode.  While the support for concurrent write sharing of an inode
608  * is deemed unnecessary, an inode being written to by different cgroups at
609  * different points in time is a lot more common, and, more importantly,
610  * charging only by first-use can too readily lead to grossly incorrect
611  * behaviors (single foreign page can lead to gigabytes of writeback to be
612  * incorrectly attributed).
613  *
614  * To resolve this issue, cgroup writeback detects the majority dirtier of
615  * an inode and transfers the ownership to it.  To avoid unnnecessary
616  * oscillation, the detection mechanism keeps track of history and gives
617  * out the switch verdict only if the foreign usage pattern is stable over
618  * a certain amount of time and/or writeback attempts.
619  *
620  * On each writeback attempt, @wbc tries to detect the majority writer
621  * using Boyer-Moore majority vote algorithm.  In addition to the byte
622  * count from the majority voting, it also counts the bytes written for the
623  * current wb and the last round's winner wb (max of last round's current
624  * wb, the winner from two rounds ago, and the last round's majority
625  * candidate).  Keeping track of the historical winner helps the algorithm
626  * to semi-reliably detect the most active writer even when it's not the
627  * absolute majority.
628  *
629  * Once the winner of the round is determined, whether the winner is
630  * foreign or not and how much IO time the round consumed is recorded in
631  * inode->i_wb_frn_history.  If the amount of recorded foreign IO time is
632  * over a certain threshold, the switch verdict is given.
633  */
wbc_detach_inode(struct writeback_control * wbc)634 void wbc_detach_inode(struct writeback_control *wbc)
635 {
636 	struct bdi_writeback *wb = wbc->wb;
637 	struct inode *inode = wbc->inode;
638 	unsigned long avg_time, max_bytes, max_time;
639 	u16 history;
640 	int max_id;
641 
642 	if (!wb)
643 		return;
644 
645 	history = inode->i_wb_frn_history;
646 	avg_time = inode->i_wb_frn_avg_time;
647 
648 	/* pick the winner of this round */
649 	if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
650 	    wbc->wb_bytes >= wbc->wb_tcand_bytes) {
651 		max_id = wbc->wb_id;
652 		max_bytes = wbc->wb_bytes;
653 	} else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
654 		max_id = wbc->wb_lcand_id;
655 		max_bytes = wbc->wb_lcand_bytes;
656 	} else {
657 		max_id = wbc->wb_tcand_id;
658 		max_bytes = wbc->wb_tcand_bytes;
659 	}
660 
661 	/*
662 	 * Calculate the amount of IO time the winner consumed and fold it
663 	 * into the running average kept per inode.  If the consumed IO
664 	 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
665 	 * deciding whether to switch or not.  This is to prevent one-off
666 	 * small dirtiers from skewing the verdict.
667 	 */
668 	max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
669 				wb->avg_write_bandwidth);
670 	if (avg_time)
671 		avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
672 			    (avg_time >> WB_FRN_TIME_AVG_SHIFT);
673 	else
674 		avg_time = max_time;	/* immediate catch up on first run */
675 
676 	if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
677 		int slots;
678 
679 		/*
680 		 * The switch verdict is reached if foreign wb's consume
681 		 * more than a certain proportion of IO time in a
682 		 * WB_FRN_TIME_PERIOD.  This is loosely tracked by 16 slot
683 		 * history mask where each bit represents one sixteenth of
684 		 * the period.  Determine the number of slots to shift into
685 		 * history from @max_time.
686 		 */
687 		slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
688 			    (unsigned long)WB_FRN_HIST_MAX_SLOTS);
689 		history <<= slots;
690 		if (wbc->wb_id != max_id)
691 			history |= (1U << slots) - 1;
692 
693 		if (history)
694 			trace_inode_foreign_history(inode, wbc, history);
695 
696 		/*
697 		 * Switch if the current wb isn't the consistent winner.
698 		 * If there are multiple closely competing dirtiers, the
699 		 * inode may switch across them repeatedly over time, which
700 		 * is okay.  The main goal is avoiding keeping an inode on
701 		 * the wrong wb for an extended period of time.
702 		 */
703 		if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
704 			inode_switch_wbs(inode, max_id);
705 	}
706 
707 	/*
708 	 * Multiple instances of this function may race to update the
709 	 * following fields but we don't mind occassional inaccuracies.
710 	 */
711 	inode->i_wb_frn_winner = max_id;
712 	inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
713 	inode->i_wb_frn_history = history;
714 
715 	wb_put(wbc->wb);
716 	wbc->wb = NULL;
717 }
718 EXPORT_SYMBOL_GPL(wbc_detach_inode);
719 
720 /**
721  * wbc_account_cgroup_owner - account writeback to update inode cgroup ownership
722  * @wbc: writeback_control of the writeback in progress
723  * @page: page being written out
724  * @bytes: number of bytes being written out
725  *
726  * @bytes from @page are about to written out during the writeback
727  * controlled by @wbc.  Keep the book for foreign inode detection.  See
728  * wbc_detach_inode().
729  */
wbc_account_cgroup_owner(struct writeback_control * wbc,struct page * page,size_t bytes)730 void wbc_account_cgroup_owner(struct writeback_control *wbc, struct page *page,
731 			      size_t bytes)
732 {
733 	struct cgroup_subsys_state *css;
734 	int id;
735 
736 	/*
737 	 * pageout() path doesn't attach @wbc to the inode being written
738 	 * out.  This is intentional as we don't want the function to block
739 	 * behind a slow cgroup.  Ultimately, we want pageout() to kick off
740 	 * regular writeback instead of writing things out itself.
741 	 */
742 	if (!wbc->wb || wbc->no_cgroup_owner)
743 		return;
744 
745 	css = mem_cgroup_css_from_page(page);
746 	/* dead cgroups shouldn't contribute to inode ownership arbitration */
747 	if (!(css->flags & CSS_ONLINE))
748 		return;
749 
750 	id = css->id;
751 
752 	if (id == wbc->wb_id) {
753 		wbc->wb_bytes += bytes;
754 		return;
755 	}
756 
757 	if (id == wbc->wb_lcand_id)
758 		wbc->wb_lcand_bytes += bytes;
759 
760 	/* Boyer-Moore majority vote algorithm */
761 	if (!wbc->wb_tcand_bytes)
762 		wbc->wb_tcand_id = id;
763 	if (id == wbc->wb_tcand_id)
764 		wbc->wb_tcand_bytes += bytes;
765 	else
766 		wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
767 }
768 EXPORT_SYMBOL_GPL(wbc_account_cgroup_owner);
769 
770 /**
771  * inode_congested - test whether an inode is congested
772  * @inode: inode to test for congestion (may be NULL)
773  * @cong_bits: mask of WB_[a]sync_congested bits to test
774  *
775  * Tests whether @inode is congested.  @cong_bits is the mask of congestion
776  * bits to test and the return value is the mask of set bits.
777  *
778  * If cgroup writeback is enabled for @inode, the congestion state is
779  * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
780  * associated with @inode is congested; otherwise, the root wb's congestion
781  * state is used.
782  *
783  * @inode is allowed to be NULL as this function is often called on
784  * mapping->host which is NULL for the swapper space.
785  */
inode_congested(struct inode * inode,int cong_bits)786 int inode_congested(struct inode *inode, int cong_bits)
787 {
788 	/*
789 	 * Once set, ->i_wb never becomes NULL while the inode is alive.
790 	 * Start transaction iff ->i_wb is visible.
791 	 */
792 	if (inode && inode_to_wb_is_valid(inode)) {
793 		struct bdi_writeback *wb;
794 		struct wb_lock_cookie lock_cookie = {};
795 		bool congested;
796 
797 		wb = unlocked_inode_to_wb_begin(inode, &lock_cookie);
798 		congested = wb_congested(wb, cong_bits);
799 		unlocked_inode_to_wb_end(inode, &lock_cookie);
800 		return congested;
801 	}
802 
803 	return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
804 }
805 EXPORT_SYMBOL_GPL(inode_congested);
806 
807 /**
808  * wb_split_bdi_pages - split nr_pages to write according to bandwidth
809  * @wb: target bdi_writeback to split @nr_pages to
810  * @nr_pages: number of pages to write for the whole bdi
811  *
812  * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
813  * relation to the total write bandwidth of all wb's w/ dirty inodes on
814  * @wb->bdi.
815  */
wb_split_bdi_pages(struct bdi_writeback * wb,long nr_pages)816 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
817 {
818 	unsigned long this_bw = wb->avg_write_bandwidth;
819 	unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
820 
821 	if (nr_pages == LONG_MAX)
822 		return LONG_MAX;
823 
824 	/*
825 	 * This may be called on clean wb's and proportional distribution
826 	 * may not make sense, just use the original @nr_pages in those
827 	 * cases.  In general, we wanna err on the side of writing more.
828 	 */
829 	if (!tot_bw || this_bw >= tot_bw)
830 		return nr_pages;
831 	else
832 		return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
833 }
834 
835 /**
836  * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
837  * @bdi: target backing_dev_info
838  * @base_work: wb_writeback_work to issue
839  * @skip_if_busy: skip wb's which already have writeback in progress
840  *
841  * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
842  * have dirty inodes.  If @base_work->nr_page isn't %LONG_MAX, it's
843  * distributed to the busy wbs according to each wb's proportion in the
844  * total active write bandwidth of @bdi.
845  */
bdi_split_work_to_wbs(struct backing_dev_info * bdi,struct wb_writeback_work * base_work,bool skip_if_busy)846 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
847 				  struct wb_writeback_work *base_work,
848 				  bool skip_if_busy)
849 {
850 	struct bdi_writeback *last_wb = NULL;
851 	struct bdi_writeback *wb = list_entry(&bdi->wb_list,
852 					      struct bdi_writeback, bdi_node);
853 
854 	might_sleep();
855 restart:
856 	rcu_read_lock();
857 	list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
858 		DEFINE_WB_COMPLETION(fallback_work_done, bdi);
859 		struct wb_writeback_work fallback_work;
860 		struct wb_writeback_work *work;
861 		long nr_pages;
862 
863 		if (last_wb) {
864 			wb_put(last_wb);
865 			last_wb = NULL;
866 		}
867 
868 		/* SYNC_ALL writes out I_DIRTY_TIME too */
869 		if (!wb_has_dirty_io(wb) &&
870 		    (base_work->sync_mode == WB_SYNC_NONE ||
871 		     list_empty(&wb->b_dirty_time)))
872 			continue;
873 		if (skip_if_busy && writeback_in_progress(wb))
874 			continue;
875 
876 		nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
877 
878 		work = kmalloc(sizeof(*work), GFP_ATOMIC);
879 		if (work) {
880 			*work = *base_work;
881 			work->nr_pages = nr_pages;
882 			work->auto_free = 1;
883 			wb_queue_work(wb, work);
884 			continue;
885 		}
886 
887 		/* alloc failed, execute synchronously using on-stack fallback */
888 		work = &fallback_work;
889 		*work = *base_work;
890 		work->nr_pages = nr_pages;
891 		work->auto_free = 0;
892 		work->done = &fallback_work_done;
893 
894 		wb_queue_work(wb, work);
895 
896 		/*
897 		 * Pin @wb so that it stays on @bdi->wb_list.  This allows
898 		 * continuing iteration from @wb after dropping and
899 		 * regrabbing rcu read lock.
900 		 */
901 		wb_get(wb);
902 		last_wb = wb;
903 
904 		rcu_read_unlock();
905 		wb_wait_for_completion(&fallback_work_done);
906 		goto restart;
907 	}
908 	rcu_read_unlock();
909 
910 	if (last_wb)
911 		wb_put(last_wb);
912 }
913 
914 /**
915  * cgroup_writeback_by_id - initiate cgroup writeback from bdi and memcg IDs
916  * @bdi_id: target bdi id
917  * @memcg_id: target memcg css id
918  * @nr: number of pages to write, 0 for best-effort dirty flushing
919  * @reason: reason why some writeback work initiated
920  * @done: target wb_completion
921  *
922  * Initiate flush of the bdi_writeback identified by @bdi_id and @memcg_id
923  * with the specified parameters.
924  */
cgroup_writeback_by_id(u64 bdi_id,int memcg_id,unsigned long nr,enum wb_reason reason,struct wb_completion * done)925 int cgroup_writeback_by_id(u64 bdi_id, int memcg_id, unsigned long nr,
926 			   enum wb_reason reason, struct wb_completion *done)
927 {
928 	struct backing_dev_info *bdi;
929 	struct cgroup_subsys_state *memcg_css;
930 	struct bdi_writeback *wb;
931 	struct wb_writeback_work *work;
932 	int ret;
933 
934 	/* lookup bdi and memcg */
935 	bdi = bdi_get_by_id(bdi_id);
936 	if (!bdi)
937 		return -ENOENT;
938 
939 	rcu_read_lock();
940 	memcg_css = css_from_id(memcg_id, &memory_cgrp_subsys);
941 	if (memcg_css && !css_tryget(memcg_css))
942 		memcg_css = NULL;
943 	rcu_read_unlock();
944 	if (!memcg_css) {
945 		ret = -ENOENT;
946 		goto out_bdi_put;
947 	}
948 
949 	/*
950 	 * And find the associated wb.  If the wb isn't there already
951 	 * there's nothing to flush, don't create one.
952 	 */
953 	wb = wb_get_lookup(bdi, memcg_css);
954 	if (!wb) {
955 		ret = -ENOENT;
956 		goto out_css_put;
957 	}
958 
959 	/*
960 	 * If @nr is zero, the caller is attempting to write out most of
961 	 * the currently dirty pages.  Let's take the current dirty page
962 	 * count and inflate it by 25% which should be large enough to
963 	 * flush out most dirty pages while avoiding getting livelocked by
964 	 * concurrent dirtiers.
965 	 */
966 	if (!nr) {
967 		unsigned long filepages, headroom, dirty, writeback;
968 
969 		mem_cgroup_wb_stats(wb, &filepages, &headroom, &dirty,
970 				      &writeback);
971 		nr = dirty * 10 / 8;
972 	}
973 
974 	/* issue the writeback work */
975 	work = kzalloc(sizeof(*work), GFP_NOWAIT | __GFP_NOWARN);
976 	if (work) {
977 		work->nr_pages = nr;
978 		work->sync_mode = WB_SYNC_NONE;
979 		work->range_cyclic = 1;
980 		work->reason = reason;
981 		work->done = done;
982 		work->auto_free = 1;
983 		wb_queue_work(wb, work);
984 		ret = 0;
985 	} else {
986 		ret = -ENOMEM;
987 	}
988 
989 	wb_put(wb);
990 out_css_put:
991 	css_put(memcg_css);
992 out_bdi_put:
993 	bdi_put(bdi);
994 	return ret;
995 }
996 
997 /**
998  * cgroup_writeback_umount - flush inode wb switches for umount
999  *
1000  * This function is called when a super_block is about to be destroyed and
1001  * flushes in-flight inode wb switches.  An inode wb switch goes through
1002  * RCU and then workqueue, so the two need to be flushed in order to ensure
1003  * that all previously scheduled switches are finished.  As wb switches are
1004  * rare occurrences and synchronize_rcu() can take a while, perform
1005  * flushing iff wb switches are in flight.
1006  */
cgroup_writeback_umount(void)1007 void cgroup_writeback_umount(void)
1008 {
1009 	if (atomic_read(&isw_nr_in_flight)) {
1010 		/*
1011 		 * Use rcu_barrier() to wait for all pending callbacks to
1012 		 * ensure that all in-flight wb switches are in the workqueue.
1013 		 */
1014 		rcu_barrier();
1015 		flush_workqueue(isw_wq);
1016 	}
1017 }
1018 
cgroup_writeback_init(void)1019 static int __init cgroup_writeback_init(void)
1020 {
1021 	isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
1022 	if (!isw_wq)
1023 		return -ENOMEM;
1024 	return 0;
1025 }
1026 fs_initcall(cgroup_writeback_init);
1027 
1028 #else	/* CONFIG_CGROUP_WRITEBACK */
1029 
bdi_down_write_wb_switch_rwsem(struct backing_dev_info * bdi)1030 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
bdi_up_write_wb_switch_rwsem(struct backing_dev_info * bdi)1031 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1032 
1033 static struct bdi_writeback *
locked_inode_to_wb_and_lock_list(struct inode * inode)1034 locked_inode_to_wb_and_lock_list(struct inode *inode)
1035 	__releases(&inode->i_lock)
1036 	__acquires(&wb->list_lock)
1037 {
1038 	struct bdi_writeback *wb = inode_to_wb(inode);
1039 
1040 	spin_unlock(&inode->i_lock);
1041 	spin_lock(&wb->list_lock);
1042 	return wb;
1043 }
1044 
inode_to_wb_and_lock_list(struct inode * inode)1045 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
1046 	__acquires(&wb->list_lock)
1047 {
1048 	struct bdi_writeback *wb = inode_to_wb(inode);
1049 
1050 	spin_lock(&wb->list_lock);
1051 	return wb;
1052 }
1053 
wb_split_bdi_pages(struct bdi_writeback * wb,long nr_pages)1054 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
1055 {
1056 	return nr_pages;
1057 }
1058 
bdi_split_work_to_wbs(struct backing_dev_info * bdi,struct wb_writeback_work * base_work,bool skip_if_busy)1059 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
1060 				  struct wb_writeback_work *base_work,
1061 				  bool skip_if_busy)
1062 {
1063 	might_sleep();
1064 
1065 	if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
1066 		base_work->auto_free = 0;
1067 		wb_queue_work(&bdi->wb, base_work);
1068 	}
1069 }
1070 
1071 #endif	/* CONFIG_CGROUP_WRITEBACK */
1072 
1073 /*
1074  * Add in the number of potentially dirty inodes, because each inode
1075  * write can dirty pagecache in the underlying blockdev.
1076  */
get_nr_dirty_pages(void)1077 static unsigned long get_nr_dirty_pages(void)
1078 {
1079 	return global_node_page_state(NR_FILE_DIRTY) +
1080 		get_nr_dirty_inodes();
1081 }
1082 
wb_start_writeback(struct bdi_writeback * wb,enum wb_reason reason)1083 static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason)
1084 {
1085 	if (!wb_has_dirty_io(wb))
1086 		return;
1087 
1088 	/*
1089 	 * All callers of this function want to start writeback of all
1090 	 * dirty pages. Places like vmscan can call this at a very
1091 	 * high frequency, causing pointless allocations of tons of
1092 	 * work items and keeping the flusher threads busy retrieving
1093 	 * that work. Ensure that we only allow one of them pending and
1094 	 * inflight at the time.
1095 	 */
1096 	if (test_bit(WB_start_all, &wb->state) ||
1097 	    test_and_set_bit(WB_start_all, &wb->state))
1098 		return;
1099 
1100 	wb->start_all_reason = reason;
1101 	wb_wakeup(wb);
1102 }
1103 
1104 /**
1105  * wb_start_background_writeback - start background writeback
1106  * @wb: bdi_writback to write from
1107  *
1108  * Description:
1109  *   This makes sure WB_SYNC_NONE background writeback happens. When
1110  *   this function returns, it is only guaranteed that for given wb
1111  *   some IO is happening if we are over background dirty threshold.
1112  *   Caller need not hold sb s_umount semaphore.
1113  */
wb_start_background_writeback(struct bdi_writeback * wb)1114 void wb_start_background_writeback(struct bdi_writeback *wb)
1115 {
1116 	/*
1117 	 * We just wake up the flusher thread. It will perform background
1118 	 * writeback as soon as there is no other work to do.
1119 	 */
1120 	trace_writeback_wake_background(wb);
1121 	wb_wakeup(wb);
1122 }
1123 
1124 /*
1125  * Remove the inode from the writeback list it is on.
1126  */
inode_io_list_del(struct inode * inode)1127 void inode_io_list_del(struct inode *inode)
1128 {
1129 	struct bdi_writeback *wb;
1130 
1131 	wb = inode_to_wb_and_lock_list(inode);
1132 	spin_lock(&inode->i_lock);
1133 	inode_io_list_del_locked(inode, wb);
1134 	spin_unlock(&inode->i_lock);
1135 	spin_unlock(&wb->list_lock);
1136 }
1137 EXPORT_SYMBOL(inode_io_list_del);
1138 
1139 /*
1140  * mark an inode as under writeback on the sb
1141  */
sb_mark_inode_writeback(struct inode * inode)1142 void sb_mark_inode_writeback(struct inode *inode)
1143 {
1144 	struct super_block *sb = inode->i_sb;
1145 	unsigned long flags;
1146 
1147 	if (list_empty(&inode->i_wb_list)) {
1148 		spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1149 		if (list_empty(&inode->i_wb_list)) {
1150 			list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
1151 			trace_sb_mark_inode_writeback(inode);
1152 		}
1153 		spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1154 	}
1155 }
1156 
1157 /*
1158  * clear an inode as under writeback on the sb
1159  */
sb_clear_inode_writeback(struct inode * inode)1160 void sb_clear_inode_writeback(struct inode *inode)
1161 {
1162 	struct super_block *sb = inode->i_sb;
1163 	unsigned long flags;
1164 
1165 	if (!list_empty(&inode->i_wb_list)) {
1166 		spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1167 		if (!list_empty(&inode->i_wb_list)) {
1168 			list_del_init(&inode->i_wb_list);
1169 			trace_sb_clear_inode_writeback(inode);
1170 		}
1171 		spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1172 	}
1173 }
1174 
1175 /*
1176  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1177  * furthest end of its superblock's dirty-inode list.
1178  *
1179  * Before stamping the inode's ->dirtied_when, we check to see whether it is
1180  * already the most-recently-dirtied inode on the b_dirty list.  If that is
1181  * the case then the inode must have been redirtied while it was being written
1182  * out and we don't reset its dirtied_when.
1183  */
redirty_tail_locked(struct inode * inode,struct bdi_writeback * wb)1184 static void redirty_tail_locked(struct inode *inode, struct bdi_writeback *wb)
1185 {
1186 	assert_spin_locked(&inode->i_lock);
1187 
1188 	if (!list_empty(&wb->b_dirty)) {
1189 		struct inode *tail;
1190 
1191 		tail = wb_inode(wb->b_dirty.next);
1192 		if (time_before(inode->dirtied_when, tail->dirtied_when))
1193 			inode->dirtied_when = jiffies;
1194 	}
1195 	inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1196 	inode->i_state &= ~I_SYNC_QUEUED;
1197 }
1198 
redirty_tail(struct inode * inode,struct bdi_writeback * wb)1199 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1200 {
1201 	spin_lock(&inode->i_lock);
1202 	redirty_tail_locked(inode, wb);
1203 	spin_unlock(&inode->i_lock);
1204 }
1205 
1206 /*
1207  * requeue inode for re-scanning after bdi->b_io list is exhausted.
1208  */
requeue_io(struct inode * inode,struct bdi_writeback * wb)1209 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1210 {
1211 	inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1212 }
1213 
inode_sync_complete(struct inode * inode)1214 static void inode_sync_complete(struct inode *inode)
1215 {
1216 	inode->i_state &= ~I_SYNC;
1217 	/* If inode is clean an unused, put it into LRU now... */
1218 	inode_add_lru(inode);
1219 	/* Waiters must see I_SYNC cleared before being woken up */
1220 	smp_mb();
1221 	wake_up_bit(&inode->i_state, __I_SYNC);
1222 }
1223 
inode_dirtied_after(struct inode * inode,unsigned long t)1224 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1225 {
1226 	bool ret = time_after(inode->dirtied_when, t);
1227 #ifndef CONFIG_64BIT
1228 	/*
1229 	 * For inodes being constantly redirtied, dirtied_when can get stuck.
1230 	 * It _appears_ to be in the future, but is actually in distant past.
1231 	 * This test is necessary to prevent such wrapped-around relative times
1232 	 * from permanently stopping the whole bdi writeback.
1233 	 */
1234 	ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1235 #endif
1236 	return ret;
1237 }
1238 
1239 #define EXPIRE_DIRTY_ATIME 0x0001
1240 
1241 /*
1242  * Move expired (dirtied before dirtied_before) dirty inodes from
1243  * @delaying_queue to @dispatch_queue.
1244  */
move_expired_inodes(struct list_head * delaying_queue,struct list_head * dispatch_queue,unsigned long dirtied_before)1245 static int move_expired_inodes(struct list_head *delaying_queue,
1246 			       struct list_head *dispatch_queue,
1247 			       unsigned long dirtied_before)
1248 {
1249 	LIST_HEAD(tmp);
1250 	struct list_head *pos, *node;
1251 	struct super_block *sb = NULL;
1252 	struct inode *inode;
1253 	int do_sb_sort = 0;
1254 	int moved = 0;
1255 
1256 	while (!list_empty(delaying_queue)) {
1257 		inode = wb_inode(delaying_queue->prev);
1258 		if (inode_dirtied_after(inode, dirtied_before))
1259 			break;
1260 		list_move(&inode->i_io_list, &tmp);
1261 		moved++;
1262 		spin_lock(&inode->i_lock);
1263 		inode->i_state |= I_SYNC_QUEUED;
1264 		spin_unlock(&inode->i_lock);
1265 		if (sb_is_blkdev_sb(inode->i_sb))
1266 			continue;
1267 		if (sb && sb != inode->i_sb)
1268 			do_sb_sort = 1;
1269 		sb = inode->i_sb;
1270 	}
1271 
1272 	/* just one sb in list, splice to dispatch_queue and we're done */
1273 	if (!do_sb_sort) {
1274 		list_splice(&tmp, dispatch_queue);
1275 		goto out;
1276 	}
1277 
1278 	/* Move inodes from one superblock together */
1279 	while (!list_empty(&tmp)) {
1280 		sb = wb_inode(tmp.prev)->i_sb;
1281 		list_for_each_prev_safe(pos, node, &tmp) {
1282 			inode = wb_inode(pos);
1283 			if (inode->i_sb == sb)
1284 				list_move(&inode->i_io_list, dispatch_queue);
1285 		}
1286 	}
1287 out:
1288 	return moved;
1289 }
1290 
1291 /*
1292  * Queue all expired dirty inodes for io, eldest first.
1293  * Before
1294  *         newly dirtied     b_dirty    b_io    b_more_io
1295  *         =============>    gf         edc     BA
1296  * After
1297  *         newly dirtied     b_dirty    b_io    b_more_io
1298  *         =============>    g          fBAedc
1299  *                                           |
1300  *                                           +--> dequeue for IO
1301  */
queue_io(struct bdi_writeback * wb,struct wb_writeback_work * work,unsigned long dirtied_before)1302 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work,
1303 		     unsigned long dirtied_before)
1304 {
1305 	int moved;
1306 	unsigned long time_expire_jif = dirtied_before;
1307 
1308 	assert_spin_locked(&wb->list_lock);
1309 	list_splice_init(&wb->b_more_io, &wb->b_io);
1310 	moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, dirtied_before);
1311 	if (!work->for_sync)
1312 		time_expire_jif = jiffies - dirtytime_expire_interval * HZ;
1313 	moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1314 				     time_expire_jif);
1315 	if (moved)
1316 		wb_io_lists_populated(wb);
1317 	trace_writeback_queue_io(wb, work, dirtied_before, moved);
1318 }
1319 
write_inode(struct inode * inode,struct writeback_control * wbc)1320 static int write_inode(struct inode *inode, struct writeback_control *wbc)
1321 {
1322 	int ret;
1323 
1324 	if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1325 		trace_writeback_write_inode_start(inode, wbc);
1326 		ret = inode->i_sb->s_op->write_inode(inode, wbc);
1327 		trace_writeback_write_inode(inode, wbc);
1328 		return ret;
1329 	}
1330 	return 0;
1331 }
1332 
1333 /*
1334  * Wait for writeback on an inode to complete. Called with i_lock held.
1335  * Caller must make sure inode cannot go away when we drop i_lock.
1336  */
__inode_wait_for_writeback(struct inode * inode)1337 static void __inode_wait_for_writeback(struct inode *inode)
1338 	__releases(inode->i_lock)
1339 	__acquires(inode->i_lock)
1340 {
1341 	DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1342 	wait_queue_head_t *wqh;
1343 
1344 	wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1345 	while (inode->i_state & I_SYNC) {
1346 		spin_unlock(&inode->i_lock);
1347 		__wait_on_bit(wqh, &wq, bit_wait,
1348 			      TASK_UNINTERRUPTIBLE);
1349 		spin_lock(&inode->i_lock);
1350 	}
1351 }
1352 
1353 /*
1354  * Wait for writeback on an inode to complete. Caller must have inode pinned.
1355  */
inode_wait_for_writeback(struct inode * inode)1356 void inode_wait_for_writeback(struct inode *inode)
1357 {
1358 	spin_lock(&inode->i_lock);
1359 	__inode_wait_for_writeback(inode);
1360 	spin_unlock(&inode->i_lock);
1361 }
1362 
1363 /*
1364  * Sleep until I_SYNC is cleared. This function must be called with i_lock
1365  * held and drops it. It is aimed for callers not holding any inode reference
1366  * so once i_lock is dropped, inode can go away.
1367  */
inode_sleep_on_writeback(struct inode * inode)1368 static void inode_sleep_on_writeback(struct inode *inode)
1369 	__releases(inode->i_lock)
1370 {
1371 	DEFINE_WAIT(wait);
1372 	wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1373 	int sleep;
1374 
1375 	prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1376 	sleep = inode->i_state & I_SYNC;
1377 	spin_unlock(&inode->i_lock);
1378 	if (sleep)
1379 		schedule();
1380 	finish_wait(wqh, &wait);
1381 }
1382 
1383 /*
1384  * Find proper writeback list for the inode depending on its current state and
1385  * possibly also change of its state while we were doing writeback.  Here we
1386  * handle things such as livelock prevention or fairness of writeback among
1387  * inodes. This function can be called only by flusher thread - noone else
1388  * processes all inodes in writeback lists and requeueing inodes behind flusher
1389  * thread's back can have unexpected consequences.
1390  */
requeue_inode(struct inode * inode,struct bdi_writeback * wb,struct writeback_control * wbc)1391 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1392 			  struct writeback_control *wbc)
1393 {
1394 	if (inode->i_state & I_FREEING)
1395 		return;
1396 
1397 	/*
1398 	 * Sync livelock prevention. Each inode is tagged and synced in one
1399 	 * shot. If still dirty, it will be redirty_tail()'ed below.  Update
1400 	 * the dirty time to prevent enqueue and sync it again.
1401 	 */
1402 	if ((inode->i_state & I_DIRTY) &&
1403 	    (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1404 		inode->dirtied_when = jiffies;
1405 
1406 	if (wbc->pages_skipped) {
1407 		/*
1408 		 * writeback is not making progress due to locked
1409 		 * buffers. Skip this inode for now.
1410 		 */
1411 		redirty_tail_locked(inode, wb);
1412 		return;
1413 	}
1414 
1415 	if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1416 		/*
1417 		 * We didn't write back all the pages.  nfs_writepages()
1418 		 * sometimes bales out without doing anything.
1419 		 */
1420 		if (wbc->nr_to_write <= 0) {
1421 			/* Slice used up. Queue for next turn. */
1422 			requeue_io(inode, wb);
1423 		} else {
1424 			/*
1425 			 * Writeback blocked by something other than
1426 			 * congestion. Delay the inode for some time to
1427 			 * avoid spinning on the CPU (100% iowait)
1428 			 * retrying writeback of the dirty page/inode
1429 			 * that cannot be performed immediately.
1430 			 */
1431 			redirty_tail_locked(inode, wb);
1432 		}
1433 	} else if (inode->i_state & I_DIRTY) {
1434 		/*
1435 		 * Filesystems can dirty the inode during writeback operations,
1436 		 * such as delayed allocation during submission or metadata
1437 		 * updates after data IO completion.
1438 		 */
1439 		redirty_tail_locked(inode, wb);
1440 	} else if (inode->i_state & I_DIRTY_TIME) {
1441 		inode->dirtied_when = jiffies;
1442 		inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1443 		inode->i_state &= ~I_SYNC_QUEUED;
1444 	} else {
1445 		/* The inode is clean. Remove from writeback lists. */
1446 		inode_io_list_del_locked(inode, wb);
1447 	}
1448 }
1449 
1450 /*
1451  * Write out an inode and its dirty pages. Do not update the writeback list
1452  * linkage. That is left to the caller. The caller is also responsible for
1453  * setting I_SYNC flag and calling inode_sync_complete() to clear it.
1454  */
1455 static int
__writeback_single_inode(struct inode * inode,struct writeback_control * wbc)1456 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1457 {
1458 	struct address_space *mapping = inode->i_mapping;
1459 	long nr_to_write = wbc->nr_to_write;
1460 	unsigned dirty;
1461 	int ret;
1462 
1463 	WARN_ON(!(inode->i_state & I_SYNC));
1464 
1465 	trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1466 
1467 	ret = do_writepages(mapping, wbc);
1468 
1469 	/*
1470 	 * Make sure to wait on the data before writing out the metadata.
1471 	 * This is important for filesystems that modify metadata on data
1472 	 * I/O completion. We don't do it for sync(2) writeback because it has a
1473 	 * separate, external IO completion path and ->sync_fs for guaranteeing
1474 	 * inode metadata is written back correctly.
1475 	 */
1476 	if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1477 		int err = filemap_fdatawait(mapping);
1478 		if (ret == 0)
1479 			ret = err;
1480 	}
1481 
1482 	/*
1483 	 * If the inode has dirty timestamps and we need to write them, call
1484 	 * mark_inode_dirty_sync() to notify the filesystem about it and to
1485 	 * change I_DIRTY_TIME into I_DIRTY_SYNC.
1486 	 */
1487 	if ((inode->i_state & I_DIRTY_TIME) &&
1488 	    (wbc->sync_mode == WB_SYNC_ALL || wbc->for_sync ||
1489 	     time_after(jiffies, inode->dirtied_time_when +
1490 			dirtytime_expire_interval * HZ))) {
1491 		trace_writeback_lazytime(inode);
1492 		mark_inode_dirty_sync(inode);
1493 	}
1494 
1495 	/*
1496 	 * Some filesystems may redirty the inode during the writeback
1497 	 * due to delalloc, clear dirty metadata flags right before
1498 	 * write_inode()
1499 	 */
1500 	spin_lock(&inode->i_lock);
1501 	dirty = inode->i_state & I_DIRTY;
1502 	inode->i_state &= ~dirty;
1503 
1504 	/*
1505 	 * Paired with smp_mb() in __mark_inode_dirty().  This allows
1506 	 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1507 	 * either they see the I_DIRTY bits cleared or we see the dirtied
1508 	 * inode.
1509 	 *
1510 	 * I_DIRTY_PAGES is always cleared together above even if @mapping
1511 	 * still has dirty pages.  The flag is reinstated after smp_mb() if
1512 	 * necessary.  This guarantees that either __mark_inode_dirty()
1513 	 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1514 	 */
1515 	smp_mb();
1516 
1517 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1518 		inode->i_state |= I_DIRTY_PAGES;
1519 
1520 	spin_unlock(&inode->i_lock);
1521 
1522 	/* Don't write the inode if only I_DIRTY_PAGES was set */
1523 	if (dirty & ~I_DIRTY_PAGES) {
1524 		int err = write_inode(inode, wbc);
1525 		if (ret == 0)
1526 			ret = err;
1527 	}
1528 	trace_writeback_single_inode(inode, wbc, nr_to_write);
1529 	return ret;
1530 }
1531 
1532 /*
1533  * Write out an inode's dirty pages. Either the caller has an active reference
1534  * on the inode or the inode has I_WILL_FREE set.
1535  *
1536  * This function is designed to be called for writing back one inode which
1537  * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
1538  * and does more profound writeback list handling in writeback_sb_inodes().
1539  */
writeback_single_inode(struct inode * inode,struct writeback_control * wbc)1540 static int writeback_single_inode(struct inode *inode,
1541 				  struct writeback_control *wbc)
1542 {
1543 	struct bdi_writeback *wb;
1544 	int ret = 0;
1545 
1546 	spin_lock(&inode->i_lock);
1547 	if (!atomic_read(&inode->i_count))
1548 		WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1549 	else
1550 		WARN_ON(inode->i_state & I_WILL_FREE);
1551 
1552 	if (inode->i_state & I_SYNC) {
1553 		if (wbc->sync_mode != WB_SYNC_ALL)
1554 			goto out;
1555 		/*
1556 		 * It's a data-integrity sync. We must wait. Since callers hold
1557 		 * inode reference or inode has I_WILL_FREE set, it cannot go
1558 		 * away under us.
1559 		 */
1560 		__inode_wait_for_writeback(inode);
1561 	}
1562 	WARN_ON(inode->i_state & I_SYNC);
1563 	/*
1564 	 * Skip inode if it is clean and we have no outstanding writeback in
1565 	 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
1566 	 * function since flusher thread may be doing for example sync in
1567 	 * parallel and if we move the inode, it could get skipped. So here we
1568 	 * make sure inode is on some writeback list and leave it there unless
1569 	 * we have completely cleaned the inode.
1570 	 */
1571 	if (!(inode->i_state & I_DIRTY_ALL) &&
1572 	    (wbc->sync_mode != WB_SYNC_ALL ||
1573 	     !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1574 		goto out;
1575 	inode->i_state |= I_SYNC;
1576 	wbc_attach_and_unlock_inode(wbc, inode);
1577 
1578 	ret = __writeback_single_inode(inode, wbc);
1579 
1580 	wbc_detach_inode(wbc);
1581 
1582 	wb = inode_to_wb_and_lock_list(inode);
1583 	spin_lock(&inode->i_lock);
1584 	/*
1585 	 * If inode is clean, remove it from writeback lists. Otherwise don't
1586 	 * touch it. See comment above for explanation.
1587 	 */
1588 	if (!(inode->i_state & I_DIRTY_ALL))
1589 		inode_io_list_del_locked(inode, wb);
1590 	spin_unlock(&wb->list_lock);
1591 	inode_sync_complete(inode);
1592 out:
1593 	spin_unlock(&inode->i_lock);
1594 	return ret;
1595 }
1596 
writeback_chunk_size(struct bdi_writeback * wb,struct wb_writeback_work * work)1597 static long writeback_chunk_size(struct bdi_writeback *wb,
1598 				 struct wb_writeback_work *work)
1599 {
1600 	long pages;
1601 
1602 	/*
1603 	 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1604 	 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1605 	 * here avoids calling into writeback_inodes_wb() more than once.
1606 	 *
1607 	 * The intended call sequence for WB_SYNC_ALL writeback is:
1608 	 *
1609 	 *      wb_writeback()
1610 	 *          writeback_sb_inodes()       <== called only once
1611 	 *              write_cache_pages()     <== called once for each inode
1612 	 *                   (quickly) tag currently dirty pages
1613 	 *                   (maybe slowly) sync all tagged pages
1614 	 */
1615 	if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1616 		pages = LONG_MAX;
1617 	else {
1618 		pages = min(wb->avg_write_bandwidth / 2,
1619 			    global_wb_domain.dirty_limit / DIRTY_SCOPE);
1620 		pages = min(pages, work->nr_pages);
1621 		pages = round_down(pages + MIN_WRITEBACK_PAGES,
1622 				   MIN_WRITEBACK_PAGES);
1623 	}
1624 
1625 	return pages;
1626 }
1627 
1628 /*
1629  * Write a portion of b_io inodes which belong to @sb.
1630  *
1631  * Return the number of pages and/or inodes written.
1632  *
1633  * NOTE! This is called with wb->list_lock held, and will
1634  * unlock and relock that for each inode it ends up doing
1635  * IO for.
1636  */
writeback_sb_inodes(struct super_block * sb,struct bdi_writeback * wb,struct wb_writeback_work * work)1637 static long writeback_sb_inodes(struct super_block *sb,
1638 				struct bdi_writeback *wb,
1639 				struct wb_writeback_work *work)
1640 {
1641 	struct writeback_control wbc = {
1642 		.sync_mode		= work->sync_mode,
1643 		.tagged_writepages	= work->tagged_writepages,
1644 		.for_kupdate		= work->for_kupdate,
1645 		.for_background		= work->for_background,
1646 		.for_sync		= work->for_sync,
1647 		.range_cyclic		= work->range_cyclic,
1648 		.range_start		= 0,
1649 		.range_end		= LLONG_MAX,
1650 	};
1651 	unsigned long start_time = jiffies;
1652 	long write_chunk;
1653 	long wrote = 0;  /* count both pages and inodes */
1654 
1655 	while (!list_empty(&wb->b_io)) {
1656 		struct inode *inode = wb_inode(wb->b_io.prev);
1657 		struct bdi_writeback *tmp_wb;
1658 
1659 		if (inode->i_sb != sb) {
1660 			if (work->sb) {
1661 				/*
1662 				 * We only want to write back data for this
1663 				 * superblock, move all inodes not belonging
1664 				 * to it back onto the dirty list.
1665 				 */
1666 				redirty_tail(inode, wb);
1667 				continue;
1668 			}
1669 
1670 			/*
1671 			 * The inode belongs to a different superblock.
1672 			 * Bounce back to the caller to unpin this and
1673 			 * pin the next superblock.
1674 			 */
1675 			break;
1676 		}
1677 
1678 		/*
1679 		 * Don't bother with new inodes or inodes being freed, first
1680 		 * kind does not need periodic writeout yet, and for the latter
1681 		 * kind writeout is handled by the freer.
1682 		 */
1683 		spin_lock(&inode->i_lock);
1684 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1685 			redirty_tail_locked(inode, wb);
1686 			spin_unlock(&inode->i_lock);
1687 			continue;
1688 		}
1689 		if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1690 			/*
1691 			 * If this inode is locked for writeback and we are not
1692 			 * doing writeback-for-data-integrity, move it to
1693 			 * b_more_io so that writeback can proceed with the
1694 			 * other inodes on s_io.
1695 			 *
1696 			 * We'll have another go at writing back this inode
1697 			 * when we completed a full scan of b_io.
1698 			 */
1699 			spin_unlock(&inode->i_lock);
1700 			requeue_io(inode, wb);
1701 			trace_writeback_sb_inodes_requeue(inode);
1702 			continue;
1703 		}
1704 		spin_unlock(&wb->list_lock);
1705 
1706 		/*
1707 		 * We already requeued the inode if it had I_SYNC set and we
1708 		 * are doing WB_SYNC_NONE writeback. So this catches only the
1709 		 * WB_SYNC_ALL case.
1710 		 */
1711 		if (inode->i_state & I_SYNC) {
1712 			/* Wait for I_SYNC. This function drops i_lock... */
1713 			inode_sleep_on_writeback(inode);
1714 			/* Inode may be gone, start again */
1715 			spin_lock(&wb->list_lock);
1716 			continue;
1717 		}
1718 		inode->i_state |= I_SYNC;
1719 		wbc_attach_and_unlock_inode(&wbc, inode);
1720 
1721 		write_chunk = writeback_chunk_size(wb, work);
1722 		wbc.nr_to_write = write_chunk;
1723 		wbc.pages_skipped = 0;
1724 
1725 		/*
1726 		 * We use I_SYNC to pin the inode in memory. While it is set
1727 		 * evict_inode() will wait so the inode cannot be freed.
1728 		 */
1729 		__writeback_single_inode(inode, &wbc);
1730 
1731 		wbc_detach_inode(&wbc);
1732 		work->nr_pages -= write_chunk - wbc.nr_to_write;
1733 		wrote += write_chunk - wbc.nr_to_write;
1734 
1735 		if (need_resched()) {
1736 			/*
1737 			 * We're trying to balance between building up a nice
1738 			 * long list of IOs to improve our merge rate, and
1739 			 * getting those IOs out quickly for anyone throttling
1740 			 * in balance_dirty_pages().  cond_resched() doesn't
1741 			 * unplug, so get our IOs out the door before we
1742 			 * give up the CPU.
1743 			 */
1744 			blk_flush_plug(current);
1745 			cond_resched();
1746 		}
1747 
1748 		/*
1749 		 * Requeue @inode if still dirty.  Be careful as @inode may
1750 		 * have been switched to another wb in the meantime.
1751 		 */
1752 		tmp_wb = inode_to_wb_and_lock_list(inode);
1753 		spin_lock(&inode->i_lock);
1754 		if (!(inode->i_state & I_DIRTY_ALL))
1755 			wrote++;
1756 		requeue_inode(inode, tmp_wb, &wbc);
1757 		inode_sync_complete(inode);
1758 		spin_unlock(&inode->i_lock);
1759 
1760 		if (unlikely(tmp_wb != wb)) {
1761 			spin_unlock(&tmp_wb->list_lock);
1762 			spin_lock(&wb->list_lock);
1763 		}
1764 
1765 		/*
1766 		 * bail out to wb_writeback() often enough to check
1767 		 * background threshold and other termination conditions.
1768 		 */
1769 		if (wrote) {
1770 			if (time_is_before_jiffies(start_time + HZ / 10UL))
1771 				break;
1772 			if (work->nr_pages <= 0)
1773 				break;
1774 		}
1775 	}
1776 	return wrote;
1777 }
1778 
__writeback_inodes_wb(struct bdi_writeback * wb,struct wb_writeback_work * work)1779 static long __writeback_inodes_wb(struct bdi_writeback *wb,
1780 				  struct wb_writeback_work *work)
1781 {
1782 	unsigned long start_time = jiffies;
1783 	long wrote = 0;
1784 
1785 	while (!list_empty(&wb->b_io)) {
1786 		struct inode *inode = wb_inode(wb->b_io.prev);
1787 		struct super_block *sb = inode->i_sb;
1788 
1789 		if (!trylock_super(sb)) {
1790 			/*
1791 			 * trylock_super() may fail consistently due to
1792 			 * s_umount being grabbed by someone else. Don't use
1793 			 * requeue_io() to avoid busy retrying the inode/sb.
1794 			 */
1795 			redirty_tail(inode, wb);
1796 			continue;
1797 		}
1798 		wrote += writeback_sb_inodes(sb, wb, work);
1799 		up_read(&sb->s_umount);
1800 
1801 		/* refer to the same tests at the end of writeback_sb_inodes */
1802 		if (wrote) {
1803 			if (time_is_before_jiffies(start_time + HZ / 10UL))
1804 				break;
1805 			if (work->nr_pages <= 0)
1806 				break;
1807 		}
1808 	}
1809 	/* Leave any unwritten inodes on b_io */
1810 	return wrote;
1811 }
1812 
writeback_inodes_wb(struct bdi_writeback * wb,long nr_pages,enum wb_reason reason)1813 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1814 				enum wb_reason reason)
1815 {
1816 	struct wb_writeback_work work = {
1817 		.nr_pages	= nr_pages,
1818 		.sync_mode	= WB_SYNC_NONE,
1819 		.range_cyclic	= 1,
1820 		.reason		= reason,
1821 	};
1822 	struct blk_plug plug;
1823 
1824 	blk_start_plug(&plug);
1825 	spin_lock(&wb->list_lock);
1826 	if (list_empty(&wb->b_io))
1827 		queue_io(wb, &work, jiffies);
1828 	__writeback_inodes_wb(wb, &work);
1829 	spin_unlock(&wb->list_lock);
1830 	blk_finish_plug(&plug);
1831 
1832 	return nr_pages - work.nr_pages;
1833 }
1834 
1835 /*
1836  * Explicit flushing or periodic writeback of "old" data.
1837  *
1838  * Define "old": the first time one of an inode's pages is dirtied, we mark the
1839  * dirtying-time in the inode's address_space.  So this periodic writeback code
1840  * just walks the superblock inode list, writing back any inodes which are
1841  * older than a specific point in time.
1842  *
1843  * Try to run once per dirty_writeback_interval.  But if a writeback event
1844  * takes longer than a dirty_writeback_interval interval, then leave a
1845  * one-second gap.
1846  *
1847  * dirtied_before takes precedence over nr_to_write.  So we'll only write back
1848  * all dirty pages if they are all attached to "old" mappings.
1849  */
wb_writeback(struct bdi_writeback * wb,struct wb_writeback_work * work)1850 static long wb_writeback(struct bdi_writeback *wb,
1851 			 struct wb_writeback_work *work)
1852 {
1853 	unsigned long wb_start = jiffies;
1854 	long nr_pages = work->nr_pages;
1855 	unsigned long dirtied_before = jiffies;
1856 	struct inode *inode;
1857 	long progress;
1858 	struct blk_plug plug;
1859 
1860 	blk_start_plug(&plug);
1861 	spin_lock(&wb->list_lock);
1862 	for (;;) {
1863 		/*
1864 		 * Stop writeback when nr_pages has been consumed
1865 		 */
1866 		if (work->nr_pages <= 0)
1867 			break;
1868 
1869 		/*
1870 		 * Background writeout and kupdate-style writeback may
1871 		 * run forever. Stop them if there is other work to do
1872 		 * so that e.g. sync can proceed. They'll be restarted
1873 		 * after the other works are all done.
1874 		 */
1875 		if ((work->for_background || work->for_kupdate) &&
1876 		    !list_empty(&wb->work_list))
1877 			break;
1878 
1879 		/*
1880 		 * For background writeout, stop when we are below the
1881 		 * background dirty threshold
1882 		 */
1883 		if (work->for_background && !wb_over_bg_thresh(wb))
1884 			break;
1885 
1886 		/*
1887 		 * Kupdate and background works are special and we want to
1888 		 * include all inodes that need writing. Livelock avoidance is
1889 		 * handled by these works yielding to any other work so we are
1890 		 * safe.
1891 		 */
1892 		if (work->for_kupdate) {
1893 			dirtied_before = jiffies -
1894 				msecs_to_jiffies(dirty_expire_interval * 10);
1895 		} else if (work->for_background)
1896 			dirtied_before = jiffies;
1897 
1898 		trace_writeback_start(wb, work);
1899 		if (list_empty(&wb->b_io))
1900 			queue_io(wb, work, dirtied_before);
1901 		if (work->sb)
1902 			progress = writeback_sb_inodes(work->sb, wb, work);
1903 		else
1904 			progress = __writeback_inodes_wb(wb, work);
1905 		trace_writeback_written(wb, work);
1906 
1907 		wb_update_bandwidth(wb, wb_start);
1908 
1909 		/*
1910 		 * Did we write something? Try for more
1911 		 *
1912 		 * Dirty inodes are moved to b_io for writeback in batches.
1913 		 * The completion of the current batch does not necessarily
1914 		 * mean the overall work is done. So we keep looping as long
1915 		 * as made some progress on cleaning pages or inodes.
1916 		 */
1917 		if (progress)
1918 			continue;
1919 		/*
1920 		 * No more inodes for IO, bail
1921 		 */
1922 		if (list_empty(&wb->b_more_io))
1923 			break;
1924 		/*
1925 		 * Nothing written. Wait for some inode to
1926 		 * become available for writeback. Otherwise
1927 		 * we'll just busyloop.
1928 		 */
1929 		trace_writeback_wait(wb, work);
1930 		inode = wb_inode(wb->b_more_io.prev);
1931 		spin_lock(&inode->i_lock);
1932 		spin_unlock(&wb->list_lock);
1933 		/* This function drops i_lock... */
1934 		inode_sleep_on_writeback(inode);
1935 		spin_lock(&wb->list_lock);
1936 	}
1937 	spin_unlock(&wb->list_lock);
1938 	blk_finish_plug(&plug);
1939 
1940 	return nr_pages - work->nr_pages;
1941 }
1942 
1943 /*
1944  * Return the next wb_writeback_work struct that hasn't been processed yet.
1945  */
get_next_work_item(struct bdi_writeback * wb)1946 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
1947 {
1948 	struct wb_writeback_work *work = NULL;
1949 
1950 	spin_lock_bh(&wb->work_lock);
1951 	if (!list_empty(&wb->work_list)) {
1952 		work = list_entry(wb->work_list.next,
1953 				  struct wb_writeback_work, list);
1954 		list_del_init(&work->list);
1955 	}
1956 	spin_unlock_bh(&wb->work_lock);
1957 	return work;
1958 }
1959 
wb_check_background_flush(struct bdi_writeback * wb)1960 static long wb_check_background_flush(struct bdi_writeback *wb)
1961 {
1962 	if (wb_over_bg_thresh(wb)) {
1963 
1964 		struct wb_writeback_work work = {
1965 			.nr_pages	= LONG_MAX,
1966 			.sync_mode	= WB_SYNC_NONE,
1967 			.for_background	= 1,
1968 			.range_cyclic	= 1,
1969 			.reason		= WB_REASON_BACKGROUND,
1970 		};
1971 
1972 		return wb_writeback(wb, &work);
1973 	}
1974 
1975 	return 0;
1976 }
1977 
wb_check_old_data_flush(struct bdi_writeback * wb)1978 static long wb_check_old_data_flush(struct bdi_writeback *wb)
1979 {
1980 	unsigned long expired;
1981 	long nr_pages;
1982 
1983 	/*
1984 	 * When set to zero, disable periodic writeback
1985 	 */
1986 	if (!dirty_writeback_interval)
1987 		return 0;
1988 
1989 	expired = wb->last_old_flush +
1990 			msecs_to_jiffies(dirty_writeback_interval * 10);
1991 	if (time_before(jiffies, expired))
1992 		return 0;
1993 
1994 	wb->last_old_flush = jiffies;
1995 	nr_pages = get_nr_dirty_pages();
1996 
1997 	if (nr_pages) {
1998 		struct wb_writeback_work work = {
1999 			.nr_pages	= nr_pages,
2000 			.sync_mode	= WB_SYNC_NONE,
2001 			.for_kupdate	= 1,
2002 			.range_cyclic	= 1,
2003 			.reason		= WB_REASON_PERIODIC,
2004 		};
2005 
2006 		return wb_writeback(wb, &work);
2007 	}
2008 
2009 	return 0;
2010 }
2011 
wb_check_start_all(struct bdi_writeback * wb)2012 static long wb_check_start_all(struct bdi_writeback *wb)
2013 {
2014 	long nr_pages;
2015 
2016 	if (!test_bit(WB_start_all, &wb->state))
2017 		return 0;
2018 
2019 	nr_pages = get_nr_dirty_pages();
2020 	if (nr_pages) {
2021 		struct wb_writeback_work work = {
2022 			.nr_pages	= wb_split_bdi_pages(wb, nr_pages),
2023 			.sync_mode	= WB_SYNC_NONE,
2024 			.range_cyclic	= 1,
2025 			.reason		= wb->start_all_reason,
2026 		};
2027 
2028 		nr_pages = wb_writeback(wb, &work);
2029 	}
2030 
2031 	clear_bit(WB_start_all, &wb->state);
2032 	return nr_pages;
2033 }
2034 
2035 
2036 /*
2037  * Retrieve work items and do the writeback they describe
2038  */
wb_do_writeback(struct bdi_writeback * wb)2039 static long wb_do_writeback(struct bdi_writeback *wb)
2040 {
2041 	struct wb_writeback_work *work;
2042 	long wrote = 0;
2043 
2044 	set_bit(WB_writeback_running, &wb->state);
2045 	while ((work = get_next_work_item(wb)) != NULL) {
2046 		trace_writeback_exec(wb, work);
2047 		wrote += wb_writeback(wb, work);
2048 		finish_writeback_work(wb, work);
2049 	}
2050 
2051 	/*
2052 	 * Check for a flush-everything request
2053 	 */
2054 	wrote += wb_check_start_all(wb);
2055 
2056 	/*
2057 	 * Check for periodic writeback, kupdated() style
2058 	 */
2059 	wrote += wb_check_old_data_flush(wb);
2060 	wrote += wb_check_background_flush(wb);
2061 	clear_bit(WB_writeback_running, &wb->state);
2062 
2063 	return wrote;
2064 }
2065 
2066 /*
2067  * Handle writeback of dirty data for the device backed by this bdi. Also
2068  * reschedules periodically and does kupdated style flushing.
2069  */
wb_workfn(struct work_struct * work)2070 void wb_workfn(struct work_struct *work)
2071 {
2072 	struct bdi_writeback *wb = container_of(to_delayed_work(work),
2073 						struct bdi_writeback, dwork);
2074 	long pages_written;
2075 
2076 	set_worker_desc("flush-%s", bdi_dev_name(wb->bdi));
2077 	current->flags |= PF_SWAPWRITE;
2078 
2079 	if (likely(!current_is_workqueue_rescuer() ||
2080 		   !test_bit(WB_registered, &wb->state))) {
2081 		/*
2082 		 * The normal path.  Keep writing back @wb until its
2083 		 * work_list is empty.  Note that this path is also taken
2084 		 * if @wb is shutting down even when we're running off the
2085 		 * rescuer as work_list needs to be drained.
2086 		 */
2087 		do {
2088 			pages_written = wb_do_writeback(wb);
2089 			trace_writeback_pages_written(pages_written);
2090 		} while (!list_empty(&wb->work_list));
2091 	} else {
2092 		/*
2093 		 * bdi_wq can't get enough workers and we're running off
2094 		 * the emergency worker.  Don't hog it.  Hopefully, 1024 is
2095 		 * enough for efficient IO.
2096 		 */
2097 		pages_written = writeback_inodes_wb(wb, 1024,
2098 						    WB_REASON_FORKER_THREAD);
2099 		trace_writeback_pages_written(pages_written);
2100 	}
2101 
2102 	if (!list_empty(&wb->work_list))
2103 		wb_wakeup(wb);
2104 	else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
2105 		wb_wakeup_delayed(wb);
2106 
2107 	current->flags &= ~PF_SWAPWRITE;
2108 }
2109 
2110 /*
2111  * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero,
2112  * write back the whole world.
2113  */
__wakeup_flusher_threads_bdi(struct backing_dev_info * bdi,enum wb_reason reason)2114 static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2115 					 enum wb_reason reason)
2116 {
2117 	struct bdi_writeback *wb;
2118 
2119 	if (!bdi_has_dirty_io(bdi))
2120 		return;
2121 
2122 	list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2123 		wb_start_writeback(wb, reason);
2124 }
2125 
wakeup_flusher_threads_bdi(struct backing_dev_info * bdi,enum wb_reason reason)2126 void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2127 				enum wb_reason reason)
2128 {
2129 	rcu_read_lock();
2130 	__wakeup_flusher_threads_bdi(bdi, reason);
2131 	rcu_read_unlock();
2132 }
2133 
2134 /*
2135  * Wakeup the flusher threads to start writeback of all currently dirty pages
2136  */
wakeup_flusher_threads(enum wb_reason reason)2137 void wakeup_flusher_threads(enum wb_reason reason)
2138 {
2139 	struct backing_dev_info *bdi;
2140 
2141 	/*
2142 	 * If we are expecting writeback progress we must submit plugged IO.
2143 	 */
2144 	if (blk_needs_flush_plug(current))
2145 		blk_schedule_flush_plug(current);
2146 
2147 	rcu_read_lock();
2148 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2149 		__wakeup_flusher_threads_bdi(bdi, reason);
2150 	rcu_read_unlock();
2151 }
2152 
2153 /*
2154  * Wake up bdi's periodically to make sure dirtytime inodes gets
2155  * written back periodically.  We deliberately do *not* check the
2156  * b_dirtytime list in wb_has_dirty_io(), since this would cause the
2157  * kernel to be constantly waking up once there are any dirtytime
2158  * inodes on the system.  So instead we define a separate delayed work
2159  * function which gets called much more rarely.  (By default, only
2160  * once every 12 hours.)
2161  *
2162  * If there is any other write activity going on in the file system,
2163  * this function won't be necessary.  But if the only thing that has
2164  * happened on the file system is a dirtytime inode caused by an atime
2165  * update, we need this infrastructure below to make sure that inode
2166  * eventually gets pushed out to disk.
2167  */
2168 static void wakeup_dirtytime_writeback(struct work_struct *w);
2169 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
2170 
wakeup_dirtytime_writeback(struct work_struct * w)2171 static void wakeup_dirtytime_writeback(struct work_struct *w)
2172 {
2173 	struct backing_dev_info *bdi;
2174 
2175 	rcu_read_lock();
2176 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
2177 		struct bdi_writeback *wb;
2178 
2179 		list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2180 			if (!list_empty(&wb->b_dirty_time))
2181 				wb_wakeup(wb);
2182 	}
2183 	rcu_read_unlock();
2184 	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2185 }
2186 
start_dirtytime_writeback(void)2187 static int __init start_dirtytime_writeback(void)
2188 {
2189 	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2190 	return 0;
2191 }
2192 __initcall(start_dirtytime_writeback);
2193 
dirtytime_interval_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)2194 int dirtytime_interval_handler(struct ctl_table *table, int write,
2195 			       void *buffer, size_t *lenp, loff_t *ppos)
2196 {
2197 	int ret;
2198 
2199 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2200 	if (ret == 0 && write)
2201 		mod_delayed_work(system_wq, &dirtytime_work, 0);
2202 	return ret;
2203 }
2204 
2205 /**
2206  * __mark_inode_dirty -	internal function
2207  *
2208  * @inode: inode to mark
2209  * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
2210  *
2211  * Mark an inode as dirty. Callers should use mark_inode_dirty or
2212  * mark_inode_dirty_sync.
2213  *
2214  * Put the inode on the super block's dirty list.
2215  *
2216  * CAREFUL! We mark it dirty unconditionally, but move it onto the
2217  * dirty list only if it is hashed or if it refers to a blockdev.
2218  * If it was not hashed, it will never be added to the dirty list
2219  * even if it is later hashed, as it will have been marked dirty already.
2220  *
2221  * In short, make sure you hash any inodes _before_ you start marking
2222  * them dirty.
2223  *
2224  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2225  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
2226  * the kernel-internal blockdev inode represents the dirtying time of the
2227  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
2228  * page->mapping->host, so the page-dirtying time is recorded in the internal
2229  * blockdev inode.
2230  */
__mark_inode_dirty(struct inode * inode,int flags)2231 void __mark_inode_dirty(struct inode *inode, int flags)
2232 {
2233 	struct super_block *sb = inode->i_sb;
2234 	int dirtytime;
2235 
2236 	trace_writeback_mark_inode_dirty(inode, flags);
2237 
2238 	/*
2239 	 * Don't do this for I_DIRTY_PAGES - that doesn't actually
2240 	 * dirty the inode itself
2241 	 */
2242 	if (flags & (I_DIRTY_INODE | I_DIRTY_TIME)) {
2243 		trace_writeback_dirty_inode_start(inode, flags);
2244 
2245 		if (sb->s_op->dirty_inode)
2246 			sb->s_op->dirty_inode(inode, flags);
2247 
2248 		trace_writeback_dirty_inode(inode, flags);
2249 	}
2250 	if (flags & I_DIRTY_INODE)
2251 		flags &= ~I_DIRTY_TIME;
2252 	dirtytime = flags & I_DIRTY_TIME;
2253 
2254 	/*
2255 	 * Paired with smp_mb() in __writeback_single_inode() for the
2256 	 * following lockless i_state test.  See there for details.
2257 	 */
2258 	smp_mb();
2259 
2260 	if (((inode->i_state & flags) == flags) ||
2261 	    (dirtytime && (inode->i_state & I_DIRTY_INODE)))
2262 		return;
2263 
2264 	spin_lock(&inode->i_lock);
2265 	if (dirtytime && (inode->i_state & I_DIRTY_INODE))
2266 		goto out_unlock_inode;
2267 	if ((inode->i_state & flags) != flags) {
2268 		const int was_dirty = inode->i_state & I_DIRTY;
2269 
2270 		inode_attach_wb(inode, NULL);
2271 
2272 		if (flags & I_DIRTY_INODE)
2273 			inode->i_state &= ~I_DIRTY_TIME;
2274 		inode->i_state |= flags;
2275 
2276 		/*
2277 		 * If the inode is queued for writeback by flush worker, just
2278 		 * update its dirty state. Once the flush worker is done with
2279 		 * the inode it will place it on the appropriate superblock
2280 		 * list, based upon its state.
2281 		 */
2282 		if (inode->i_state & I_SYNC_QUEUED)
2283 			goto out_unlock_inode;
2284 
2285 		/*
2286 		 * Only add valid (hashed) inodes to the superblock's
2287 		 * dirty list.  Add blockdev inodes as well.
2288 		 */
2289 		if (!S_ISBLK(inode->i_mode)) {
2290 			if (inode_unhashed(inode))
2291 				goto out_unlock_inode;
2292 		}
2293 		if (inode->i_state & I_FREEING)
2294 			goto out_unlock_inode;
2295 
2296 		/*
2297 		 * If the inode was already on b_dirty/b_io/b_more_io, don't
2298 		 * reposition it (that would break b_dirty time-ordering).
2299 		 */
2300 		if (!was_dirty) {
2301 			struct bdi_writeback *wb;
2302 			struct list_head *dirty_list;
2303 			bool wakeup_bdi = false;
2304 
2305 			wb = locked_inode_to_wb_and_lock_list(inode);
2306 
2307 			inode->dirtied_when = jiffies;
2308 			if (dirtytime)
2309 				inode->dirtied_time_when = jiffies;
2310 
2311 			if (inode->i_state & I_DIRTY)
2312 				dirty_list = &wb->b_dirty;
2313 			else
2314 				dirty_list = &wb->b_dirty_time;
2315 
2316 			wakeup_bdi = inode_io_list_move_locked(inode, wb,
2317 							       dirty_list);
2318 
2319 			spin_unlock(&wb->list_lock);
2320 			trace_writeback_dirty_inode_enqueue(inode);
2321 
2322 			/*
2323 			 * If this is the first dirty inode for this bdi,
2324 			 * we have to wake-up the corresponding bdi thread
2325 			 * to make sure background write-back happens
2326 			 * later.
2327 			 */
2328 			if (wakeup_bdi &&
2329 			    (wb->bdi->capabilities & BDI_CAP_WRITEBACK))
2330 				wb_wakeup_delayed(wb);
2331 			return;
2332 		}
2333 	}
2334 out_unlock_inode:
2335 	spin_unlock(&inode->i_lock);
2336 }
2337 EXPORT_SYMBOL(__mark_inode_dirty);
2338 
2339 /*
2340  * The @s_sync_lock is used to serialise concurrent sync operations
2341  * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2342  * Concurrent callers will block on the s_sync_lock rather than doing contending
2343  * walks. The queueing maintains sync(2) required behaviour as all the IO that
2344  * has been issued up to the time this function is enter is guaranteed to be
2345  * completed by the time we have gained the lock and waited for all IO that is
2346  * in progress regardless of the order callers are granted the lock.
2347  */
wait_sb_inodes(struct super_block * sb)2348 static void wait_sb_inodes(struct super_block *sb)
2349 {
2350 	LIST_HEAD(sync_list);
2351 
2352 	/*
2353 	 * We need to be protected against the filesystem going from
2354 	 * r/o to r/w or vice versa.
2355 	 */
2356 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2357 
2358 	mutex_lock(&sb->s_sync_lock);
2359 
2360 	/*
2361 	 * Splice the writeback list onto a temporary list to avoid waiting on
2362 	 * inodes that have started writeback after this point.
2363 	 *
2364 	 * Use rcu_read_lock() to keep the inodes around until we have a
2365 	 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2366 	 * the local list because inodes can be dropped from either by writeback
2367 	 * completion.
2368 	 */
2369 	rcu_read_lock();
2370 	spin_lock_irq(&sb->s_inode_wblist_lock);
2371 	list_splice_init(&sb->s_inodes_wb, &sync_list);
2372 
2373 	/*
2374 	 * Data integrity sync. Must wait for all pages under writeback, because
2375 	 * there may have been pages dirtied before our sync call, but which had
2376 	 * writeout started before we write it out.  In which case, the inode
2377 	 * may not be on the dirty list, but we still have to wait for that
2378 	 * writeout.
2379 	 */
2380 	while (!list_empty(&sync_list)) {
2381 		struct inode *inode = list_first_entry(&sync_list, struct inode,
2382 						       i_wb_list);
2383 		struct address_space *mapping = inode->i_mapping;
2384 
2385 		/*
2386 		 * Move each inode back to the wb list before we drop the lock
2387 		 * to preserve consistency between i_wb_list and the mapping
2388 		 * writeback tag. Writeback completion is responsible to remove
2389 		 * the inode from either list once the writeback tag is cleared.
2390 		 */
2391 		list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2392 
2393 		/*
2394 		 * The mapping can appear untagged while still on-list since we
2395 		 * do not have the mapping lock. Skip it here, wb completion
2396 		 * will remove it.
2397 		 */
2398 		if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2399 			continue;
2400 
2401 		spin_unlock_irq(&sb->s_inode_wblist_lock);
2402 
2403 		spin_lock(&inode->i_lock);
2404 		if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
2405 			spin_unlock(&inode->i_lock);
2406 
2407 			spin_lock_irq(&sb->s_inode_wblist_lock);
2408 			continue;
2409 		}
2410 		__iget(inode);
2411 		spin_unlock(&inode->i_lock);
2412 		rcu_read_unlock();
2413 
2414 		/*
2415 		 * We keep the error status of individual mapping so that
2416 		 * applications can catch the writeback error using fsync(2).
2417 		 * See filemap_fdatawait_keep_errors() for details.
2418 		 */
2419 		filemap_fdatawait_keep_errors(mapping);
2420 
2421 		cond_resched();
2422 
2423 		iput(inode);
2424 
2425 		rcu_read_lock();
2426 		spin_lock_irq(&sb->s_inode_wblist_lock);
2427 	}
2428 	spin_unlock_irq(&sb->s_inode_wblist_lock);
2429 	rcu_read_unlock();
2430 	mutex_unlock(&sb->s_sync_lock);
2431 }
2432 
__writeback_inodes_sb_nr(struct super_block * sb,unsigned long nr,enum wb_reason reason,bool skip_if_busy)2433 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2434 				     enum wb_reason reason, bool skip_if_busy)
2435 {
2436 	struct backing_dev_info *bdi = sb->s_bdi;
2437 	DEFINE_WB_COMPLETION(done, bdi);
2438 	struct wb_writeback_work work = {
2439 		.sb			= sb,
2440 		.sync_mode		= WB_SYNC_NONE,
2441 		.tagged_writepages	= 1,
2442 		.done			= &done,
2443 		.nr_pages		= nr,
2444 		.reason			= reason,
2445 	};
2446 
2447 	if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2448 		return;
2449 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2450 
2451 	bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2452 	wb_wait_for_completion(&done);
2453 }
2454 
2455 /**
2456  * writeback_inodes_sb_nr -	writeback dirty inodes from given super_block
2457  * @sb: the superblock
2458  * @nr: the number of pages to write
2459  * @reason: reason why some writeback work initiated
2460  *
2461  * Start writeback on some inodes on this super_block. No guarantees are made
2462  * on how many (if any) will be written, and this function does not wait
2463  * for IO completion of submitted IO.
2464  */
writeback_inodes_sb_nr(struct super_block * sb,unsigned long nr,enum wb_reason reason)2465 void writeback_inodes_sb_nr(struct super_block *sb,
2466 			    unsigned long nr,
2467 			    enum wb_reason reason)
2468 {
2469 	__writeback_inodes_sb_nr(sb, nr, reason, false);
2470 }
2471 EXPORT_SYMBOL(writeback_inodes_sb_nr);
2472 
2473 /**
2474  * writeback_inodes_sb	-	writeback dirty inodes from given super_block
2475  * @sb: the superblock
2476  * @reason: reason why some writeback work was initiated
2477  *
2478  * Start writeback on some inodes on this super_block. No guarantees are made
2479  * on how many (if any) will be written, and this function does not wait
2480  * for IO completion of submitted IO.
2481  */
writeback_inodes_sb(struct super_block * sb,enum wb_reason reason)2482 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2483 {
2484 	return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2485 }
2486 EXPORT_SYMBOL(writeback_inodes_sb);
2487 
2488 /**
2489  * try_to_writeback_inodes_sb - try to start writeback if none underway
2490  * @sb: the superblock
2491  * @reason: reason why some writeback work was initiated
2492  *
2493  * Invoke __writeback_inodes_sb_nr if no writeback is currently underway.
2494  */
try_to_writeback_inodes_sb(struct super_block * sb,enum wb_reason reason)2495 void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2496 {
2497 	if (!down_read_trylock(&sb->s_umount))
2498 		return;
2499 
2500 	__writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true);
2501 	up_read(&sb->s_umount);
2502 }
2503 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2504 
2505 /**
2506  * sync_inodes_sb	-	sync sb inode pages
2507  * @sb: the superblock
2508  *
2509  * This function writes and waits on any dirty inode belonging to this
2510  * super_block.
2511  */
sync_inodes_sb(struct super_block * sb)2512 void sync_inodes_sb(struct super_block *sb)
2513 {
2514 	struct backing_dev_info *bdi = sb->s_bdi;
2515 	DEFINE_WB_COMPLETION(done, bdi);
2516 	struct wb_writeback_work work = {
2517 		.sb		= sb,
2518 		.sync_mode	= WB_SYNC_ALL,
2519 		.nr_pages	= LONG_MAX,
2520 		.range_cyclic	= 0,
2521 		.done		= &done,
2522 		.reason		= WB_REASON_SYNC,
2523 		.for_sync	= 1,
2524 	};
2525 
2526 	/*
2527 	 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2528 	 * inodes under writeback and I_DIRTY_TIME inodes ignored by
2529 	 * bdi_has_dirty() need to be written out too.
2530 	 */
2531 	if (bdi == &noop_backing_dev_info)
2532 		return;
2533 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2534 
2535 	/* protect against inode wb switch, see inode_switch_wbs_work_fn() */
2536 	bdi_down_write_wb_switch_rwsem(bdi);
2537 	bdi_split_work_to_wbs(bdi, &work, false);
2538 	wb_wait_for_completion(&done);
2539 	bdi_up_write_wb_switch_rwsem(bdi);
2540 
2541 	wait_sb_inodes(sb);
2542 }
2543 EXPORT_SYMBOL(sync_inodes_sb);
2544 
2545 /**
2546  * write_inode_now	-	write an inode to disk
2547  * @inode: inode to write to disk
2548  * @sync: whether the write should be synchronous or not
2549  *
2550  * This function commits an inode to disk immediately if it is dirty. This is
2551  * primarily needed by knfsd.
2552  *
2553  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2554  */
write_inode_now(struct inode * inode,int sync)2555 int write_inode_now(struct inode *inode, int sync)
2556 {
2557 	struct writeback_control wbc = {
2558 		.nr_to_write = LONG_MAX,
2559 		.sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2560 		.range_start = 0,
2561 		.range_end = LLONG_MAX,
2562 	};
2563 
2564 	if (!mapping_can_writeback(inode->i_mapping))
2565 		wbc.nr_to_write = 0;
2566 
2567 	might_sleep();
2568 	return writeback_single_inode(inode, &wbc);
2569 }
2570 EXPORT_SYMBOL(write_inode_now);
2571 
2572 /**
2573  * sync_inode - write an inode and its pages to disk.
2574  * @inode: the inode to sync
2575  * @wbc: controls the writeback mode
2576  *
2577  * sync_inode() will write an inode and its pages to disk.  It will also
2578  * correctly update the inode on its superblock's dirty inode lists and will
2579  * update inode->i_state.
2580  *
2581  * The caller must have a ref on the inode.
2582  */
sync_inode(struct inode * inode,struct writeback_control * wbc)2583 int sync_inode(struct inode *inode, struct writeback_control *wbc)
2584 {
2585 	return writeback_single_inode(inode, wbc);
2586 }
2587 EXPORT_SYMBOL(sync_inode);
2588 
2589 /**
2590  * sync_inode_metadata - write an inode to disk
2591  * @inode: the inode to sync
2592  * @wait: wait for I/O to complete.
2593  *
2594  * Write an inode to disk and adjust its dirty state after completion.
2595  *
2596  * Note: only writes the actual inode, no associated data or other metadata.
2597  */
sync_inode_metadata(struct inode * inode,int wait)2598 int sync_inode_metadata(struct inode *inode, int wait)
2599 {
2600 	struct writeback_control wbc = {
2601 		.sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2602 		.nr_to_write = 0, /* metadata-only */
2603 	};
2604 
2605 	return sync_inode(inode, &wbc);
2606 }
2607 EXPORT_SYMBOL(sync_inode_metadata);
2608