• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //  (C) Copyright John Maddock 2006.
2 //  Use, modification and distribution are subject to the
3 //  Boost Software License, Version 1.0. (See accompanying file
4 //  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
5 
6 //
7 // This is not a complete header file, it is included by beta.hpp
8 // after it has defined it's definitions.  This inverts the incomplete
9 // beta functions ibeta and ibetac on the first parameters "a"
10 // and "b" using a generic root finding algorithm (TOMS Algorithm 748).
11 //
12 
13 #ifndef BOOST_MATH_SP_DETAIL_BETA_INV_AB
14 #define BOOST_MATH_SP_DETAIL_BETA_INV_AB
15 
16 #ifdef _MSC_VER
17 #pragma once
18 #endif
19 
20 #include <boost/math/tools/toms748_solve.hpp>
21 #include <boost/cstdint.hpp>
22 
23 namespace boost{ namespace math{ namespace detail{
24 
25 template <class T, class Policy>
26 struct beta_inv_ab_t
27 {
beta_inv_ab_tboost::math::detail::beta_inv_ab_t28    beta_inv_ab_t(T b_, T z_, T p_, bool invert_, bool swap_ab_) : b(b_), z(z_), p(p_), invert(invert_), swap_ab(swap_ab_) {}
operator ()boost::math::detail::beta_inv_ab_t29    T operator()(T a)
30    {
31       return invert ?
32          p - boost::math::ibetac(swap_ab ? b : a, swap_ab ? a : b, z, Policy())
33          : boost::math::ibeta(swap_ab ? b : a, swap_ab ? a : b, z, Policy()) - p;
34    }
35 private:
36    T b, z, p;
37    bool invert, swap_ab;
38 };
39 
40 template <class T, class Policy>
inverse_negative_binomial_cornish_fisher(T n,T sf,T sfc,T p,T q,const Policy & pol)41 T inverse_negative_binomial_cornish_fisher(T n, T sf, T sfc, T p, T q, const Policy& pol)
42 {
43    BOOST_MATH_STD_USING
44    // mean:
45    T m = n * (sfc) / sf;
46    T t = sqrt(n * (sfc));
47    // standard deviation:
48    T sigma = t / sf;
49    // skewness
50    T sk = (1 + sfc) / t;
51    // kurtosis:
52    T k = (6 - sf * (5+sfc)) / (n * (sfc));
53    // Get the inverse of a std normal distribution:
54    T x = boost::math::erfc_inv(p > q ? 2 * q : 2 * p, pol) * constants::root_two<T>();
55    // Set the sign:
56    if(p < 0.5)
57       x = -x;
58    T x2 = x * x;
59    // w is correction term due to skewness
60    T w = x + sk * (x2 - 1) / 6;
61    //
62    // Add on correction due to kurtosis.
63    //
64    if(n >= 10)
65       w += k * x * (x2 - 3) / 24 + sk * sk * x * (2 * x2 - 5) / -36;
66 
67    w = m + sigma * w;
68    if(w < tools::min_value<T>())
69       return tools::min_value<T>();
70    return w;
71 }
72 
73 template <class T, class Policy>
ibeta_inv_ab_imp(const T & b,const T & z,const T & p,const T & q,bool swap_ab,const Policy & pol)74 T ibeta_inv_ab_imp(const T& b, const T& z, const T& p, const T& q, bool swap_ab, const Policy& pol)
75 {
76    BOOST_MATH_STD_USING  // for ADL of std lib math functions
77    //
78    // Special cases first:
79    //
80    BOOST_MATH_INSTRUMENT_CODE("b = " << b << " z = " << z << " p = " << p << " q = " << " swap = " << swap_ab);
81    if(p == 0)
82    {
83       return swap_ab ? tools::min_value<T>() : tools::max_value<T>();
84    }
85    if(q == 0)
86    {
87       return swap_ab ? tools::max_value<T>() : tools::min_value<T>();
88    }
89    //
90    // Function object, this is the functor whose root
91    // we have to solve:
92    //
93    beta_inv_ab_t<T, Policy> f(b, z, (p < q) ? p : q, (p < q) ? false : true, swap_ab);
94    //
95    // Tolerance: full precision.
96    //
97    tools::eps_tolerance<T> tol(policies::digits<T, Policy>());
98    //
99    // Now figure out a starting guess for what a may be,
100    // we'll start out with a value that'll put p or q
101    // right bang in the middle of their range, the functions
102    // are quite sensitive so we should need too many steps
103    // to bracket the root from there:
104    //
105    T guess = 0;
106    T factor = 5;
107    //
108    // Convert variables to parameters of a negative binomial distribution:
109    //
110    T n = b;
111    T sf = swap_ab ? z : 1-z;
112    T sfc = swap_ab ? 1-z : z;
113    T u = swap_ab ? p : q;
114    T v = swap_ab ? q : p;
115    if(u <= pow(sf, n))
116    {
117       //
118       // Result is less than 1, negative binomial approximation
119       // is useless....
120       //
121       if((p < q) != swap_ab)
122       {
123          guess = (std::min)(T(b * 2), T(1));
124       }
125       else
126       {
127          guess = (std::min)(T(b / 2), T(1));
128       }
129    }
130    if(n * n * n * u * sf > 0.005)
131       guess = 1 + inverse_negative_binomial_cornish_fisher(n, sf, sfc, u, v, pol);
132 
133    if(guess < 10)
134    {
135       //
136       // Negative binomial approximation not accurate in this area:
137       //
138       if((p < q) != swap_ab)
139       {
140          guess = (std::min)(T(b * 2), T(10));
141       }
142       else
143       {
144          guess = (std::min)(T(b / 2), T(10));
145       }
146    }
147    else
148       factor = (v < sqrt(tools::epsilon<T>())) ? 2 : (guess < 20 ? 1.2f : 1.1f);
149    BOOST_MATH_INSTRUMENT_CODE("guess = " << guess);
150    //
151    // Max iterations permitted:
152    //
153    boost::uintmax_t max_iter = policies::get_max_root_iterations<Policy>();
154    std::pair<T, T> r = bracket_and_solve_root(f, guess, factor, swap_ab ? true : false, tol, max_iter, pol);
155    if(max_iter >= policies::get_max_root_iterations<Policy>())
156       return policies::raise_evaluation_error<T>("boost::math::ibeta_invab_imp<%1%>(%1%,%1%,%1%)", "Unable to locate the root within a reasonable number of iterations, closest approximation so far was %1%", r.first, pol);
157    return (r.first + r.second) / 2;
158 }
159 
160 } // namespace detail
161 
162 template <class RT1, class RT2, class RT3, class Policy>
163 typename tools::promote_args<RT1, RT2, RT3>::type
ibeta_inva(RT1 b,RT2 x,RT3 p,const Policy & pol)164       ibeta_inva(RT1 b, RT2 x, RT3 p, const Policy& pol)
165 {
166    typedef typename tools::promote_args<RT1, RT2, RT3>::type result_type;
167    typedef typename policies::evaluation<result_type, Policy>::type value_type;
168    typedef typename policies::normalise<
169       Policy,
170       policies::promote_float<false>,
171       policies::promote_double<false>,
172       policies::discrete_quantile<>,
173       policies::assert_undefined<> >::type forwarding_policy;
174 
175    static const char* function = "boost::math::ibeta_inva<%1%>(%1%,%1%,%1%)";
176    if(p == 0)
177    {
178       return policies::raise_overflow_error<result_type>(function, 0, Policy());
179    }
180    if(p == 1)
181    {
182       return tools::min_value<result_type>();
183    }
184 
185    return policies::checked_narrowing_cast<result_type, forwarding_policy>(
186       detail::ibeta_inv_ab_imp(
187          static_cast<value_type>(b),
188          static_cast<value_type>(x),
189          static_cast<value_type>(p),
190          static_cast<value_type>(1 - static_cast<value_type>(p)),
191          false, pol),
192       function);
193 }
194 
195 template <class RT1, class RT2, class RT3, class Policy>
196 typename tools::promote_args<RT1, RT2, RT3>::type
ibetac_inva(RT1 b,RT2 x,RT3 q,const Policy & pol)197       ibetac_inva(RT1 b, RT2 x, RT3 q, const Policy& pol)
198 {
199    typedef typename tools::promote_args<RT1, RT2, RT3>::type result_type;
200    typedef typename policies::evaluation<result_type, Policy>::type value_type;
201    typedef typename policies::normalise<
202       Policy,
203       policies::promote_float<false>,
204       policies::promote_double<false>,
205       policies::discrete_quantile<>,
206       policies::assert_undefined<> >::type forwarding_policy;
207 
208    static const char* function = "boost::math::ibetac_inva<%1%>(%1%,%1%,%1%)";
209    if(q == 1)
210    {
211       return policies::raise_overflow_error<result_type>(function, 0, Policy());
212    }
213    if(q == 0)
214    {
215       return tools::min_value<result_type>();
216    }
217 
218    return policies::checked_narrowing_cast<result_type, forwarding_policy>(
219       detail::ibeta_inv_ab_imp(
220          static_cast<value_type>(b),
221          static_cast<value_type>(x),
222          static_cast<value_type>(1 - static_cast<value_type>(q)),
223          static_cast<value_type>(q),
224          false, pol),
225       function);
226 }
227 
228 template <class RT1, class RT2, class RT3, class Policy>
229 typename tools::promote_args<RT1, RT2, RT3>::type
ibeta_invb(RT1 a,RT2 x,RT3 p,const Policy & pol)230       ibeta_invb(RT1 a, RT2 x, RT3 p, const Policy& pol)
231 {
232    typedef typename tools::promote_args<RT1, RT2, RT3>::type result_type;
233    typedef typename policies::evaluation<result_type, Policy>::type value_type;
234    typedef typename policies::normalise<
235       Policy,
236       policies::promote_float<false>,
237       policies::promote_double<false>,
238       policies::discrete_quantile<>,
239       policies::assert_undefined<> >::type forwarding_policy;
240 
241    static const char* function = "boost::math::ibeta_invb<%1%>(%1%,%1%,%1%)";
242    if(p == 0)
243    {
244       return tools::min_value<result_type>();
245    }
246    if(p == 1)
247    {
248       return policies::raise_overflow_error<result_type>(function, 0, Policy());
249    }
250 
251    return policies::checked_narrowing_cast<result_type, forwarding_policy>(
252       detail::ibeta_inv_ab_imp(
253          static_cast<value_type>(a),
254          static_cast<value_type>(x),
255          static_cast<value_type>(p),
256          static_cast<value_type>(1 - static_cast<value_type>(p)),
257          true, pol),
258       function);
259 }
260 
261 template <class RT1, class RT2, class RT3, class Policy>
262 typename tools::promote_args<RT1, RT2, RT3>::type
ibetac_invb(RT1 a,RT2 x,RT3 q,const Policy & pol)263       ibetac_invb(RT1 a, RT2 x, RT3 q, const Policy& pol)
264 {
265    static const char* function = "boost::math::ibeta_invb<%1%>(%1%, %1%, %1%)";
266    typedef typename tools::promote_args<RT1, RT2, RT3>::type result_type;
267    typedef typename policies::evaluation<result_type, Policy>::type value_type;
268    typedef typename policies::normalise<
269       Policy,
270       policies::promote_float<false>,
271       policies::promote_double<false>,
272       policies::discrete_quantile<>,
273       policies::assert_undefined<> >::type forwarding_policy;
274 
275    if(q == 1)
276    {
277       return tools::min_value<result_type>();
278    }
279    if(q == 0)
280    {
281       return policies::raise_overflow_error<result_type>(function, 0, Policy());
282    }
283 
284    return policies::checked_narrowing_cast<result_type, forwarding_policy>(
285       detail::ibeta_inv_ab_imp(
286          static_cast<value_type>(a),
287          static_cast<value_type>(x),
288          static_cast<value_type>(1 - static_cast<value_type>(q)),
289          static_cast<value_type>(q),
290          true, pol),
291          function);
292 }
293 
294 template <class RT1, class RT2, class RT3>
295 inline typename tools::promote_args<RT1, RT2, RT3>::type
ibeta_inva(RT1 b,RT2 x,RT3 p)296          ibeta_inva(RT1 b, RT2 x, RT3 p)
297 {
298    return boost::math::ibeta_inva(b, x, p, policies::policy<>());
299 }
300 
301 template <class RT1, class RT2, class RT3>
302 inline typename tools::promote_args<RT1, RT2, RT3>::type
ibetac_inva(RT1 b,RT2 x,RT3 q)303          ibetac_inva(RT1 b, RT2 x, RT3 q)
304 {
305    return boost::math::ibetac_inva(b, x, q, policies::policy<>());
306 }
307 
308 template <class RT1, class RT2, class RT3>
309 inline typename tools::promote_args<RT1, RT2, RT3>::type
ibeta_invb(RT1 a,RT2 x,RT3 p)310          ibeta_invb(RT1 a, RT2 x, RT3 p)
311 {
312    return boost::math::ibeta_invb(a, x, p, policies::policy<>());
313 }
314 
315 template <class RT1, class RT2, class RT3>
316 inline typename tools::promote_args<RT1, RT2, RT3>::type
ibetac_invb(RT1 a,RT2 x,RT3 q)317          ibetac_invb(RT1 a, RT2 x, RT3 q)
318 {
319    return boost::math::ibetac_invb(a, x, q, policies::policy<>());
320 }
321 
322 } // namespace math
323 } // namespace boost
324 
325 #endif // BOOST_MATH_SP_DETAIL_BETA_INV_AB
326 
327 
328 
329