• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2017 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included
12  * in all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
15  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
19  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
20  * DEALINGS IN THE SOFTWARE.
21  */
22 
23 /**
24  * @file iris_bufmgr.c
25  *
26  * The Iris buffer manager.
27  *
28  * XXX: write better comments
29  * - BOs
30  * - Explain BO cache
31  * - main interface to GEM in the kernel
32  */
33 
34 #include <xf86drm.h>
35 #include <util/u_atomic.h>
36 #include <fcntl.h>
37 #include <stdio.h>
38 #include <stdlib.h>
39 #include <string.h>
40 #include <unistd.h>
41 #include <assert.h>
42 #include <sys/ioctl.h>
43 #include <sys/mman.h>
44 #include <sys/stat.h>
45 #include <sys/types.h>
46 #include <stdbool.h>
47 #include <time.h>
48 #include <unistd.h>
49 
50 #include "errno.h"
51 #include "common/intel_aux_map.h"
52 #include "common/intel_clflush.h"
53 #include "dev/intel_debug.h"
54 #include "common/intel_gem.h"
55 #include "dev/intel_device_info.h"
56 #include "isl/isl.h"
57 #include "main/macros.h"
58 #include "os/os_mman.h"
59 #include "util/debug.h"
60 #include "util/macros.h"
61 #include "util/hash_table.h"
62 #include "util/list.h"
63 #include "util/os_file.h"
64 #include "util/u_dynarray.h"
65 #include "util/vma.h"
66 #include "iris_bufmgr.h"
67 #include "iris_context.h"
68 #include "string.h"
69 
70 #include "drm-uapi/i915_drm.h"
71 
72 #ifdef HAVE_VALGRIND
73 #include <valgrind.h>
74 #include <memcheck.h>
75 #define VG(x) x
76 #else
77 #define VG(x)
78 #endif
79 
80 /* VALGRIND_FREELIKE_BLOCK unfortunately does not actually undo the earlier
81  * VALGRIND_MALLOCLIKE_BLOCK but instead leaves vg convinced the memory is
82  * leaked. All because it does not call VG(cli_free) from its
83  * VG_USERREQ__FREELIKE_BLOCK handler. Instead of treating the memory like
84  * and allocation, we mark it available for use upon mmapping and remove
85  * it upon unmapping.
86  */
87 #define VG_DEFINED(ptr, size) VG(VALGRIND_MAKE_MEM_DEFINED(ptr, size))
88 #define VG_NOACCESS(ptr, size) VG(VALGRIND_MAKE_MEM_NOACCESS(ptr, size))
89 
90 /* On FreeBSD PAGE_SIZE is already defined in
91  * /usr/include/machine/param.h that is indirectly
92  * included here.
93  */
94 #ifndef PAGE_SIZE
95 #define PAGE_SIZE 4096
96 #endif
97 
98 #define WARN_ONCE(cond, fmt...) do {                            \
99    if (unlikely(cond)) {                                        \
100       static bool _warned = false;                              \
101       if (!_warned) {                                           \
102          fprintf(stderr, "WARNING: ");                          \
103          fprintf(stderr, fmt);                                  \
104          _warned = true;                                        \
105       }                                                         \
106    }                                                            \
107 } while (0)
108 
109 #define FILE_DEBUG_FLAG DEBUG_BUFMGR
110 
111 /**
112  * For debugging purposes, this returns a time in seconds.
113  */
114 static double
get_time(void)115 get_time(void)
116 {
117    struct timespec tp;
118 
119    clock_gettime(CLOCK_MONOTONIC, &tp);
120 
121    return tp.tv_sec + tp.tv_nsec / 1000000000.0;
122 }
123 
124 static inline int
atomic_add_unless(int * v,int add,int unless)125 atomic_add_unless(int *v, int add, int unless)
126 {
127    int c, old;
128    c = p_atomic_read(v);
129    while (c != unless && (old = p_atomic_cmpxchg(v, c, c + add)) != c)
130       c = old;
131    return c == unless;
132 }
133 
134 static const char *
memzone_name(enum iris_memory_zone memzone)135 memzone_name(enum iris_memory_zone memzone)
136 {
137    const char *names[] = {
138       [IRIS_MEMZONE_SHADER]   = "shader",
139       [IRIS_MEMZONE_BINDER]   = "binder",
140       [IRIS_MEMZONE_BINDLESS] = "scratchsurf",
141       [IRIS_MEMZONE_SURFACE]  = "surface",
142       [IRIS_MEMZONE_DYNAMIC]  = "dynamic",
143       [IRIS_MEMZONE_OTHER]    = "other",
144       [IRIS_MEMZONE_BORDER_COLOR_POOL] = "bordercolor",
145    };
146    assert(memzone < ARRAY_SIZE(names));
147    return names[memzone];
148 }
149 
150 struct bo_cache_bucket {
151    /** List of cached BOs. */
152    struct list_head head;
153 
154    /** Size of this bucket, in bytes. */
155    uint64_t size;
156 };
157 
158 struct bo_export {
159    /** File descriptor associated with a handle export. */
160    int drm_fd;
161 
162    /** GEM handle in drm_fd */
163    uint32_t gem_handle;
164 
165    struct list_head link;
166 };
167 
168 struct iris_memregion {
169    struct drm_i915_gem_memory_class_instance region;
170    uint64_t size;
171 };
172 
173 #define NUM_SLAB_ALLOCATORS 3
174 
175 enum iris_heap {
176    IRIS_HEAP_SYSTEM_MEMORY,
177    IRIS_HEAP_DEVICE_LOCAL,
178    IRIS_HEAP_MAX,
179 };
180 
181 struct iris_slab {
182    struct pb_slab base;
183 
184    unsigned entry_size;
185 
186    /** The BO representing the entire slab */
187    struct iris_bo *bo;
188 
189    /** Array of iris_bo structs representing BOs allocated out of this slab */
190    struct iris_bo *entries;
191 };
192 
193 struct iris_bufmgr {
194    /**
195     * List into the list of bufmgr.
196     */
197    struct list_head link;
198 
199    uint32_t refcount;
200 
201    int fd;
202 
203    simple_mtx_t lock;
204    simple_mtx_t bo_deps_lock;
205 
206    /** Array of lists of cached gem objects of power-of-two sizes */
207    struct bo_cache_bucket cache_bucket[14 * 4];
208    int num_buckets;
209 
210    /** Same as cache_bucket, but for local memory gem objects */
211    struct bo_cache_bucket local_cache_bucket[14 * 4];
212    int num_local_buckets;
213 
214    time_t time;
215 
216    struct hash_table *name_table;
217    struct hash_table *handle_table;
218 
219    /**
220     * List of BOs which we've effectively freed, but are hanging on to
221     * until they're idle before closing and returning the VMA.
222     */
223    struct list_head zombie_list;
224 
225    struct util_vma_heap vma_allocator[IRIS_MEMZONE_COUNT];
226 
227    uint64_t vma_min_align;
228    struct iris_memregion vram, sys;
229 
230    int next_screen_id;
231 
232    bool has_llc:1;
233    bool has_local_mem:1;
234    bool has_mmap_offset:1;
235    bool has_tiling_uapi:1;
236    bool has_userptr_probe:1;
237    bool bo_reuse:1;
238 
239    struct intel_aux_map_context *aux_map_ctx;
240 
241    struct pb_slabs bo_slabs[NUM_SLAB_ALLOCATORS];
242 };
243 
244 static simple_mtx_t global_bufmgr_list_mutex = _SIMPLE_MTX_INITIALIZER_NP;
245 static struct list_head global_bufmgr_list = {
246    .next = &global_bufmgr_list,
247    .prev = &global_bufmgr_list,
248 };
249 
250 static void bo_free(struct iris_bo *bo);
251 
252 static struct iris_bo *
find_and_ref_external_bo(struct hash_table * ht,unsigned int key)253 find_and_ref_external_bo(struct hash_table *ht, unsigned int key)
254 {
255    struct hash_entry *entry = _mesa_hash_table_search(ht, &key);
256    struct iris_bo *bo = entry ? entry->data : NULL;
257 
258    if (bo) {
259       assert(iris_bo_is_external(bo));
260       assert(iris_bo_is_real(bo));
261       assert(!bo->real.reusable);
262 
263       /* Being non-reusable, the BO cannot be in the cache lists, but it
264        * may be in the zombie list if it had reached zero references, but
265        * we hadn't yet closed it...and then reimported the same BO.  If it
266        * is, then remove it since it's now been resurrected.
267        */
268       if (list_is_linked(&bo->head))
269          list_del(&bo->head);
270 
271       iris_bo_reference(bo);
272    }
273 
274    return bo;
275 }
276 
277 /**
278  * This function finds the correct bucket fit for the input size.
279  * The function works with O(1) complexity when the requested size
280  * was queried instead of iterating the size through all the buckets.
281  */
282 static struct bo_cache_bucket *
bucket_for_size(struct iris_bufmgr * bufmgr,uint64_t size,bool local)283 bucket_for_size(struct iris_bufmgr *bufmgr, uint64_t size, bool local)
284 {
285    /* Calculating the pages and rounding up to the page size. */
286    const unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
287 
288    /* Row  Bucket sizes    clz((x-1) | 3)   Row    Column
289     *        in pages                      stride   size
290     *   0:   1  2  3  4 -> 30 30 30 30        4       1
291     *   1:   5  6  7  8 -> 29 29 29 29        4       1
292     *   2:  10 12 14 16 -> 28 28 28 28        8       2
293     *   3:  20 24 28 32 -> 27 27 27 27       16       4
294     */
295    const unsigned row = 30 - __builtin_clz((pages - 1) | 3);
296    const unsigned row_max_pages = 4 << row;
297 
298    /* The '& ~2' is the special case for row 1. In row 1, max pages /
299     * 2 is 2, but the previous row maximum is zero (because there is
300     * no previous row). All row maximum sizes are power of 2, so that
301     * is the only case where that bit will be set.
302     */
303    const unsigned prev_row_max_pages = (row_max_pages / 2) & ~2;
304    int col_size_log2 = row - 1;
305    col_size_log2 += (col_size_log2 < 0);
306 
307    const unsigned col = (pages - prev_row_max_pages +
308                         ((1 << col_size_log2) - 1)) >> col_size_log2;
309 
310    /* Calculating the index based on the row and column. */
311    const unsigned index = (row * 4) + (col - 1);
312 
313    int num_buckets = local ? bufmgr->num_local_buckets : bufmgr->num_buckets;
314    struct bo_cache_bucket *buckets = local ?
315       bufmgr->local_cache_bucket : bufmgr->cache_bucket;
316 
317    return (index < num_buckets) ? &buckets[index] : NULL;
318 }
319 
320 enum iris_memory_zone
iris_memzone_for_address(uint64_t address)321 iris_memzone_for_address(uint64_t address)
322 {
323    STATIC_ASSERT(IRIS_MEMZONE_OTHER_START    > IRIS_MEMZONE_DYNAMIC_START);
324    STATIC_ASSERT(IRIS_MEMZONE_DYNAMIC_START  > IRIS_MEMZONE_SURFACE_START);
325    STATIC_ASSERT(IRIS_MEMZONE_SURFACE_START  > IRIS_MEMZONE_BINDLESS_START);
326    STATIC_ASSERT(IRIS_MEMZONE_BINDLESS_START > IRIS_MEMZONE_BINDER_START);
327    STATIC_ASSERT(IRIS_MEMZONE_BINDER_START   > IRIS_MEMZONE_SHADER_START);
328    STATIC_ASSERT(IRIS_BORDER_COLOR_POOL_ADDRESS == IRIS_MEMZONE_DYNAMIC_START);
329 
330    if (address >= IRIS_MEMZONE_OTHER_START)
331       return IRIS_MEMZONE_OTHER;
332 
333    if (address == IRIS_BORDER_COLOR_POOL_ADDRESS)
334       return IRIS_MEMZONE_BORDER_COLOR_POOL;
335 
336    if (address > IRIS_MEMZONE_DYNAMIC_START)
337       return IRIS_MEMZONE_DYNAMIC;
338 
339    if (address >= IRIS_MEMZONE_SURFACE_START)
340       return IRIS_MEMZONE_SURFACE;
341 
342    if (address >= IRIS_MEMZONE_BINDLESS_START)
343       return IRIS_MEMZONE_BINDLESS;
344 
345    if (address >= IRIS_MEMZONE_BINDER_START)
346       return IRIS_MEMZONE_BINDER;
347 
348    return IRIS_MEMZONE_SHADER;
349 }
350 
351 /**
352  * Allocate a section of virtual memory for a buffer, assigning an address.
353  *
354  * This uses either the bucket allocator for the given size, or the large
355  * object allocator (util_vma).
356  */
357 static uint64_t
vma_alloc(struct iris_bufmgr * bufmgr,enum iris_memory_zone memzone,uint64_t size,uint64_t alignment)358 vma_alloc(struct iris_bufmgr *bufmgr,
359           enum iris_memory_zone memzone,
360           uint64_t size,
361           uint64_t alignment)
362 {
363    /* Force minimum alignment based on device requirements */
364    assert((alignment & (alignment - 1)) == 0);
365    alignment = MAX2(alignment, bufmgr->vma_min_align);
366 
367    if (memzone == IRIS_MEMZONE_BORDER_COLOR_POOL)
368       return IRIS_BORDER_COLOR_POOL_ADDRESS;
369 
370    /* The binder handles its own allocations.  Return non-zero here. */
371    if (memzone == IRIS_MEMZONE_BINDER)
372       return IRIS_MEMZONE_BINDER_START;
373 
374    uint64_t addr =
375       util_vma_heap_alloc(&bufmgr->vma_allocator[memzone], size, alignment);
376 
377    assert((addr >> 48ull) == 0);
378    assert((addr % alignment) == 0);
379 
380    return intel_canonical_address(addr);
381 }
382 
383 static void
vma_free(struct iris_bufmgr * bufmgr,uint64_t address,uint64_t size)384 vma_free(struct iris_bufmgr *bufmgr,
385          uint64_t address,
386          uint64_t size)
387 {
388    if (address == IRIS_BORDER_COLOR_POOL_ADDRESS)
389       return;
390 
391    /* Un-canonicalize the address. */
392    address = intel_48b_address(address);
393 
394    if (address == 0ull)
395       return;
396 
397    enum iris_memory_zone memzone = iris_memzone_for_address(address);
398 
399    /* The binder handles its own allocations. */
400    if (memzone == IRIS_MEMZONE_BINDER)
401       return;
402 
403    assert(memzone < ARRAY_SIZE(bufmgr->vma_allocator));
404 
405    util_vma_heap_free(&bufmgr->vma_allocator[memzone], address, size);
406 }
407 
408 static bool
iris_bo_busy_gem(struct iris_bo * bo)409 iris_bo_busy_gem(struct iris_bo *bo)
410 {
411    assert(iris_bo_is_real(bo));
412 
413    struct iris_bufmgr *bufmgr = bo->bufmgr;
414    struct drm_i915_gem_busy busy = { .handle = bo->gem_handle };
415 
416    int ret = intel_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_BUSY, &busy);
417    if (ret == 0) {
418       return busy.busy;
419    }
420    return false;
421 }
422 
423 /* A timeout of 0 just checks for busyness. */
424 static int
iris_bo_wait_syncobj(struct iris_bo * bo,int64_t timeout_ns)425 iris_bo_wait_syncobj(struct iris_bo *bo, int64_t timeout_ns)
426 {
427    int ret = 0;
428    struct iris_bufmgr *bufmgr = bo->bufmgr;
429 
430    /* If we know it's idle, don't bother with the kernel round trip */
431    if (bo->idle)
432       return 0;
433 
434    simple_mtx_lock(&bufmgr->bo_deps_lock);
435 
436    uint32_t handles[bo->deps_size * IRIS_BATCH_COUNT * 2];
437    int handle_count = 0;
438 
439    for (int d = 0; d < bo->deps_size; d++) {
440       for (int b = 0; b < IRIS_BATCH_COUNT; b++) {
441          struct iris_syncobj *r = bo->deps[d].read_syncobjs[b];
442          struct iris_syncobj *w = bo->deps[d].write_syncobjs[b];
443          if (r)
444             handles[handle_count++] = r->handle;
445          if (w)
446             handles[handle_count++] = w->handle;
447       }
448    }
449 
450    if (handle_count == 0)
451       goto out;
452 
453    /* Unlike the gem wait, negative values are not infinite here. */
454    int64_t timeout_abs = os_time_get_absolute_timeout(timeout_ns);
455    if (timeout_abs < 0)
456       timeout_abs = INT64_MAX;
457 
458    struct drm_syncobj_wait args = {
459       .handles = (uintptr_t) handles,
460       .timeout_nsec = timeout_abs,
461       .count_handles = handle_count,
462       .flags = DRM_SYNCOBJ_WAIT_FLAGS_WAIT_ALL,
463    };
464 
465    ret = intel_ioctl(bufmgr->fd, DRM_IOCTL_SYNCOBJ_WAIT, &args);
466    if (ret != 0) {
467       ret = -errno;
468       goto out;
469    }
470 
471    /* We just waited everything, so clean all the deps. */
472    for (int d = 0; d < bo->deps_size; d++) {
473       for (int b = 0; b < IRIS_BATCH_COUNT; b++) {
474          iris_syncobj_reference(bufmgr, &bo->deps[d].write_syncobjs[b], NULL);
475          iris_syncobj_reference(bufmgr, &bo->deps[d].read_syncobjs[b], NULL);
476       }
477    }
478 
479 out:
480    simple_mtx_unlock(&bufmgr->bo_deps_lock);
481    return ret;
482 }
483 
484 static bool
iris_bo_busy_syncobj(struct iris_bo * bo)485 iris_bo_busy_syncobj(struct iris_bo *bo)
486 {
487    return iris_bo_wait_syncobj(bo, 0) == -ETIME;
488 }
489 
490 bool
iris_bo_busy(struct iris_bo * bo)491 iris_bo_busy(struct iris_bo *bo)
492 {
493    bool busy;
494    if (iris_bo_is_external(bo))
495       busy = iris_bo_busy_gem(bo);
496    else
497       busy = iris_bo_busy_syncobj(bo);
498 
499    bo->idle = !busy;
500 
501    return busy;
502 }
503 
504 int
iris_bo_madvise(struct iris_bo * bo,int state)505 iris_bo_madvise(struct iris_bo *bo, int state)
506 {
507    /* We can't madvise suballocated BOs. */
508    assert(iris_bo_is_real(bo));
509 
510    struct drm_i915_gem_madvise madv = {
511       .handle = bo->gem_handle,
512       .madv = state,
513       .retained = 1,
514    };
515 
516    intel_ioctl(bo->bufmgr->fd, DRM_IOCTL_I915_GEM_MADVISE, &madv);
517 
518    return madv.retained;
519 }
520 
521 static struct iris_bo *
bo_calloc(void)522 bo_calloc(void)
523 {
524    struct iris_bo *bo = calloc(1, sizeof(*bo));
525    if (!bo)
526       return NULL;
527 
528    list_inithead(&bo->real.exports);
529 
530    bo->hash = _mesa_hash_pointer(bo);
531 
532    return bo;
533 }
534 
535 static void
bo_unmap(struct iris_bo * bo)536 bo_unmap(struct iris_bo *bo)
537 {
538    assert(iris_bo_is_real(bo));
539 
540    VG_NOACCESS(bo->real.map, bo->size);
541    os_munmap(bo->real.map, bo->size);
542    bo->real.map = NULL;
543 }
544 
545 static struct pb_slabs *
get_slabs(struct iris_bufmgr * bufmgr,uint64_t size)546 get_slabs(struct iris_bufmgr *bufmgr, uint64_t size)
547 {
548    for (unsigned i = 0; i < NUM_SLAB_ALLOCATORS; i++) {
549       struct pb_slabs *slabs = &bufmgr->bo_slabs[i];
550 
551       if (size <= 1ull << (slabs->min_order + slabs->num_orders - 1))
552          return slabs;
553    }
554 
555    unreachable("should have found a valid slab for this size");
556 }
557 
558 /* Return the power of two size of a slab entry matching the input size. */
559 static unsigned
get_slab_pot_entry_size(struct iris_bufmgr * bufmgr,unsigned size)560 get_slab_pot_entry_size(struct iris_bufmgr *bufmgr, unsigned size)
561 {
562    unsigned entry_size = util_next_power_of_two(size);
563    unsigned min_entry_size = 1 << bufmgr->bo_slabs[0].min_order;
564 
565    return MAX2(entry_size, min_entry_size);
566 }
567 
568 /* Return the slab entry alignment. */
569 static unsigned
get_slab_entry_alignment(struct iris_bufmgr * bufmgr,unsigned size)570 get_slab_entry_alignment(struct iris_bufmgr *bufmgr, unsigned size)
571 {
572    unsigned entry_size = get_slab_pot_entry_size(bufmgr, size);
573 
574    if (size <= entry_size * 3 / 4)
575       return entry_size / 4;
576 
577    return entry_size;
578 }
579 
580 static bool
iris_can_reclaim_slab(void * priv,struct pb_slab_entry * entry)581 iris_can_reclaim_slab(void *priv, struct pb_slab_entry *entry)
582 {
583    struct iris_bo *bo = container_of(entry, struct iris_bo, slab.entry);
584 
585    return !iris_bo_busy(bo);
586 }
587 
588 static void
iris_slab_free(void * priv,struct pb_slab * pslab)589 iris_slab_free(void *priv, struct pb_slab *pslab)
590 {
591    struct iris_bufmgr *bufmgr = priv;
592    struct iris_slab *slab = (void *) pslab;
593    struct intel_aux_map_context *aux_map_ctx = bufmgr->aux_map_ctx;
594 
595    assert(!slab->bo->aux_map_address);
596 
597    if (aux_map_ctx) {
598       /* Since we're freeing the whole slab, all buffers allocated out of it
599        * must be reclaimable.  We require buffers to be idle to be reclaimed
600        * (see iris_can_reclaim_slab()), so we know all entries must be idle.
601        * Therefore, we can safely unmap their aux table entries.
602        */
603       for (unsigned i = 0; i < pslab->num_entries; i++) {
604          struct iris_bo *bo = &slab->entries[i];
605          if (bo->aux_map_address) {
606             intel_aux_map_unmap_range(aux_map_ctx, bo->address, bo->size);
607             bo->aux_map_address = 0;
608          }
609       }
610    }
611 
612    iris_bo_unreference(slab->bo);
613 
614    free(slab->entries);
615    free(slab);
616 }
617 
618 static struct pb_slab *
iris_slab_alloc(void * priv,unsigned heap,unsigned entry_size,unsigned group_index)619 iris_slab_alloc(void *priv,
620                 unsigned heap,
621                 unsigned entry_size,
622                 unsigned group_index)
623 {
624    struct iris_bufmgr *bufmgr = priv;
625    struct iris_slab *slab = calloc(1, sizeof(struct iris_slab));
626    unsigned flags = heap == IRIS_HEAP_SYSTEM_MEMORY ? BO_ALLOC_SMEM : 0;
627    unsigned slab_size = 0;
628    /* We only support slab allocation for IRIS_MEMZONE_OTHER */
629    enum iris_memory_zone memzone = IRIS_MEMZONE_OTHER;
630 
631    if (!slab)
632       return NULL;
633 
634    struct pb_slabs *slabs = bufmgr->bo_slabs;
635 
636    /* Determine the slab buffer size. */
637    for (unsigned i = 0; i < NUM_SLAB_ALLOCATORS; i++) {
638       unsigned max_entry_size =
639          1 << (slabs[i].min_order + slabs[i].num_orders - 1);
640 
641       if (entry_size <= max_entry_size) {
642          /* The slab size is twice the size of the largest possible entry. */
643          slab_size = max_entry_size * 2;
644 
645          if (!util_is_power_of_two_nonzero(entry_size)) {
646             assert(util_is_power_of_two_nonzero(entry_size * 4 / 3));
647 
648             /* If the entry size is 3/4 of a power of two, we would waste
649              * space and not gain anything if we allocated only twice the
650              * power of two for the backing buffer:
651              *
652              *    2 * 3/4 = 1.5 usable with buffer size 2
653              *
654              * Allocating 5 times the entry size leads us to the next power
655              * of two and results in a much better memory utilization:
656              *
657              *    5 * 3/4 = 3.75 usable with buffer size 4
658              */
659             if (entry_size * 5 > slab_size)
660                slab_size = util_next_power_of_two(entry_size * 5);
661          }
662 
663          /* The largest slab should have the same size as the PTE fragment
664           * size to get faster address translation.
665           *
666           * TODO: move this to intel_device_info?
667           */
668          const unsigned pte_size = 2 * 1024 * 1024;
669 
670          if (i == NUM_SLAB_ALLOCATORS - 1 && slab_size < pte_size)
671             slab_size = pte_size;
672 
673          break;
674       }
675    }
676    assert(slab_size != 0);
677 
678    slab->bo =
679       iris_bo_alloc(bufmgr, "slab", slab_size, slab_size, memzone, flags);
680    if (!slab->bo)
681       goto fail;
682 
683    slab_size = slab->bo->size;
684 
685    slab->base.num_entries = slab_size / entry_size;
686    slab->base.num_free = slab->base.num_entries;
687    slab->entry_size = entry_size;
688    slab->entries = calloc(slab->base.num_entries, sizeof(*slab->entries));
689    if (!slab->entries)
690       goto fail_bo;
691 
692    list_inithead(&slab->base.free);
693 
694    for (unsigned i = 0; i < slab->base.num_entries; i++) {
695       struct iris_bo *bo = &slab->entries[i];
696 
697       bo->size = entry_size;
698       bo->bufmgr = bufmgr;
699       bo->hash = _mesa_hash_pointer(bo);
700       bo->gem_handle = 0;
701       bo->address = slab->bo->address + i * entry_size;
702       bo->aux_map_address = 0;
703       bo->index = -1;
704       bo->refcount = 0;
705       bo->idle = true;
706 
707       bo->slab.entry.slab = &slab->base;
708       bo->slab.entry.group_index = group_index;
709       bo->slab.entry.entry_size = entry_size;
710 
711       bo->slab.real = iris_get_backing_bo(slab->bo);
712 
713       list_addtail(&bo->slab.entry.head, &slab->base.free);
714    }
715 
716    return &slab->base;
717 
718 fail_bo:
719    iris_bo_unreference(slab->bo);
720 fail:
721    free(slab);
722    return NULL;
723 }
724 
725 static struct iris_bo *
alloc_bo_from_slabs(struct iris_bufmgr * bufmgr,const char * name,uint64_t size,uint32_t alignment,unsigned flags,bool local)726 alloc_bo_from_slabs(struct iris_bufmgr *bufmgr,
727                     const char *name,
728                     uint64_t size,
729                     uint32_t alignment,
730                     unsigned flags,
731                     bool local)
732 {
733    if (flags & BO_ALLOC_NO_SUBALLOC)
734       return NULL;
735 
736    struct pb_slabs *last_slab = &bufmgr->bo_slabs[NUM_SLAB_ALLOCATORS - 1];
737    unsigned max_slab_entry_size =
738       1 << (last_slab->min_order + last_slab->num_orders - 1);
739 
740    if (size > max_slab_entry_size)
741       return NULL;
742 
743    struct pb_slab_entry *entry;
744 
745    enum iris_heap heap =
746       local ? IRIS_HEAP_DEVICE_LOCAL : IRIS_HEAP_SYSTEM_MEMORY;
747 
748    unsigned alloc_size = size;
749 
750    /* Always use slabs for sizes less than 4 KB because the kernel aligns
751     * everything to 4 KB.
752     */
753    if (size < alignment && alignment <= 4 * 1024)
754       alloc_size = alignment;
755 
756    if (alignment > get_slab_entry_alignment(bufmgr, alloc_size)) {
757       /* 3/4 allocations can return too small alignment.
758        * Try again with a power of two allocation size.
759        */
760       unsigned pot_size = get_slab_pot_entry_size(bufmgr, alloc_size);
761 
762       if (alignment <= pot_size) {
763          /* This size works but wastes some memory to fulfill the alignment. */
764          alloc_size = pot_size;
765       } else {
766          /* can't fulfill alignment requirements */
767          return NULL;
768       }
769    }
770 
771    struct pb_slabs *slabs = get_slabs(bufmgr, alloc_size);
772    entry = pb_slab_alloc(slabs, alloc_size, heap);
773    if (!entry) {
774       /* Clean up and try again... */
775       pb_slabs_reclaim(slabs);
776 
777       entry = pb_slab_alloc(slabs, alloc_size, heap);
778    }
779    if (!entry)
780       return NULL;
781 
782    struct iris_bo *bo = container_of(entry, struct iris_bo, slab.entry);
783 
784    if (bo->aux_map_address && bo->bufmgr->aux_map_ctx) {
785       /* This buffer was associated with an aux-buffer range.  We only allow
786        * slab allocated buffers to be reclaimed when idle (not in use by an
787        * executing batch).  (See iris_can_reclaim_slab().)  So we know that
788        * our previous aux mapping is no longer in use, and we can safely
789        * remove it.
790        */
791       intel_aux_map_unmap_range(bo->bufmgr->aux_map_ctx, bo->address,
792                                 bo->size);
793       bo->aux_map_address = 0;
794    }
795 
796    p_atomic_set(&bo->refcount, 1);
797    bo->name = name;
798    bo->size = size;
799 
800    /* Zero the contents if necessary.  If this fails, fall back to
801     * allocating a fresh BO, which will always be zeroed by the kernel.
802     */
803    if (flags & BO_ALLOC_ZEROED) {
804       void *map = iris_bo_map(NULL, bo, MAP_WRITE | MAP_RAW);
805       if (map) {
806          memset(map, 0, bo->size);
807       } else {
808          pb_slab_free(slabs, &bo->slab.entry);
809          return NULL;
810       }
811    }
812 
813    return bo;
814 }
815 
816 static struct iris_bo *
alloc_bo_from_cache(struct iris_bufmgr * bufmgr,struct bo_cache_bucket * bucket,uint32_t alignment,enum iris_memory_zone memzone,enum iris_mmap_mode mmap_mode,unsigned flags,bool match_zone)817 alloc_bo_from_cache(struct iris_bufmgr *bufmgr,
818                     struct bo_cache_bucket *bucket,
819                     uint32_t alignment,
820                     enum iris_memory_zone memzone,
821                     enum iris_mmap_mode mmap_mode,
822                     unsigned flags,
823                     bool match_zone)
824 {
825    if (!bucket)
826       return NULL;
827 
828    struct iris_bo *bo = NULL;
829 
830    list_for_each_entry_safe(struct iris_bo, cur, &bucket->head, head) {
831       assert(iris_bo_is_real(cur));
832 
833       /* Find one that's got the right mapping type.  We used to swap maps
834        * around but the kernel doesn't allow this on discrete GPUs.
835        */
836       if (mmap_mode != cur->real.mmap_mode)
837          continue;
838 
839       /* Try a little harder to find one that's already in the right memzone */
840       if (match_zone && memzone != iris_memzone_for_address(cur->address))
841          continue;
842 
843       /* If the last BO in the cache is busy, there are no idle BOs.  Bail,
844        * either falling back to a non-matching memzone, or if that fails,
845        * allocating a fresh buffer.
846        */
847       if (iris_bo_busy(cur))
848          return NULL;
849 
850       list_del(&cur->head);
851 
852       /* Tell the kernel we need this BO.  If it still exists, we're done! */
853       if (iris_bo_madvise(cur, I915_MADV_WILLNEED)) {
854          bo = cur;
855          break;
856       }
857 
858       /* This BO was purged, throw it out and keep looking. */
859       bo_free(cur);
860    }
861 
862    if (!bo)
863       return NULL;
864 
865    if (bo->aux_map_address) {
866       /* This buffer was associated with an aux-buffer range. We make sure
867        * that buffers are not reused from the cache while the buffer is (busy)
868        * being used by an executing batch. Since we are here, the buffer is no
869        * longer being used by a batch and the buffer was deleted (in order to
870        * end up in the cache). Therefore its old aux-buffer range can be
871        * removed from the aux-map.
872        */
873       if (bo->bufmgr->aux_map_ctx)
874          intel_aux_map_unmap_range(bo->bufmgr->aux_map_ctx, bo->address,
875                                    bo->size);
876       bo->aux_map_address = 0;
877    }
878 
879    /* If the cached BO isn't in the right memory zone, or the alignment
880     * isn't sufficient, free the old memory and assign it a new address.
881     */
882    if (memzone != iris_memzone_for_address(bo->address) ||
883        bo->address % alignment != 0) {
884       vma_free(bufmgr, bo->address, bo->size);
885       bo->address = 0ull;
886    }
887 
888    /* Zero the contents if necessary.  If this fails, fall back to
889     * allocating a fresh BO, which will always be zeroed by the kernel.
890     */
891    if (flags & BO_ALLOC_ZEROED) {
892       void *map = iris_bo_map(NULL, bo, MAP_WRITE | MAP_RAW);
893       if (map) {
894          memset(map, 0, bo->size);
895       } else {
896          bo_free(bo);
897          return NULL;
898       }
899    }
900 
901    return bo;
902 }
903 
904 static struct iris_bo *
alloc_fresh_bo(struct iris_bufmgr * bufmgr,uint64_t bo_size,bool local)905 alloc_fresh_bo(struct iris_bufmgr *bufmgr, uint64_t bo_size, bool local)
906 {
907    struct iris_bo *bo = bo_calloc();
908    if (!bo)
909       return NULL;
910 
911    /* If we have vram size, we have multiple memory regions and should choose
912     * one of them.
913     */
914    if (bufmgr->vram.size > 0) {
915       /* All new BOs we get from the kernel are zeroed, so we don't need to
916        * worry about that here.
917        */
918       struct drm_i915_gem_memory_class_instance regions[2];
919       uint32_t nregions = 0;
920       if (local) {
921          /* For vram allocations, still use system memory as a fallback. */
922          regions[nregions++] = bufmgr->vram.region;
923          regions[nregions++] = bufmgr->sys.region;
924       } else {
925          regions[nregions++] = bufmgr->sys.region;
926       }
927 
928       struct drm_i915_gem_create_ext_memory_regions ext_regions = {
929          .base = { .name = I915_GEM_CREATE_EXT_MEMORY_REGIONS },
930          .num_regions = nregions,
931          .regions = (uintptr_t)regions,
932       };
933 
934       struct drm_i915_gem_create_ext create = {
935          .size = bo_size,
936          .extensions = (uintptr_t)&ext_regions,
937       };
938 
939       /* It should be safe to use GEM_CREATE_EXT without checking, since we are
940        * in the side of the branch where discrete memory is available. So we
941        * can assume GEM_CREATE_EXT is supported already.
942        */
943       if (intel_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_CREATE_EXT, &create) != 0) {
944          free(bo);
945          return NULL;
946       }
947       bo->gem_handle = create.handle;
948    } else {
949       struct drm_i915_gem_create create = { .size = bo_size };
950 
951       /* All new BOs we get from the kernel are zeroed, so we don't need to
952        * worry about that here.
953        */
954       if (intel_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_CREATE, &create) != 0) {
955          free(bo);
956          return NULL;
957       }
958       bo->gem_handle = create.handle;
959    }
960 
961    bo->bufmgr = bufmgr;
962    bo->size = bo_size;
963    bo->idle = true;
964    bo->real.local = local;
965 
966    if (bufmgr->vram.size == 0) {
967       /* Calling set_domain() will allocate pages for the BO outside of the
968        * struct mutex lock in the kernel, which is more efficient than waiting
969        * to create them during the first execbuf that uses the BO.
970        */
971       struct drm_i915_gem_set_domain sd = {
972          .handle = bo->gem_handle,
973          .read_domains = I915_GEM_DOMAIN_CPU,
974          .write_domain = 0,
975       };
976 
977       intel_ioctl(bo->bufmgr->fd, DRM_IOCTL_I915_GEM_SET_DOMAIN, &sd);
978    }
979 
980    return bo;
981 }
982 
983 struct iris_bo *
iris_bo_alloc(struct iris_bufmgr * bufmgr,const char * name,uint64_t size,uint32_t alignment,enum iris_memory_zone memzone,unsigned flags)984 iris_bo_alloc(struct iris_bufmgr *bufmgr,
985               const char *name,
986               uint64_t size,
987               uint32_t alignment,
988               enum iris_memory_zone memzone,
989               unsigned flags)
990 {
991    struct iris_bo *bo;
992    unsigned int page_size = getpagesize();
993    bool local = bufmgr->vram.size > 0 &&
994       !(flags & BO_ALLOC_COHERENT || flags & BO_ALLOC_SMEM);
995    struct bo_cache_bucket *bucket = bucket_for_size(bufmgr, size, local);
996 
997    if (memzone != IRIS_MEMZONE_OTHER || (flags & BO_ALLOC_COHERENT))
998       flags |= BO_ALLOC_NO_SUBALLOC;
999 
1000    bo = alloc_bo_from_slabs(bufmgr, name, size, alignment, flags, local);
1001 
1002    if (bo)
1003       return bo;
1004 
1005    /* Round the size up to the bucket size, or if we don't have caching
1006     * at this size, a multiple of the page size.
1007     */
1008    uint64_t bo_size =
1009       bucket ? bucket->size : MAX2(ALIGN(size, page_size), page_size);
1010 
1011    bool is_coherent = bufmgr->has_llc ||
1012                       (bufmgr->vram.size > 0 && !local) ||
1013                       (flags & BO_ALLOC_COHERENT);
1014    bool is_scanout = (flags & BO_ALLOC_SCANOUT) != 0;
1015    enum iris_mmap_mode mmap_mode =
1016       !local && is_coherent && !is_scanout ? IRIS_MMAP_WB : IRIS_MMAP_WC;
1017 
1018    simple_mtx_lock(&bufmgr->lock);
1019 
1020    /* Get a buffer out of the cache if available.  First, we try to find
1021     * one with a matching memory zone so we can avoid reallocating VMA.
1022     */
1023    bo = alloc_bo_from_cache(bufmgr, bucket, alignment, memzone, mmap_mode,
1024                             flags, true);
1025 
1026    /* If that fails, we try for any cached BO, without matching memzone. */
1027    if (!bo) {
1028       bo = alloc_bo_from_cache(bufmgr, bucket, alignment, memzone, mmap_mode,
1029                                flags, false);
1030    }
1031 
1032    simple_mtx_unlock(&bufmgr->lock);
1033 
1034    if (!bo) {
1035       bo = alloc_fresh_bo(bufmgr, bo_size, local);
1036       if (!bo)
1037          return NULL;
1038    }
1039 
1040    if (bo->address == 0ull) {
1041       simple_mtx_lock(&bufmgr->lock);
1042       bo->address = vma_alloc(bufmgr, memzone, bo->size, alignment);
1043       simple_mtx_unlock(&bufmgr->lock);
1044 
1045       if (bo->address == 0ull)
1046          goto err_free;
1047    }
1048 
1049    bo->name = name;
1050    p_atomic_set(&bo->refcount, 1);
1051    bo->real.reusable = bucket && bufmgr->bo_reuse;
1052    bo->index = -1;
1053    bo->real.kflags = EXEC_OBJECT_SUPPORTS_48B_ADDRESS | EXEC_OBJECT_PINNED;
1054 
1055    /* By default, capture all driver-internal buffers like shader kernels,
1056     * surface states, dynamic states, border colors, and so on.
1057     */
1058    if (memzone < IRIS_MEMZONE_OTHER)
1059       bo->real.kflags |= EXEC_OBJECT_CAPTURE;
1060 
1061    assert(bo->real.map == NULL || bo->real.mmap_mode == mmap_mode);
1062    bo->real.mmap_mode = mmap_mode;
1063 
1064    /* On integrated GPUs, enable snooping to ensure coherency if needed.
1065     * For discrete, we instead use SMEM and avoid WB maps for coherency.
1066     */
1067    if ((flags & BO_ALLOC_COHERENT) &&
1068        !bufmgr->has_llc && bufmgr->vram.size == 0) {
1069       struct drm_i915_gem_caching arg = {
1070          .handle = bo->gem_handle,
1071          .caching = 1,
1072       };
1073       if (intel_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_SET_CACHING, &arg) != 0)
1074          goto err_free;
1075 
1076       bo->real.reusable = false;
1077    }
1078 
1079    DBG("bo_create: buf %d (%s) (%s memzone) (%s) %llub\n", bo->gem_handle,
1080        bo->name, memzone_name(memzone), bo->real.local ? "local" : "system",
1081        (unsigned long long) size);
1082 
1083    return bo;
1084 
1085 err_free:
1086    bo_free(bo);
1087    return NULL;
1088 }
1089 
1090 struct iris_bo *
iris_bo_create_userptr(struct iris_bufmgr * bufmgr,const char * name,void * ptr,size_t size,enum iris_memory_zone memzone)1091 iris_bo_create_userptr(struct iris_bufmgr *bufmgr, const char *name,
1092                        void *ptr, size_t size,
1093                        enum iris_memory_zone memzone)
1094 {
1095    struct drm_gem_close close = { 0, };
1096    struct iris_bo *bo;
1097 
1098    bo = bo_calloc();
1099    if (!bo)
1100       return NULL;
1101 
1102    struct drm_i915_gem_userptr arg = {
1103       .user_ptr = (uintptr_t)ptr,
1104       .user_size = size,
1105       .flags = bufmgr->has_userptr_probe ? I915_USERPTR_PROBE : 0,
1106    };
1107    if (intel_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_USERPTR, &arg))
1108       goto err_free;
1109    bo->gem_handle = arg.handle;
1110 
1111    if (!bufmgr->has_userptr_probe) {
1112       /* Check the buffer for validity before we try and use it in a batch */
1113       struct drm_i915_gem_set_domain sd = {
1114          .handle = bo->gem_handle,
1115          .read_domains = I915_GEM_DOMAIN_CPU,
1116       };
1117       if (intel_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_SET_DOMAIN, &sd))
1118          goto err_close;
1119    }
1120 
1121    bo->name = name;
1122    bo->size = size;
1123    bo->real.map = ptr;
1124 
1125    bo->bufmgr = bufmgr;
1126    bo->real.kflags = EXEC_OBJECT_SUPPORTS_48B_ADDRESS | EXEC_OBJECT_PINNED;
1127 
1128    simple_mtx_lock(&bufmgr->lock);
1129    bo->address = vma_alloc(bufmgr, memzone, size, 1);
1130    simple_mtx_unlock(&bufmgr->lock);
1131 
1132    if (bo->address == 0ull)
1133       goto err_close;
1134 
1135    p_atomic_set(&bo->refcount, 1);
1136    bo->real.userptr = true;
1137    bo->index = -1;
1138    bo->idle = true;
1139    bo->real.mmap_mode = IRIS_MMAP_WB;
1140 
1141    return bo;
1142 
1143 err_close:
1144    close.handle = bo->gem_handle;
1145    intel_ioctl(bufmgr->fd, DRM_IOCTL_GEM_CLOSE, &close);
1146 err_free:
1147    free(bo);
1148    return NULL;
1149 }
1150 
1151 /**
1152  * Returns a iris_bo wrapping the given buffer object handle.
1153  *
1154  * This can be used when one application needs to pass a buffer object
1155  * to another.
1156  */
1157 struct iris_bo *
iris_bo_gem_create_from_name(struct iris_bufmgr * bufmgr,const char * name,unsigned int handle)1158 iris_bo_gem_create_from_name(struct iris_bufmgr *bufmgr,
1159                              const char *name, unsigned int handle)
1160 {
1161    struct iris_bo *bo;
1162 
1163    /* At the moment most applications only have a few named bo.
1164     * For instance, in a DRI client only the render buffers passed
1165     * between X and the client are named. And since X returns the
1166     * alternating names for the front/back buffer a linear search
1167     * provides a sufficiently fast match.
1168     */
1169    simple_mtx_lock(&bufmgr->lock);
1170    bo = find_and_ref_external_bo(bufmgr->name_table, handle);
1171    if (bo)
1172       goto out;
1173 
1174    struct drm_gem_open open_arg = { .name = handle };
1175    int ret = intel_ioctl(bufmgr->fd, DRM_IOCTL_GEM_OPEN, &open_arg);
1176    if (ret != 0) {
1177       DBG("Couldn't reference %s handle 0x%08x: %s\n",
1178           name, handle, strerror(errno));
1179       bo = NULL;
1180       goto out;
1181    }
1182    /* Now see if someone has used a prime handle to get this
1183     * object from the kernel before by looking through the list
1184     * again for a matching gem_handle
1185     */
1186    bo = find_and_ref_external_bo(bufmgr->handle_table, open_arg.handle);
1187    if (bo)
1188       goto out;
1189 
1190    bo = bo_calloc();
1191    if (!bo)
1192       goto out;
1193 
1194    p_atomic_set(&bo->refcount, 1);
1195 
1196    bo->size = open_arg.size;
1197    bo->bufmgr = bufmgr;
1198    bo->gem_handle = open_arg.handle;
1199    bo->name = name;
1200    bo->real.global_name = handle;
1201    bo->real.reusable = false;
1202    bo->real.imported = true;
1203    bo->real.mmap_mode = IRIS_MMAP_NONE;
1204    bo->real.kflags = EXEC_OBJECT_SUPPORTS_48B_ADDRESS | EXEC_OBJECT_PINNED;
1205    bo->address = vma_alloc(bufmgr, IRIS_MEMZONE_OTHER, bo->size, 1);
1206 
1207    _mesa_hash_table_insert(bufmgr->handle_table, &bo->gem_handle, bo);
1208    _mesa_hash_table_insert(bufmgr->name_table, &bo->real.global_name, bo);
1209 
1210    DBG("bo_create_from_handle: %d (%s)\n", handle, bo->name);
1211 
1212 out:
1213    simple_mtx_unlock(&bufmgr->lock);
1214    return bo;
1215 }
1216 
1217 static void
bo_close(struct iris_bo * bo)1218 bo_close(struct iris_bo *bo)
1219 {
1220    struct iris_bufmgr *bufmgr = bo->bufmgr;
1221 
1222    assert(iris_bo_is_real(bo));
1223 
1224    if (iris_bo_is_external(bo)) {
1225       struct hash_entry *entry;
1226 
1227       if (bo->real.global_name) {
1228          entry = _mesa_hash_table_search(bufmgr->name_table,
1229                                          &bo->real.global_name);
1230          _mesa_hash_table_remove(bufmgr->name_table, entry);
1231       }
1232 
1233       entry = _mesa_hash_table_search(bufmgr->handle_table, &bo->gem_handle);
1234       _mesa_hash_table_remove(bufmgr->handle_table, entry);
1235 
1236       list_for_each_entry_safe(struct bo_export, export, &bo->real.exports, link) {
1237          struct drm_gem_close close = { .handle = export->gem_handle };
1238          intel_ioctl(export->drm_fd, DRM_IOCTL_GEM_CLOSE, &close);
1239 
1240          list_del(&export->link);
1241          free(export);
1242       }
1243    } else {
1244       assert(list_is_empty(&bo->real.exports));
1245    }
1246 
1247    /* Close this object */
1248    struct drm_gem_close close = { .handle = bo->gem_handle };
1249    int ret = intel_ioctl(bufmgr->fd, DRM_IOCTL_GEM_CLOSE, &close);
1250    if (ret != 0) {
1251       DBG("DRM_IOCTL_GEM_CLOSE %d failed (%s): %s\n",
1252           bo->gem_handle, bo->name, strerror(errno));
1253    }
1254 
1255    if (bo->aux_map_address && bo->bufmgr->aux_map_ctx) {
1256       intel_aux_map_unmap_range(bo->bufmgr->aux_map_ctx, bo->address,
1257                                 bo->size);
1258    }
1259 
1260    /* Return the VMA for reuse */
1261    vma_free(bo->bufmgr, bo->address, bo->size);
1262 
1263    for (int d = 0; d < bo->deps_size; d++) {
1264       for (int b = 0; b < IRIS_BATCH_COUNT; b++) {
1265          iris_syncobj_reference(bufmgr, &bo->deps[d].write_syncobjs[b], NULL);
1266          iris_syncobj_reference(bufmgr, &bo->deps[d].read_syncobjs[b], NULL);
1267       }
1268    }
1269    free(bo->deps);
1270 
1271    free(bo);
1272 }
1273 
1274 static void
bo_free(struct iris_bo * bo)1275 bo_free(struct iris_bo *bo)
1276 {
1277    struct iris_bufmgr *bufmgr = bo->bufmgr;
1278 
1279    assert(iris_bo_is_real(bo));
1280 
1281    if (!bo->real.userptr && bo->real.map)
1282       bo_unmap(bo);
1283 
1284    if (bo->idle) {
1285       bo_close(bo);
1286    } else {
1287       /* Defer closing the GEM BO and returning the VMA for reuse until the
1288        * BO is idle.  Just move it to the dead list for now.
1289        */
1290       list_addtail(&bo->head, &bufmgr->zombie_list);
1291    }
1292 }
1293 
1294 /** Frees all cached buffers significantly older than @time. */
1295 static void
cleanup_bo_cache(struct iris_bufmgr * bufmgr,time_t time)1296 cleanup_bo_cache(struct iris_bufmgr *bufmgr, time_t time)
1297 {
1298    int i;
1299 
1300    if (bufmgr->time == time)
1301       return;
1302 
1303    for (i = 0; i < bufmgr->num_buckets; i++) {
1304       struct bo_cache_bucket *bucket = &bufmgr->cache_bucket[i];
1305 
1306       list_for_each_entry_safe(struct iris_bo, bo, &bucket->head, head) {
1307          if (time - bo->real.free_time <= 1)
1308             break;
1309 
1310          list_del(&bo->head);
1311 
1312          bo_free(bo);
1313       }
1314    }
1315 
1316    for (i = 0; i < bufmgr->num_local_buckets; i++) {
1317       struct bo_cache_bucket *bucket = &bufmgr->local_cache_bucket[i];
1318 
1319       list_for_each_entry_safe(struct iris_bo, bo, &bucket->head, head) {
1320          if (time - bo->real.free_time <= 1)
1321             break;
1322 
1323          list_del(&bo->head);
1324 
1325          bo_free(bo);
1326       }
1327    }
1328 
1329    list_for_each_entry_safe(struct iris_bo, bo, &bufmgr->zombie_list, head) {
1330       /* Stop once we reach a busy BO - all others past this point were
1331        * freed more recently so are likely also busy.
1332        */
1333       if (!bo->idle && iris_bo_busy(bo))
1334          break;
1335 
1336       list_del(&bo->head);
1337       bo_close(bo);
1338    }
1339 
1340    bufmgr->time = time;
1341 }
1342 
1343 static void
bo_unreference_final(struct iris_bo * bo,time_t time)1344 bo_unreference_final(struct iris_bo *bo, time_t time)
1345 {
1346    struct iris_bufmgr *bufmgr = bo->bufmgr;
1347    struct bo_cache_bucket *bucket;
1348 
1349    DBG("bo_unreference final: %d (%s)\n", bo->gem_handle, bo->name);
1350 
1351    assert(iris_bo_is_real(bo));
1352 
1353    bucket = NULL;
1354    if (bo->real.reusable)
1355       bucket = bucket_for_size(bufmgr, bo->size, bo->real.local);
1356    /* Put the buffer into our internal cache for reuse if we can. */
1357    if (bucket && iris_bo_madvise(bo, I915_MADV_DONTNEED)) {
1358       bo->real.free_time = time;
1359       bo->name = NULL;
1360 
1361       list_addtail(&bo->head, &bucket->head);
1362    } else {
1363       bo_free(bo);
1364    }
1365 }
1366 
1367 void
iris_bo_unreference(struct iris_bo * bo)1368 iris_bo_unreference(struct iris_bo *bo)
1369 {
1370    if (bo == NULL)
1371       return;
1372 
1373    assert(p_atomic_read(&bo->refcount) > 0);
1374 
1375    if (atomic_add_unless(&bo->refcount, -1, 1)) {
1376       struct iris_bufmgr *bufmgr = bo->bufmgr;
1377       struct timespec time;
1378 
1379       clock_gettime(CLOCK_MONOTONIC, &time);
1380 
1381       if (bo->gem_handle == 0) {
1382          pb_slab_free(get_slabs(bufmgr, bo->size), &bo->slab.entry);
1383       } else {
1384          simple_mtx_lock(&bufmgr->lock);
1385 
1386          if (p_atomic_dec_zero(&bo->refcount)) {
1387             bo_unreference_final(bo, time.tv_sec);
1388             cleanup_bo_cache(bufmgr, time.tv_sec);
1389          }
1390 
1391          simple_mtx_unlock(&bufmgr->lock);
1392       }
1393    }
1394 }
1395 
1396 static void
bo_wait_with_stall_warning(struct pipe_debug_callback * dbg,struct iris_bo * bo,const char * action)1397 bo_wait_with_stall_warning(struct pipe_debug_callback *dbg,
1398                            struct iris_bo *bo,
1399                            const char *action)
1400 {
1401    bool busy = dbg && !bo->idle;
1402    double elapsed = unlikely(busy) ? -get_time() : 0.0;
1403 
1404    iris_bo_wait_rendering(bo);
1405 
1406    if (unlikely(busy)) {
1407       elapsed += get_time();
1408       if (elapsed > 1e-5) /* 0.01ms */ {
1409          perf_debug(dbg, "%s a busy \"%s\" BO stalled and took %.03f ms.\n",
1410                     action, bo->name, elapsed * 1000);
1411       }
1412    }
1413 }
1414 
1415 static void
print_flags(unsigned flags)1416 print_flags(unsigned flags)
1417 {
1418    if (flags & MAP_READ)
1419       DBG("READ ");
1420    if (flags & MAP_WRITE)
1421       DBG("WRITE ");
1422    if (flags & MAP_ASYNC)
1423       DBG("ASYNC ");
1424    if (flags & MAP_PERSISTENT)
1425       DBG("PERSISTENT ");
1426    if (flags & MAP_COHERENT)
1427       DBG("COHERENT ");
1428    if (flags & MAP_RAW)
1429       DBG("RAW ");
1430    DBG("\n");
1431 }
1432 
1433 static void *
iris_bo_gem_mmap_legacy(struct pipe_debug_callback * dbg,struct iris_bo * bo)1434 iris_bo_gem_mmap_legacy(struct pipe_debug_callback *dbg, struct iris_bo *bo)
1435 {
1436    struct iris_bufmgr *bufmgr = bo->bufmgr;
1437 
1438    assert(bufmgr->vram.size == 0);
1439    assert(iris_bo_is_real(bo));
1440    assert(bo->real.mmap_mode == IRIS_MMAP_WB ||
1441           bo->real.mmap_mode == IRIS_MMAP_WC);
1442 
1443    struct drm_i915_gem_mmap mmap_arg = {
1444       .handle = bo->gem_handle,
1445       .size = bo->size,
1446       .flags = bo->real.mmap_mode == IRIS_MMAP_WC ? I915_MMAP_WC : 0,
1447    };
1448 
1449    int ret = intel_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_MMAP, &mmap_arg);
1450    if (ret != 0) {
1451       DBG("%s:%d: Error mapping buffer %d (%s): %s .\n",
1452           __FILE__, __LINE__, bo->gem_handle, bo->name, strerror(errno));
1453       return NULL;
1454    }
1455    void *map = (void *) (uintptr_t) mmap_arg.addr_ptr;
1456 
1457    return map;
1458 }
1459 
1460 static void *
iris_bo_gem_mmap_offset(struct pipe_debug_callback * dbg,struct iris_bo * bo)1461 iris_bo_gem_mmap_offset(struct pipe_debug_callback *dbg, struct iris_bo *bo)
1462 {
1463    struct iris_bufmgr *bufmgr = bo->bufmgr;
1464 
1465    assert(iris_bo_is_real(bo));
1466 
1467    struct drm_i915_gem_mmap_offset mmap_arg = {
1468       .handle = bo->gem_handle,
1469    };
1470 
1471    if (bufmgr->has_local_mem) {
1472       /* On discrete memory platforms, we cannot control the mmap caching mode
1473        * at mmap time.  Instead, it's fixed when the object is created (this
1474        * is a limitation of TTM).
1475        *
1476        * On DG1, our only currently enabled discrete platform, there is no
1477        * control over what mode we get.  For SMEM, we always get WB because
1478        * it's fast (probably what we want) and when the device views SMEM
1479        * across PCIe, it's always snooped.  The only caching mode allowed by
1480        * DG1 hardware for LMEM is WC.
1481        */
1482       if (bo->real.local)
1483          assert(bo->real.mmap_mode == IRIS_MMAP_WC);
1484       else
1485          assert(bo->real.mmap_mode == IRIS_MMAP_WB);
1486 
1487       mmap_arg.flags = I915_MMAP_OFFSET_FIXED;
1488    } else {
1489       /* Only integrated platforms get to select a mmap caching mode here */
1490       static const uint32_t mmap_offset_for_mode[] = {
1491          [IRIS_MMAP_UC]    = I915_MMAP_OFFSET_UC,
1492          [IRIS_MMAP_WC]    = I915_MMAP_OFFSET_WC,
1493          [IRIS_MMAP_WB]    = I915_MMAP_OFFSET_WB,
1494       };
1495       assert(bo->real.mmap_mode != IRIS_MMAP_NONE);
1496       assert(bo->real.mmap_mode < ARRAY_SIZE(mmap_offset_for_mode));
1497       mmap_arg.flags = mmap_offset_for_mode[bo->real.mmap_mode];
1498    }
1499 
1500    /* Get the fake offset back */
1501    int ret = intel_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_MMAP_OFFSET, &mmap_arg);
1502    if (ret != 0) {
1503       DBG("%s:%d: Error preparing buffer %d (%s): %s .\n",
1504           __FILE__, __LINE__, bo->gem_handle, bo->name, strerror(errno));
1505       return NULL;
1506    }
1507 
1508    /* And map it */
1509    void *map = mmap(0, bo->size, PROT_READ | PROT_WRITE, MAP_SHARED,
1510                     bufmgr->fd, mmap_arg.offset);
1511    if (map == MAP_FAILED) {
1512       DBG("%s:%d: Error mapping buffer %d (%s): %s .\n",
1513           __FILE__, __LINE__, bo->gem_handle, bo->name, strerror(errno));
1514       return NULL;
1515    }
1516 
1517    return map;
1518 }
1519 
1520 void *
iris_bo_map(struct pipe_debug_callback * dbg,struct iris_bo * bo,unsigned flags)1521 iris_bo_map(struct pipe_debug_callback *dbg,
1522             struct iris_bo *bo, unsigned flags)
1523 {
1524    struct iris_bufmgr *bufmgr = bo->bufmgr;
1525    void *map = NULL;
1526 
1527    if (bo->gem_handle == 0) {
1528       struct iris_bo *real = iris_get_backing_bo(bo);
1529       uint64_t offset = bo->address - real->address;
1530       map = iris_bo_map(dbg, real, flags | MAP_ASYNC) + offset;
1531    } else {
1532       assert(bo->real.mmap_mode != IRIS_MMAP_NONE);
1533       if (bo->real.mmap_mode == IRIS_MMAP_NONE)
1534          return NULL;
1535 
1536       if (!bo->real.map) {
1537          DBG("iris_bo_map: %d (%s)\n", bo->gem_handle, bo->name);
1538          map = bufmgr->has_mmap_offset ? iris_bo_gem_mmap_offset(dbg, bo)
1539                                        : iris_bo_gem_mmap_legacy(dbg, bo);
1540          if (!map) {
1541             return NULL;
1542          }
1543 
1544          VG_DEFINED(map, bo->size);
1545 
1546          if (p_atomic_cmpxchg(&bo->real.map, NULL, map)) {
1547             VG_NOACCESS(map, bo->size);
1548             os_munmap(map, bo->size);
1549          }
1550       }
1551       assert(bo->real.map);
1552       map = bo->real.map;
1553    }
1554 
1555    DBG("iris_bo_map: %d (%s) -> %p\n",
1556        bo->gem_handle, bo->name, bo->real.map);
1557    print_flags(flags);
1558 
1559    if (!(flags & MAP_ASYNC)) {
1560       bo_wait_with_stall_warning(dbg, bo, "memory mapping");
1561    }
1562 
1563    return map;
1564 }
1565 
1566 /** Waits for all GPU rendering with the object to have completed. */
1567 void
iris_bo_wait_rendering(struct iris_bo * bo)1568 iris_bo_wait_rendering(struct iris_bo *bo)
1569 {
1570    /* We require a kernel recent enough for WAIT_IOCTL support.
1571     * See intel_init_bufmgr()
1572     */
1573    iris_bo_wait(bo, -1);
1574 }
1575 
1576 static int
iris_bo_wait_gem(struct iris_bo * bo,int64_t timeout_ns)1577 iris_bo_wait_gem(struct iris_bo *bo, int64_t timeout_ns)
1578 {
1579    assert(iris_bo_is_real(bo));
1580 
1581    struct iris_bufmgr *bufmgr = bo->bufmgr;
1582    struct drm_i915_gem_wait wait = {
1583       .bo_handle = bo->gem_handle,
1584       .timeout_ns = timeout_ns,
1585    };
1586 
1587    int ret = intel_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_WAIT, &wait);
1588    if (ret != 0)
1589       return -errno;
1590 
1591    return 0;
1592 }
1593 
1594 /**
1595  * Waits on a BO for the given amount of time.
1596  *
1597  * @bo: buffer object to wait for
1598  * @timeout_ns: amount of time to wait in nanoseconds.
1599  *   If value is less than 0, an infinite wait will occur.
1600  *
1601  * Returns 0 if the wait was successful ie. the last batch referencing the
1602  * object has completed within the allotted time. Otherwise some negative return
1603  * value describes the error. Of particular interest is -ETIME when the wait has
1604  * failed to yield the desired result.
1605  *
1606  * Similar to iris_bo_wait_rendering except a timeout parameter allows
1607  * the operation to give up after a certain amount of time. Another subtle
1608  * difference is the internal locking semantics are different (this variant does
1609  * not hold the lock for the duration of the wait). This makes the wait subject
1610  * to a larger userspace race window.
1611  *
1612  * The implementation shall wait until the object is no longer actively
1613  * referenced within a batch buffer at the time of the call. The wait will
1614  * not guarantee that the buffer is re-issued via another thread, or an flinked
1615  * handle. Userspace must make sure this race does not occur if such precision
1616  * is important.
1617  *
1618  * Note that some kernels have broken the infinite wait for negative values
1619  * promise, upgrade to latest stable kernels if this is the case.
1620  */
1621 int
iris_bo_wait(struct iris_bo * bo,int64_t timeout_ns)1622 iris_bo_wait(struct iris_bo *bo, int64_t timeout_ns)
1623 {
1624    int ret;
1625 
1626    if (iris_bo_is_external(bo))
1627       ret = iris_bo_wait_gem(bo, timeout_ns);
1628    else
1629       ret = iris_bo_wait_syncobj(bo, timeout_ns);
1630 
1631    if (ret != 0)
1632       return -errno;
1633 
1634    bo->idle = true;
1635 
1636    return ret;
1637 }
1638 
1639 static void
iris_bufmgr_destroy(struct iris_bufmgr * bufmgr)1640 iris_bufmgr_destroy(struct iris_bufmgr *bufmgr)
1641 {
1642    /* Free aux-map buffers */
1643    intel_aux_map_finish(bufmgr->aux_map_ctx);
1644 
1645    /* bufmgr will no longer try to free VMA entries in the aux-map */
1646    bufmgr->aux_map_ctx = NULL;
1647 
1648    for (int i = 0; i < NUM_SLAB_ALLOCATORS; i++) {
1649       if (bufmgr->bo_slabs[i].groups)
1650          pb_slabs_deinit(&bufmgr->bo_slabs[i]);
1651    }
1652 
1653    simple_mtx_destroy(&bufmgr->lock);
1654    simple_mtx_destroy(&bufmgr->bo_deps_lock);
1655 
1656    /* Free any cached buffer objects we were going to reuse */
1657    for (int i = 0; i < bufmgr->num_buckets; i++) {
1658       struct bo_cache_bucket *bucket = &bufmgr->cache_bucket[i];
1659 
1660       list_for_each_entry_safe(struct iris_bo, bo, &bucket->head, head) {
1661          list_del(&bo->head);
1662 
1663          bo_free(bo);
1664       }
1665    }
1666 
1667    for (int i = 0; i < bufmgr->num_local_buckets; i++) {
1668       struct bo_cache_bucket *bucket = &bufmgr->local_cache_bucket[i];
1669 
1670       list_for_each_entry_safe(struct iris_bo, bo, &bucket->head, head) {
1671          list_del(&bo->head);
1672 
1673          bo_free(bo);
1674       }
1675    }
1676 
1677    /* Close any buffer objects on the dead list. */
1678    list_for_each_entry_safe(struct iris_bo, bo, &bufmgr->zombie_list, head) {
1679       list_del(&bo->head);
1680       bo_close(bo);
1681    }
1682 
1683    _mesa_hash_table_destroy(bufmgr->name_table, NULL);
1684    _mesa_hash_table_destroy(bufmgr->handle_table, NULL);
1685 
1686    for (int z = 0; z < IRIS_MEMZONE_COUNT; z++) {
1687       if (z != IRIS_MEMZONE_BINDER)
1688          util_vma_heap_finish(&bufmgr->vma_allocator[z]);
1689    }
1690 
1691    close(bufmgr->fd);
1692 
1693    free(bufmgr);
1694 }
1695 
1696 int
iris_gem_get_tiling(struct iris_bo * bo,uint32_t * tiling)1697 iris_gem_get_tiling(struct iris_bo *bo, uint32_t *tiling)
1698 {
1699    struct iris_bufmgr *bufmgr = bo->bufmgr;
1700 
1701    if (!bufmgr->has_tiling_uapi) {
1702       *tiling = I915_TILING_NONE;
1703       return 0;
1704    }
1705 
1706    struct drm_i915_gem_get_tiling ti = { .handle = bo->gem_handle };
1707    int ret = intel_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_GET_TILING, &ti);
1708 
1709    if (ret) {
1710       DBG("gem_get_tiling failed for BO %u: %s\n",
1711           bo->gem_handle, strerror(errno));
1712    }
1713 
1714    *tiling = ti.tiling_mode;
1715 
1716    return ret;
1717 }
1718 
1719 int
iris_gem_set_tiling(struct iris_bo * bo,const struct isl_surf * surf)1720 iris_gem_set_tiling(struct iris_bo *bo, const struct isl_surf *surf)
1721 {
1722    struct iris_bufmgr *bufmgr = bo->bufmgr;
1723    uint32_t tiling_mode = isl_tiling_to_i915_tiling(surf->tiling);
1724    int ret;
1725 
1726    /* If we can't do map_gtt, the set/get_tiling API isn't useful. And it's
1727     * actually not supported by the kernel in those cases.
1728     */
1729    if (!bufmgr->has_tiling_uapi)
1730       return 0;
1731 
1732    /* GEM_SET_TILING is slightly broken and overwrites the input on the
1733     * error path, so we have to open code intel_ioctl().
1734     */
1735    do {
1736       struct drm_i915_gem_set_tiling set_tiling = {
1737          .handle = bo->gem_handle,
1738          .tiling_mode = tiling_mode,
1739          .stride = surf->row_pitch_B,
1740       };
1741       ret = ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_SET_TILING, &set_tiling);
1742    } while (ret == -1 && (errno == EINTR || errno == EAGAIN));
1743 
1744    if (ret) {
1745       DBG("gem_set_tiling failed for BO %u: %s\n",
1746           bo->gem_handle, strerror(errno));
1747    }
1748 
1749    return ret;
1750 }
1751 
1752 struct iris_bo *
iris_bo_import_dmabuf(struct iris_bufmgr * bufmgr,int prime_fd)1753 iris_bo_import_dmabuf(struct iris_bufmgr *bufmgr, int prime_fd)
1754 {
1755    uint32_t handle;
1756    struct iris_bo *bo;
1757 
1758    simple_mtx_lock(&bufmgr->lock);
1759    int ret = drmPrimeFDToHandle(bufmgr->fd, prime_fd, &handle);
1760    if (ret) {
1761       DBG("import_dmabuf: failed to obtain handle from fd: %s\n",
1762           strerror(errno));
1763       simple_mtx_unlock(&bufmgr->lock);
1764       return NULL;
1765    }
1766 
1767    /*
1768     * See if the kernel has already returned this buffer to us. Just as
1769     * for named buffers, we must not create two bo's pointing at the same
1770     * kernel object
1771     */
1772    bo = find_and_ref_external_bo(bufmgr->handle_table, handle);
1773    if (bo)
1774       goto out;
1775 
1776    bo = bo_calloc();
1777    if (!bo)
1778       goto out;
1779 
1780    p_atomic_set(&bo->refcount, 1);
1781 
1782    /* Determine size of bo.  The fd-to-handle ioctl really should
1783     * return the size, but it doesn't.  If we have kernel 3.12 or
1784     * later, we can lseek on the prime fd to get the size.  Older
1785     * kernels will just fail, in which case we fall back to the
1786     * provided (estimated or guess size). */
1787    ret = lseek(prime_fd, 0, SEEK_END);
1788    if (ret != -1)
1789       bo->size = ret;
1790 
1791    bo->bufmgr = bufmgr;
1792    bo->name = "prime";
1793    bo->real.reusable = false;
1794    bo->real.imported = true;
1795    bo->real.mmap_mode = IRIS_MMAP_NONE;
1796    bo->real.kflags = EXEC_OBJECT_SUPPORTS_48B_ADDRESS | EXEC_OBJECT_PINNED;
1797 
1798    /* From the Bspec, Memory Compression - Gfx12:
1799     *
1800     *    The base address for the surface has to be 64K page aligned and the
1801     *    surface is expected to be padded in the virtual domain to be 4 4K
1802     *    pages.
1803     *
1804     * The dmabuf may contain a compressed surface. Align the BO to 64KB just
1805     * in case. We always align to 64KB even on platforms where we don't need
1806     * to, because it's a fairly reasonable thing to do anyway.
1807     */
1808    bo->address =
1809       vma_alloc(bufmgr, IRIS_MEMZONE_OTHER, bo->size, 64 * 1024);
1810 
1811    bo->gem_handle = handle;
1812    _mesa_hash_table_insert(bufmgr->handle_table, &bo->gem_handle, bo);
1813 
1814 out:
1815    simple_mtx_unlock(&bufmgr->lock);
1816    return bo;
1817 }
1818 
1819 static void
iris_bo_mark_exported_locked(struct iris_bo * bo)1820 iris_bo_mark_exported_locked(struct iris_bo *bo)
1821 {
1822    /* We cannot export suballocated BOs. */
1823    assert(iris_bo_is_real(bo));
1824 
1825    if (!iris_bo_is_external(bo))
1826       _mesa_hash_table_insert(bo->bufmgr->handle_table, &bo->gem_handle, bo);
1827 
1828    if (!bo->real.exported) {
1829       /* If a BO is going to be used externally, it could be sent to the
1830        * display HW. So make sure our CPU mappings don't assume cache
1831        * coherency since display is outside that cache.
1832        */
1833       bo->real.exported = true;
1834       bo->real.reusable = false;
1835    }
1836 }
1837 
1838 void
iris_bo_mark_exported(struct iris_bo * bo)1839 iris_bo_mark_exported(struct iris_bo *bo)
1840 {
1841    struct iris_bufmgr *bufmgr = bo->bufmgr;
1842 
1843    /* We cannot export suballocated BOs. */
1844    assert(iris_bo_is_real(bo));
1845 
1846    if (bo->real.exported) {
1847       assert(!bo->real.reusable);
1848       return;
1849    }
1850 
1851    simple_mtx_lock(&bufmgr->lock);
1852    iris_bo_mark_exported_locked(bo);
1853    simple_mtx_unlock(&bufmgr->lock);
1854 }
1855 
1856 int
iris_bo_export_dmabuf(struct iris_bo * bo,int * prime_fd)1857 iris_bo_export_dmabuf(struct iris_bo *bo, int *prime_fd)
1858 {
1859    struct iris_bufmgr *bufmgr = bo->bufmgr;
1860 
1861    /* We cannot export suballocated BOs. */
1862    assert(iris_bo_is_real(bo));
1863 
1864    iris_bo_mark_exported(bo);
1865 
1866    if (drmPrimeHandleToFD(bufmgr->fd, bo->gem_handle,
1867                           DRM_CLOEXEC | DRM_RDWR, prime_fd) != 0)
1868       return -errno;
1869 
1870    return 0;
1871 }
1872 
1873 uint32_t
iris_bo_export_gem_handle(struct iris_bo * bo)1874 iris_bo_export_gem_handle(struct iris_bo *bo)
1875 {
1876    /* We cannot export suballocated BOs. */
1877    assert(iris_bo_is_real(bo));
1878 
1879    iris_bo_mark_exported(bo);
1880 
1881    return bo->gem_handle;
1882 }
1883 
1884 int
iris_bo_flink(struct iris_bo * bo,uint32_t * name)1885 iris_bo_flink(struct iris_bo *bo, uint32_t *name)
1886 {
1887    struct iris_bufmgr *bufmgr = bo->bufmgr;
1888 
1889    /* We cannot export suballocated BOs. */
1890    assert(iris_bo_is_real(bo));
1891 
1892    if (!bo->real.global_name) {
1893       struct drm_gem_flink flink = { .handle = bo->gem_handle };
1894 
1895       if (intel_ioctl(bufmgr->fd, DRM_IOCTL_GEM_FLINK, &flink))
1896          return -errno;
1897 
1898       simple_mtx_lock(&bufmgr->lock);
1899       if (!bo->real.global_name) {
1900          iris_bo_mark_exported_locked(bo);
1901          bo->real.global_name = flink.name;
1902          _mesa_hash_table_insert(bufmgr->name_table, &bo->real.global_name, bo);
1903       }
1904       simple_mtx_unlock(&bufmgr->lock);
1905    }
1906 
1907    *name = bo->real.global_name;
1908    return 0;
1909 }
1910 
1911 int
iris_bo_export_gem_handle_for_device(struct iris_bo * bo,int drm_fd,uint32_t * out_handle)1912 iris_bo_export_gem_handle_for_device(struct iris_bo *bo, int drm_fd,
1913                                      uint32_t *out_handle)
1914 {
1915    /* We cannot export suballocated BOs. */
1916    assert(iris_bo_is_real(bo));
1917 
1918    /* Only add the new GEM handle to the list of export if it belongs to a
1919     * different GEM device. Otherwise we might close the same buffer multiple
1920     * times.
1921     */
1922    struct iris_bufmgr *bufmgr = bo->bufmgr;
1923    int ret = os_same_file_description(drm_fd, bufmgr->fd);
1924    WARN_ONCE(ret < 0,
1925              "Kernel has no file descriptor comparison support: %s\n",
1926              strerror(errno));
1927    if (ret == 0) {
1928       *out_handle = iris_bo_export_gem_handle(bo);
1929       return 0;
1930    }
1931 
1932    struct bo_export *export = calloc(1, sizeof(*export));
1933    if (!export)
1934       return -ENOMEM;
1935 
1936    export->drm_fd = drm_fd;
1937 
1938    int dmabuf_fd = -1;
1939    int err = iris_bo_export_dmabuf(bo, &dmabuf_fd);
1940    if (err) {
1941       free(export);
1942       return err;
1943    }
1944 
1945    simple_mtx_lock(&bufmgr->lock);
1946    err = drmPrimeFDToHandle(drm_fd, dmabuf_fd, &export->gem_handle);
1947    close(dmabuf_fd);
1948    if (err) {
1949       simple_mtx_unlock(&bufmgr->lock);
1950       free(export);
1951       return err;
1952    }
1953 
1954    bool found = false;
1955    list_for_each_entry(struct bo_export, iter, &bo->real.exports, link) {
1956       if (iter->drm_fd != drm_fd)
1957          continue;
1958       /* Here we assume that for a given DRM fd, we'll always get back the
1959        * same GEM handle for a given buffer.
1960        */
1961       assert(iter->gem_handle == export->gem_handle);
1962       free(export);
1963       export = iter;
1964       found = true;
1965       break;
1966    }
1967    if (!found)
1968       list_addtail(&export->link, &bo->real.exports);
1969 
1970    simple_mtx_unlock(&bufmgr->lock);
1971 
1972    *out_handle = export->gem_handle;
1973 
1974    return 0;
1975 }
1976 
1977 static void
add_bucket(struct iris_bufmgr * bufmgr,int size,bool local)1978 add_bucket(struct iris_bufmgr *bufmgr, int size, bool local)
1979 {
1980    unsigned int i = local ?
1981       bufmgr->num_local_buckets : bufmgr->num_buckets;
1982 
1983    struct bo_cache_bucket *buckets = local ?
1984       bufmgr->local_cache_bucket : bufmgr->cache_bucket;
1985 
1986    assert(i < ARRAY_SIZE(bufmgr->cache_bucket));
1987 
1988    list_inithead(&buckets[i].head);
1989    buckets[i].size = size;
1990 
1991    if (local)
1992       bufmgr->num_local_buckets++;
1993    else
1994       bufmgr->num_buckets++;
1995 
1996    assert(bucket_for_size(bufmgr, size, local) == &buckets[i]);
1997    assert(bucket_for_size(bufmgr, size - 2048, local) == &buckets[i]);
1998    assert(bucket_for_size(bufmgr, size + 1, local) != &buckets[i]);
1999 }
2000 
2001 static void
init_cache_buckets(struct iris_bufmgr * bufmgr,bool local)2002 init_cache_buckets(struct iris_bufmgr *bufmgr, bool local)
2003 {
2004    uint64_t size, cache_max_size = 64 * 1024 * 1024;
2005 
2006    /* OK, so power of two buckets was too wasteful of memory.
2007     * Give 3 other sizes between each power of two, to hopefully
2008     * cover things accurately enough.  (The alternative is
2009     * probably to just go for exact matching of sizes, and assume
2010     * that for things like composited window resize the tiled
2011     * width/height alignment and rounding of sizes to pages will
2012     * get us useful cache hit rates anyway)
2013     */
2014    add_bucket(bufmgr, PAGE_SIZE, local);
2015    add_bucket(bufmgr, PAGE_SIZE * 2, local);
2016    add_bucket(bufmgr, PAGE_SIZE * 3, local);
2017 
2018    /* Initialize the linked lists for BO reuse cache. */
2019    for (size = 4 * PAGE_SIZE; size <= cache_max_size; size *= 2) {
2020       add_bucket(bufmgr, size, local);
2021 
2022       add_bucket(bufmgr, size + size * 1 / 4, local);
2023       add_bucket(bufmgr, size + size * 2 / 4, local);
2024       add_bucket(bufmgr, size + size * 3 / 4, local);
2025    }
2026 }
2027 
2028 uint32_t
iris_create_hw_context(struct iris_bufmgr * bufmgr)2029 iris_create_hw_context(struct iris_bufmgr *bufmgr)
2030 {
2031    struct drm_i915_gem_context_create create = { };
2032    int ret = intel_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_CONTEXT_CREATE, &create);
2033    if (ret != 0) {
2034       DBG("DRM_IOCTL_I915_GEM_CONTEXT_CREATE failed: %s\n", strerror(errno));
2035       return 0;
2036    }
2037 
2038    /* Upon declaring a GPU hang, the kernel will zap the guilty context
2039     * back to the default logical HW state and attempt to continue on to
2040     * our next submitted batchbuffer.  However, our render batches assume
2041     * the previous GPU state is preserved, and only emit commands needed
2042     * to incrementally change that state.  In particular, we inherit the
2043     * STATE_BASE_ADDRESS and PIPELINE_SELECT settings, which are critical.
2044     * With default base addresses, our next batches will almost certainly
2045     * cause more GPU hangs, leading to repeated hangs until we're banned
2046     * or the machine is dead.
2047     *
2048     * Here we tell the kernel not to attempt to recover our context but
2049     * immediately (on the next batchbuffer submission) report that the
2050     * context is lost, and we will do the recovery ourselves.  Ideally,
2051     * we'll have two lost batches instead of a continual stream of hangs.
2052     */
2053    struct drm_i915_gem_context_param p = {
2054       .ctx_id = create.ctx_id,
2055       .param = I915_CONTEXT_PARAM_RECOVERABLE,
2056       .value = false,
2057    };
2058    intel_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_CONTEXT_SETPARAM, &p);
2059 
2060    return create.ctx_id;
2061 }
2062 
2063 static int
iris_hw_context_get_priority(struct iris_bufmgr * bufmgr,uint32_t ctx_id)2064 iris_hw_context_get_priority(struct iris_bufmgr *bufmgr, uint32_t ctx_id)
2065 {
2066    struct drm_i915_gem_context_param p = {
2067       .ctx_id = ctx_id,
2068       .param = I915_CONTEXT_PARAM_PRIORITY,
2069    };
2070    intel_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_CONTEXT_GETPARAM, &p);
2071    return p.value; /* on error, return 0 i.e. default priority */
2072 }
2073 
2074 int
iris_hw_context_set_priority(struct iris_bufmgr * bufmgr,uint32_t ctx_id,int priority)2075 iris_hw_context_set_priority(struct iris_bufmgr *bufmgr,
2076                             uint32_t ctx_id,
2077                             int priority)
2078 {
2079    struct drm_i915_gem_context_param p = {
2080       .ctx_id = ctx_id,
2081       .param = I915_CONTEXT_PARAM_PRIORITY,
2082       .value = priority,
2083    };
2084    int err;
2085 
2086    err = 0;
2087    if (intel_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_CONTEXT_SETPARAM, &p))
2088       err = -errno;
2089 
2090    return err;
2091 }
2092 
2093 uint32_t
iris_clone_hw_context(struct iris_bufmgr * bufmgr,uint32_t ctx_id)2094 iris_clone_hw_context(struct iris_bufmgr *bufmgr, uint32_t ctx_id)
2095 {
2096    uint32_t new_ctx = iris_create_hw_context(bufmgr);
2097 
2098    if (new_ctx) {
2099       int priority = iris_hw_context_get_priority(bufmgr, ctx_id);
2100       iris_hw_context_set_priority(bufmgr, new_ctx, priority);
2101    }
2102 
2103    return new_ctx;
2104 }
2105 
2106 void
iris_destroy_hw_context(struct iris_bufmgr * bufmgr,uint32_t ctx_id)2107 iris_destroy_hw_context(struct iris_bufmgr *bufmgr, uint32_t ctx_id)
2108 {
2109    struct drm_i915_gem_context_destroy d = { .ctx_id = ctx_id };
2110 
2111    if (ctx_id != 0 &&
2112        intel_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_CONTEXT_DESTROY, &d) != 0) {
2113       fprintf(stderr, "DRM_IOCTL_I915_GEM_CONTEXT_DESTROY failed: %s\n",
2114               strerror(errno));
2115    }
2116 }
2117 
2118 int
iris_reg_read(struct iris_bufmgr * bufmgr,uint32_t offset,uint64_t * result)2119 iris_reg_read(struct iris_bufmgr *bufmgr, uint32_t offset, uint64_t *result)
2120 {
2121    struct drm_i915_reg_read reg_read = { .offset = offset };
2122    int ret = intel_ioctl(bufmgr->fd, DRM_IOCTL_I915_REG_READ, &reg_read);
2123 
2124    *result = reg_read.val;
2125    return ret;
2126 }
2127 
2128 static uint64_t
iris_gtt_size(int fd)2129 iris_gtt_size(int fd)
2130 {
2131    /* We use the default (already allocated) context to determine
2132     * the default configuration of the virtual address space.
2133     */
2134    struct drm_i915_gem_context_param p = {
2135       .param = I915_CONTEXT_PARAM_GTT_SIZE,
2136    };
2137    if (!intel_ioctl(fd, DRM_IOCTL_I915_GEM_CONTEXT_GETPARAM, &p))
2138       return p.value;
2139 
2140    return 0;
2141 }
2142 
2143 static struct intel_buffer *
intel_aux_map_buffer_alloc(void * driver_ctx,uint32_t size)2144 intel_aux_map_buffer_alloc(void *driver_ctx, uint32_t size)
2145 {
2146    struct intel_buffer *buf = malloc(sizeof(struct intel_buffer));
2147    if (!buf)
2148       return NULL;
2149 
2150    struct iris_bufmgr *bufmgr = (struct iris_bufmgr *)driver_ctx;
2151 
2152    bool local = bufmgr->vram.size > 0;
2153    unsigned int page_size = getpagesize();
2154    size = MAX2(ALIGN(size, page_size), page_size);
2155 
2156    struct iris_bo *bo = alloc_fresh_bo(bufmgr, size, local);
2157 
2158    simple_mtx_lock(&bufmgr->lock);
2159    bo->address = vma_alloc(bufmgr, IRIS_MEMZONE_OTHER, bo->size, 64 * 1024);
2160    assert(bo->address != 0ull);
2161    simple_mtx_unlock(&bufmgr->lock);
2162 
2163    bo->name = "aux-map";
2164    p_atomic_set(&bo->refcount, 1);
2165    bo->index = -1;
2166    bo->real.kflags = EXEC_OBJECT_SUPPORTS_48B_ADDRESS | EXEC_OBJECT_PINNED |
2167                      EXEC_OBJECT_CAPTURE;
2168    bo->real.mmap_mode = local ? IRIS_MMAP_WC : IRIS_MMAP_WB;
2169 
2170    buf->driver_bo = bo;
2171    buf->gpu = bo->address;
2172    buf->gpu_end = buf->gpu + bo->size;
2173    buf->map = iris_bo_map(NULL, bo, MAP_WRITE | MAP_RAW);
2174    return buf;
2175 }
2176 
2177 static void
intel_aux_map_buffer_free(void * driver_ctx,struct intel_buffer * buffer)2178 intel_aux_map_buffer_free(void *driver_ctx, struct intel_buffer *buffer)
2179 {
2180    iris_bo_unreference((struct iris_bo*)buffer->driver_bo);
2181    free(buffer);
2182 }
2183 
2184 static struct intel_mapped_pinned_buffer_alloc aux_map_allocator = {
2185    .alloc = intel_aux_map_buffer_alloc,
2186    .free = intel_aux_map_buffer_free,
2187 };
2188 
2189 static int
gem_param(int fd,int name)2190 gem_param(int fd, int name)
2191 {
2192    int v = -1; /* No param uses (yet) the sign bit, reserve it for errors */
2193 
2194    struct drm_i915_getparam gp = { .param = name, .value = &v };
2195    if (intel_ioctl(fd, DRM_IOCTL_I915_GETPARAM, &gp))
2196       return -1;
2197 
2198    return v;
2199 }
2200 
2201 static bool
iris_bufmgr_query_meminfo(struct iris_bufmgr * bufmgr)2202 iris_bufmgr_query_meminfo(struct iris_bufmgr *bufmgr)
2203 {
2204    struct drm_i915_query_memory_regions *meminfo =
2205       intel_i915_query_alloc(bufmgr->fd, DRM_I915_QUERY_MEMORY_REGIONS);
2206    if (meminfo == NULL)
2207       return false;
2208 
2209    for (int i = 0; i < meminfo->num_regions; i++) {
2210       const struct drm_i915_memory_region_info *mem = &meminfo->regions[i];
2211       switch (mem->region.memory_class) {
2212       case I915_MEMORY_CLASS_SYSTEM:
2213          bufmgr->sys.region = mem->region;
2214          bufmgr->sys.size = mem->probed_size;
2215          break;
2216       case I915_MEMORY_CLASS_DEVICE:
2217          bufmgr->vram.region = mem->region;
2218          bufmgr->vram.size = mem->probed_size;
2219          break;
2220       default:
2221          break;
2222       }
2223    }
2224 
2225    free(meminfo);
2226 
2227    return true;
2228 }
2229 
2230 /**
2231  * Initializes the GEM buffer manager, which uses the kernel to allocate, map,
2232  * and manage map buffer objections.
2233  *
2234  * \param fd File descriptor of the opened DRM device.
2235  */
2236 static struct iris_bufmgr *
iris_bufmgr_create(struct intel_device_info * devinfo,int fd,bool bo_reuse)2237 iris_bufmgr_create(struct intel_device_info *devinfo, int fd, bool bo_reuse)
2238 {
2239    uint64_t gtt_size = iris_gtt_size(fd);
2240    if (gtt_size <= IRIS_MEMZONE_OTHER_START)
2241       return NULL;
2242 
2243    struct iris_bufmgr *bufmgr = calloc(1, sizeof(*bufmgr));
2244    if (bufmgr == NULL)
2245       return NULL;
2246 
2247    /* Handles to buffer objects belong to the device fd and are not
2248     * reference counted by the kernel.  If the same fd is used by
2249     * multiple parties (threads sharing the same screen bufmgr, or
2250     * even worse the same device fd passed to multiple libraries)
2251     * ownership of those handles is shared by those independent parties.
2252     *
2253     * Don't do this! Ensure that each library/bufmgr has its own device
2254     * fd so that its namespace does not clash with another.
2255     */
2256    bufmgr->fd = os_dupfd_cloexec(fd);
2257 
2258    p_atomic_set(&bufmgr->refcount, 1);
2259 
2260    simple_mtx_init(&bufmgr->lock, mtx_plain);
2261    simple_mtx_init(&bufmgr->bo_deps_lock, mtx_plain);
2262 
2263    list_inithead(&bufmgr->zombie_list);
2264 
2265    bufmgr->has_llc = devinfo->has_llc;
2266    bufmgr->has_local_mem = devinfo->has_local_mem;
2267    bufmgr->has_tiling_uapi = devinfo->has_tiling_uapi;
2268    bufmgr->bo_reuse = bo_reuse;
2269    bufmgr->has_mmap_offset = gem_param(fd, I915_PARAM_MMAP_GTT_VERSION) >= 4;
2270    bufmgr->has_userptr_probe =
2271       gem_param(fd, I915_PARAM_HAS_USERPTR_PROBE) >= 1;
2272    iris_bufmgr_query_meminfo(bufmgr);
2273 
2274    STATIC_ASSERT(IRIS_MEMZONE_SHADER_START == 0ull);
2275    const uint64_t _4GB = 1ull << 32;
2276    const uint64_t _2GB = 1ul << 31;
2277 
2278    /* The STATE_BASE_ADDRESS size field can only hold 1 page shy of 4GB */
2279    const uint64_t _4GB_minus_1 = _4GB - PAGE_SIZE;
2280 
2281    util_vma_heap_init(&bufmgr->vma_allocator[IRIS_MEMZONE_SHADER],
2282                       PAGE_SIZE, _4GB_minus_1 - PAGE_SIZE);
2283    util_vma_heap_init(&bufmgr->vma_allocator[IRIS_MEMZONE_BINDLESS],
2284                       IRIS_MEMZONE_BINDLESS_START, IRIS_BINDLESS_SIZE);
2285    util_vma_heap_init(&bufmgr->vma_allocator[IRIS_MEMZONE_SURFACE],
2286                       IRIS_MEMZONE_SURFACE_START,
2287                       _4GB_minus_1 - IRIS_MAX_BINDERS * IRIS_BINDER_SIZE -
2288                      IRIS_BINDLESS_SIZE);
2289    /* TODO: Why does limiting to 2GB help some state items on gfx12?
2290     *  - CC Viewport Pointer
2291     *  - Blend State Pointer
2292     *  - Color Calc State Pointer
2293     */
2294    const uint64_t dynamic_pool_size =
2295       (devinfo->ver >= 12 ? _2GB : _4GB_minus_1) - IRIS_BORDER_COLOR_POOL_SIZE;
2296    util_vma_heap_init(&bufmgr->vma_allocator[IRIS_MEMZONE_DYNAMIC],
2297                       IRIS_MEMZONE_DYNAMIC_START + IRIS_BORDER_COLOR_POOL_SIZE,
2298                       dynamic_pool_size);
2299 
2300    /* Leave the last 4GB out of the high vma range, so that no state
2301     * base address + size can overflow 48 bits.
2302     */
2303    util_vma_heap_init(&bufmgr->vma_allocator[IRIS_MEMZONE_OTHER],
2304                       IRIS_MEMZONE_OTHER_START,
2305                       (gtt_size - _4GB) - IRIS_MEMZONE_OTHER_START);
2306 
2307    init_cache_buckets(bufmgr, false);
2308    init_cache_buckets(bufmgr, true);
2309 
2310    unsigned min_slab_order = 8;  /* 256 bytes */
2311    unsigned max_slab_order = 20; /* 1 MB (slab size = 2 MB) */
2312    unsigned num_slab_orders_per_allocator =
2313       (max_slab_order - min_slab_order) / NUM_SLAB_ALLOCATORS;
2314 
2315    /* Divide the size order range among slab managers. */
2316    for (unsigned i = 0; i < NUM_SLAB_ALLOCATORS; i++) {
2317       unsigned min_order = min_slab_order;
2318       unsigned max_order =
2319          MIN2(min_order + num_slab_orders_per_allocator, max_slab_order);
2320 
2321       if (!pb_slabs_init(&bufmgr->bo_slabs[i], min_order, max_order,
2322                          IRIS_HEAP_MAX, true, bufmgr,
2323                          iris_can_reclaim_slab,
2324                          iris_slab_alloc,
2325                          (void *) iris_slab_free)) {
2326          free(bufmgr);
2327          return NULL;
2328       }
2329       min_slab_order = max_order + 1;
2330    }
2331 
2332    bufmgr->name_table =
2333       _mesa_hash_table_create(NULL, _mesa_hash_uint, _mesa_key_uint_equal);
2334    bufmgr->handle_table =
2335       _mesa_hash_table_create(NULL, _mesa_hash_uint, _mesa_key_uint_equal);
2336 
2337    bufmgr->vma_min_align = devinfo->has_local_mem ? 64 * 1024 : PAGE_SIZE;
2338 
2339    if (devinfo->has_aux_map) {
2340       bufmgr->aux_map_ctx = intel_aux_map_init(bufmgr, &aux_map_allocator,
2341                                                devinfo);
2342       assert(bufmgr->aux_map_ctx);
2343    }
2344 
2345    return bufmgr;
2346 }
2347 
2348 static struct iris_bufmgr *
iris_bufmgr_ref(struct iris_bufmgr * bufmgr)2349 iris_bufmgr_ref(struct iris_bufmgr *bufmgr)
2350 {
2351    p_atomic_inc(&bufmgr->refcount);
2352    return bufmgr;
2353 }
2354 
2355 void
iris_bufmgr_unref(struct iris_bufmgr * bufmgr)2356 iris_bufmgr_unref(struct iris_bufmgr *bufmgr)
2357 {
2358    simple_mtx_lock(&global_bufmgr_list_mutex);
2359    if (p_atomic_dec_zero(&bufmgr->refcount)) {
2360       list_del(&bufmgr->link);
2361       iris_bufmgr_destroy(bufmgr);
2362    }
2363    simple_mtx_unlock(&global_bufmgr_list_mutex);
2364 }
2365 
2366 /** Returns a new unique id, to be used by screens. */
2367 int
iris_bufmgr_create_screen_id(struct iris_bufmgr * bufmgr)2368 iris_bufmgr_create_screen_id(struct iris_bufmgr *bufmgr)
2369 {
2370    return p_atomic_inc_return(&bufmgr->next_screen_id) - 1;
2371 }
2372 
2373 /**
2374  * Gets an already existing GEM buffer manager or create a new one.
2375  *
2376  * \param fd File descriptor of the opened DRM device.
2377  */
2378 struct iris_bufmgr *
iris_bufmgr_get_for_fd(struct intel_device_info * devinfo,int fd,bool bo_reuse)2379 iris_bufmgr_get_for_fd(struct intel_device_info *devinfo, int fd, bool bo_reuse)
2380 {
2381    struct stat st;
2382 
2383    if (fstat(fd, &st))
2384       return NULL;
2385 
2386    struct iris_bufmgr *bufmgr = NULL;
2387 
2388    simple_mtx_lock(&global_bufmgr_list_mutex);
2389    list_for_each_entry(struct iris_bufmgr, iter_bufmgr, &global_bufmgr_list, link) {
2390       struct stat iter_st;
2391       if (fstat(iter_bufmgr->fd, &iter_st))
2392          continue;
2393 
2394       if (st.st_rdev == iter_st.st_rdev) {
2395          assert(iter_bufmgr->bo_reuse == bo_reuse);
2396          bufmgr = iris_bufmgr_ref(iter_bufmgr);
2397          goto unlock;
2398       }
2399    }
2400 
2401    bufmgr = iris_bufmgr_create(devinfo, fd, bo_reuse);
2402    if (bufmgr)
2403       list_addtail(&bufmgr->link, &global_bufmgr_list);
2404 
2405  unlock:
2406    simple_mtx_unlock(&global_bufmgr_list_mutex);
2407 
2408    return bufmgr;
2409 }
2410 
2411 int
iris_bufmgr_get_fd(struct iris_bufmgr * bufmgr)2412 iris_bufmgr_get_fd(struct iris_bufmgr *bufmgr)
2413 {
2414    return bufmgr->fd;
2415 }
2416 
2417 void*
iris_bufmgr_get_aux_map_context(struct iris_bufmgr * bufmgr)2418 iris_bufmgr_get_aux_map_context(struct iris_bufmgr *bufmgr)
2419 {
2420    return bufmgr->aux_map_ctx;
2421 }
2422 
2423 simple_mtx_t *
iris_bufmgr_get_bo_deps_lock(struct iris_bufmgr * bufmgr)2424 iris_bufmgr_get_bo_deps_lock(struct iris_bufmgr *bufmgr)
2425 {
2426    return &bufmgr->bo_deps_lock;
2427 }
2428