1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /** @file brw_fs.cpp
25 *
26 * This file drives the GLSL IR -> LIR translation, contains the
27 * optimizations on the LIR, and drives the generation of native code
28 * from the LIR.
29 */
30
31 #include "main/macros.h"
32 #include "brw_eu.h"
33 #include "brw_fs.h"
34 #include "brw_fs_live_variables.h"
35 #include "brw_nir.h"
36 #include "brw_vec4_gs_visitor.h"
37 #include "brw_cfg.h"
38 #include "brw_dead_control_flow.h"
39 #include "dev/intel_debug.h"
40 #include "compiler/glsl_types.h"
41 #include "compiler/nir/nir_builder.h"
42 #include "program/prog_parameter.h"
43 #include "util/u_math.h"
44
45 using namespace brw;
46
47 static unsigned get_lowered_simd_width(const struct intel_device_info *devinfo,
48 const fs_inst *inst);
49
50 void
init(enum opcode opcode,uint8_t exec_size,const fs_reg & dst,const fs_reg * src,unsigned sources)51 fs_inst::init(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
52 const fs_reg *src, unsigned sources)
53 {
54 memset((void*)this, 0, sizeof(*this));
55
56 this->src = new fs_reg[MAX2(sources, 3)];
57 for (unsigned i = 0; i < sources; i++)
58 this->src[i] = src[i];
59
60 this->opcode = opcode;
61 this->dst = dst;
62 this->sources = sources;
63 this->exec_size = exec_size;
64 this->base_mrf = -1;
65
66 assert(dst.file != IMM && dst.file != UNIFORM);
67
68 assert(this->exec_size != 0);
69
70 this->conditional_mod = BRW_CONDITIONAL_NONE;
71
72 /* This will be the case for almost all instructions. */
73 switch (dst.file) {
74 case VGRF:
75 case ARF:
76 case FIXED_GRF:
77 case MRF:
78 case ATTR:
79 this->size_written = dst.component_size(exec_size);
80 break;
81 case BAD_FILE:
82 this->size_written = 0;
83 break;
84 case IMM:
85 case UNIFORM:
86 unreachable("Invalid destination register file");
87 }
88
89 this->writes_accumulator = false;
90 }
91
fs_inst()92 fs_inst::fs_inst()
93 {
94 init(BRW_OPCODE_NOP, 8, dst, NULL, 0);
95 }
96
fs_inst(enum opcode opcode,uint8_t exec_size)97 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size)
98 {
99 init(opcode, exec_size, reg_undef, NULL, 0);
100 }
101
fs_inst(enum opcode opcode,uint8_t exec_size,const fs_reg & dst)102 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst)
103 {
104 init(opcode, exec_size, dst, NULL, 0);
105 }
106
fs_inst(enum opcode opcode,uint8_t exec_size,const fs_reg & dst,const fs_reg & src0)107 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
108 const fs_reg &src0)
109 {
110 const fs_reg src[1] = { src0 };
111 init(opcode, exec_size, dst, src, 1);
112 }
113
fs_inst(enum opcode opcode,uint8_t exec_size,const fs_reg & dst,const fs_reg & src0,const fs_reg & src1)114 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
115 const fs_reg &src0, const fs_reg &src1)
116 {
117 const fs_reg src[2] = { src0, src1 };
118 init(opcode, exec_size, dst, src, 2);
119 }
120
fs_inst(enum opcode opcode,uint8_t exec_size,const fs_reg & dst,const fs_reg & src0,const fs_reg & src1,const fs_reg & src2)121 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
122 const fs_reg &src0, const fs_reg &src1, const fs_reg &src2)
123 {
124 const fs_reg src[3] = { src0, src1, src2 };
125 init(opcode, exec_size, dst, src, 3);
126 }
127
fs_inst(enum opcode opcode,uint8_t exec_width,const fs_reg & dst,const fs_reg src[],unsigned sources)128 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_width, const fs_reg &dst,
129 const fs_reg src[], unsigned sources)
130 {
131 init(opcode, exec_width, dst, src, sources);
132 }
133
fs_inst(const fs_inst & that)134 fs_inst::fs_inst(const fs_inst &that)
135 {
136 memcpy((void*)this, &that, sizeof(that));
137
138 this->src = new fs_reg[MAX2(that.sources, 3)];
139
140 for (unsigned i = 0; i < that.sources; i++)
141 this->src[i] = that.src[i];
142 }
143
~fs_inst()144 fs_inst::~fs_inst()
145 {
146 delete[] this->src;
147 }
148
149 void
resize_sources(uint8_t num_sources)150 fs_inst::resize_sources(uint8_t num_sources)
151 {
152 if (this->sources != num_sources) {
153 fs_reg *src = new fs_reg[MAX2(num_sources, 3)];
154
155 for (unsigned i = 0; i < MIN2(this->sources, num_sources); ++i)
156 src[i] = this->src[i];
157
158 delete[] this->src;
159 this->src = src;
160 this->sources = num_sources;
161 }
162 }
163
164 void
VARYING_PULL_CONSTANT_LOAD(const fs_builder & bld,const fs_reg & dst,const fs_reg & surf_index,const fs_reg & varying_offset,uint32_t const_offset,uint8_t alignment)165 fs_visitor::VARYING_PULL_CONSTANT_LOAD(const fs_builder &bld,
166 const fs_reg &dst,
167 const fs_reg &surf_index,
168 const fs_reg &varying_offset,
169 uint32_t const_offset,
170 uint8_t alignment)
171 {
172 /* We have our constant surface use a pitch of 4 bytes, so our index can
173 * be any component of a vector, and then we load 4 contiguous
174 * components starting from that.
175 *
176 * We break down the const_offset to a portion added to the variable offset
177 * and a portion done using fs_reg::offset, which means that if you have
178 * GLSL using something like "uniform vec4 a[20]; gl_FragColor = a[i]",
179 * we'll temporarily generate 4 vec4 loads from offset i * 4, and CSE can
180 * later notice that those loads are all the same and eliminate the
181 * redundant ones.
182 */
183 fs_reg vec4_offset = vgrf(glsl_type::uint_type);
184 bld.ADD(vec4_offset, varying_offset, brw_imm_ud(const_offset & ~0xf));
185
186 /* The pull load message will load a vec4 (16 bytes). If we are loading
187 * a double this means we are only loading 2 elements worth of data.
188 * We also want to use a 32-bit data type for the dst of the load operation
189 * so other parts of the driver don't get confused about the size of the
190 * result.
191 */
192 fs_reg vec4_result = bld.vgrf(BRW_REGISTER_TYPE_F, 4);
193 fs_inst *inst = bld.emit(FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL,
194 vec4_result, surf_index, vec4_offset,
195 brw_imm_ud(alignment));
196 inst->size_written = 4 * vec4_result.component_size(inst->exec_size);
197
198 shuffle_from_32bit_read(bld, dst, vec4_result,
199 (const_offset & 0xf) / type_sz(dst.type), 1);
200 }
201
202 /**
203 * A helper for MOV generation for fixing up broken hardware SEND dependency
204 * handling.
205 */
206 void
DEP_RESOLVE_MOV(const fs_builder & bld,int grf)207 fs_visitor::DEP_RESOLVE_MOV(const fs_builder &bld, int grf)
208 {
209 /* The caller always wants uncompressed to emit the minimal extra
210 * dependencies, and to avoid having to deal with aligning its regs to 2.
211 */
212 const fs_builder ubld = bld.annotate("send dependency resolve")
213 .quarter(0);
214
215 ubld.MOV(ubld.null_reg_f(), fs_reg(VGRF, grf, BRW_REGISTER_TYPE_F));
216 }
217
218 bool
is_send_from_grf() const219 fs_inst::is_send_from_grf() const
220 {
221 switch (opcode) {
222 case SHADER_OPCODE_SEND:
223 case SHADER_OPCODE_SHADER_TIME_ADD:
224 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
225 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
226 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
227 case SHADER_OPCODE_URB_WRITE_SIMD8:
228 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
229 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
230 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
231 case SHADER_OPCODE_URB_READ_SIMD8:
232 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
233 case SHADER_OPCODE_INTERLOCK:
234 case SHADER_OPCODE_MEMORY_FENCE:
235 case SHADER_OPCODE_BARRIER:
236 return true;
237 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
238 return src[1].file == VGRF;
239 case FS_OPCODE_FB_WRITE:
240 case FS_OPCODE_FB_READ:
241 return src[0].file == VGRF;
242 default:
243 if (is_tex())
244 return src[0].file == VGRF;
245
246 return false;
247 }
248 }
249
250 bool
is_control_source(unsigned arg) const251 fs_inst::is_control_source(unsigned arg) const
252 {
253 switch (opcode) {
254 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
255 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GFX7:
256 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GFX4:
257 return arg == 0;
258
259 case SHADER_OPCODE_BROADCAST:
260 case SHADER_OPCODE_SHUFFLE:
261 case SHADER_OPCODE_QUAD_SWIZZLE:
262 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
263 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
264 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
265 case SHADER_OPCODE_GET_BUFFER_SIZE:
266 return arg == 1;
267
268 case SHADER_OPCODE_MOV_INDIRECT:
269 case SHADER_OPCODE_CLUSTER_BROADCAST:
270 case SHADER_OPCODE_TEX:
271 case FS_OPCODE_TXB:
272 case SHADER_OPCODE_TXD:
273 case SHADER_OPCODE_TXF:
274 case SHADER_OPCODE_TXF_LZ:
275 case SHADER_OPCODE_TXF_CMS:
276 case SHADER_OPCODE_TXF_CMS_W:
277 case SHADER_OPCODE_TXF_UMS:
278 case SHADER_OPCODE_TXF_MCS:
279 case SHADER_OPCODE_TXL:
280 case SHADER_OPCODE_TXL_LZ:
281 case SHADER_OPCODE_TXS:
282 case SHADER_OPCODE_LOD:
283 case SHADER_OPCODE_TG4:
284 case SHADER_OPCODE_TG4_OFFSET:
285 case SHADER_OPCODE_SAMPLEINFO:
286 return arg == 1 || arg == 2;
287
288 case SHADER_OPCODE_SEND:
289 return arg == 0 || arg == 1;
290
291 default:
292 return false;
293 }
294 }
295
296 bool
is_payload(unsigned arg) const297 fs_inst::is_payload(unsigned arg) const
298 {
299 switch (opcode) {
300 case FS_OPCODE_FB_WRITE:
301 case FS_OPCODE_FB_READ:
302 case SHADER_OPCODE_URB_WRITE_SIMD8:
303 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
304 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
305 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
306 case SHADER_OPCODE_URB_READ_SIMD8:
307 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
308 case VEC4_OPCODE_UNTYPED_ATOMIC:
309 case VEC4_OPCODE_UNTYPED_SURFACE_READ:
310 case VEC4_OPCODE_UNTYPED_SURFACE_WRITE:
311 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
312 case SHADER_OPCODE_SHADER_TIME_ADD:
313 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
314 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
315 case SHADER_OPCODE_INTERLOCK:
316 case SHADER_OPCODE_MEMORY_FENCE:
317 case SHADER_OPCODE_BARRIER:
318 return arg == 0;
319
320 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GFX7:
321 return arg == 1;
322
323 case SHADER_OPCODE_SEND:
324 return arg == 2 || arg == 3;
325
326 default:
327 if (is_tex())
328 return arg == 0;
329 else
330 return false;
331 }
332 }
333
334 /**
335 * Returns true if this instruction's sources and destinations cannot
336 * safely be the same register.
337 *
338 * In most cases, a register can be written over safely by the same
339 * instruction that is its last use. For a single instruction, the
340 * sources are dereferenced before writing of the destination starts
341 * (naturally).
342 *
343 * However, there are a few cases where this can be problematic:
344 *
345 * - Virtual opcodes that translate to multiple instructions in the
346 * code generator: if src == dst and one instruction writes the
347 * destination before a later instruction reads the source, then
348 * src will have been clobbered.
349 *
350 * - SIMD16 compressed instructions with certain regioning (see below).
351 *
352 * The register allocator uses this information to set up conflicts between
353 * GRF sources and the destination.
354 */
355 bool
has_source_and_destination_hazard() const356 fs_inst::has_source_and_destination_hazard() const
357 {
358 switch (opcode) {
359 case FS_OPCODE_PACK_HALF_2x16_SPLIT:
360 /* Multiple partial writes to the destination */
361 return true;
362 case SHADER_OPCODE_SHUFFLE:
363 /* This instruction returns an arbitrary channel from the source and
364 * gets split into smaller instructions in the generator. It's possible
365 * that one of the instructions will read from a channel corresponding
366 * to an earlier instruction.
367 */
368 case SHADER_OPCODE_SEL_EXEC:
369 /* This is implemented as
370 *
371 * mov(16) g4<1>D 0D { align1 WE_all 1H };
372 * mov(16) g4<1>D g5<8,8,1>D { align1 1H }
373 *
374 * Because the source is only read in the second instruction, the first
375 * may stomp all over it.
376 */
377 return true;
378 case SHADER_OPCODE_QUAD_SWIZZLE:
379 switch (src[1].ud) {
380 case BRW_SWIZZLE_XXXX:
381 case BRW_SWIZZLE_YYYY:
382 case BRW_SWIZZLE_ZZZZ:
383 case BRW_SWIZZLE_WWWW:
384 case BRW_SWIZZLE_XXZZ:
385 case BRW_SWIZZLE_YYWW:
386 case BRW_SWIZZLE_XYXY:
387 case BRW_SWIZZLE_ZWZW:
388 /* These can be implemented as a single Align1 region on all
389 * platforms, so there's never a hazard between source and
390 * destination. C.f. fs_generator::generate_quad_swizzle().
391 */
392 return false;
393 default:
394 return !is_uniform(src[0]);
395 }
396 default:
397 /* The SIMD16 compressed instruction
398 *
399 * add(16) g4<1>F g4<8,8,1>F g6<8,8,1>F
400 *
401 * is actually decoded in hardware as:
402 *
403 * add(8) g4<1>F g4<8,8,1>F g6<8,8,1>F
404 * add(8) g5<1>F g5<8,8,1>F g7<8,8,1>F
405 *
406 * Which is safe. However, if we have uniform accesses
407 * happening, we get into trouble:
408 *
409 * add(8) g4<1>F g4<0,1,0>F g6<8,8,1>F
410 * add(8) g5<1>F g4<0,1,0>F g7<8,8,1>F
411 *
412 * Now our destination for the first instruction overwrote the
413 * second instruction's src0, and we get garbage for those 8
414 * pixels. There's a similar issue for the pre-gfx6
415 * pixel_x/pixel_y, which are registers of 16-bit values and thus
416 * would get stomped by the first decode as well.
417 */
418 if (exec_size == 16) {
419 for (int i = 0; i < sources; i++) {
420 if (src[i].file == VGRF && (src[i].stride == 0 ||
421 src[i].type == BRW_REGISTER_TYPE_UW ||
422 src[i].type == BRW_REGISTER_TYPE_W ||
423 src[i].type == BRW_REGISTER_TYPE_UB ||
424 src[i].type == BRW_REGISTER_TYPE_B)) {
425 return true;
426 }
427 }
428 }
429 return false;
430 }
431 }
432
433 bool
can_do_source_mods(const struct intel_device_info * devinfo) const434 fs_inst::can_do_source_mods(const struct intel_device_info *devinfo) const
435 {
436 if (devinfo->ver == 6 && is_math())
437 return false;
438
439 if (is_send_from_grf())
440 return false;
441
442 /* From Wa_1604601757:
443 *
444 * "When multiplying a DW and any lower precision integer, source modifier
445 * is not supported."
446 */
447 if (devinfo->ver >= 12 && (opcode == BRW_OPCODE_MUL ||
448 opcode == BRW_OPCODE_MAD)) {
449 const brw_reg_type exec_type = get_exec_type(this);
450 const unsigned min_type_sz = opcode == BRW_OPCODE_MAD ?
451 MIN2(type_sz(src[1].type), type_sz(src[2].type)) :
452 MIN2(type_sz(src[0].type), type_sz(src[1].type));
453
454 if (brw_reg_type_is_integer(exec_type) &&
455 type_sz(exec_type) >= 4 &&
456 type_sz(exec_type) != min_type_sz)
457 return false;
458 }
459
460 if (!backend_instruction::can_do_source_mods())
461 return false;
462
463 return true;
464 }
465
466 bool
can_do_cmod()467 fs_inst::can_do_cmod()
468 {
469 if (!backend_instruction::can_do_cmod())
470 return false;
471
472 /* The accumulator result appears to get used for the conditional modifier
473 * generation. When negating a UD value, there is a 33rd bit generated for
474 * the sign in the accumulator value, so now you can't check, for example,
475 * equality with a 32-bit value. See piglit fs-op-neg-uvec4.
476 */
477 for (unsigned i = 0; i < sources; i++) {
478 if (brw_reg_type_is_unsigned_integer(src[i].type) && src[i].negate)
479 return false;
480 }
481
482 return true;
483 }
484
485 bool
can_change_types() const486 fs_inst::can_change_types() const
487 {
488 return dst.type == src[0].type &&
489 !src[0].abs && !src[0].negate && !saturate &&
490 (opcode == BRW_OPCODE_MOV ||
491 (opcode == BRW_OPCODE_SEL &&
492 dst.type == src[1].type &&
493 predicate != BRW_PREDICATE_NONE &&
494 !src[1].abs && !src[1].negate));
495 }
496
497 void
init()498 fs_reg::init()
499 {
500 memset((void*)this, 0, sizeof(*this));
501 type = BRW_REGISTER_TYPE_UD;
502 stride = 1;
503 }
504
505 /** Generic unset register constructor. */
fs_reg()506 fs_reg::fs_reg()
507 {
508 init();
509 this->file = BAD_FILE;
510 }
511
fs_reg(struct::brw_reg reg)512 fs_reg::fs_reg(struct ::brw_reg reg) :
513 backend_reg(reg)
514 {
515 this->offset = 0;
516 this->stride = 1;
517 if (this->file == IMM &&
518 (this->type != BRW_REGISTER_TYPE_V &&
519 this->type != BRW_REGISTER_TYPE_UV &&
520 this->type != BRW_REGISTER_TYPE_VF)) {
521 this->stride = 0;
522 }
523 }
524
525 bool
equals(const fs_reg & r) const526 fs_reg::equals(const fs_reg &r) const
527 {
528 return (this->backend_reg::equals(r) &&
529 stride == r.stride);
530 }
531
532 bool
negative_equals(const fs_reg & r) const533 fs_reg::negative_equals(const fs_reg &r) const
534 {
535 return (this->backend_reg::negative_equals(r) &&
536 stride == r.stride);
537 }
538
539 bool
is_contiguous() const540 fs_reg::is_contiguous() const
541 {
542 switch (file) {
543 case ARF:
544 case FIXED_GRF:
545 return hstride == BRW_HORIZONTAL_STRIDE_1 &&
546 vstride == width + hstride;
547 case MRF:
548 case VGRF:
549 case ATTR:
550 return stride == 1;
551 case UNIFORM:
552 case IMM:
553 case BAD_FILE:
554 return true;
555 }
556
557 unreachable("Invalid register file");
558 }
559
560 unsigned
component_size(unsigned width) const561 fs_reg::component_size(unsigned width) const
562 {
563 const unsigned stride = ((file != ARF && file != FIXED_GRF) ? this->stride :
564 hstride == 0 ? 0 :
565 1 << (hstride - 1));
566 return MAX2(width * stride, 1) * type_sz(type);
567 }
568
569 /**
570 * Create a MOV to read the timestamp register.
571 */
572 fs_reg
get_timestamp(const fs_builder & bld)573 fs_visitor::get_timestamp(const fs_builder &bld)
574 {
575 assert(devinfo->ver >= 7);
576
577 fs_reg ts = fs_reg(retype(brw_vec4_reg(BRW_ARCHITECTURE_REGISTER_FILE,
578 BRW_ARF_TIMESTAMP,
579 0),
580 BRW_REGISTER_TYPE_UD));
581
582 fs_reg dst = fs_reg(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
583
584 /* We want to read the 3 fields we care about even if it's not enabled in
585 * the dispatch.
586 */
587 bld.group(4, 0).exec_all().MOV(dst, ts);
588
589 return dst;
590 }
591
592 void
emit_shader_time_begin()593 fs_visitor::emit_shader_time_begin()
594 {
595 /* We want only the low 32 bits of the timestamp. Since it's running
596 * at the GPU clock rate of ~1.2ghz, it will roll over every ~3 seconds,
597 * which is plenty of time for our purposes. It is identical across the
598 * EUs, but since it's tracking GPU core speed it will increment at a
599 * varying rate as render P-states change.
600 */
601 shader_start_time = component(
602 get_timestamp(bld.annotate("shader time start")), 0);
603 }
604
605 void
emit_shader_time_end()606 fs_visitor::emit_shader_time_end()
607 {
608 /* Insert our code just before the final SEND with EOT. */
609 exec_node *end = this->instructions.get_tail();
610 assert(end && ((fs_inst *) end)->eot);
611 const fs_builder ibld = bld.annotate("shader time end")
612 .exec_all().at(NULL, end);
613 const fs_reg timestamp = get_timestamp(ibld);
614
615 /* We only use the low 32 bits of the timestamp - see
616 * emit_shader_time_begin()).
617 *
618 * We could also check if render P-states have changed (or anything
619 * else that might disrupt timing) by setting smear to 2 and checking if
620 * that field is != 0.
621 */
622 const fs_reg shader_end_time = component(timestamp, 0);
623
624 /* Check that there weren't any timestamp reset events (assuming these
625 * were the only two timestamp reads that happened).
626 */
627 const fs_reg reset = component(timestamp, 2);
628 set_condmod(BRW_CONDITIONAL_Z,
629 ibld.AND(ibld.null_reg_ud(), reset, brw_imm_ud(1u)));
630 ibld.IF(BRW_PREDICATE_NORMAL);
631
632 fs_reg start = shader_start_time;
633 start.negate = true;
634 const fs_reg diff = component(fs_reg(VGRF, alloc.allocate(1),
635 BRW_REGISTER_TYPE_UD),
636 0);
637 const fs_builder cbld = ibld.group(1, 0);
638 cbld.group(1, 0).ADD(diff, start, shader_end_time);
639
640 /* If there were no instructions between the two timestamp gets, the diff
641 * is 2 cycles. Remove that overhead, so I can forget about that when
642 * trying to determine the time taken for single instructions.
643 */
644 cbld.ADD(diff, diff, brw_imm_ud(-2u));
645 SHADER_TIME_ADD(cbld, 0, diff);
646 SHADER_TIME_ADD(cbld, 1, brw_imm_ud(1u));
647 ibld.emit(BRW_OPCODE_ELSE);
648 SHADER_TIME_ADD(cbld, 2, brw_imm_ud(1u));
649 ibld.emit(BRW_OPCODE_ENDIF);
650 }
651
652 void
SHADER_TIME_ADD(const fs_builder & bld,int shader_time_subindex,fs_reg value)653 fs_visitor::SHADER_TIME_ADD(const fs_builder &bld,
654 int shader_time_subindex,
655 fs_reg value)
656 {
657 int index = shader_time_index * 3 + shader_time_subindex;
658 struct brw_reg offset = brw_imm_d(index * BRW_SHADER_TIME_STRIDE);
659
660 fs_reg payload;
661 if (dispatch_width == 8)
662 payload = vgrf(glsl_type::uvec2_type);
663 else
664 payload = vgrf(glsl_type::uint_type);
665
666 bld.emit(SHADER_OPCODE_SHADER_TIME_ADD, fs_reg(), payload, offset, value);
667 }
668
669 void
vfail(const char * format,va_list va)670 fs_visitor::vfail(const char *format, va_list va)
671 {
672 char *msg;
673
674 if (failed)
675 return;
676
677 failed = true;
678
679 msg = ralloc_vasprintf(mem_ctx, format, va);
680 msg = ralloc_asprintf(mem_ctx, "SIMD%d %s compile failed: %s\n",
681 dispatch_width, stage_abbrev, msg);
682
683 this->fail_msg = msg;
684
685 if (unlikely(debug_enabled)) {
686 fprintf(stderr, "%s", msg);
687 }
688 }
689
690 void
fail(const char * format,...)691 fs_visitor::fail(const char *format, ...)
692 {
693 va_list va;
694
695 va_start(va, format);
696 vfail(format, va);
697 va_end(va);
698 }
699
700 /**
701 * Mark this program as impossible to compile with dispatch width greater
702 * than n.
703 *
704 * During the SIMD8 compile (which happens first), we can detect and flag
705 * things that are unsupported in SIMD16+ mode, so the compiler can skip the
706 * SIMD16+ compile altogether.
707 *
708 * During a compile of dispatch width greater than n (if one happens anyway),
709 * this just calls fail().
710 */
711 void
limit_dispatch_width(unsigned n,const char * msg)712 fs_visitor::limit_dispatch_width(unsigned n, const char *msg)
713 {
714 if (dispatch_width > n) {
715 fail("%s", msg);
716 } else {
717 max_dispatch_width = MIN2(max_dispatch_width, n);
718 brw_shader_perf_log(compiler, log_data,
719 "Shader dispatch width limited to SIMD%d: %s\n",
720 n, msg);
721 }
722 }
723
724 /**
725 * Returns true if the instruction has a flag that means it won't
726 * update an entire destination register.
727 *
728 * For example, dead code elimination and live variable analysis want to know
729 * when a write to a variable screens off any preceding values that were in
730 * it.
731 */
732 bool
is_partial_write() const733 fs_inst::is_partial_write() const
734 {
735 return ((this->predicate && this->opcode != BRW_OPCODE_SEL) ||
736 (this->exec_size * type_sz(this->dst.type)) < 32 ||
737 !this->dst.is_contiguous() ||
738 this->dst.offset % REG_SIZE != 0);
739 }
740
741 unsigned
components_read(unsigned i) const742 fs_inst::components_read(unsigned i) const
743 {
744 /* Return zero if the source is not present. */
745 if (src[i].file == BAD_FILE)
746 return 0;
747
748 switch (opcode) {
749 case FS_OPCODE_LINTERP:
750 if (i == 0)
751 return 2;
752 else
753 return 1;
754
755 case FS_OPCODE_PIXEL_X:
756 case FS_OPCODE_PIXEL_Y:
757 assert(i < 2);
758 if (i == 0)
759 return 2;
760 else
761 return 1;
762
763 case FS_OPCODE_FB_WRITE_LOGICAL:
764 assert(src[FB_WRITE_LOGICAL_SRC_COMPONENTS].file == IMM);
765 /* First/second FB write color. */
766 if (i < 2)
767 return src[FB_WRITE_LOGICAL_SRC_COMPONENTS].ud;
768 else
769 return 1;
770
771 case SHADER_OPCODE_TEX_LOGICAL:
772 case SHADER_OPCODE_TXD_LOGICAL:
773 case SHADER_OPCODE_TXF_LOGICAL:
774 case SHADER_OPCODE_TXL_LOGICAL:
775 case SHADER_OPCODE_TXS_LOGICAL:
776 case SHADER_OPCODE_IMAGE_SIZE_LOGICAL:
777 case FS_OPCODE_TXB_LOGICAL:
778 case SHADER_OPCODE_TXF_CMS_LOGICAL:
779 case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
780 case SHADER_OPCODE_TXF_UMS_LOGICAL:
781 case SHADER_OPCODE_TXF_MCS_LOGICAL:
782 case SHADER_OPCODE_LOD_LOGICAL:
783 case SHADER_OPCODE_TG4_LOGICAL:
784 case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
785 case SHADER_OPCODE_SAMPLEINFO_LOGICAL:
786 assert(src[TEX_LOGICAL_SRC_COORD_COMPONENTS].file == IMM &&
787 src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].file == IMM);
788 /* Texture coordinates. */
789 if (i == TEX_LOGICAL_SRC_COORDINATE)
790 return src[TEX_LOGICAL_SRC_COORD_COMPONENTS].ud;
791 /* Texture derivatives. */
792 else if ((i == TEX_LOGICAL_SRC_LOD || i == TEX_LOGICAL_SRC_LOD2) &&
793 opcode == SHADER_OPCODE_TXD_LOGICAL)
794 return src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].ud;
795 /* Texture offset. */
796 else if (i == TEX_LOGICAL_SRC_TG4_OFFSET)
797 return 2;
798 /* MCS */
799 else if (i == TEX_LOGICAL_SRC_MCS && opcode == SHADER_OPCODE_TXF_CMS_W_LOGICAL)
800 return 2;
801 else
802 return 1;
803
804 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
805 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
806 assert(src[SURFACE_LOGICAL_SRC_IMM_DIMS].file == IMM);
807 /* Surface coordinates. */
808 if (i == SURFACE_LOGICAL_SRC_ADDRESS)
809 return src[SURFACE_LOGICAL_SRC_IMM_DIMS].ud;
810 /* Surface operation source (ignored for reads). */
811 else if (i == SURFACE_LOGICAL_SRC_DATA)
812 return 0;
813 else
814 return 1;
815
816 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
817 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
818 assert(src[SURFACE_LOGICAL_SRC_IMM_DIMS].file == IMM &&
819 src[SURFACE_LOGICAL_SRC_IMM_ARG].file == IMM);
820 /* Surface coordinates. */
821 if (i == SURFACE_LOGICAL_SRC_ADDRESS)
822 return src[SURFACE_LOGICAL_SRC_IMM_DIMS].ud;
823 /* Surface operation source. */
824 else if (i == SURFACE_LOGICAL_SRC_DATA)
825 return src[SURFACE_LOGICAL_SRC_IMM_ARG].ud;
826 else
827 return 1;
828
829 case SHADER_OPCODE_A64_UNTYPED_READ_LOGICAL:
830 case SHADER_OPCODE_A64_OWORD_BLOCK_READ_LOGICAL:
831 case SHADER_OPCODE_A64_UNALIGNED_OWORD_BLOCK_READ_LOGICAL:
832 assert(src[2].file == IMM);
833 return 1;
834
835 case SHADER_OPCODE_A64_OWORD_BLOCK_WRITE_LOGICAL:
836 assert(src[2].file == IMM);
837 if (i == 1) { /* data to write */
838 const unsigned comps = src[2].ud / exec_size;
839 assert(comps > 0);
840 return comps;
841 } else {
842 return 1;
843 }
844
845 case SHADER_OPCODE_OWORD_BLOCK_READ_LOGICAL:
846 case SHADER_OPCODE_UNALIGNED_OWORD_BLOCK_READ_LOGICAL:
847 assert(src[SURFACE_LOGICAL_SRC_IMM_ARG].file == IMM);
848 return 1;
849
850 case SHADER_OPCODE_OWORD_BLOCK_WRITE_LOGICAL:
851 assert(src[SURFACE_LOGICAL_SRC_IMM_ARG].file == IMM);
852 if (i == SURFACE_LOGICAL_SRC_DATA) {
853 const unsigned comps = src[SURFACE_LOGICAL_SRC_IMM_ARG].ud / exec_size;
854 assert(comps > 0);
855 return comps;
856 } else {
857 return 1;
858 }
859
860 case SHADER_OPCODE_A64_UNTYPED_WRITE_LOGICAL:
861 assert(src[2].file == IMM);
862 return i == 1 ? src[2].ud : 1;
863
864 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_LOGICAL:
865 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_INT16_LOGICAL:
866 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_INT64_LOGICAL:
867 assert(src[2].file == IMM);
868 if (i == 1) {
869 /* Data source */
870 const unsigned op = src[2].ud;
871 switch (op) {
872 case BRW_AOP_INC:
873 case BRW_AOP_DEC:
874 case BRW_AOP_PREDEC:
875 return 0;
876 case BRW_AOP_CMPWR:
877 return 2;
878 default:
879 return 1;
880 }
881 } else {
882 return 1;
883 }
884
885 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_FLOAT16_LOGICAL:
886 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_FLOAT32_LOGICAL:
887 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_FLOAT64_LOGICAL:
888 assert(src[2].file == IMM);
889 if (i == 1) {
890 /* Data source */
891 const unsigned op = src[2].ud;
892 return op == BRW_AOP_FCMPWR ? 2 : 1;
893 } else {
894 return 1;
895 }
896
897 case SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL:
898 case SHADER_OPCODE_DWORD_SCATTERED_READ_LOGICAL:
899 /* Scattered logical opcodes use the following params:
900 * src[0] Surface coordinates
901 * src[1] Surface operation source (ignored for reads)
902 * src[2] Surface
903 * src[3] IMM with always 1 dimension.
904 * src[4] IMM with arg bitsize for scattered read/write 8, 16, 32
905 */
906 assert(src[SURFACE_LOGICAL_SRC_IMM_DIMS].file == IMM &&
907 src[SURFACE_LOGICAL_SRC_IMM_ARG].file == IMM);
908 return i == SURFACE_LOGICAL_SRC_DATA ? 0 : 1;
909
910 case SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL:
911 case SHADER_OPCODE_DWORD_SCATTERED_WRITE_LOGICAL:
912 assert(src[SURFACE_LOGICAL_SRC_IMM_DIMS].file == IMM &&
913 src[SURFACE_LOGICAL_SRC_IMM_ARG].file == IMM);
914 return 1;
915
916 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
917 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL: {
918 assert(src[SURFACE_LOGICAL_SRC_IMM_DIMS].file == IMM &&
919 src[SURFACE_LOGICAL_SRC_IMM_ARG].file == IMM);
920 const unsigned op = src[SURFACE_LOGICAL_SRC_IMM_ARG].ud;
921 /* Surface coordinates. */
922 if (i == SURFACE_LOGICAL_SRC_ADDRESS)
923 return src[SURFACE_LOGICAL_SRC_IMM_DIMS].ud;
924 /* Surface operation source. */
925 else if (i == SURFACE_LOGICAL_SRC_DATA && op == BRW_AOP_CMPWR)
926 return 2;
927 else if (i == SURFACE_LOGICAL_SRC_DATA &&
928 (op == BRW_AOP_INC || op == BRW_AOP_DEC || op == BRW_AOP_PREDEC))
929 return 0;
930 else
931 return 1;
932 }
933 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
934 return (i == 0 ? 2 : 1);
935
936 case SHADER_OPCODE_UNTYPED_ATOMIC_FLOAT_LOGICAL: {
937 assert(src[SURFACE_LOGICAL_SRC_IMM_DIMS].file == IMM &&
938 src[SURFACE_LOGICAL_SRC_IMM_ARG].file == IMM);
939 const unsigned op = src[SURFACE_LOGICAL_SRC_IMM_ARG].ud;
940 /* Surface coordinates. */
941 if (i == SURFACE_LOGICAL_SRC_ADDRESS)
942 return src[SURFACE_LOGICAL_SRC_IMM_DIMS].ud;
943 /* Surface operation source. */
944 else if (i == SURFACE_LOGICAL_SRC_DATA && op == BRW_AOP_FCMPWR)
945 return 2;
946 else
947 return 1;
948 }
949
950 default:
951 return 1;
952 }
953 }
954
955 unsigned
size_read(int arg) const956 fs_inst::size_read(int arg) const
957 {
958 switch (opcode) {
959 case SHADER_OPCODE_SEND:
960 if (arg == 2) {
961 return mlen * REG_SIZE;
962 } else if (arg == 3) {
963 return ex_mlen * REG_SIZE;
964 }
965 break;
966
967 case FS_OPCODE_FB_WRITE:
968 case FS_OPCODE_REP_FB_WRITE:
969 if (arg == 0) {
970 if (base_mrf >= 0)
971 return src[0].file == BAD_FILE ? 0 : 2 * REG_SIZE;
972 else
973 return mlen * REG_SIZE;
974 }
975 break;
976
977 case FS_OPCODE_FB_READ:
978 case SHADER_OPCODE_URB_WRITE_SIMD8:
979 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
980 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
981 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
982 case SHADER_OPCODE_URB_READ_SIMD8:
983 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
984 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
985 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
986 if (arg == 0)
987 return mlen * REG_SIZE;
988 break;
989
990 case FS_OPCODE_SET_SAMPLE_ID:
991 if (arg == 1)
992 return 1;
993 break;
994
995 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GFX7:
996 /* The payload is actually stored in src1 */
997 if (arg == 1)
998 return mlen * REG_SIZE;
999 break;
1000
1001 case FS_OPCODE_LINTERP:
1002 if (arg == 1)
1003 return 16;
1004 break;
1005
1006 case SHADER_OPCODE_LOAD_PAYLOAD:
1007 if (arg < this->header_size)
1008 return REG_SIZE;
1009 break;
1010
1011 case CS_OPCODE_CS_TERMINATE:
1012 case SHADER_OPCODE_BARRIER:
1013 return REG_SIZE;
1014
1015 case SHADER_OPCODE_MOV_INDIRECT:
1016 if (arg == 0) {
1017 assert(src[2].file == IMM);
1018 return src[2].ud;
1019 }
1020 break;
1021
1022 default:
1023 if (is_tex() && arg == 0 && src[0].file == VGRF)
1024 return mlen * REG_SIZE;
1025 break;
1026 }
1027
1028 switch (src[arg].file) {
1029 case UNIFORM:
1030 case IMM:
1031 return components_read(arg) * type_sz(src[arg].type);
1032 case BAD_FILE:
1033 case ARF:
1034 case FIXED_GRF:
1035 case VGRF:
1036 case ATTR:
1037 return components_read(arg) * src[arg].component_size(exec_size);
1038 case MRF:
1039 unreachable("MRF registers are not allowed as sources");
1040 }
1041 return 0;
1042 }
1043
1044 namespace {
1045 unsigned
predicate_width(brw_predicate predicate)1046 predicate_width(brw_predicate predicate)
1047 {
1048 switch (predicate) {
1049 case BRW_PREDICATE_NONE: return 1;
1050 case BRW_PREDICATE_NORMAL: return 1;
1051 case BRW_PREDICATE_ALIGN1_ANY2H: return 2;
1052 case BRW_PREDICATE_ALIGN1_ALL2H: return 2;
1053 case BRW_PREDICATE_ALIGN1_ANY4H: return 4;
1054 case BRW_PREDICATE_ALIGN1_ALL4H: return 4;
1055 case BRW_PREDICATE_ALIGN1_ANY8H: return 8;
1056 case BRW_PREDICATE_ALIGN1_ALL8H: return 8;
1057 case BRW_PREDICATE_ALIGN1_ANY16H: return 16;
1058 case BRW_PREDICATE_ALIGN1_ALL16H: return 16;
1059 case BRW_PREDICATE_ALIGN1_ANY32H: return 32;
1060 case BRW_PREDICATE_ALIGN1_ALL32H: return 32;
1061 default: unreachable("Unsupported predicate");
1062 }
1063 }
1064
1065 /* Return the subset of flag registers that an instruction could
1066 * potentially read or write based on the execution controls and flag
1067 * subregister number of the instruction.
1068 */
1069 unsigned
flag_mask(const fs_inst * inst,unsigned width)1070 flag_mask(const fs_inst *inst, unsigned width)
1071 {
1072 assert(util_is_power_of_two_nonzero(width));
1073 const unsigned start = (inst->flag_subreg * 16 + inst->group) &
1074 ~(width - 1);
1075 const unsigned end = start + ALIGN(inst->exec_size, width);
1076 return ((1 << DIV_ROUND_UP(end, 8)) - 1) & ~((1 << (start / 8)) - 1);
1077 }
1078
1079 unsigned
bit_mask(unsigned n)1080 bit_mask(unsigned n)
1081 {
1082 return (n >= CHAR_BIT * sizeof(bit_mask(n)) ? ~0u : (1u << n) - 1);
1083 }
1084
1085 unsigned
flag_mask(const fs_reg & r,unsigned sz)1086 flag_mask(const fs_reg &r, unsigned sz)
1087 {
1088 if (r.file == ARF) {
1089 const unsigned start = (r.nr - BRW_ARF_FLAG) * 4 + r.subnr;
1090 const unsigned end = start + sz;
1091 return bit_mask(end) & ~bit_mask(start);
1092 } else {
1093 return 0;
1094 }
1095 }
1096 }
1097
1098 unsigned
flags_read(const intel_device_info * devinfo) const1099 fs_inst::flags_read(const intel_device_info *devinfo) const
1100 {
1101 if (predicate == BRW_PREDICATE_ALIGN1_ANYV ||
1102 predicate == BRW_PREDICATE_ALIGN1_ALLV) {
1103 /* The vertical predication modes combine corresponding bits from
1104 * f0.0 and f1.0 on Gfx7+, and f0.0 and f0.1 on older hardware.
1105 */
1106 const unsigned shift = devinfo->ver >= 7 ? 4 : 2;
1107 return flag_mask(this, 1) << shift | flag_mask(this, 1);
1108 } else if (predicate) {
1109 return flag_mask(this, predicate_width(predicate));
1110 } else {
1111 unsigned mask = 0;
1112 for (int i = 0; i < sources; i++) {
1113 mask |= flag_mask(src[i], size_read(i));
1114 }
1115 return mask;
1116 }
1117 }
1118
1119 unsigned
flags_written(const intel_device_info * devinfo) const1120 fs_inst::flags_written(const intel_device_info *devinfo) const
1121 {
1122 /* On Gfx4 and Gfx5, sel.l (for min) and sel.ge (for max) are implemented
1123 * using a separte cmpn and sel instruction. This lowering occurs in
1124 * fs_vistor::lower_minmax which is called very, very late.
1125 */
1126 if ((conditional_mod && ((opcode != BRW_OPCODE_SEL || devinfo->ver <= 5) &&
1127 opcode != BRW_OPCODE_CSEL &&
1128 opcode != BRW_OPCODE_IF &&
1129 opcode != BRW_OPCODE_WHILE)) ||
1130 opcode == FS_OPCODE_FB_WRITE) {
1131 return flag_mask(this, 1);
1132 } else if (opcode == SHADER_OPCODE_FIND_LIVE_CHANNEL ||
1133 opcode == FS_OPCODE_LOAD_LIVE_CHANNELS) {
1134 return flag_mask(this, 32);
1135 } else {
1136 return flag_mask(dst, size_written);
1137 }
1138 }
1139
1140 /**
1141 * Returns how many MRFs an FS opcode will write over.
1142 *
1143 * Note that this is not the 0 or 1 implied writes in an actual gen
1144 * instruction -- the FS opcodes often generate MOVs in addition.
1145 */
1146 unsigned
implied_mrf_writes() const1147 fs_inst::implied_mrf_writes() const
1148 {
1149 if (mlen == 0)
1150 return 0;
1151
1152 if (base_mrf == -1)
1153 return 0;
1154
1155 switch (opcode) {
1156 case SHADER_OPCODE_RCP:
1157 case SHADER_OPCODE_RSQ:
1158 case SHADER_OPCODE_SQRT:
1159 case SHADER_OPCODE_EXP2:
1160 case SHADER_OPCODE_LOG2:
1161 case SHADER_OPCODE_SIN:
1162 case SHADER_OPCODE_COS:
1163 return 1 * exec_size / 8;
1164 case SHADER_OPCODE_POW:
1165 case SHADER_OPCODE_INT_QUOTIENT:
1166 case SHADER_OPCODE_INT_REMAINDER:
1167 return 2 * exec_size / 8;
1168 case SHADER_OPCODE_TEX:
1169 case FS_OPCODE_TXB:
1170 case SHADER_OPCODE_TXD:
1171 case SHADER_OPCODE_TXF:
1172 case SHADER_OPCODE_TXF_CMS:
1173 case SHADER_OPCODE_TXF_MCS:
1174 case SHADER_OPCODE_TG4:
1175 case SHADER_OPCODE_TG4_OFFSET:
1176 case SHADER_OPCODE_TXL:
1177 case SHADER_OPCODE_TXS:
1178 case SHADER_OPCODE_LOD:
1179 case SHADER_OPCODE_SAMPLEINFO:
1180 return 1;
1181 case FS_OPCODE_FB_WRITE:
1182 case FS_OPCODE_REP_FB_WRITE:
1183 return src[0].file == BAD_FILE ? 0 : 2;
1184 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
1185 case SHADER_OPCODE_GFX4_SCRATCH_READ:
1186 return 1;
1187 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GFX4:
1188 return mlen;
1189 case SHADER_OPCODE_GFX4_SCRATCH_WRITE:
1190 return mlen;
1191 default:
1192 unreachable("not reached");
1193 }
1194 }
1195
1196 fs_reg
vgrf(const glsl_type * const type)1197 fs_visitor::vgrf(const glsl_type *const type)
1198 {
1199 int reg_width = dispatch_width / 8;
1200 return fs_reg(VGRF,
1201 alloc.allocate(glsl_count_dword_slots(type, false) * reg_width),
1202 brw_type_for_base_type(type));
1203 }
1204
fs_reg(enum brw_reg_file file,int nr)1205 fs_reg::fs_reg(enum brw_reg_file file, int nr)
1206 {
1207 init();
1208 this->file = file;
1209 this->nr = nr;
1210 this->type = BRW_REGISTER_TYPE_F;
1211 this->stride = (file == UNIFORM ? 0 : 1);
1212 }
1213
fs_reg(enum brw_reg_file file,int nr,enum brw_reg_type type)1214 fs_reg::fs_reg(enum brw_reg_file file, int nr, enum brw_reg_type type)
1215 {
1216 init();
1217 this->file = file;
1218 this->nr = nr;
1219 this->type = type;
1220 this->stride = (file == UNIFORM ? 0 : 1);
1221 }
1222
1223 /* For SIMD16, we need to follow from the uniform setup of SIMD8 dispatch.
1224 * This brings in those uniform definitions
1225 */
1226 void
import_uniforms(fs_visitor * v)1227 fs_visitor::import_uniforms(fs_visitor *v)
1228 {
1229 this->push_constant_loc = v->push_constant_loc;
1230 this->pull_constant_loc = v->pull_constant_loc;
1231 this->uniforms = v->uniforms;
1232 this->subgroup_id = v->subgroup_id;
1233 for (unsigned i = 0; i < ARRAY_SIZE(this->group_size); i++)
1234 this->group_size[i] = v->group_size[i];
1235 }
1236
1237 void
emit_fragcoord_interpolation(fs_reg wpos)1238 fs_visitor::emit_fragcoord_interpolation(fs_reg wpos)
1239 {
1240 assert(stage == MESA_SHADER_FRAGMENT);
1241
1242 /* gl_FragCoord.x */
1243 bld.MOV(wpos, this->pixel_x);
1244 wpos = offset(wpos, bld, 1);
1245
1246 /* gl_FragCoord.y */
1247 bld.MOV(wpos, this->pixel_y);
1248 wpos = offset(wpos, bld, 1);
1249
1250 /* gl_FragCoord.z */
1251 if (devinfo->ver >= 6) {
1252 bld.MOV(wpos, this->pixel_z);
1253 } else {
1254 bld.emit(FS_OPCODE_LINTERP, wpos,
1255 this->delta_xy[BRW_BARYCENTRIC_PERSPECTIVE_PIXEL],
1256 component(interp_reg(VARYING_SLOT_POS, 2), 0));
1257 }
1258 wpos = offset(wpos, bld, 1);
1259
1260 /* gl_FragCoord.w: Already set up in emit_interpolation */
1261 bld.MOV(wpos, this->wpos_w);
1262 }
1263
1264 enum brw_barycentric_mode
brw_barycentric_mode(enum glsl_interp_mode mode,nir_intrinsic_op op)1265 brw_barycentric_mode(enum glsl_interp_mode mode, nir_intrinsic_op op)
1266 {
1267 /* Barycentric modes don't make sense for flat inputs. */
1268 assert(mode != INTERP_MODE_FLAT);
1269
1270 unsigned bary;
1271 switch (op) {
1272 case nir_intrinsic_load_barycentric_pixel:
1273 case nir_intrinsic_load_barycentric_at_offset:
1274 bary = BRW_BARYCENTRIC_PERSPECTIVE_PIXEL;
1275 break;
1276 case nir_intrinsic_load_barycentric_centroid:
1277 bary = BRW_BARYCENTRIC_PERSPECTIVE_CENTROID;
1278 break;
1279 case nir_intrinsic_load_barycentric_sample:
1280 case nir_intrinsic_load_barycentric_at_sample:
1281 bary = BRW_BARYCENTRIC_PERSPECTIVE_SAMPLE;
1282 break;
1283 default:
1284 unreachable("invalid intrinsic");
1285 }
1286
1287 if (mode == INTERP_MODE_NOPERSPECTIVE)
1288 bary += 3;
1289
1290 return (enum brw_barycentric_mode) bary;
1291 }
1292
1293 /**
1294 * Turn one of the two CENTROID barycentric modes into PIXEL mode.
1295 */
1296 static enum brw_barycentric_mode
centroid_to_pixel(enum brw_barycentric_mode bary)1297 centroid_to_pixel(enum brw_barycentric_mode bary)
1298 {
1299 assert(bary == BRW_BARYCENTRIC_PERSPECTIVE_CENTROID ||
1300 bary == BRW_BARYCENTRIC_NONPERSPECTIVE_CENTROID);
1301 return (enum brw_barycentric_mode) ((unsigned) bary - 1);
1302 }
1303
1304 fs_reg *
emit_frontfacing_interpolation()1305 fs_visitor::emit_frontfacing_interpolation()
1306 {
1307 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::bool_type));
1308
1309 if (devinfo->ver >= 12) {
1310 fs_reg g1 = fs_reg(retype(brw_vec1_grf(1, 1), BRW_REGISTER_TYPE_W));
1311
1312 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_W);
1313 bld.ASR(tmp, g1, brw_imm_d(15));
1314 bld.NOT(*reg, tmp);
1315 } else if (devinfo->ver >= 6) {
1316 /* Bit 15 of g0.0 is 0 if the polygon is front facing. We want to create
1317 * a boolean result from this (~0/true or 0/false).
1318 *
1319 * We can use the fact that bit 15 is the MSB of g0.0:W to accomplish
1320 * this task in only one instruction:
1321 * - a negation source modifier will flip the bit; and
1322 * - a W -> D type conversion will sign extend the bit into the high
1323 * word of the destination.
1324 *
1325 * An ASR 15 fills the low word of the destination.
1326 */
1327 fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
1328 g0.negate = true;
1329
1330 bld.ASR(*reg, g0, brw_imm_d(15));
1331 } else {
1332 /* Bit 31 of g1.6 is 0 if the polygon is front facing. We want to create
1333 * a boolean result from this (1/true or 0/false).
1334 *
1335 * Like in the above case, since the bit is the MSB of g1.6:UD we can use
1336 * the negation source modifier to flip it. Unfortunately the SHR
1337 * instruction only operates on UD (or D with an abs source modifier)
1338 * sources without negation.
1339 *
1340 * Instead, use ASR (which will give ~0/true or 0/false).
1341 */
1342 fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
1343 g1_6.negate = true;
1344
1345 bld.ASR(*reg, g1_6, brw_imm_d(31));
1346 }
1347
1348 return reg;
1349 }
1350
1351 void
compute_sample_position(fs_reg dst,fs_reg int_sample_pos)1352 fs_visitor::compute_sample_position(fs_reg dst, fs_reg int_sample_pos)
1353 {
1354 assert(stage == MESA_SHADER_FRAGMENT);
1355 struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(this->prog_data);
1356 assert(dst.type == BRW_REGISTER_TYPE_F);
1357
1358 if (wm_prog_data->persample_dispatch) {
1359 /* Convert int_sample_pos to floating point */
1360 bld.MOV(dst, int_sample_pos);
1361 /* Scale to the range [0, 1] */
1362 bld.MUL(dst, dst, brw_imm_f(1 / 16.0f));
1363 }
1364 else {
1365 /* From ARB_sample_shading specification:
1366 * "When rendering to a non-multisample buffer, or if multisample
1367 * rasterization is disabled, gl_SamplePosition will always be
1368 * (0.5, 0.5).
1369 */
1370 bld.MOV(dst, brw_imm_f(0.5f));
1371 }
1372 }
1373
1374 fs_reg *
emit_samplepos_setup()1375 fs_visitor::emit_samplepos_setup()
1376 {
1377 assert(devinfo->ver >= 6);
1378
1379 const fs_builder abld = bld.annotate("compute sample position");
1380 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::vec2_type));
1381 fs_reg pos = *reg;
1382 fs_reg int_sample_x = vgrf(glsl_type::int_type);
1383 fs_reg int_sample_y = vgrf(glsl_type::int_type);
1384
1385 /* WM will be run in MSDISPMODE_PERSAMPLE. So, only one of SIMD8 or SIMD16
1386 * mode will be enabled.
1387 *
1388 * From the Ivy Bridge PRM, volume 2 part 1, page 344:
1389 * R31.1:0 Position Offset X/Y for Slot[3:0]
1390 * R31.3:2 Position Offset X/Y for Slot[7:4]
1391 * .....
1392 *
1393 * The X, Y sample positions come in as bytes in thread payload. So, read
1394 * the positions using vstride=16, width=8, hstride=2.
1395 */
1396 const fs_reg sample_pos_reg =
1397 fetch_payload_reg(abld, payload.sample_pos_reg, BRW_REGISTER_TYPE_W);
1398
1399 /* Compute gl_SamplePosition.x */
1400 abld.MOV(int_sample_x, subscript(sample_pos_reg, BRW_REGISTER_TYPE_B, 0));
1401 compute_sample_position(offset(pos, abld, 0), int_sample_x);
1402
1403 /* Compute gl_SamplePosition.y */
1404 abld.MOV(int_sample_y, subscript(sample_pos_reg, BRW_REGISTER_TYPE_B, 1));
1405 compute_sample_position(offset(pos, abld, 1), int_sample_y);
1406 return reg;
1407 }
1408
1409 fs_reg *
emit_sampleid_setup()1410 fs_visitor::emit_sampleid_setup()
1411 {
1412 assert(stage == MESA_SHADER_FRAGMENT);
1413 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1414 assert(devinfo->ver >= 6);
1415
1416 const fs_builder abld = bld.annotate("compute sample id");
1417 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::uint_type));
1418
1419 if (!key->multisample_fbo) {
1420 /* As per GL_ARB_sample_shading specification:
1421 * "When rendering to a non-multisample buffer, or if multisample
1422 * rasterization is disabled, gl_SampleID will always be zero."
1423 */
1424 abld.MOV(*reg, brw_imm_d(0));
1425 } else if (devinfo->ver >= 8) {
1426 /* Sample ID comes in as 4-bit numbers in g1.0:
1427 *
1428 * 15:12 Slot 3 SampleID (only used in SIMD16)
1429 * 11:8 Slot 2 SampleID (only used in SIMD16)
1430 * 7:4 Slot 1 SampleID
1431 * 3:0 Slot 0 SampleID
1432 *
1433 * Each slot corresponds to four channels, so we want to replicate each
1434 * half-byte value to 4 channels in a row:
1435 *
1436 * dst+0: .7 .6 .5 .4 .3 .2 .1 .0
1437 * 7:4 7:4 7:4 7:4 3:0 3:0 3:0 3:0
1438 *
1439 * dst+1: .7 .6 .5 .4 .3 .2 .1 .0 (if SIMD16)
1440 * 15:12 15:12 15:12 15:12 11:8 11:8 11:8 11:8
1441 *
1442 * First, we read g1.0 with a <1,8,0>UB region, causing the first 8
1443 * channels to read the first byte (7:0), and the second group of 8
1444 * channels to read the second byte (15:8). Then, we shift right by
1445 * a vector immediate of <4, 4, 4, 4, 0, 0, 0, 0>, moving the slot 1 / 3
1446 * values into place. Finally, we AND with 0xf to keep the low nibble.
1447 *
1448 * shr(16) tmp<1>W g1.0<1,8,0>B 0x44440000:V
1449 * and(16) dst<1>D tmp<8,8,1>W 0xf:W
1450 *
1451 * TODO: These payload bits exist on Gfx7 too, but they appear to always
1452 * be zero, so this code fails to work. We should find out why.
1453 */
1454 const fs_reg tmp = abld.vgrf(BRW_REGISTER_TYPE_UW);
1455
1456 for (unsigned i = 0; i < DIV_ROUND_UP(dispatch_width, 16); i++) {
1457 const fs_builder hbld = abld.group(MIN2(16, dispatch_width), i);
1458 hbld.SHR(offset(tmp, hbld, i),
1459 stride(retype(brw_vec1_grf(1 + i, 0), BRW_REGISTER_TYPE_UB),
1460 1, 8, 0),
1461 brw_imm_v(0x44440000));
1462 }
1463
1464 abld.AND(*reg, tmp, brw_imm_w(0xf));
1465 } else {
1466 const fs_reg t1 = component(abld.vgrf(BRW_REGISTER_TYPE_UD), 0);
1467 const fs_reg t2 = abld.vgrf(BRW_REGISTER_TYPE_UW);
1468
1469 /* The PS will be run in MSDISPMODE_PERSAMPLE. For example with
1470 * 8x multisampling, subspan 0 will represent sample N (where N
1471 * is 0, 2, 4 or 6), subspan 1 will represent sample 1, 3, 5 or
1472 * 7. We can find the value of N by looking at R0.0 bits 7:6
1473 * ("Starting Sample Pair Index (SSPI)") and multiplying by two
1474 * (since samples are always delivered in pairs). That is, we
1475 * compute 2*((R0.0 & 0xc0) >> 6) == (R0.0 & 0xc0) >> 5. Then
1476 * we need to add N to the sequence (0, 0, 0, 0, 1, 1, 1, 1) in
1477 * case of SIMD8 and sequence (0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2,
1478 * 2, 3, 3, 3, 3) in case of SIMD16. We compute this sequence by
1479 * populating a temporary variable with the sequence (0, 1, 2, 3),
1480 * and then reading from it using vstride=1, width=4, hstride=0.
1481 * These computations hold good for 4x multisampling as well.
1482 *
1483 * For 2x MSAA and SIMD16, we want to use the sequence (0, 1, 0, 1):
1484 * the first four slots are sample 0 of subspan 0; the next four
1485 * are sample 1 of subspan 0; the third group is sample 0 of
1486 * subspan 1, and finally sample 1 of subspan 1.
1487 */
1488
1489 /* SKL+ has an extra bit for the Starting Sample Pair Index to
1490 * accomodate 16x MSAA.
1491 */
1492 abld.exec_all().group(1, 0)
1493 .AND(t1, fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD)),
1494 brw_imm_ud(0xc0));
1495 abld.exec_all().group(1, 0).SHR(t1, t1, brw_imm_d(5));
1496
1497 /* This works for SIMD8-SIMD16. It also works for SIMD32 but only if we
1498 * can assume 4x MSAA. Disallow it on IVB+
1499 *
1500 * FINISHME: One day, we could come up with a way to do this that
1501 * actually works on gfx7.
1502 */
1503 if (devinfo->ver >= 7)
1504 limit_dispatch_width(16, "gl_SampleId is unsupported in SIMD32 on gfx7");
1505 abld.exec_all().group(8, 0).MOV(t2, brw_imm_v(0x32103210));
1506
1507 /* This special instruction takes care of setting vstride=1,
1508 * width=4, hstride=0 of t2 during an ADD instruction.
1509 */
1510 abld.emit(FS_OPCODE_SET_SAMPLE_ID, *reg, t1, t2);
1511 }
1512
1513 return reg;
1514 }
1515
1516 fs_reg *
emit_samplemaskin_setup()1517 fs_visitor::emit_samplemaskin_setup()
1518 {
1519 assert(stage == MESA_SHADER_FRAGMENT);
1520 struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(this->prog_data);
1521 assert(devinfo->ver >= 6);
1522
1523 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::int_type));
1524
1525 /* The HW doesn't provide us with expected values. */
1526 assert(!wm_prog_data->per_coarse_pixel_dispatch);
1527
1528 fs_reg coverage_mask =
1529 fetch_payload_reg(bld, payload.sample_mask_in_reg, BRW_REGISTER_TYPE_D);
1530
1531 if (wm_prog_data->persample_dispatch) {
1532 /* gl_SampleMaskIn[] comes from two sources: the input coverage mask,
1533 * and a mask representing which sample is being processed by the
1534 * current shader invocation.
1535 *
1536 * From the OES_sample_variables specification:
1537 * "When per-sample shading is active due to the use of a fragment input
1538 * qualified by "sample" or due to the use of the gl_SampleID or
1539 * gl_SamplePosition variables, only the bit for the current sample is
1540 * set in gl_SampleMaskIn."
1541 */
1542 const fs_builder abld = bld.annotate("compute gl_SampleMaskIn");
1543
1544 if (nir_system_values[SYSTEM_VALUE_SAMPLE_ID].file == BAD_FILE)
1545 nir_system_values[SYSTEM_VALUE_SAMPLE_ID] = *emit_sampleid_setup();
1546
1547 fs_reg one = vgrf(glsl_type::int_type);
1548 fs_reg enabled_mask = vgrf(glsl_type::int_type);
1549 abld.MOV(one, brw_imm_d(1));
1550 abld.SHL(enabled_mask, one, nir_system_values[SYSTEM_VALUE_SAMPLE_ID]);
1551 abld.AND(*reg, enabled_mask, coverage_mask);
1552 } else {
1553 /* In per-pixel mode, the coverage mask is sufficient. */
1554 *reg = coverage_mask;
1555 }
1556 return reg;
1557 }
1558
1559 fs_reg *
emit_shading_rate_setup()1560 fs_visitor::emit_shading_rate_setup()
1561 {
1562 assert(devinfo->ver >= 11);
1563
1564 const fs_builder abld = bld.annotate("compute fragment shading rate");
1565
1566 fs_reg *reg = new(this->mem_ctx) fs_reg(bld.vgrf(BRW_REGISTER_TYPE_UD));
1567
1568 struct brw_wm_prog_data *wm_prog_data =
1569 brw_wm_prog_data(bld.shader->stage_prog_data);
1570
1571 /* Coarse pixel shading size fields overlap with other fields of not in
1572 * coarse pixel dispatch mode, so report 0 when that's not the case.
1573 */
1574 if (wm_prog_data->per_coarse_pixel_dispatch) {
1575 /* The shading rates provided in the shader are the actual 2D shading
1576 * rate while the SPIR-V built-in is the enum value that has the shading
1577 * rate encoded as a bitfield. Fortunately, the bitfield value is just
1578 * the shading rate divided by two and shifted.
1579 */
1580
1581 /* r1.0 - 0:7 ActualCoarsePixelShadingSize.X */
1582 fs_reg actual_x = fs_reg(retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UB));
1583 /* r1.0 - 15:8 ActualCoarsePixelShadingSize.Y */
1584 fs_reg actual_y = byte_offset(actual_x, 1);
1585
1586 fs_reg int_rate_x = bld.vgrf(BRW_REGISTER_TYPE_UD);
1587 fs_reg int_rate_y = bld.vgrf(BRW_REGISTER_TYPE_UD);
1588
1589 abld.SHR(int_rate_y, actual_y, brw_imm_ud(1));
1590 abld.SHR(int_rate_x, actual_x, brw_imm_ud(1));
1591 abld.SHL(int_rate_x, int_rate_x, brw_imm_ud(2));
1592 abld.OR(*reg, int_rate_x, int_rate_y);
1593 } else {
1594 abld.MOV(*reg, brw_imm_ud(0));
1595 }
1596
1597 return reg;
1598 }
1599
1600 fs_reg
resolve_source_modifiers(const fs_reg & src)1601 fs_visitor::resolve_source_modifiers(const fs_reg &src)
1602 {
1603 if (!src.abs && !src.negate)
1604 return src;
1605
1606 fs_reg temp = bld.vgrf(src.type);
1607 bld.MOV(temp, src);
1608
1609 return temp;
1610 }
1611
1612 void
emit_gs_thread_end()1613 fs_visitor::emit_gs_thread_end()
1614 {
1615 assert(stage == MESA_SHADER_GEOMETRY);
1616
1617 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
1618
1619 if (gs_compile->control_data_header_size_bits > 0) {
1620 emit_gs_control_data_bits(this->final_gs_vertex_count);
1621 }
1622
1623 const fs_builder abld = bld.annotate("thread end");
1624 fs_inst *inst;
1625
1626 if (gs_prog_data->static_vertex_count != -1) {
1627 foreach_in_list_reverse(fs_inst, prev, &this->instructions) {
1628 if (prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8 ||
1629 prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED ||
1630 prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT ||
1631 prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT) {
1632 prev->eot = true;
1633
1634 /* Delete now dead instructions. */
1635 foreach_in_list_reverse_safe(exec_node, dead, &this->instructions) {
1636 if (dead == prev)
1637 break;
1638 dead->remove();
1639 }
1640 return;
1641 } else if (prev->is_control_flow() || prev->has_side_effects()) {
1642 break;
1643 }
1644 }
1645 fs_reg hdr = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1646 abld.MOV(hdr, fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD)));
1647 inst = abld.emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, hdr);
1648 inst->mlen = 1;
1649 } else {
1650 fs_reg payload = abld.vgrf(BRW_REGISTER_TYPE_UD, 2);
1651 fs_reg *sources = ralloc_array(mem_ctx, fs_reg, 2);
1652 sources[0] = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
1653 sources[1] = this->final_gs_vertex_count;
1654 abld.LOAD_PAYLOAD(payload, sources, 2, 2);
1655 inst = abld.emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, payload);
1656 inst->mlen = 2;
1657 }
1658 inst->eot = true;
1659 inst->offset = 0;
1660 }
1661
1662 void
assign_curb_setup()1663 fs_visitor::assign_curb_setup()
1664 {
1665 unsigned uniform_push_length = DIV_ROUND_UP(stage_prog_data->nr_params, 8);
1666
1667 unsigned ubo_push_length = 0;
1668 unsigned ubo_push_start[4];
1669 for (int i = 0; i < 4; i++) {
1670 ubo_push_start[i] = 8 * (ubo_push_length + uniform_push_length);
1671 ubo_push_length += stage_prog_data->ubo_ranges[i].length;
1672 }
1673
1674 prog_data->curb_read_length = uniform_push_length + ubo_push_length;
1675
1676 uint64_t used = 0;
1677
1678 if (stage == MESA_SHADER_COMPUTE &&
1679 brw_cs_prog_data(prog_data)->uses_inline_data) {
1680 /* With COMPUTE_WALKER, we can push up to one register worth of data via
1681 * the inline data parameter in the COMPUTE_WALKER command itself.
1682 *
1683 * TODO: Support inline data and push at the same time.
1684 */
1685 assert(devinfo->verx10 >= 125);
1686 assert(uniform_push_length <= 1);
1687 } else if (stage == MESA_SHADER_COMPUTE && devinfo->verx10 >= 125) {
1688 fs_builder ubld = bld.exec_all().group(8, 0).at(
1689 cfg->first_block(), cfg->first_block()->start());
1690
1691 /* The base address for our push data is passed in as R0.0[31:6]. We
1692 * have to mask off the bottom 6 bits.
1693 */
1694 fs_reg base_addr = ubld.vgrf(BRW_REGISTER_TYPE_UD);
1695 ubld.group(1, 0).AND(base_addr,
1696 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD),
1697 brw_imm_ud(INTEL_MASK(31, 6)));
1698
1699 fs_reg header0 = ubld.vgrf(BRW_REGISTER_TYPE_UD);
1700 ubld.MOV(header0, brw_imm_ud(0));
1701 ubld.group(1, 0).SHR(component(header0, 2), base_addr, brw_imm_ud(4));
1702
1703 /* On Gfx12-HP we load constants at the start of the program using A32
1704 * stateless messages.
1705 */
1706 for (unsigned i = 0; i < uniform_push_length;) {
1707 /* Limit ourselves to HW limit of 8 Owords (8 * 16bytes = 128 bytes
1708 * or 4 registers).
1709 */
1710 unsigned num_regs = MIN2(uniform_push_length - i, 4);
1711 assert(num_regs > 0);
1712 num_regs = 1 << util_logbase2(num_regs);
1713
1714 fs_reg header;
1715 if (i == 0) {
1716 header = header0;
1717 } else {
1718 header = ubld.vgrf(BRW_REGISTER_TYPE_UD);
1719 ubld.MOV(header, brw_imm_ud(0));
1720 ubld.group(1, 0).ADD(component(header, 2),
1721 component(header0, 2),
1722 brw_imm_ud(i * 2));
1723 }
1724
1725 fs_reg srcs[4] = {
1726 brw_imm_ud(0), /* desc */
1727 brw_imm_ud(0), /* ex_desc */
1728 header, /* payload */
1729 fs_reg(), /* payload2 */
1730 };
1731
1732 fs_reg dest = retype(brw_vec8_grf(payload.num_regs + i, 0),
1733 BRW_REGISTER_TYPE_UD);
1734
1735 /* This instruction has to be run SIMD16 if we're filling more than a
1736 * single register.
1737 */
1738 unsigned send_width = MIN2(16, num_regs * 8);
1739
1740 fs_inst *send = ubld.group(send_width, 0).emit(SHADER_OPCODE_SEND,
1741 dest, srcs, 4);
1742 send->sfid = GFX7_SFID_DATAPORT_DATA_CACHE;
1743 send->desc = brw_dp_desc(devinfo, GFX8_BTI_STATELESS_NON_COHERENT,
1744 GFX7_DATAPORT_DC_OWORD_BLOCK_READ,
1745 BRW_DATAPORT_OWORD_BLOCK_OWORDS(num_regs * 2));
1746 send->header_size = 1;
1747 send->mlen = 1;
1748 send->size_written = num_regs * REG_SIZE;
1749 send->send_is_volatile = true;
1750
1751 i += num_regs;
1752 }
1753
1754 invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
1755 }
1756
1757 /* Map the offsets in the UNIFORM file to fixed HW regs. */
1758 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1759 for (unsigned int i = 0; i < inst->sources; i++) {
1760 if (inst->src[i].file == UNIFORM) {
1761 int uniform_nr = inst->src[i].nr + inst->src[i].offset / 4;
1762 int constant_nr;
1763 if (inst->src[i].nr >= UBO_START) {
1764 /* constant_nr is in 32-bit units, the rest are in bytes */
1765 constant_nr = ubo_push_start[inst->src[i].nr - UBO_START] +
1766 inst->src[i].offset / 4;
1767 } else if (uniform_nr >= 0 && uniform_nr < (int) uniforms) {
1768 constant_nr = push_constant_loc[uniform_nr];
1769 } else {
1770 /* Section 5.11 of the OpenGL 4.1 spec says:
1771 * "Out-of-bounds reads return undefined values, which include
1772 * values from other variables of the active program or zero."
1773 * Just return the first push constant.
1774 */
1775 constant_nr = 0;
1776 }
1777
1778 assert(constant_nr / 8 < 64);
1779 used |= BITFIELD64_BIT(constant_nr / 8);
1780
1781 struct brw_reg brw_reg = brw_vec1_grf(payload.num_regs +
1782 constant_nr / 8,
1783 constant_nr % 8);
1784 brw_reg.abs = inst->src[i].abs;
1785 brw_reg.negate = inst->src[i].negate;
1786
1787 assert(inst->src[i].stride == 0);
1788 inst->src[i] = byte_offset(
1789 retype(brw_reg, inst->src[i].type),
1790 inst->src[i].offset % 4);
1791 }
1792 }
1793 }
1794
1795 uint64_t want_zero = used & stage_prog_data->zero_push_reg;
1796 if (want_zero) {
1797 assert(!compiler->compact_params);
1798 fs_builder ubld = bld.exec_all().group(8, 0).at(
1799 cfg->first_block(), cfg->first_block()->start());
1800
1801 /* push_reg_mask_param is in 32-bit units */
1802 unsigned mask_param = stage_prog_data->push_reg_mask_param;
1803 struct brw_reg mask = brw_vec1_grf(payload.num_regs + mask_param / 8,
1804 mask_param % 8);
1805
1806 fs_reg b32;
1807 for (unsigned i = 0; i < 64; i++) {
1808 if (i % 16 == 0 && (want_zero & BITFIELD64_RANGE(i, 16))) {
1809 fs_reg shifted = ubld.vgrf(BRW_REGISTER_TYPE_W, 2);
1810 ubld.SHL(horiz_offset(shifted, 8),
1811 byte_offset(retype(mask, BRW_REGISTER_TYPE_W), i / 8),
1812 brw_imm_v(0x01234567));
1813 ubld.SHL(shifted, horiz_offset(shifted, 8), brw_imm_w(8));
1814
1815 fs_builder ubld16 = ubld.group(16, 0);
1816 b32 = ubld16.vgrf(BRW_REGISTER_TYPE_D);
1817 ubld16.group(16, 0).ASR(b32, shifted, brw_imm_w(15));
1818 }
1819
1820 if (want_zero & BITFIELD64_BIT(i)) {
1821 assert(i < prog_data->curb_read_length);
1822 struct brw_reg push_reg =
1823 retype(brw_vec8_grf(payload.num_regs + i, 0),
1824 BRW_REGISTER_TYPE_D);
1825
1826 ubld.AND(push_reg, push_reg, component(b32, i % 16));
1827 }
1828 }
1829
1830 invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
1831 }
1832
1833 /* This may be updated in assign_urb_setup or assign_vs_urb_setup. */
1834 this->first_non_payload_grf = payload.num_regs + prog_data->curb_read_length;
1835 }
1836
1837 /*
1838 * Build up an array of indices into the urb_setup array that
1839 * references the active entries of the urb_setup array.
1840 * Used to accelerate walking the active entries of the urb_setup array
1841 * on each upload.
1842 */
1843 void
brw_compute_urb_setup_index(struct brw_wm_prog_data * wm_prog_data)1844 brw_compute_urb_setup_index(struct brw_wm_prog_data *wm_prog_data)
1845 {
1846 /* Make sure uint8_t is sufficient */
1847 STATIC_ASSERT(VARYING_SLOT_MAX <= 0xff);
1848 uint8_t index = 0;
1849 for (uint8_t attr = 0; attr < VARYING_SLOT_MAX; attr++) {
1850 if (wm_prog_data->urb_setup[attr] >= 0) {
1851 wm_prog_data->urb_setup_attribs[index++] = attr;
1852 }
1853 }
1854 wm_prog_data->urb_setup_attribs_count = index;
1855 }
1856
1857 static void
calculate_urb_setup(const struct intel_device_info * devinfo,const struct brw_wm_prog_key * key,struct brw_wm_prog_data * prog_data,const nir_shader * nir)1858 calculate_urb_setup(const struct intel_device_info *devinfo,
1859 const struct brw_wm_prog_key *key,
1860 struct brw_wm_prog_data *prog_data,
1861 const nir_shader *nir)
1862 {
1863 memset(prog_data->urb_setup, -1,
1864 sizeof(prog_data->urb_setup[0]) * VARYING_SLOT_MAX);
1865
1866 int urb_next = 0;
1867 /* Figure out where each of the incoming setup attributes lands. */
1868 if (devinfo->ver >= 6) {
1869 if (util_bitcount64(nir->info.inputs_read &
1870 BRW_FS_VARYING_INPUT_MASK) <= 16) {
1871 /* The SF/SBE pipeline stage can do arbitrary rearrangement of the
1872 * first 16 varying inputs, so we can put them wherever we want.
1873 * Just put them in order.
1874 *
1875 * This is useful because it means that (a) inputs not used by the
1876 * fragment shader won't take up valuable register space, and (b) we
1877 * won't have to recompile the fragment shader if it gets paired with
1878 * a different vertex (or geometry) shader.
1879 */
1880 for (unsigned int i = 0; i < VARYING_SLOT_MAX; i++) {
1881 if (nir->info.inputs_read & BRW_FS_VARYING_INPUT_MASK &
1882 BITFIELD64_BIT(i)) {
1883 prog_data->urb_setup[i] = urb_next++;
1884 }
1885 }
1886 } else {
1887 /* We have enough input varyings that the SF/SBE pipeline stage can't
1888 * arbitrarily rearrange them to suit our whim; we have to put them
1889 * in an order that matches the output of the previous pipeline stage
1890 * (geometry or vertex shader).
1891 */
1892
1893 /* Re-compute the VUE map here in the case that the one coming from
1894 * geometry has more than one position slot (used for Primitive
1895 * Replication).
1896 */
1897 struct brw_vue_map prev_stage_vue_map;
1898 brw_compute_vue_map(devinfo, &prev_stage_vue_map,
1899 key->input_slots_valid,
1900 nir->info.separate_shader, 1);
1901
1902 int first_slot =
1903 brw_compute_first_urb_slot_required(nir->info.inputs_read,
1904 &prev_stage_vue_map);
1905
1906 assert(prev_stage_vue_map.num_slots <= first_slot + 32);
1907 for (int slot = first_slot; slot < prev_stage_vue_map.num_slots;
1908 slot++) {
1909 int varying = prev_stage_vue_map.slot_to_varying[slot];
1910 if (varying != BRW_VARYING_SLOT_PAD &&
1911 (nir->info.inputs_read & BRW_FS_VARYING_INPUT_MASK &
1912 BITFIELD64_BIT(varying))) {
1913 prog_data->urb_setup[varying] = slot - first_slot;
1914 }
1915 }
1916 urb_next = prev_stage_vue_map.num_slots - first_slot;
1917 }
1918 } else {
1919 /* FINISHME: The sf doesn't map VS->FS inputs for us very well. */
1920 for (unsigned int i = 0; i < VARYING_SLOT_MAX; i++) {
1921 /* Point size is packed into the header, not as a general attribute */
1922 if (i == VARYING_SLOT_PSIZ)
1923 continue;
1924
1925 if (key->input_slots_valid & BITFIELD64_BIT(i)) {
1926 /* The back color slot is skipped when the front color is
1927 * also written to. In addition, some slots can be
1928 * written in the vertex shader and not read in the
1929 * fragment shader. So the register number must always be
1930 * incremented, mapped or not.
1931 */
1932 if (_mesa_varying_slot_in_fs((gl_varying_slot) i))
1933 prog_data->urb_setup[i] = urb_next;
1934 urb_next++;
1935 }
1936 }
1937
1938 /*
1939 * It's a FS only attribute, and we did interpolation for this attribute
1940 * in SF thread. So, count it here, too.
1941 *
1942 * See compile_sf_prog() for more info.
1943 */
1944 if (nir->info.inputs_read & BITFIELD64_BIT(VARYING_SLOT_PNTC))
1945 prog_data->urb_setup[VARYING_SLOT_PNTC] = urb_next++;
1946 }
1947
1948 prog_data->num_varying_inputs = urb_next;
1949 prog_data->inputs = nir->info.inputs_read;
1950
1951 brw_compute_urb_setup_index(prog_data);
1952 }
1953
1954 void
assign_urb_setup()1955 fs_visitor::assign_urb_setup()
1956 {
1957 assert(stage == MESA_SHADER_FRAGMENT);
1958 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
1959
1960 int urb_start = payload.num_regs + prog_data->base.curb_read_length;
1961
1962 /* Offset all the urb_setup[] index by the actual position of the
1963 * setup regs, now that the location of the constants has been chosen.
1964 */
1965 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1966 for (int i = 0; i < inst->sources; i++) {
1967 if (inst->src[i].file == ATTR) {
1968 /* ATTR regs in the FS are in units of logical scalar inputs each
1969 * of which consumes half of a GRF register.
1970 */
1971 assert(inst->src[i].offset < REG_SIZE / 2);
1972 const unsigned grf = urb_start + inst->src[i].nr / 2;
1973 const unsigned offset = (inst->src[i].nr % 2) * (REG_SIZE / 2) +
1974 inst->src[i].offset;
1975 const unsigned width = inst->src[i].stride == 0 ?
1976 1 : MIN2(inst->exec_size, 8);
1977 struct brw_reg reg = stride(
1978 byte_offset(retype(brw_vec8_grf(grf, 0), inst->src[i].type),
1979 offset),
1980 width * inst->src[i].stride,
1981 width, inst->src[i].stride);
1982 reg.abs = inst->src[i].abs;
1983 reg.negate = inst->src[i].negate;
1984 inst->src[i] = reg;
1985 }
1986 }
1987 }
1988
1989 /* Each attribute is 4 setup channels, each of which is half a reg. */
1990 this->first_non_payload_grf += prog_data->num_varying_inputs * 2;
1991 }
1992
1993 void
convert_attr_sources_to_hw_regs(fs_inst * inst)1994 fs_visitor::convert_attr_sources_to_hw_regs(fs_inst *inst)
1995 {
1996 for (int i = 0; i < inst->sources; i++) {
1997 if (inst->src[i].file == ATTR) {
1998 int grf = payload.num_regs +
1999 prog_data->curb_read_length +
2000 inst->src[i].nr +
2001 inst->src[i].offset / REG_SIZE;
2002
2003 /* As explained at brw_reg_from_fs_reg, From the Haswell PRM:
2004 *
2005 * VertStride must be used to cross GRF register boundaries. This
2006 * rule implies that elements within a 'Width' cannot cross GRF
2007 * boundaries.
2008 *
2009 * So, for registers that are large enough, we have to split the exec
2010 * size in two and trust the compression state to sort it out.
2011 */
2012 unsigned total_size = inst->exec_size *
2013 inst->src[i].stride *
2014 type_sz(inst->src[i].type);
2015
2016 assert(total_size <= 2 * REG_SIZE);
2017 const unsigned exec_size =
2018 (total_size <= REG_SIZE) ? inst->exec_size : inst->exec_size / 2;
2019
2020 unsigned width = inst->src[i].stride == 0 ? 1 : exec_size;
2021 struct brw_reg reg =
2022 stride(byte_offset(retype(brw_vec8_grf(grf, 0), inst->src[i].type),
2023 inst->src[i].offset % REG_SIZE),
2024 exec_size * inst->src[i].stride,
2025 width, inst->src[i].stride);
2026 reg.abs = inst->src[i].abs;
2027 reg.negate = inst->src[i].negate;
2028
2029 inst->src[i] = reg;
2030 }
2031 }
2032 }
2033
2034 void
assign_vs_urb_setup()2035 fs_visitor::assign_vs_urb_setup()
2036 {
2037 struct brw_vs_prog_data *vs_prog_data = brw_vs_prog_data(prog_data);
2038
2039 assert(stage == MESA_SHADER_VERTEX);
2040
2041 /* Each attribute is 4 regs. */
2042 this->first_non_payload_grf += 4 * vs_prog_data->nr_attribute_slots;
2043
2044 assert(vs_prog_data->base.urb_read_length <= 15);
2045
2046 /* Rewrite all ATTR file references to the hw grf that they land in. */
2047 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2048 convert_attr_sources_to_hw_regs(inst);
2049 }
2050 }
2051
2052 void
assign_tcs_urb_setup()2053 fs_visitor::assign_tcs_urb_setup()
2054 {
2055 assert(stage == MESA_SHADER_TESS_CTRL);
2056
2057 /* Rewrite all ATTR file references to HW_REGs. */
2058 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2059 convert_attr_sources_to_hw_regs(inst);
2060 }
2061 }
2062
2063 void
assign_tes_urb_setup()2064 fs_visitor::assign_tes_urb_setup()
2065 {
2066 assert(stage == MESA_SHADER_TESS_EVAL);
2067
2068 struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
2069
2070 first_non_payload_grf += 8 * vue_prog_data->urb_read_length;
2071
2072 /* Rewrite all ATTR file references to HW_REGs. */
2073 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2074 convert_attr_sources_to_hw_regs(inst);
2075 }
2076 }
2077
2078 void
assign_gs_urb_setup()2079 fs_visitor::assign_gs_urb_setup()
2080 {
2081 assert(stage == MESA_SHADER_GEOMETRY);
2082
2083 struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
2084
2085 first_non_payload_grf +=
2086 8 * vue_prog_data->urb_read_length * nir->info.gs.vertices_in;
2087
2088 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2089 /* Rewrite all ATTR file references to GRFs. */
2090 convert_attr_sources_to_hw_regs(inst);
2091 }
2092 }
2093
2094
2095 /**
2096 * Split large virtual GRFs into separate components if we can.
2097 *
2098 * This is mostly duplicated with what brw_fs_vector_splitting does,
2099 * but that's really conservative because it's afraid of doing
2100 * splitting that doesn't result in real progress after the rest of
2101 * the optimization phases, which would cause infinite looping in
2102 * optimization. We can do it once here, safely. This also has the
2103 * opportunity to split interpolated values, or maybe even uniforms,
2104 * which we don't have at the IR level.
2105 *
2106 * We want to split, because virtual GRFs are what we register
2107 * allocate and spill (due to contiguousness requirements for some
2108 * instructions), and they're what we naturally generate in the
2109 * codegen process, but most virtual GRFs don't actually need to be
2110 * contiguous sets of GRFs. If we split, we'll end up with reduced
2111 * live intervals and better dead code elimination and coalescing.
2112 */
2113 void
split_virtual_grfs()2114 fs_visitor::split_virtual_grfs()
2115 {
2116 /* Compact the register file so we eliminate dead vgrfs. This
2117 * only defines split points for live registers, so if we have
2118 * too large dead registers they will hit assertions later.
2119 */
2120 compact_virtual_grfs();
2121
2122 int num_vars = this->alloc.count;
2123
2124 /* Count the total number of registers */
2125 int reg_count = 0;
2126 int vgrf_to_reg[num_vars];
2127 for (int i = 0; i < num_vars; i++) {
2128 vgrf_to_reg[i] = reg_count;
2129 reg_count += alloc.sizes[i];
2130 }
2131
2132 /* An array of "split points". For each register slot, this indicates
2133 * if this slot can be separated from the previous slot. Every time an
2134 * instruction uses multiple elements of a register (as a source or
2135 * destination), we mark the used slots as inseparable. Then we go
2136 * through and split the registers into the smallest pieces we can.
2137 */
2138 bool *split_points = new bool[reg_count];
2139 memset(split_points, 0, reg_count * sizeof(*split_points));
2140
2141 /* Mark all used registers as fully splittable */
2142 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2143 if (inst->dst.file == VGRF) {
2144 int reg = vgrf_to_reg[inst->dst.nr];
2145 for (unsigned j = 1; j < this->alloc.sizes[inst->dst.nr]; j++)
2146 split_points[reg + j] = true;
2147 }
2148
2149 for (int i = 0; i < inst->sources; i++) {
2150 if (inst->src[i].file == VGRF) {
2151 int reg = vgrf_to_reg[inst->src[i].nr];
2152 for (unsigned j = 1; j < this->alloc.sizes[inst->src[i].nr]; j++)
2153 split_points[reg + j] = true;
2154 }
2155 }
2156 }
2157
2158 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2159 /* We fix up undef instructions later */
2160 if (inst->opcode == SHADER_OPCODE_UNDEF) {
2161 /* UNDEF instructions are currently only used to undef entire
2162 * registers. We need this invariant later when we split them.
2163 */
2164 assert(inst->dst.file == VGRF);
2165 assert(inst->dst.offset == 0);
2166 assert(inst->size_written == alloc.sizes[inst->dst.nr] * REG_SIZE);
2167 continue;
2168 }
2169
2170 if (inst->dst.file == VGRF) {
2171 int reg = vgrf_to_reg[inst->dst.nr] + inst->dst.offset / REG_SIZE;
2172 for (unsigned j = 1; j < regs_written(inst); j++)
2173 split_points[reg + j] = false;
2174 }
2175 for (int i = 0; i < inst->sources; i++) {
2176 if (inst->src[i].file == VGRF) {
2177 int reg = vgrf_to_reg[inst->src[i].nr] + inst->src[i].offset / REG_SIZE;
2178 for (unsigned j = 1; j < regs_read(inst, i); j++)
2179 split_points[reg + j] = false;
2180 }
2181 }
2182 }
2183
2184 int *new_virtual_grf = new int[reg_count];
2185 int *new_reg_offset = new int[reg_count];
2186
2187 int reg = 0;
2188 for (int i = 0; i < num_vars; i++) {
2189 /* The first one should always be 0 as a quick sanity check. */
2190 assert(split_points[reg] == false);
2191
2192 /* j = 0 case */
2193 new_reg_offset[reg] = 0;
2194 reg++;
2195 int offset = 1;
2196
2197 /* j > 0 case */
2198 for (unsigned j = 1; j < alloc.sizes[i]; j++) {
2199 /* If this is a split point, reset the offset to 0 and allocate a
2200 * new virtual GRF for the previous offset many registers
2201 */
2202 if (split_points[reg]) {
2203 assert(offset <= MAX_VGRF_SIZE);
2204 int grf = alloc.allocate(offset);
2205 for (int k = reg - offset; k < reg; k++)
2206 new_virtual_grf[k] = grf;
2207 offset = 0;
2208 }
2209 new_reg_offset[reg] = offset;
2210 offset++;
2211 reg++;
2212 }
2213
2214 /* The last one gets the original register number */
2215 assert(offset <= MAX_VGRF_SIZE);
2216 alloc.sizes[i] = offset;
2217 for (int k = reg - offset; k < reg; k++)
2218 new_virtual_grf[k] = i;
2219 }
2220 assert(reg == reg_count);
2221
2222 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
2223 if (inst->opcode == SHADER_OPCODE_UNDEF) {
2224 const fs_builder ibld(this, block, inst);
2225 assert(inst->size_written % REG_SIZE == 0);
2226 unsigned reg_offset = 0;
2227 while (reg_offset < inst->size_written / REG_SIZE) {
2228 reg = vgrf_to_reg[inst->dst.nr] + reg_offset;
2229 ibld.UNDEF(fs_reg(VGRF, new_virtual_grf[reg], inst->dst.type));
2230 reg_offset += alloc.sizes[new_virtual_grf[reg]];
2231 }
2232 inst->remove(block);
2233 continue;
2234 }
2235
2236 if (inst->dst.file == VGRF) {
2237 reg = vgrf_to_reg[inst->dst.nr] + inst->dst.offset / REG_SIZE;
2238 inst->dst.nr = new_virtual_grf[reg];
2239 inst->dst.offset = new_reg_offset[reg] * REG_SIZE +
2240 inst->dst.offset % REG_SIZE;
2241 assert((unsigned)new_reg_offset[reg] < alloc.sizes[new_virtual_grf[reg]]);
2242 }
2243 for (int i = 0; i < inst->sources; i++) {
2244 if (inst->src[i].file == VGRF) {
2245 reg = vgrf_to_reg[inst->src[i].nr] + inst->src[i].offset / REG_SIZE;
2246 inst->src[i].nr = new_virtual_grf[reg];
2247 inst->src[i].offset = new_reg_offset[reg] * REG_SIZE +
2248 inst->src[i].offset % REG_SIZE;
2249 assert((unsigned)new_reg_offset[reg] < alloc.sizes[new_virtual_grf[reg]]);
2250 }
2251 }
2252 }
2253 invalidate_analysis(DEPENDENCY_INSTRUCTION_DETAIL | DEPENDENCY_VARIABLES);
2254
2255 delete[] split_points;
2256 delete[] new_virtual_grf;
2257 delete[] new_reg_offset;
2258 }
2259
2260 /**
2261 * Remove unused virtual GRFs and compact the vgrf_* arrays.
2262 *
2263 * During code generation, we create tons of temporary variables, many of
2264 * which get immediately killed and are never used again. Yet, in later
2265 * optimization and analysis passes, such as compute_live_intervals, we need
2266 * to loop over all the virtual GRFs. Compacting them can save a lot of
2267 * overhead.
2268 */
2269 bool
compact_virtual_grfs()2270 fs_visitor::compact_virtual_grfs()
2271 {
2272 bool progress = false;
2273 int *remap_table = new int[this->alloc.count];
2274 memset(remap_table, -1, this->alloc.count * sizeof(int));
2275
2276 /* Mark which virtual GRFs are used. */
2277 foreach_block_and_inst(block, const fs_inst, inst, cfg) {
2278 if (inst->dst.file == VGRF)
2279 remap_table[inst->dst.nr] = 0;
2280
2281 for (int i = 0; i < inst->sources; i++) {
2282 if (inst->src[i].file == VGRF)
2283 remap_table[inst->src[i].nr] = 0;
2284 }
2285 }
2286
2287 /* Compact the GRF arrays. */
2288 int new_index = 0;
2289 for (unsigned i = 0; i < this->alloc.count; i++) {
2290 if (remap_table[i] == -1) {
2291 /* We just found an unused register. This means that we are
2292 * actually going to compact something.
2293 */
2294 progress = true;
2295 } else {
2296 remap_table[i] = new_index;
2297 alloc.sizes[new_index] = alloc.sizes[i];
2298 invalidate_analysis(DEPENDENCY_INSTRUCTION_DETAIL | DEPENDENCY_VARIABLES);
2299 ++new_index;
2300 }
2301 }
2302
2303 this->alloc.count = new_index;
2304
2305 /* Patch all the instructions to use the newly renumbered registers */
2306 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2307 if (inst->dst.file == VGRF)
2308 inst->dst.nr = remap_table[inst->dst.nr];
2309
2310 for (int i = 0; i < inst->sources; i++) {
2311 if (inst->src[i].file == VGRF)
2312 inst->src[i].nr = remap_table[inst->src[i].nr];
2313 }
2314 }
2315
2316 /* Patch all the references to delta_xy, since they're used in register
2317 * allocation. If they're unused, switch them to BAD_FILE so we don't
2318 * think some random VGRF is delta_xy.
2319 */
2320 for (unsigned i = 0; i < ARRAY_SIZE(delta_xy); i++) {
2321 if (delta_xy[i].file == VGRF) {
2322 if (remap_table[delta_xy[i].nr] != -1) {
2323 delta_xy[i].nr = remap_table[delta_xy[i].nr];
2324 } else {
2325 delta_xy[i].file = BAD_FILE;
2326 }
2327 }
2328 }
2329
2330 delete[] remap_table;
2331
2332 return progress;
2333 }
2334
2335 static int
get_subgroup_id_param_index(const intel_device_info * devinfo,const brw_stage_prog_data * prog_data)2336 get_subgroup_id_param_index(const intel_device_info *devinfo,
2337 const brw_stage_prog_data *prog_data)
2338 {
2339 if (prog_data->nr_params == 0)
2340 return -1;
2341
2342 if (devinfo->verx10 >= 125)
2343 return -1;
2344
2345 /* The local thread id is always the last parameter in the list */
2346 uint32_t last_param = prog_data->param[prog_data->nr_params - 1];
2347 if (last_param == BRW_PARAM_BUILTIN_SUBGROUP_ID)
2348 return prog_data->nr_params - 1;
2349
2350 return -1;
2351 }
2352
2353 /**
2354 * Struct for handling complex alignments.
2355 *
2356 * A complex alignment is stored as multiplier and an offset. A value is
2357 * considered to be aligned if it is {offset} larger than a multiple of {mul}.
2358 * For instance, with an alignment of {8, 2}, cplx_align_apply would do the
2359 * following:
2360 *
2361 * N | cplx_align_apply({8, 2}, N)
2362 * ----+-----------------------------
2363 * 4 | 6
2364 * 6 | 6
2365 * 8 | 14
2366 * 10 | 14
2367 * 12 | 14
2368 * 14 | 14
2369 * 16 | 22
2370 */
2371 struct cplx_align {
2372 unsigned mul:4;
2373 unsigned offset:4;
2374 };
2375
2376 #define CPLX_ALIGN_MAX_MUL 8
2377
2378 static void
cplx_align_assert_sane(struct cplx_align a)2379 cplx_align_assert_sane(struct cplx_align a)
2380 {
2381 assert(a.mul > 0 && util_is_power_of_two_nonzero(a.mul));
2382 assert(a.offset < a.mul);
2383 }
2384
2385 /**
2386 * Combines two alignments to produce a least multiple of sorts.
2387 *
2388 * The returned alignment is the smallest (in terms of multiplier) such that
2389 * anything aligned to both a and b will be aligned to the new alignment.
2390 * This function will assert-fail if a and b are not compatible, i.e. if the
2391 * offset parameters are such that no common alignment is possible.
2392 */
2393 static struct cplx_align
cplx_align_combine(struct cplx_align a,struct cplx_align b)2394 cplx_align_combine(struct cplx_align a, struct cplx_align b)
2395 {
2396 cplx_align_assert_sane(a);
2397 cplx_align_assert_sane(b);
2398
2399 /* Assert that the alignments agree. */
2400 assert((a.offset & (b.mul - 1)) == (b.offset & (a.mul - 1)));
2401
2402 return a.mul > b.mul ? a : b;
2403 }
2404
2405 /**
2406 * Apply a complex alignment
2407 *
2408 * This function will return the smallest number greater than or equal to
2409 * offset that is aligned to align.
2410 */
2411 static unsigned
cplx_align_apply(struct cplx_align align,unsigned offset)2412 cplx_align_apply(struct cplx_align align, unsigned offset)
2413 {
2414 return ALIGN(offset - align.offset, align.mul) + align.offset;
2415 }
2416
2417 #define UNIFORM_SLOT_SIZE 4
2418
2419 struct uniform_slot_info {
2420 /** True if the given uniform slot is live */
2421 unsigned is_live:1;
2422
2423 /** True if this slot and the next slot must remain contiguous */
2424 unsigned contiguous:1;
2425
2426 struct cplx_align align;
2427 };
2428
2429 static void
mark_uniform_slots_read(struct uniform_slot_info * slots,unsigned num_slots,unsigned alignment)2430 mark_uniform_slots_read(struct uniform_slot_info *slots,
2431 unsigned num_slots, unsigned alignment)
2432 {
2433 assert(alignment > 0 && util_is_power_of_two_nonzero(alignment));
2434 assert(alignment <= CPLX_ALIGN_MAX_MUL);
2435
2436 /* We can't align a slot to anything less than the slot size */
2437 alignment = MAX2(alignment, UNIFORM_SLOT_SIZE);
2438
2439 struct cplx_align align = {alignment, 0};
2440 cplx_align_assert_sane(align);
2441
2442 for (unsigned i = 0; i < num_slots; i++) {
2443 slots[i].is_live = true;
2444 if (i < num_slots - 1)
2445 slots[i].contiguous = true;
2446
2447 align.offset = (i * UNIFORM_SLOT_SIZE) & (align.mul - 1);
2448 if (slots[i].align.mul == 0) {
2449 slots[i].align = align;
2450 } else {
2451 slots[i].align = cplx_align_combine(slots[i].align, align);
2452 }
2453 }
2454 }
2455
2456 /**
2457 * Assign UNIFORM file registers to either push constants or pull constants.
2458 *
2459 * We allow a fragment shader to have more than the specified minimum
2460 * maximum number of fragment shader uniform components (64). If
2461 * there are too many of these, they'd fill up all of register space.
2462 * So, this will push some of them out to the pull constant buffer and
2463 * update the program to load them.
2464 */
2465 void
assign_constant_locations()2466 fs_visitor::assign_constant_locations()
2467 {
2468 /* Only the first compile gets to decide on locations. */
2469 if (push_constant_loc) {
2470 assert(pull_constant_loc);
2471 return;
2472 }
2473
2474 if (compiler->compact_params) {
2475 struct uniform_slot_info slots[uniforms + 1];
2476 memset(slots, 0, sizeof(slots));
2477
2478 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
2479 for (int i = 0 ; i < inst->sources; i++) {
2480 if (inst->src[i].file != UNIFORM)
2481 continue;
2482
2483 /* NIR tightly packs things so the uniform number might not be
2484 * aligned (if we have a double right after a float, for
2485 * instance). This is fine because the process of re-arranging
2486 * them will ensure that things are properly aligned. The offset
2487 * into that uniform, however, must be aligned.
2488 *
2489 * In Vulkan, we have explicit offsets but everything is crammed
2490 * into a single "variable" so inst->src[i].nr will always be 0.
2491 * Everything will be properly aligned relative to that one base.
2492 */
2493 assert(inst->src[i].offset % type_sz(inst->src[i].type) == 0);
2494
2495 unsigned u = inst->src[i].nr +
2496 inst->src[i].offset / UNIFORM_SLOT_SIZE;
2497
2498 if (u >= uniforms)
2499 continue;
2500
2501 unsigned slots_read;
2502 if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT && i == 0) {
2503 slots_read = DIV_ROUND_UP(inst->src[2].ud, UNIFORM_SLOT_SIZE);
2504 } else {
2505 unsigned bytes_read = inst->components_read(i) *
2506 type_sz(inst->src[i].type);
2507 slots_read = DIV_ROUND_UP(bytes_read, UNIFORM_SLOT_SIZE);
2508 }
2509
2510 assert(u + slots_read <= uniforms);
2511 mark_uniform_slots_read(&slots[u], slots_read,
2512 type_sz(inst->src[i].type));
2513 }
2514 }
2515
2516 int subgroup_id_index = get_subgroup_id_param_index(devinfo,
2517 stage_prog_data);
2518
2519 /* Only allow 16 registers (128 uniform components) as push constants.
2520 *
2521 * Just demote the end of the list. We could probably do better
2522 * here, demoting things that are rarely used in the program first.
2523 *
2524 * If changing this value, note the limitation about total_regs in
2525 * brw_curbe.c.
2526 */
2527 unsigned int max_push_components = 16 * 8;
2528 if (subgroup_id_index >= 0)
2529 max_push_components--; /* Save a slot for the thread ID */
2530
2531 /* We push small arrays, but no bigger than 16 floats. This is big
2532 * enough for a vec4 but hopefully not large enough to push out other
2533 * stuff. We should probably use a better heuristic at some point.
2534 */
2535 const unsigned int max_chunk_size = 16;
2536
2537 unsigned int num_push_constants = 0;
2538 unsigned int num_pull_constants = 0;
2539
2540 push_constant_loc = ralloc_array(mem_ctx, int, uniforms);
2541 pull_constant_loc = ralloc_array(mem_ctx, int, uniforms);
2542
2543 /* Default to -1 meaning no location */
2544 memset(push_constant_loc, -1, uniforms * sizeof(*push_constant_loc));
2545 memset(pull_constant_loc, -1, uniforms * sizeof(*pull_constant_loc));
2546
2547 int chunk_start = -1;
2548 struct cplx_align align;
2549 for (unsigned u = 0; u < uniforms; u++) {
2550 if (!slots[u].is_live) {
2551 assert(chunk_start == -1);
2552 continue;
2553 }
2554
2555 /* Skip subgroup_id_index to put it in the last push register. */
2556 if (subgroup_id_index == (int)u)
2557 continue;
2558
2559 if (chunk_start == -1) {
2560 chunk_start = u;
2561 align = slots[u].align;
2562 } else {
2563 /* Offset into the chunk */
2564 unsigned chunk_offset = (u - chunk_start) * UNIFORM_SLOT_SIZE;
2565
2566 /* Shift the slot alignment down by the chunk offset so it is
2567 * comparable with the base chunk alignment.
2568 */
2569 struct cplx_align slot_align = slots[u].align;
2570 slot_align.offset =
2571 (slot_align.offset - chunk_offset) & (align.mul - 1);
2572
2573 align = cplx_align_combine(align, slot_align);
2574 }
2575
2576 /* Sanity check the alignment */
2577 cplx_align_assert_sane(align);
2578
2579 if (slots[u].contiguous)
2580 continue;
2581
2582 /* Adjust the alignment to be in terms of slots, not bytes */
2583 assert((align.mul & (UNIFORM_SLOT_SIZE - 1)) == 0);
2584 assert((align.offset & (UNIFORM_SLOT_SIZE - 1)) == 0);
2585 align.mul /= UNIFORM_SLOT_SIZE;
2586 align.offset /= UNIFORM_SLOT_SIZE;
2587
2588 unsigned push_start_align = cplx_align_apply(align, num_push_constants);
2589 unsigned chunk_size = u - chunk_start + 1;
2590 if ((!compiler->supports_pull_constants && u < UBO_START) ||
2591 (chunk_size < max_chunk_size &&
2592 push_start_align + chunk_size <= max_push_components)) {
2593 /* Align up the number of push constants */
2594 num_push_constants = push_start_align;
2595 for (unsigned i = 0; i < chunk_size; i++)
2596 push_constant_loc[chunk_start + i] = num_push_constants++;
2597 } else {
2598 /* We need to pull this one */
2599 num_pull_constants = cplx_align_apply(align, num_pull_constants);
2600 for (unsigned i = 0; i < chunk_size; i++)
2601 pull_constant_loc[chunk_start + i] = num_pull_constants++;
2602 }
2603
2604 /* Reset the chunk and start again */
2605 chunk_start = -1;
2606 }
2607
2608 /* Add the CS local thread ID uniform at the end of the push constants */
2609 if (subgroup_id_index >= 0)
2610 push_constant_loc[subgroup_id_index] = num_push_constants++;
2611
2612 /* As the uniforms are going to be reordered, stash the old array and
2613 * create two new arrays for push/pull params.
2614 */
2615 uint32_t *param = stage_prog_data->param;
2616 stage_prog_data->nr_params = num_push_constants;
2617 if (num_push_constants) {
2618 stage_prog_data->param = rzalloc_array(mem_ctx, uint32_t,
2619 num_push_constants);
2620 } else {
2621 stage_prog_data->param = NULL;
2622 }
2623 assert(stage_prog_data->nr_pull_params == 0);
2624 assert(stage_prog_data->pull_param == NULL);
2625 if (num_pull_constants > 0) {
2626 stage_prog_data->nr_pull_params = num_pull_constants;
2627 stage_prog_data->pull_param = rzalloc_array(mem_ctx, uint32_t,
2628 num_pull_constants);
2629 }
2630
2631 /* Up until now, the param[] array has been indexed by reg + offset
2632 * of UNIFORM registers. Move pull constants into pull_param[] and
2633 * condense param[] to only contain the uniforms we chose to push.
2634 *
2635 * NOTE: Because we are condensing the params[] array, we know that
2636 * push_constant_loc[i] <= i and we can do it in one smooth loop without
2637 * having to make a copy.
2638 */
2639 for (unsigned int i = 0; i < uniforms; i++) {
2640 uint32_t value = param[i];
2641 if (pull_constant_loc[i] != -1) {
2642 stage_prog_data->pull_param[pull_constant_loc[i]] = value;
2643 } else if (push_constant_loc[i] != -1) {
2644 stage_prog_data->param[push_constant_loc[i]] = value;
2645 }
2646 }
2647 ralloc_free(param);
2648 } else {
2649 /* If we don't want to compact anything, just set up dummy push/pull
2650 * arrays. All the rest of the compiler cares about are these arrays.
2651 */
2652 push_constant_loc = ralloc_array(mem_ctx, int, uniforms);
2653 pull_constant_loc = ralloc_array(mem_ctx, int, uniforms);
2654
2655 for (unsigned u = 0; u < uniforms; u++)
2656 push_constant_loc[u] = u;
2657
2658 memset(pull_constant_loc, -1, uniforms * sizeof(*pull_constant_loc));
2659 }
2660
2661 /* Now that we know how many regular uniforms we'll push, reduce the
2662 * UBO push ranges so we don't exceed the 3DSTATE_CONSTANT limits.
2663 */
2664 /* For gen4/5:
2665 * Only allow 16 registers (128 uniform components) as push constants.
2666 *
2667 * If changing this value, note the limitation about total_regs in
2668 * brw_curbe.c/crocus_state.c
2669 */
2670 const unsigned max_push_length = compiler->devinfo->ver < 6 ? 16 : 64;
2671 unsigned push_length = DIV_ROUND_UP(stage_prog_data->nr_params, 8);
2672 for (int i = 0; i < 4; i++) {
2673 struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
2674
2675 if (push_length + range->length > max_push_length)
2676 range->length = max_push_length - push_length;
2677
2678 push_length += range->length;
2679 }
2680 assert(push_length <= max_push_length);
2681 }
2682
2683 bool
get_pull_locs(const fs_reg & src,unsigned * out_surf_index,unsigned * out_pull_index)2684 fs_visitor::get_pull_locs(const fs_reg &src,
2685 unsigned *out_surf_index,
2686 unsigned *out_pull_index)
2687 {
2688 assert(src.file == UNIFORM);
2689
2690 if (src.nr >= UBO_START) {
2691 const struct brw_ubo_range *range =
2692 &prog_data->ubo_ranges[src.nr - UBO_START];
2693
2694 /* If this access is in our (reduced) range, use the push data. */
2695 if (src.offset / 32 < range->length)
2696 return false;
2697
2698 *out_surf_index = prog_data->binding_table.ubo_start + range->block;
2699 *out_pull_index = (32 * range->start + src.offset) / 4;
2700
2701 prog_data->has_ubo_pull = true;
2702 return true;
2703 }
2704
2705 const unsigned location = src.nr + src.offset / 4;
2706
2707 if (location < uniforms && pull_constant_loc[location] != -1) {
2708 /* A regular uniform push constant */
2709 *out_surf_index = stage_prog_data->binding_table.pull_constants_start;
2710 *out_pull_index = pull_constant_loc[location];
2711
2712 prog_data->has_ubo_pull = true;
2713 return true;
2714 }
2715
2716 return false;
2717 }
2718
2719 /**
2720 * Replace UNIFORM register file access with either UNIFORM_PULL_CONSTANT_LOAD
2721 * or VARYING_PULL_CONSTANT_LOAD instructions which load values into VGRFs.
2722 */
2723 void
lower_constant_loads()2724 fs_visitor::lower_constant_loads()
2725 {
2726 unsigned index, pull_index;
2727
2728 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
2729 /* Set up the annotation tracking for new generated instructions. */
2730 const fs_builder ibld(this, block, inst);
2731
2732 for (int i = 0; i < inst->sources; i++) {
2733 if (inst->src[i].file != UNIFORM)
2734 continue;
2735
2736 /* We'll handle this case later */
2737 if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT && i == 0)
2738 continue;
2739
2740 if (!get_pull_locs(inst->src[i], &index, &pull_index))
2741 continue;
2742
2743 assert(inst->src[i].stride == 0);
2744
2745 const unsigned block_sz = 64; /* Fetch one cacheline at a time. */
2746 const fs_builder ubld = ibld.exec_all().group(block_sz / 4, 0);
2747 const fs_reg dst = ubld.vgrf(BRW_REGISTER_TYPE_UD);
2748 const unsigned base = pull_index * 4;
2749
2750 ubld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD,
2751 dst, brw_imm_ud(index), brw_imm_ud(base & ~(block_sz - 1)));
2752
2753 /* Rewrite the instruction to use the temporary VGRF. */
2754 inst->src[i].file = VGRF;
2755 inst->src[i].nr = dst.nr;
2756 inst->src[i].offset = (base & (block_sz - 1)) +
2757 inst->src[i].offset % 4;
2758 }
2759
2760 if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT &&
2761 inst->src[0].file == UNIFORM) {
2762
2763 if (!get_pull_locs(inst->src[0], &index, &pull_index))
2764 continue;
2765
2766 VARYING_PULL_CONSTANT_LOAD(ibld, inst->dst,
2767 brw_imm_ud(index),
2768 inst->src[1],
2769 pull_index * 4, 4);
2770 inst->remove(block);
2771 }
2772 }
2773 invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
2774 }
2775
2776 bool
opt_algebraic()2777 fs_visitor::opt_algebraic()
2778 {
2779 bool progress = false;
2780
2781 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
2782 switch (inst->opcode) {
2783 case BRW_OPCODE_MOV:
2784 if (!devinfo->has_64bit_float &&
2785 !devinfo->has_64bit_int &&
2786 (inst->dst.type == BRW_REGISTER_TYPE_DF ||
2787 inst->dst.type == BRW_REGISTER_TYPE_UQ ||
2788 inst->dst.type == BRW_REGISTER_TYPE_Q)) {
2789 assert(inst->dst.type == inst->src[0].type);
2790 assert(!inst->saturate);
2791 assert(!inst->src[0].abs);
2792 assert(!inst->src[0].negate);
2793 const brw::fs_builder ibld(this, block, inst);
2794
2795 ibld.MOV(subscript(inst->dst, BRW_REGISTER_TYPE_UD, 1),
2796 subscript(inst->src[0], BRW_REGISTER_TYPE_UD, 1));
2797 ibld.MOV(subscript(inst->dst, BRW_REGISTER_TYPE_UD, 0),
2798 subscript(inst->src[0], BRW_REGISTER_TYPE_UD, 0));
2799
2800 inst->remove(block);
2801 progress = true;
2802 }
2803
2804 if ((inst->conditional_mod == BRW_CONDITIONAL_Z ||
2805 inst->conditional_mod == BRW_CONDITIONAL_NZ) &&
2806 inst->dst.is_null() &&
2807 (inst->src[0].abs || inst->src[0].negate)) {
2808 inst->src[0].abs = false;
2809 inst->src[0].negate = false;
2810 progress = true;
2811 break;
2812 }
2813
2814 if (inst->src[0].file != IMM)
2815 break;
2816
2817 if (inst->saturate) {
2818 /* Full mixed-type saturates don't happen. However, we can end up
2819 * with things like:
2820 *
2821 * mov.sat(8) g21<1>DF -1F
2822 *
2823 * Other mixed-size-but-same-base-type cases may also be possible.
2824 */
2825 if (inst->dst.type != inst->src[0].type &&
2826 inst->dst.type != BRW_REGISTER_TYPE_DF &&
2827 inst->src[0].type != BRW_REGISTER_TYPE_F)
2828 assert(!"unimplemented: saturate mixed types");
2829
2830 if (brw_saturate_immediate(inst->src[0].type,
2831 &inst->src[0].as_brw_reg())) {
2832 inst->saturate = false;
2833 progress = true;
2834 }
2835 }
2836 break;
2837
2838 case BRW_OPCODE_MUL:
2839 if (inst->src[1].file != IMM)
2840 continue;
2841
2842 /* a * 1.0 = a */
2843 if (inst->src[1].is_one()) {
2844 inst->opcode = BRW_OPCODE_MOV;
2845 inst->src[1] = reg_undef;
2846 progress = true;
2847 break;
2848 }
2849
2850 /* a * -1.0 = -a */
2851 if (inst->src[1].is_negative_one()) {
2852 inst->opcode = BRW_OPCODE_MOV;
2853 inst->src[0].negate = !inst->src[0].negate;
2854 inst->src[1] = reg_undef;
2855 progress = true;
2856 break;
2857 }
2858
2859 break;
2860 case BRW_OPCODE_ADD:
2861 if (inst->src[1].file != IMM)
2862 continue;
2863
2864 if (brw_reg_type_is_integer(inst->src[1].type) &&
2865 inst->src[1].is_zero()) {
2866 inst->opcode = BRW_OPCODE_MOV;
2867 inst->src[1] = reg_undef;
2868 progress = true;
2869 break;
2870 }
2871
2872 if (inst->src[0].file == IMM) {
2873 assert(inst->src[0].type == BRW_REGISTER_TYPE_F);
2874 inst->opcode = BRW_OPCODE_MOV;
2875 inst->src[0].f += inst->src[1].f;
2876 inst->src[1] = reg_undef;
2877 progress = true;
2878 break;
2879 }
2880 break;
2881 case BRW_OPCODE_OR:
2882 if (inst->src[0].equals(inst->src[1]) ||
2883 inst->src[1].is_zero()) {
2884 /* On Gfx8+, the OR instruction can have a source modifier that
2885 * performs logical not on the operand. Cases of 'OR r0, ~r1, 0'
2886 * or 'OR r0, ~r1, ~r1' should become a NOT instead of a MOV.
2887 */
2888 if (inst->src[0].negate) {
2889 inst->opcode = BRW_OPCODE_NOT;
2890 inst->src[0].negate = false;
2891 } else {
2892 inst->opcode = BRW_OPCODE_MOV;
2893 }
2894 inst->src[1] = reg_undef;
2895 progress = true;
2896 break;
2897 }
2898 break;
2899 case BRW_OPCODE_CMP:
2900 if ((inst->conditional_mod == BRW_CONDITIONAL_Z ||
2901 inst->conditional_mod == BRW_CONDITIONAL_NZ) &&
2902 inst->src[1].is_zero() &&
2903 (inst->src[0].abs || inst->src[0].negate)) {
2904 inst->src[0].abs = false;
2905 inst->src[0].negate = false;
2906 progress = true;
2907 break;
2908 }
2909 break;
2910 case BRW_OPCODE_SEL:
2911 if (!devinfo->has_64bit_float &&
2912 !devinfo->has_64bit_int &&
2913 (inst->dst.type == BRW_REGISTER_TYPE_DF ||
2914 inst->dst.type == BRW_REGISTER_TYPE_UQ ||
2915 inst->dst.type == BRW_REGISTER_TYPE_Q)) {
2916 assert(inst->dst.type == inst->src[0].type);
2917 assert(!inst->saturate);
2918 assert(!inst->src[0].abs && !inst->src[0].negate);
2919 assert(!inst->src[1].abs && !inst->src[1].negate);
2920 const brw::fs_builder ibld(this, block, inst);
2921
2922 set_predicate(inst->predicate,
2923 ibld.SEL(subscript(inst->dst, BRW_REGISTER_TYPE_UD, 0),
2924 subscript(inst->src[0], BRW_REGISTER_TYPE_UD, 0),
2925 subscript(inst->src[1], BRW_REGISTER_TYPE_UD, 0)));
2926 set_predicate(inst->predicate,
2927 ibld.SEL(subscript(inst->dst, BRW_REGISTER_TYPE_UD, 1),
2928 subscript(inst->src[0], BRW_REGISTER_TYPE_UD, 1),
2929 subscript(inst->src[1], BRW_REGISTER_TYPE_UD, 1)));
2930
2931 inst->remove(block);
2932 progress = true;
2933 }
2934 if (inst->src[0].equals(inst->src[1])) {
2935 inst->opcode = BRW_OPCODE_MOV;
2936 inst->src[1] = reg_undef;
2937 inst->predicate = BRW_PREDICATE_NONE;
2938 inst->predicate_inverse = false;
2939 progress = true;
2940 } else if (inst->saturate && inst->src[1].file == IMM) {
2941 switch (inst->conditional_mod) {
2942 case BRW_CONDITIONAL_LE:
2943 case BRW_CONDITIONAL_L:
2944 switch (inst->src[1].type) {
2945 case BRW_REGISTER_TYPE_F:
2946 if (inst->src[1].f >= 1.0f) {
2947 inst->opcode = BRW_OPCODE_MOV;
2948 inst->src[1] = reg_undef;
2949 inst->conditional_mod = BRW_CONDITIONAL_NONE;
2950 progress = true;
2951 }
2952 break;
2953 default:
2954 break;
2955 }
2956 break;
2957 case BRW_CONDITIONAL_GE:
2958 case BRW_CONDITIONAL_G:
2959 switch (inst->src[1].type) {
2960 case BRW_REGISTER_TYPE_F:
2961 if (inst->src[1].f <= 0.0f) {
2962 inst->opcode = BRW_OPCODE_MOV;
2963 inst->src[1] = reg_undef;
2964 inst->conditional_mod = BRW_CONDITIONAL_NONE;
2965 progress = true;
2966 }
2967 break;
2968 default:
2969 break;
2970 }
2971 default:
2972 break;
2973 }
2974 }
2975 break;
2976 case BRW_OPCODE_MAD:
2977 if (inst->src[0].type != BRW_REGISTER_TYPE_F ||
2978 inst->src[1].type != BRW_REGISTER_TYPE_F ||
2979 inst->src[2].type != BRW_REGISTER_TYPE_F)
2980 break;
2981 if (inst->src[1].is_one()) {
2982 inst->opcode = BRW_OPCODE_ADD;
2983 inst->src[1] = inst->src[2];
2984 inst->src[2] = reg_undef;
2985 progress = true;
2986 } else if (inst->src[2].is_one()) {
2987 inst->opcode = BRW_OPCODE_ADD;
2988 inst->src[2] = reg_undef;
2989 progress = true;
2990 }
2991 break;
2992 case SHADER_OPCODE_BROADCAST:
2993 if (is_uniform(inst->src[0])) {
2994 inst->opcode = BRW_OPCODE_MOV;
2995 inst->sources = 1;
2996 inst->force_writemask_all = true;
2997 progress = true;
2998 } else if (inst->src[1].file == IMM) {
2999 inst->opcode = BRW_OPCODE_MOV;
3000 /* It's possible that the selected component will be too large and
3001 * overflow the register. This can happen if someone does a
3002 * readInvocation() from GLSL or SPIR-V and provides an OOB
3003 * invocationIndex. If this happens and we some how manage
3004 * to constant fold it in and get here, then component() may cause
3005 * us to start reading outside of the VGRF which will lead to an
3006 * assert later. Instead, just let it wrap around if it goes over
3007 * exec_size.
3008 */
3009 const unsigned comp = inst->src[1].ud & (inst->exec_size - 1);
3010 inst->src[0] = component(inst->src[0], comp);
3011 inst->sources = 1;
3012 inst->force_writemask_all = true;
3013 progress = true;
3014 }
3015 break;
3016
3017 case SHADER_OPCODE_SHUFFLE:
3018 if (is_uniform(inst->src[0])) {
3019 inst->opcode = BRW_OPCODE_MOV;
3020 inst->sources = 1;
3021 progress = true;
3022 } else if (inst->src[1].file == IMM) {
3023 inst->opcode = BRW_OPCODE_MOV;
3024 inst->src[0] = component(inst->src[0],
3025 inst->src[1].ud);
3026 inst->sources = 1;
3027 progress = true;
3028 }
3029 break;
3030
3031 default:
3032 break;
3033 }
3034
3035 /* Swap if src[0] is immediate. */
3036 if (progress && inst->is_commutative()) {
3037 if (inst->src[0].file == IMM) {
3038 fs_reg tmp = inst->src[1];
3039 inst->src[1] = inst->src[0];
3040 inst->src[0] = tmp;
3041 }
3042 }
3043 }
3044
3045 if (progress)
3046 invalidate_analysis(DEPENDENCY_INSTRUCTION_DATA_FLOW |
3047 DEPENDENCY_INSTRUCTION_DETAIL);
3048
3049 return progress;
3050 }
3051
3052 /**
3053 * Optimize sample messages that have constant zero values for the trailing
3054 * texture coordinates. We can just reduce the message length for these
3055 * instructions instead of reserving a register for it. Trailing parameters
3056 * that aren't sent default to zero anyway. This will cause the dead code
3057 * eliminator to remove the MOV instruction that would otherwise be emitted to
3058 * set up the zero value.
3059 */
3060 bool
opt_zero_samples()3061 fs_visitor::opt_zero_samples()
3062 {
3063 /* Gfx4 infers the texturing opcode based on the message length so we can't
3064 * change it. Gfx12.5 has restrictions on the number of coordinate
3065 * parameters that have to be provided for some texture types
3066 * (Wa_14013363432).
3067 */
3068 if (devinfo->ver < 5 || devinfo->verx10 == 125)
3069 return false;
3070
3071 bool progress = false;
3072
3073 foreach_block_and_inst(block, fs_inst, inst, cfg) {
3074 if (!inst->is_tex())
3075 continue;
3076
3077 fs_inst *load_payload = (fs_inst *) inst->prev;
3078
3079 if (load_payload->is_head_sentinel() ||
3080 load_payload->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
3081 continue;
3082
3083 /* We don't want to remove the message header or the first parameter.
3084 * Removing the first parameter is not allowed, see the Haswell PRM
3085 * volume 7, page 149:
3086 *
3087 * "Parameter 0 is required except for the sampleinfo message, which
3088 * has no parameter 0"
3089 */
3090 while (inst->mlen > inst->header_size + inst->exec_size / 8 &&
3091 load_payload->src[(inst->mlen - inst->header_size) /
3092 (inst->exec_size / 8) +
3093 inst->header_size - 1].is_zero()) {
3094 inst->mlen -= inst->exec_size / 8;
3095 progress = true;
3096 }
3097 }
3098
3099 if (progress)
3100 invalidate_analysis(DEPENDENCY_INSTRUCTION_DETAIL);
3101
3102 return progress;
3103 }
3104
3105 bool
opt_register_renaming()3106 fs_visitor::opt_register_renaming()
3107 {
3108 bool progress = false;
3109 int depth = 0;
3110
3111 unsigned remap[alloc.count];
3112 memset(remap, ~0u, sizeof(unsigned) * alloc.count);
3113
3114 foreach_block_and_inst(block, fs_inst, inst, cfg) {
3115 if (inst->opcode == BRW_OPCODE_IF || inst->opcode == BRW_OPCODE_DO) {
3116 depth++;
3117 } else if (inst->opcode == BRW_OPCODE_ENDIF ||
3118 inst->opcode == BRW_OPCODE_WHILE) {
3119 depth--;
3120 }
3121
3122 /* Rewrite instruction sources. */
3123 for (int i = 0; i < inst->sources; i++) {
3124 if (inst->src[i].file == VGRF &&
3125 remap[inst->src[i].nr] != ~0u &&
3126 remap[inst->src[i].nr] != inst->src[i].nr) {
3127 inst->src[i].nr = remap[inst->src[i].nr];
3128 progress = true;
3129 }
3130 }
3131
3132 const unsigned dst = inst->dst.nr;
3133
3134 if (depth == 0 &&
3135 inst->dst.file == VGRF &&
3136 alloc.sizes[inst->dst.nr] * REG_SIZE == inst->size_written &&
3137 !inst->is_partial_write()) {
3138 if (remap[dst] == ~0u) {
3139 remap[dst] = dst;
3140 } else {
3141 remap[dst] = alloc.allocate(regs_written(inst));
3142 inst->dst.nr = remap[dst];
3143 progress = true;
3144 }
3145 } else if (inst->dst.file == VGRF &&
3146 remap[dst] != ~0u &&
3147 remap[dst] != dst) {
3148 inst->dst.nr = remap[dst];
3149 progress = true;
3150 }
3151 }
3152
3153 if (progress) {
3154 invalidate_analysis(DEPENDENCY_INSTRUCTION_DETAIL |
3155 DEPENDENCY_VARIABLES);
3156
3157 for (unsigned i = 0; i < ARRAY_SIZE(delta_xy); i++) {
3158 if (delta_xy[i].file == VGRF && remap[delta_xy[i].nr] != ~0u) {
3159 delta_xy[i].nr = remap[delta_xy[i].nr];
3160 }
3161 }
3162 }
3163
3164 return progress;
3165 }
3166
3167 /**
3168 * Remove redundant or useless halts.
3169 *
3170 * For example, we can eliminate halts in the following sequence:
3171 *
3172 * halt (redundant with the next halt)
3173 * halt (useless; jumps to the next instruction)
3174 * halt-target
3175 */
3176 bool
opt_redundant_halt()3177 fs_visitor::opt_redundant_halt()
3178 {
3179 bool progress = false;
3180
3181 unsigned halt_count = 0;
3182 fs_inst *halt_target = NULL;
3183 bblock_t *halt_target_block = NULL;
3184 foreach_block_and_inst(block, fs_inst, inst, cfg) {
3185 if (inst->opcode == BRW_OPCODE_HALT)
3186 halt_count++;
3187
3188 if (inst->opcode == SHADER_OPCODE_HALT_TARGET) {
3189 halt_target = inst;
3190 halt_target_block = block;
3191 break;
3192 }
3193 }
3194
3195 if (!halt_target) {
3196 assert(halt_count == 0);
3197 return false;
3198 }
3199
3200 /* Delete any HALTs immediately before the halt target. */
3201 for (fs_inst *prev = (fs_inst *) halt_target->prev;
3202 !prev->is_head_sentinel() && prev->opcode == BRW_OPCODE_HALT;
3203 prev = (fs_inst *) halt_target->prev) {
3204 prev->remove(halt_target_block);
3205 halt_count--;
3206 progress = true;
3207 }
3208
3209 if (halt_count == 0) {
3210 halt_target->remove(halt_target_block);
3211 progress = true;
3212 }
3213
3214 if (progress)
3215 invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
3216
3217 return progress;
3218 }
3219
3220 /**
3221 * Compute a bitmask with GRF granularity with a bit set for each GRF starting
3222 * from \p r.offset which overlaps the region starting at \p s.offset and
3223 * spanning \p ds bytes.
3224 */
3225 static inline unsigned
mask_relative_to(const fs_reg & r,const fs_reg & s,unsigned ds)3226 mask_relative_to(const fs_reg &r, const fs_reg &s, unsigned ds)
3227 {
3228 const int rel_offset = reg_offset(s) - reg_offset(r);
3229 const int shift = rel_offset / REG_SIZE;
3230 const unsigned n = DIV_ROUND_UP(rel_offset % REG_SIZE + ds, REG_SIZE);
3231 assert(reg_space(r) == reg_space(s) &&
3232 shift >= 0 && shift < int(8 * sizeof(unsigned)));
3233 return ((1 << n) - 1) << shift;
3234 }
3235
3236 bool
compute_to_mrf()3237 fs_visitor::compute_to_mrf()
3238 {
3239 bool progress = false;
3240 int next_ip = 0;
3241
3242 /* No MRFs on Gen >= 7. */
3243 if (devinfo->ver >= 7)
3244 return false;
3245
3246 const fs_live_variables &live = live_analysis.require();
3247
3248 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
3249 int ip = next_ip;
3250 next_ip++;
3251
3252 if (inst->opcode != BRW_OPCODE_MOV ||
3253 inst->is_partial_write() ||
3254 inst->dst.file != MRF || inst->src[0].file != VGRF ||
3255 inst->dst.type != inst->src[0].type ||
3256 inst->src[0].abs || inst->src[0].negate ||
3257 !inst->src[0].is_contiguous() ||
3258 inst->src[0].offset % REG_SIZE != 0)
3259 continue;
3260
3261 /* Can't compute-to-MRF this GRF if someone else was going to
3262 * read it later.
3263 */
3264 if (live.vgrf_end[inst->src[0].nr] > ip)
3265 continue;
3266
3267 /* Found a move of a GRF to a MRF. Let's see if we can go rewrite the
3268 * things that computed the value of all GRFs of the source region. The
3269 * regs_left bitset keeps track of the registers we haven't yet found a
3270 * generating instruction for.
3271 */
3272 unsigned regs_left = (1 << regs_read(inst, 0)) - 1;
3273
3274 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
3275 if (regions_overlap(scan_inst->dst, scan_inst->size_written,
3276 inst->src[0], inst->size_read(0))) {
3277 /* Found the last thing to write our reg we want to turn
3278 * into a compute-to-MRF.
3279 */
3280
3281 /* If this one instruction didn't populate all the
3282 * channels, bail. We might be able to rewrite everything
3283 * that writes that reg, but it would require smarter
3284 * tracking.
3285 */
3286 if (scan_inst->is_partial_write())
3287 break;
3288
3289 /* Handling things not fully contained in the source of the copy
3290 * would need us to understand coalescing out more than one MOV at
3291 * a time.
3292 */
3293 if (!region_contained_in(scan_inst->dst, scan_inst->size_written,
3294 inst->src[0], inst->size_read(0)))
3295 break;
3296
3297 /* SEND instructions can't have MRF as a destination. */
3298 if (scan_inst->mlen)
3299 break;
3300
3301 if (devinfo->ver == 6) {
3302 /* gfx6 math instructions must have the destination be
3303 * GRF, so no compute-to-MRF for them.
3304 */
3305 if (scan_inst->is_math()) {
3306 break;
3307 }
3308 }
3309
3310 /* Clear the bits for any registers this instruction overwrites. */
3311 regs_left &= ~mask_relative_to(
3312 inst->src[0], scan_inst->dst, scan_inst->size_written);
3313 if (!regs_left)
3314 break;
3315 }
3316
3317 /* We don't handle control flow here. Most computation of
3318 * values that end up in MRFs are shortly before the MRF
3319 * write anyway.
3320 */
3321 if (block->start() == scan_inst)
3322 break;
3323
3324 /* You can't read from an MRF, so if someone else reads our
3325 * MRF's source GRF that we wanted to rewrite, that stops us.
3326 */
3327 bool interfered = false;
3328 for (int i = 0; i < scan_inst->sources; i++) {
3329 if (regions_overlap(scan_inst->src[i], scan_inst->size_read(i),
3330 inst->src[0], inst->size_read(0))) {
3331 interfered = true;
3332 }
3333 }
3334 if (interfered)
3335 break;
3336
3337 if (regions_overlap(scan_inst->dst, scan_inst->size_written,
3338 inst->dst, inst->size_written)) {
3339 /* If somebody else writes our MRF here, we can't
3340 * compute-to-MRF before that.
3341 */
3342 break;
3343 }
3344
3345 if (scan_inst->mlen > 0 && scan_inst->base_mrf != -1 &&
3346 regions_overlap(fs_reg(MRF, scan_inst->base_mrf), scan_inst->mlen * REG_SIZE,
3347 inst->dst, inst->size_written)) {
3348 /* Found a SEND instruction, which means that there are
3349 * live values in MRFs from base_mrf to base_mrf +
3350 * scan_inst->mlen - 1. Don't go pushing our MRF write up
3351 * above it.
3352 */
3353 break;
3354 }
3355 }
3356
3357 if (regs_left)
3358 continue;
3359
3360 /* Found all generating instructions of our MRF's source value, so it
3361 * should be safe to rewrite them to point to the MRF directly.
3362 */
3363 regs_left = (1 << regs_read(inst, 0)) - 1;
3364
3365 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
3366 if (regions_overlap(scan_inst->dst, scan_inst->size_written,
3367 inst->src[0], inst->size_read(0))) {
3368 /* Clear the bits for any registers this instruction overwrites. */
3369 regs_left &= ~mask_relative_to(
3370 inst->src[0], scan_inst->dst, scan_inst->size_written);
3371
3372 const unsigned rel_offset = reg_offset(scan_inst->dst) -
3373 reg_offset(inst->src[0]);
3374
3375 if (inst->dst.nr & BRW_MRF_COMPR4) {
3376 /* Apply the same address transformation done by the hardware
3377 * for COMPR4 MRF writes.
3378 */
3379 assert(rel_offset < 2 * REG_SIZE);
3380 scan_inst->dst.nr = inst->dst.nr + rel_offset / REG_SIZE * 4;
3381
3382 /* Clear the COMPR4 bit if the generating instruction is not
3383 * compressed.
3384 */
3385 if (scan_inst->size_written < 2 * REG_SIZE)
3386 scan_inst->dst.nr &= ~BRW_MRF_COMPR4;
3387
3388 } else {
3389 /* Calculate the MRF number the result of this instruction is
3390 * ultimately written to.
3391 */
3392 scan_inst->dst.nr = inst->dst.nr + rel_offset / REG_SIZE;
3393 }
3394
3395 scan_inst->dst.file = MRF;
3396 scan_inst->dst.offset = inst->dst.offset + rel_offset % REG_SIZE;
3397 scan_inst->saturate |= inst->saturate;
3398 if (!regs_left)
3399 break;
3400 }
3401 }
3402
3403 assert(!regs_left);
3404 inst->remove(block);
3405 progress = true;
3406 }
3407
3408 if (progress)
3409 invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
3410
3411 return progress;
3412 }
3413
3414 /**
3415 * Eliminate FIND_LIVE_CHANNEL instructions occurring outside any control
3416 * flow. We could probably do better here with some form of divergence
3417 * analysis.
3418 */
3419 bool
eliminate_find_live_channel()3420 fs_visitor::eliminate_find_live_channel()
3421 {
3422 bool progress = false;
3423 unsigned depth = 0;
3424
3425 if (!brw_stage_has_packed_dispatch(devinfo, stage, stage_prog_data)) {
3426 /* The optimization below assumes that channel zero is live on thread
3427 * dispatch, which may not be the case if the fixed function dispatches
3428 * threads sparsely.
3429 */
3430 return false;
3431 }
3432
3433 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
3434 switch (inst->opcode) {
3435 case BRW_OPCODE_IF:
3436 case BRW_OPCODE_DO:
3437 depth++;
3438 break;
3439
3440 case BRW_OPCODE_ENDIF:
3441 case BRW_OPCODE_WHILE:
3442 depth--;
3443 break;
3444
3445 case BRW_OPCODE_HALT:
3446 /* This can potentially make control flow non-uniform until the end
3447 * of the program.
3448 */
3449 return progress;
3450
3451 case SHADER_OPCODE_FIND_LIVE_CHANNEL:
3452 if (depth == 0) {
3453 inst->opcode = BRW_OPCODE_MOV;
3454 inst->src[0] = brw_imm_ud(0u);
3455 inst->sources = 1;
3456 inst->force_writemask_all = true;
3457 progress = true;
3458 }
3459 break;
3460
3461 default:
3462 break;
3463 }
3464 }
3465
3466 if (progress)
3467 invalidate_analysis(DEPENDENCY_INSTRUCTION_DETAIL);
3468
3469 return progress;
3470 }
3471
3472 /**
3473 * Once we've generated code, try to convert normal FS_OPCODE_FB_WRITE
3474 * instructions to FS_OPCODE_REP_FB_WRITE.
3475 */
3476 void
emit_repclear_shader()3477 fs_visitor::emit_repclear_shader()
3478 {
3479 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
3480 int base_mrf = 0;
3481 int color_mrf = base_mrf + 2;
3482 fs_inst *mov;
3483
3484 if (uniforms > 0) {
3485 mov = bld.exec_all().group(4, 0)
3486 .MOV(brw_message_reg(color_mrf),
3487 fs_reg(UNIFORM, 0, BRW_REGISTER_TYPE_F));
3488 } else {
3489 struct brw_reg reg =
3490 brw_reg(BRW_GENERAL_REGISTER_FILE, 2, 3, 0, 0, BRW_REGISTER_TYPE_UD,
3491 BRW_VERTICAL_STRIDE_8, BRW_WIDTH_2, BRW_HORIZONTAL_STRIDE_4,
3492 BRW_SWIZZLE_XYZW, WRITEMASK_XYZW);
3493
3494 mov = bld.exec_all().group(4, 0)
3495 .MOV(brw_uvec_mrf(4, color_mrf, 0), fs_reg(reg));
3496 }
3497
3498 fs_inst *write = NULL;
3499 if (key->nr_color_regions == 1) {
3500 write = bld.emit(FS_OPCODE_REP_FB_WRITE);
3501 write->saturate = key->clamp_fragment_color;
3502 write->base_mrf = color_mrf;
3503 write->target = 0;
3504 write->header_size = 0;
3505 write->mlen = 1;
3506 } else {
3507 assume(key->nr_color_regions > 0);
3508
3509 struct brw_reg header =
3510 retype(brw_message_reg(base_mrf), BRW_REGISTER_TYPE_UD);
3511 bld.exec_all().group(16, 0)
3512 .MOV(header, retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
3513
3514 for (int i = 0; i < key->nr_color_regions; ++i) {
3515 if (i > 0) {
3516 bld.exec_all().group(1, 0)
3517 .MOV(component(header, 2), brw_imm_ud(i));
3518 }
3519
3520 write = bld.emit(FS_OPCODE_REP_FB_WRITE);
3521 write->saturate = key->clamp_fragment_color;
3522 write->base_mrf = base_mrf;
3523 write->target = i;
3524 write->header_size = 2;
3525 write->mlen = 3;
3526 }
3527 }
3528 write->eot = true;
3529 write->last_rt = true;
3530
3531 calculate_cfg();
3532
3533 assign_constant_locations();
3534 assign_curb_setup();
3535
3536 /* Now that we have the uniform assigned, go ahead and force it to a vec4. */
3537 if (uniforms > 0) {
3538 assert(mov->src[0].file == FIXED_GRF);
3539 mov->src[0] = brw_vec4_grf(mov->src[0].nr, 0);
3540 }
3541
3542 lower_scoreboard();
3543 }
3544
3545 /**
3546 * Walks through basic blocks, looking for repeated MRF writes and
3547 * removing the later ones.
3548 */
3549 bool
remove_duplicate_mrf_writes()3550 fs_visitor::remove_duplicate_mrf_writes()
3551 {
3552 fs_inst *last_mrf_move[BRW_MAX_MRF(devinfo->ver)];
3553 bool progress = false;
3554
3555 /* Need to update the MRF tracking for compressed instructions. */
3556 if (dispatch_width >= 16)
3557 return false;
3558
3559 memset(last_mrf_move, 0, sizeof(last_mrf_move));
3560
3561 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
3562 if (inst->is_control_flow()) {
3563 memset(last_mrf_move, 0, sizeof(last_mrf_move));
3564 }
3565
3566 if (inst->opcode == BRW_OPCODE_MOV &&
3567 inst->dst.file == MRF) {
3568 fs_inst *prev_inst = last_mrf_move[inst->dst.nr];
3569 if (prev_inst && prev_inst->opcode == BRW_OPCODE_MOV &&
3570 inst->dst.equals(prev_inst->dst) &&
3571 inst->src[0].equals(prev_inst->src[0]) &&
3572 inst->saturate == prev_inst->saturate &&
3573 inst->predicate == prev_inst->predicate &&
3574 inst->conditional_mod == prev_inst->conditional_mod &&
3575 inst->exec_size == prev_inst->exec_size) {
3576 inst->remove(block);
3577 progress = true;
3578 continue;
3579 }
3580 }
3581
3582 /* Clear out the last-write records for MRFs that were overwritten. */
3583 if (inst->dst.file == MRF) {
3584 last_mrf_move[inst->dst.nr] = NULL;
3585 }
3586
3587 if (inst->mlen > 0 && inst->base_mrf != -1) {
3588 /* Found a SEND instruction, which will include two or fewer
3589 * implied MRF writes. We could do better here.
3590 */
3591 for (unsigned i = 0; i < inst->implied_mrf_writes(); i++) {
3592 last_mrf_move[inst->base_mrf + i] = NULL;
3593 }
3594 }
3595
3596 /* Clear out any MRF move records whose sources got overwritten. */
3597 for (unsigned i = 0; i < ARRAY_SIZE(last_mrf_move); i++) {
3598 if (last_mrf_move[i] &&
3599 regions_overlap(inst->dst, inst->size_written,
3600 last_mrf_move[i]->src[0],
3601 last_mrf_move[i]->size_read(0))) {
3602 last_mrf_move[i] = NULL;
3603 }
3604 }
3605
3606 if (inst->opcode == BRW_OPCODE_MOV &&
3607 inst->dst.file == MRF &&
3608 inst->src[0].file != ARF &&
3609 !inst->is_partial_write()) {
3610 last_mrf_move[inst->dst.nr] = inst;
3611 }
3612 }
3613
3614 if (progress)
3615 invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
3616
3617 return progress;
3618 }
3619
3620 /**
3621 * Rounding modes for conversion instructions are included for each
3622 * conversion, but right now it is a state. So once it is set,
3623 * we don't need to call it again for subsequent calls.
3624 *
3625 * This is useful for vector/matrices conversions, as setting the
3626 * mode once is enough for the full vector/matrix
3627 */
3628 bool
remove_extra_rounding_modes()3629 fs_visitor::remove_extra_rounding_modes()
3630 {
3631 bool progress = false;
3632 unsigned execution_mode = this->nir->info.float_controls_execution_mode;
3633
3634 brw_rnd_mode base_mode = BRW_RND_MODE_UNSPECIFIED;
3635 if ((FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP16 |
3636 FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP32 |
3637 FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP64) &
3638 execution_mode)
3639 base_mode = BRW_RND_MODE_RTNE;
3640 if ((FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16 |
3641 FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32 |
3642 FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64) &
3643 execution_mode)
3644 base_mode = BRW_RND_MODE_RTZ;
3645
3646 foreach_block (block, cfg) {
3647 brw_rnd_mode prev_mode = base_mode;
3648
3649 foreach_inst_in_block_safe (fs_inst, inst, block) {
3650 if (inst->opcode == SHADER_OPCODE_RND_MODE) {
3651 assert(inst->src[0].file == BRW_IMMEDIATE_VALUE);
3652 const brw_rnd_mode mode = (brw_rnd_mode) inst->src[0].d;
3653 if (mode == prev_mode) {
3654 inst->remove(block);
3655 progress = true;
3656 } else {
3657 prev_mode = mode;
3658 }
3659 }
3660 }
3661 }
3662
3663 if (progress)
3664 invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
3665
3666 return progress;
3667 }
3668
3669 static void
clear_deps_for_inst_src(fs_inst * inst,bool * deps,int first_grf,int grf_len)3670 clear_deps_for_inst_src(fs_inst *inst, bool *deps, int first_grf, int grf_len)
3671 {
3672 /* Clear the flag for registers that actually got read (as expected). */
3673 for (int i = 0; i < inst->sources; i++) {
3674 int grf;
3675 if (inst->src[i].file == VGRF || inst->src[i].file == FIXED_GRF) {
3676 grf = inst->src[i].nr;
3677 } else {
3678 continue;
3679 }
3680
3681 if (grf >= first_grf &&
3682 grf < first_grf + grf_len) {
3683 deps[grf - first_grf] = false;
3684 if (inst->exec_size == 16)
3685 deps[grf - first_grf + 1] = false;
3686 }
3687 }
3688 }
3689
3690 /**
3691 * Implements this workaround for the original 965:
3692 *
3693 * "[DevBW, DevCL] Implementation Restrictions: As the hardware does not
3694 * check for post destination dependencies on this instruction, software
3695 * must ensure that there is no destination hazard for the case of ‘write
3696 * followed by a posted write’ shown in the following example.
3697 *
3698 * 1. mov r3 0
3699 * 2. send r3.xy <rest of send instruction>
3700 * 3. mov r2 r3
3701 *
3702 * Due to no post-destination dependency check on the ‘send’, the above
3703 * code sequence could have two instructions (1 and 2) in flight at the
3704 * same time that both consider ‘r3’ as the target of their final writes.
3705 */
3706 void
insert_gfx4_pre_send_dependency_workarounds(bblock_t * block,fs_inst * inst)3707 fs_visitor::insert_gfx4_pre_send_dependency_workarounds(bblock_t *block,
3708 fs_inst *inst)
3709 {
3710 int write_len = regs_written(inst);
3711 int first_write_grf = inst->dst.nr;
3712 bool needs_dep[BRW_MAX_MRF(devinfo->ver)];
3713 assert(write_len < (int)sizeof(needs_dep) - 1);
3714
3715 memset(needs_dep, false, sizeof(needs_dep));
3716 memset(needs_dep, true, write_len);
3717
3718 clear_deps_for_inst_src(inst, needs_dep, first_write_grf, write_len);
3719
3720 /* Walk backwards looking for writes to registers we're writing which
3721 * aren't read since being written. If we hit the start of the program,
3722 * we assume that there are no outstanding dependencies on entry to the
3723 * program.
3724 */
3725 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
3726 /* If we hit control flow, assume that there *are* outstanding
3727 * dependencies, and force their cleanup before our instruction.
3728 */
3729 if (block->start() == scan_inst && block->num != 0) {
3730 for (int i = 0; i < write_len; i++) {
3731 if (needs_dep[i])
3732 DEP_RESOLVE_MOV(fs_builder(this, block, inst),
3733 first_write_grf + i);
3734 }
3735 return;
3736 }
3737
3738 /* We insert our reads as late as possible on the assumption that any
3739 * instruction but a MOV that might have left us an outstanding
3740 * dependency has more latency than a MOV.
3741 */
3742 if (scan_inst->dst.file == VGRF) {
3743 for (unsigned i = 0; i < regs_written(scan_inst); i++) {
3744 int reg = scan_inst->dst.nr + i;
3745
3746 if (reg >= first_write_grf &&
3747 reg < first_write_grf + write_len &&
3748 needs_dep[reg - first_write_grf]) {
3749 DEP_RESOLVE_MOV(fs_builder(this, block, inst), reg);
3750 needs_dep[reg - first_write_grf] = false;
3751 if (scan_inst->exec_size == 16)
3752 needs_dep[reg - first_write_grf + 1] = false;
3753 }
3754 }
3755 }
3756
3757 /* Clear the flag for registers that actually got read (as expected). */
3758 clear_deps_for_inst_src(scan_inst, needs_dep, first_write_grf, write_len);
3759
3760 /* Continue the loop only if we haven't resolved all the dependencies */
3761 int i;
3762 for (i = 0; i < write_len; i++) {
3763 if (needs_dep[i])
3764 break;
3765 }
3766 if (i == write_len)
3767 return;
3768 }
3769 }
3770
3771 /**
3772 * Implements this workaround for the original 965:
3773 *
3774 * "[DevBW, DevCL] Errata: A destination register from a send can not be
3775 * used as a destination register until after it has been sourced by an
3776 * instruction with a different destination register.
3777 */
3778 void
insert_gfx4_post_send_dependency_workarounds(bblock_t * block,fs_inst * inst)3779 fs_visitor::insert_gfx4_post_send_dependency_workarounds(bblock_t *block, fs_inst *inst)
3780 {
3781 int write_len = regs_written(inst);
3782 unsigned first_write_grf = inst->dst.nr;
3783 bool needs_dep[BRW_MAX_MRF(devinfo->ver)];
3784 assert(write_len < (int)sizeof(needs_dep) - 1);
3785
3786 memset(needs_dep, false, sizeof(needs_dep));
3787 memset(needs_dep, true, write_len);
3788 /* Walk forwards looking for writes to registers we're writing which aren't
3789 * read before being written.
3790 */
3791 foreach_inst_in_block_starting_from(fs_inst, scan_inst, inst) {
3792 /* If we hit control flow, force resolve all remaining dependencies. */
3793 if (block->end() == scan_inst && block->num != cfg->num_blocks - 1) {
3794 for (int i = 0; i < write_len; i++) {
3795 if (needs_dep[i])
3796 DEP_RESOLVE_MOV(fs_builder(this, block, scan_inst),
3797 first_write_grf + i);
3798 }
3799 return;
3800 }
3801
3802 /* Clear the flag for registers that actually got read (as expected). */
3803 clear_deps_for_inst_src(scan_inst, needs_dep, first_write_grf, write_len);
3804
3805 /* We insert our reads as late as possible since they're reading the
3806 * result of a SEND, which has massive latency.
3807 */
3808 if (scan_inst->dst.file == VGRF &&
3809 scan_inst->dst.nr >= first_write_grf &&
3810 scan_inst->dst.nr < first_write_grf + write_len &&
3811 needs_dep[scan_inst->dst.nr - first_write_grf]) {
3812 DEP_RESOLVE_MOV(fs_builder(this, block, scan_inst),
3813 scan_inst->dst.nr);
3814 needs_dep[scan_inst->dst.nr - first_write_grf] = false;
3815 }
3816
3817 /* Continue the loop only if we haven't resolved all the dependencies */
3818 int i;
3819 for (i = 0; i < write_len; i++) {
3820 if (needs_dep[i])
3821 break;
3822 }
3823 if (i == write_len)
3824 return;
3825 }
3826 }
3827
3828 void
insert_gfx4_send_dependency_workarounds()3829 fs_visitor::insert_gfx4_send_dependency_workarounds()
3830 {
3831 if (devinfo->ver != 4 || devinfo->is_g4x)
3832 return;
3833
3834 bool progress = false;
3835
3836 foreach_block_and_inst(block, fs_inst, inst, cfg) {
3837 if (inst->mlen != 0 && inst->dst.file == VGRF) {
3838 insert_gfx4_pre_send_dependency_workarounds(block, inst);
3839 insert_gfx4_post_send_dependency_workarounds(block, inst);
3840 progress = true;
3841 }
3842 }
3843
3844 if (progress)
3845 invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
3846 }
3847
3848 /**
3849 * Turns the generic expression-style uniform pull constant load instruction
3850 * into a hardware-specific series of instructions for loading a pull
3851 * constant.
3852 *
3853 * The expression style allows the CSE pass before this to optimize out
3854 * repeated loads from the same offset, and gives the pre-register-allocation
3855 * scheduling full flexibility, while the conversion to native instructions
3856 * allows the post-register-allocation scheduler the best information
3857 * possible.
3858 *
3859 * Note that execution masking for setting up pull constant loads is special:
3860 * the channels that need to be written are unrelated to the current execution
3861 * mask, since a later instruction will use one of the result channels as a
3862 * source operand for all 8 or 16 of its channels.
3863 */
3864 void
lower_uniform_pull_constant_loads()3865 fs_visitor::lower_uniform_pull_constant_loads()
3866 {
3867 foreach_block_and_inst (block, fs_inst, inst, cfg) {
3868 if (inst->opcode != FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD)
3869 continue;
3870
3871 const fs_reg& surface = inst->src[0];
3872 const fs_reg& offset_B = inst->src[1];
3873 assert(offset_B.file == IMM);
3874
3875 if (devinfo->has_lsc) {
3876 const fs_builder ubld =
3877 fs_builder(this, block, inst).group(8, 0).exec_all();
3878
3879 const fs_reg payload = ubld.vgrf(BRW_REGISTER_TYPE_UD);
3880 ubld.MOV(payload, offset_B);
3881
3882 inst->sfid = GFX12_SFID_UGM;
3883 inst->desc = lsc_msg_desc(devinfo, LSC_OP_LOAD,
3884 1 /* simd_size */,
3885 LSC_ADDR_SURFTYPE_BTI,
3886 LSC_ADDR_SIZE_A32,
3887 1 /* num_coordinates */,
3888 LSC_DATA_SIZE_D32,
3889 inst->size_written / 4,
3890 true /* transpose */,
3891 LSC_CACHE_LOAD_L1STATE_L3MOCS,
3892 true /* has_dest */);
3893
3894 fs_reg ex_desc;
3895 if (surface.file == IMM) {
3896 ex_desc = brw_imm_ud(lsc_bti_ex_desc(devinfo, surface.ud));
3897 } else {
3898 /* We only need the first component for the payload so we can use
3899 * one of the other components for the extended descriptor
3900 */
3901 ex_desc = component(payload, 1);
3902 ubld.group(1, 0).SHL(ex_desc, surface, brw_imm_ud(24));
3903 }
3904
3905 /* Update the original instruction. */
3906 inst->opcode = SHADER_OPCODE_SEND;
3907 inst->mlen = lsc_msg_desc_src0_len(devinfo, inst->desc);
3908 inst->ex_mlen = 0;
3909 inst->header_size = 0;
3910 inst->send_has_side_effects = false;
3911 inst->send_is_volatile = true;
3912 inst->exec_size = 1;
3913
3914 /* Finally, the payload */
3915 inst->resize_sources(3);
3916 inst->src[0] = brw_imm_ud(0); /* desc */
3917 inst->src[1] = ex_desc;
3918 inst->src[2] = payload;
3919
3920 invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES);
3921 } else if (devinfo->ver >= 7) {
3922 const fs_builder ubld = fs_builder(this, block, inst).exec_all();
3923 const fs_reg payload = ubld.group(8, 0).vgrf(BRW_REGISTER_TYPE_UD);
3924
3925 ubld.group(8, 0).MOV(payload,
3926 retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
3927 ubld.group(1, 0).MOV(component(payload, 2),
3928 brw_imm_ud(offset_B.ud / 16));
3929
3930 inst->opcode = FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GFX7;
3931 inst->src[1] = payload;
3932 inst->header_size = 1;
3933 inst->mlen = 1;
3934
3935 invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES);
3936 } else {
3937 /* Before register allocation, we didn't tell the scheduler about the
3938 * MRF we use. We know it's safe to use this MRF because nothing
3939 * else does except for register spill/unspill, which generates and
3940 * uses its MRF within a single IR instruction.
3941 */
3942 inst->base_mrf = FIRST_PULL_LOAD_MRF(devinfo->ver) + 1;
3943 inst->mlen = 1;
3944 }
3945 }
3946 }
3947
3948 bool
lower_load_payload()3949 fs_visitor::lower_load_payload()
3950 {
3951 bool progress = false;
3952
3953 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
3954 if (inst->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
3955 continue;
3956
3957 assert(inst->dst.file == MRF || inst->dst.file == VGRF);
3958 assert(inst->saturate == false);
3959 fs_reg dst = inst->dst;
3960
3961 /* Get rid of COMPR4. We'll add it back in if we need it */
3962 if (dst.file == MRF)
3963 dst.nr = dst.nr & ~BRW_MRF_COMPR4;
3964
3965 const fs_builder ibld(this, block, inst);
3966 const fs_builder ubld = ibld.exec_all();
3967
3968 for (uint8_t i = 0; i < inst->header_size;) {
3969 /* Number of header GRFs to initialize at once with a single MOV
3970 * instruction.
3971 */
3972 const unsigned n =
3973 (i + 1 < inst->header_size && inst->src[i].stride == 1 &&
3974 inst->src[i + 1].equals(byte_offset(inst->src[i], REG_SIZE))) ?
3975 2 : 1;
3976
3977 if (inst->src[i].file != BAD_FILE)
3978 ubld.group(8 * n, 0).MOV(retype(dst, BRW_REGISTER_TYPE_UD),
3979 retype(inst->src[i], BRW_REGISTER_TYPE_UD));
3980
3981 dst = byte_offset(dst, n * REG_SIZE);
3982 i += n;
3983 }
3984
3985 if (inst->dst.file == MRF && (inst->dst.nr & BRW_MRF_COMPR4) &&
3986 inst->exec_size > 8) {
3987 /* In this case, the payload portion of the LOAD_PAYLOAD isn't
3988 * a straightforward copy. Instead, the result of the
3989 * LOAD_PAYLOAD is treated as interleaved and the first four
3990 * non-header sources are unpacked as:
3991 *
3992 * m + 0: r0
3993 * m + 1: g0
3994 * m + 2: b0
3995 * m + 3: a0
3996 * m + 4: r1
3997 * m + 5: g1
3998 * m + 6: b1
3999 * m + 7: a1
4000 *
4001 * This is used for gen <= 5 fb writes.
4002 */
4003 assert(inst->exec_size == 16);
4004 assert(inst->header_size + 4 <= inst->sources);
4005 for (uint8_t i = inst->header_size; i < inst->header_size + 4; i++) {
4006 if (inst->src[i].file != BAD_FILE) {
4007 if (devinfo->has_compr4) {
4008 fs_reg compr4_dst = retype(dst, inst->src[i].type);
4009 compr4_dst.nr |= BRW_MRF_COMPR4;
4010 ibld.MOV(compr4_dst, inst->src[i]);
4011 } else {
4012 /* Platform doesn't have COMPR4. We have to fake it */
4013 fs_reg mov_dst = retype(dst, inst->src[i].type);
4014 ibld.quarter(0).MOV(mov_dst, quarter(inst->src[i], 0));
4015 mov_dst.nr += 4;
4016 ibld.quarter(1).MOV(mov_dst, quarter(inst->src[i], 1));
4017 }
4018 }
4019
4020 dst.nr++;
4021 }
4022
4023 /* The loop above only ever incremented us through the first set
4024 * of 4 registers. However, thanks to the magic of COMPR4, we
4025 * actually wrote to the first 8 registers, so we need to take
4026 * that into account now.
4027 */
4028 dst.nr += 4;
4029
4030 /* The COMPR4 code took care of the first 4 sources. We'll let
4031 * the regular path handle any remaining sources. Yes, we are
4032 * modifying the instruction but we're about to delete it so
4033 * this really doesn't hurt anything.
4034 */
4035 inst->header_size += 4;
4036 }
4037
4038 for (uint8_t i = inst->header_size; i < inst->sources; i++) {
4039 if (inst->src[i].file != BAD_FILE) {
4040 dst.type = inst->src[i].type;
4041 ibld.MOV(dst, inst->src[i]);
4042 } else {
4043 dst.type = BRW_REGISTER_TYPE_UD;
4044 }
4045 dst = offset(dst, ibld, 1);
4046 }
4047
4048 inst->remove(block);
4049 progress = true;
4050 }
4051
4052 if (progress)
4053 invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
4054
4055 return progress;
4056 }
4057
4058 void
lower_mul_dword_inst(fs_inst * inst,bblock_t * block)4059 fs_visitor::lower_mul_dword_inst(fs_inst *inst, bblock_t *block)
4060 {
4061 const fs_builder ibld(this, block, inst);
4062
4063 const bool ud = (inst->src[1].type == BRW_REGISTER_TYPE_UD);
4064 if (inst->src[1].file == IMM &&
4065 (( ud && inst->src[1].ud <= UINT16_MAX) ||
4066 (!ud && inst->src[1].d <= INT16_MAX && inst->src[1].d >= INT16_MIN))) {
4067 /* The MUL instruction isn't commutative. On Gen <= 6, only the low
4068 * 16-bits of src0 are read, and on Gen >= 7 only the low 16-bits of
4069 * src1 are used.
4070 *
4071 * If multiplying by an immediate value that fits in 16-bits, do a
4072 * single MUL instruction with that value in the proper location.
4073 */
4074 if (devinfo->ver < 7) {
4075 fs_reg imm(VGRF, alloc.allocate(dispatch_width / 8), inst->dst.type);
4076 ibld.MOV(imm, inst->src[1]);
4077 ibld.MUL(inst->dst, imm, inst->src[0]);
4078 } else {
4079 ibld.MUL(inst->dst, inst->src[0],
4080 ud ? brw_imm_uw(inst->src[1].ud)
4081 : brw_imm_w(inst->src[1].d));
4082 }
4083 } else {
4084 /* Gen < 8 (and some Gfx8+ low-power parts like Cherryview) cannot
4085 * do 32-bit integer multiplication in one instruction, but instead
4086 * must do a sequence (which actually calculates a 64-bit result):
4087 *
4088 * mul(8) acc0<1>D g3<8,8,1>D g4<8,8,1>D
4089 * mach(8) null g3<8,8,1>D g4<8,8,1>D
4090 * mov(8) g2<1>D acc0<8,8,1>D
4091 *
4092 * But on Gen > 6, the ability to use second accumulator register
4093 * (acc1) for non-float data types was removed, preventing a simple
4094 * implementation in SIMD16. A 16-channel result can be calculated by
4095 * executing the three instructions twice in SIMD8, once with quarter
4096 * control of 1Q for the first eight channels and again with 2Q for
4097 * the second eight channels.
4098 *
4099 * Which accumulator register is implicitly accessed (by AccWrEnable
4100 * for instance) is determined by the quarter control. Unfortunately
4101 * Ivybridge (and presumably Baytrail) has a hardware bug in which an
4102 * implicit accumulator access by an instruction with 2Q will access
4103 * acc1 regardless of whether the data type is usable in acc1.
4104 *
4105 * Specifically, the 2Q mach(8) writes acc1 which does not exist for
4106 * integer data types.
4107 *
4108 * Since we only want the low 32-bits of the result, we can do two
4109 * 32-bit x 16-bit multiplies (like the mul and mach are doing), and
4110 * adjust the high result and add them (like the mach is doing):
4111 *
4112 * mul(8) g7<1>D g3<8,8,1>D g4.0<8,8,1>UW
4113 * mul(8) g8<1>D g3<8,8,1>D g4.1<8,8,1>UW
4114 * shl(8) g9<1>D g8<8,8,1>D 16D
4115 * add(8) g2<1>D g7<8,8,1>D g8<8,8,1>D
4116 *
4117 * We avoid the shl instruction by realizing that we only want to add
4118 * the low 16-bits of the "high" result to the high 16-bits of the
4119 * "low" result and using proper regioning on the add:
4120 *
4121 * mul(8) g7<1>D g3<8,8,1>D g4.0<16,8,2>UW
4122 * mul(8) g8<1>D g3<8,8,1>D g4.1<16,8,2>UW
4123 * add(8) g7.1<2>UW g7.1<16,8,2>UW g8<16,8,2>UW
4124 *
4125 * Since it does not use the (single) accumulator register, we can
4126 * schedule multi-component multiplications much better.
4127 */
4128
4129 bool needs_mov = false;
4130 fs_reg orig_dst = inst->dst;
4131
4132 /* Get a new VGRF for the "low" 32x16-bit multiplication result if
4133 * reusing the original destination is impossible due to hardware
4134 * restrictions, source/destination overlap, or it being the null
4135 * register.
4136 */
4137 fs_reg low = inst->dst;
4138 if (orig_dst.is_null() || orig_dst.file == MRF ||
4139 regions_overlap(inst->dst, inst->size_written,
4140 inst->src[0], inst->size_read(0)) ||
4141 regions_overlap(inst->dst, inst->size_written,
4142 inst->src[1], inst->size_read(1)) ||
4143 inst->dst.stride >= 4) {
4144 needs_mov = true;
4145 low = fs_reg(VGRF, alloc.allocate(regs_written(inst)),
4146 inst->dst.type);
4147 }
4148
4149 /* Get a new VGRF but keep the same stride as inst->dst */
4150 fs_reg high(VGRF, alloc.allocate(regs_written(inst)), inst->dst.type);
4151 high.stride = inst->dst.stride;
4152 high.offset = inst->dst.offset % REG_SIZE;
4153
4154 if (devinfo->ver >= 7) {
4155 /* From Wa_1604601757:
4156 *
4157 * "When multiplying a DW and any lower precision integer, source modifier
4158 * is not supported."
4159 *
4160 * An unsupported negate modifier on src[1] would ordinarily be
4161 * lowered by the subsequent lower_regioning pass. In this case that
4162 * pass would spawn another dword multiply. Instead, lower the
4163 * modifier first.
4164 */
4165 const bool source_mods_unsupported = (devinfo->ver >= 12);
4166
4167 if (inst->src[1].abs || (inst->src[1].negate &&
4168 source_mods_unsupported))
4169 lower_src_modifiers(this, block, inst, 1);
4170
4171 if (inst->src[1].file == IMM) {
4172 ibld.MUL(low, inst->src[0],
4173 brw_imm_uw(inst->src[1].ud & 0xffff));
4174 ibld.MUL(high, inst->src[0],
4175 brw_imm_uw(inst->src[1].ud >> 16));
4176 } else {
4177 ibld.MUL(low, inst->src[0],
4178 subscript(inst->src[1], BRW_REGISTER_TYPE_UW, 0));
4179 ibld.MUL(high, inst->src[0],
4180 subscript(inst->src[1], BRW_REGISTER_TYPE_UW, 1));
4181 }
4182 } else {
4183 if (inst->src[0].abs)
4184 lower_src_modifiers(this, block, inst, 0);
4185
4186 ibld.MUL(low, subscript(inst->src[0], BRW_REGISTER_TYPE_UW, 0),
4187 inst->src[1]);
4188 ibld.MUL(high, subscript(inst->src[0], BRW_REGISTER_TYPE_UW, 1),
4189 inst->src[1]);
4190 }
4191
4192 ibld.ADD(subscript(low, BRW_REGISTER_TYPE_UW, 1),
4193 subscript(low, BRW_REGISTER_TYPE_UW, 1),
4194 subscript(high, BRW_REGISTER_TYPE_UW, 0));
4195
4196 if (needs_mov || inst->conditional_mod)
4197 set_condmod(inst->conditional_mod, ibld.MOV(orig_dst, low));
4198 }
4199 }
4200
4201 void
lower_mul_qword_inst(fs_inst * inst,bblock_t * block)4202 fs_visitor::lower_mul_qword_inst(fs_inst *inst, bblock_t *block)
4203 {
4204 const fs_builder ibld(this, block, inst);
4205
4206 /* Considering two 64-bit integers ab and cd where each letter ab
4207 * corresponds to 32 bits, we get a 128-bit result WXYZ. We * cd
4208 * only need to provide the YZ part of the result. -------
4209 * BD
4210 * Only BD needs to be 64 bits. For AD and BC we only care + AD
4211 * about the lower 32 bits (since they are part of the upper + BC
4212 * 32 bits of our result). AC is not needed since it starts + AC
4213 * on the 65th bit of the result. -------
4214 * WXYZ
4215 */
4216 unsigned int q_regs = regs_written(inst);
4217 unsigned int d_regs = (q_regs + 1) / 2;
4218
4219 fs_reg bd(VGRF, alloc.allocate(q_regs), BRW_REGISTER_TYPE_UQ);
4220 fs_reg ad(VGRF, alloc.allocate(d_regs), BRW_REGISTER_TYPE_UD);
4221 fs_reg bc(VGRF, alloc.allocate(d_regs), BRW_REGISTER_TYPE_UD);
4222
4223 /* Here we need the full 64 bit result for 32b * 32b. */
4224 if (devinfo->has_integer_dword_mul) {
4225 ibld.MUL(bd, subscript(inst->src[0], BRW_REGISTER_TYPE_UD, 0),
4226 subscript(inst->src[1], BRW_REGISTER_TYPE_UD, 0));
4227 } else {
4228 fs_reg bd_high(VGRF, alloc.allocate(d_regs), BRW_REGISTER_TYPE_UD);
4229 fs_reg bd_low(VGRF, alloc.allocate(d_regs), BRW_REGISTER_TYPE_UD);
4230 fs_reg acc = retype(brw_acc_reg(inst->exec_size), BRW_REGISTER_TYPE_UD);
4231
4232 fs_inst *mul = ibld.MUL(acc,
4233 subscript(inst->src[0], BRW_REGISTER_TYPE_UD, 0),
4234 subscript(inst->src[1], BRW_REGISTER_TYPE_UW, 0));
4235 mul->writes_accumulator = true;
4236
4237 ibld.MACH(bd_high, subscript(inst->src[0], BRW_REGISTER_TYPE_UD, 0),
4238 subscript(inst->src[1], BRW_REGISTER_TYPE_UD, 0));
4239 ibld.MOV(bd_low, acc);
4240
4241 ibld.MOV(subscript(bd, BRW_REGISTER_TYPE_UD, 0), bd_low);
4242 ibld.MOV(subscript(bd, BRW_REGISTER_TYPE_UD, 1), bd_high);
4243 }
4244
4245 ibld.MUL(ad, subscript(inst->src[0], BRW_REGISTER_TYPE_UD, 1),
4246 subscript(inst->src[1], BRW_REGISTER_TYPE_UD, 0));
4247 ibld.MUL(bc, subscript(inst->src[0], BRW_REGISTER_TYPE_UD, 0),
4248 subscript(inst->src[1], BRW_REGISTER_TYPE_UD, 1));
4249
4250 ibld.ADD(ad, ad, bc);
4251 ibld.ADD(subscript(bd, BRW_REGISTER_TYPE_UD, 1),
4252 subscript(bd, BRW_REGISTER_TYPE_UD, 1), ad);
4253
4254 if (devinfo->has_64bit_int) {
4255 ibld.MOV(inst->dst, bd);
4256 } else {
4257 ibld.MOV(subscript(inst->dst, BRW_REGISTER_TYPE_UD, 0),
4258 subscript(bd, BRW_REGISTER_TYPE_UD, 0));
4259 ibld.MOV(subscript(inst->dst, BRW_REGISTER_TYPE_UD, 1),
4260 subscript(bd, BRW_REGISTER_TYPE_UD, 1));
4261 }
4262 }
4263
4264 void
lower_mulh_inst(fs_inst * inst,bblock_t * block)4265 fs_visitor::lower_mulh_inst(fs_inst *inst, bblock_t *block)
4266 {
4267 const fs_builder ibld(this, block, inst);
4268
4269 /* According to the BDW+ BSpec page for the "Multiply Accumulate
4270 * High" instruction:
4271 *
4272 * "An added preliminary mov is required for source modification on
4273 * src1:
4274 * mov (8) r3.0<1>:d -r3<8;8,1>:d
4275 * mul (8) acc0:d r2.0<8;8,1>:d r3.0<16;8,2>:uw
4276 * mach (8) r5.0<1>:d r2.0<8;8,1>:d r3.0<8;8,1>:d"
4277 */
4278 if (devinfo->ver >= 8 && (inst->src[1].negate || inst->src[1].abs))
4279 lower_src_modifiers(this, block, inst, 1);
4280
4281 /* Should have been lowered to 8-wide. */
4282 assert(inst->exec_size <= get_lowered_simd_width(devinfo, inst));
4283 const fs_reg acc = retype(brw_acc_reg(inst->exec_size), inst->dst.type);
4284 fs_inst *mul = ibld.MUL(acc, inst->src[0], inst->src[1]);
4285 fs_inst *mach = ibld.MACH(inst->dst, inst->src[0], inst->src[1]);
4286
4287 if (devinfo->ver >= 8) {
4288 /* Until Gfx8, integer multiplies read 32-bits from one source,
4289 * and 16-bits from the other, and relying on the MACH instruction
4290 * to generate the high bits of the result.
4291 *
4292 * On Gfx8, the multiply instruction does a full 32x32-bit
4293 * multiply, but in order to do a 64-bit multiply we can simulate
4294 * the previous behavior and then use a MACH instruction.
4295 */
4296 assert(mul->src[1].type == BRW_REGISTER_TYPE_D ||
4297 mul->src[1].type == BRW_REGISTER_TYPE_UD);
4298 mul->src[1].type = BRW_REGISTER_TYPE_UW;
4299 mul->src[1].stride *= 2;
4300
4301 if (mul->src[1].file == IMM) {
4302 mul->src[1] = brw_imm_uw(mul->src[1].ud);
4303 }
4304 } else if (devinfo->verx10 == 70 &&
4305 inst->group > 0) {
4306 /* Among other things the quarter control bits influence which
4307 * accumulator register is used by the hardware for instructions
4308 * that access the accumulator implicitly (e.g. MACH). A
4309 * second-half instruction would normally map to acc1, which
4310 * doesn't exist on Gfx7 and up (the hardware does emulate it for
4311 * floating-point instructions *only* by taking advantage of the
4312 * extra precision of acc0 not normally used for floating point
4313 * arithmetic).
4314 *
4315 * HSW and up are careful enough not to try to access an
4316 * accumulator register that doesn't exist, but on earlier Gfx7
4317 * hardware we need to make sure that the quarter control bits are
4318 * zero to avoid non-deterministic behaviour and emit an extra MOV
4319 * to get the result masked correctly according to the current
4320 * channel enables.
4321 */
4322 mach->group = 0;
4323 mach->force_writemask_all = true;
4324 mach->dst = ibld.vgrf(inst->dst.type);
4325 ibld.MOV(inst->dst, mach->dst);
4326 }
4327 }
4328
4329 bool
lower_integer_multiplication()4330 fs_visitor::lower_integer_multiplication()
4331 {
4332 bool progress = false;
4333
4334 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
4335 if (inst->opcode == BRW_OPCODE_MUL) {
4336 /* If the instruction is already in a form that does not need lowering,
4337 * return early.
4338 */
4339 if (devinfo->ver >= 7) {
4340 if (type_sz(inst->src[1].type) < 4 && type_sz(inst->src[0].type) <= 4)
4341 continue;
4342 } else {
4343 if (type_sz(inst->src[0].type) < 4 && type_sz(inst->src[1].type) <= 4)
4344 continue;
4345 }
4346
4347 if ((inst->dst.type == BRW_REGISTER_TYPE_Q ||
4348 inst->dst.type == BRW_REGISTER_TYPE_UQ) &&
4349 (inst->src[0].type == BRW_REGISTER_TYPE_Q ||
4350 inst->src[0].type == BRW_REGISTER_TYPE_UQ) &&
4351 (inst->src[1].type == BRW_REGISTER_TYPE_Q ||
4352 inst->src[1].type == BRW_REGISTER_TYPE_UQ)) {
4353 lower_mul_qword_inst(inst, block);
4354 inst->remove(block);
4355 progress = true;
4356 } else if (!inst->dst.is_accumulator() &&
4357 (inst->dst.type == BRW_REGISTER_TYPE_D ||
4358 inst->dst.type == BRW_REGISTER_TYPE_UD) &&
4359 (!devinfo->has_integer_dword_mul ||
4360 devinfo->verx10 >= 125)) {
4361 lower_mul_dword_inst(inst, block);
4362 inst->remove(block);
4363 progress = true;
4364 }
4365 } else if (inst->opcode == SHADER_OPCODE_MULH) {
4366 lower_mulh_inst(inst, block);
4367 inst->remove(block);
4368 progress = true;
4369 }
4370
4371 }
4372
4373 if (progress)
4374 invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES);
4375
4376 return progress;
4377 }
4378
4379 bool
lower_minmax()4380 fs_visitor::lower_minmax()
4381 {
4382 assert(devinfo->ver < 6);
4383
4384 bool progress = false;
4385
4386 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
4387 const fs_builder ibld(this, block, inst);
4388
4389 if (inst->opcode == BRW_OPCODE_SEL &&
4390 inst->predicate == BRW_PREDICATE_NONE) {
4391 /* If src1 is an immediate value that is not NaN, then it can't be
4392 * NaN. In that case, emit CMP because it is much better for cmod
4393 * propagation. Likewise if src1 is not float. Gfx4 and Gfx5 don't
4394 * support HF or DF, so it is not necessary to check for those.
4395 */
4396 if (inst->src[1].type != BRW_REGISTER_TYPE_F ||
4397 (inst->src[1].file == IMM && !isnan(inst->src[1].f))) {
4398 ibld.CMP(ibld.null_reg_d(), inst->src[0], inst->src[1],
4399 inst->conditional_mod);
4400 } else {
4401 ibld.CMPN(ibld.null_reg_d(), inst->src[0], inst->src[1],
4402 inst->conditional_mod);
4403 }
4404 inst->predicate = BRW_PREDICATE_NORMAL;
4405 inst->conditional_mod = BRW_CONDITIONAL_NONE;
4406
4407 progress = true;
4408 }
4409 }
4410
4411 if (progress)
4412 invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
4413
4414 return progress;
4415 }
4416
4417 bool
lower_sub_sat()4418 fs_visitor::lower_sub_sat()
4419 {
4420 bool progress = false;
4421
4422 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
4423 const fs_builder ibld(this, block, inst);
4424
4425 if (inst->opcode == SHADER_OPCODE_USUB_SAT ||
4426 inst->opcode == SHADER_OPCODE_ISUB_SAT) {
4427 /* The fundamental problem is the hardware performs source negation
4428 * at the bit width of the source. If the source is 0x80000000D, the
4429 * negation is 0x80000000D. As a result, subtractSaturate(0,
4430 * 0x80000000) will produce 0x80000000 instead of 0x7fffffff. There
4431 * are at least three ways to resolve this:
4432 *
4433 * 1. Use the accumulator for the negated source. The accumulator is
4434 * 33 bits, so our source 0x80000000 is sign-extended to
4435 * 0x1800000000. The negation of which is 0x080000000. This
4436 * doesn't help for 64-bit integers (which are already bigger than
4437 * 33 bits). There are also only 8 accumulators, so SIMD16 or
4438 * SIMD32 instructions would have to be split into multiple SIMD8
4439 * instructions.
4440 *
4441 * 2. Use slightly different math. For any n-bit value x, we know (x
4442 * >> 1) != -(x >> 1). We can use this fact to only do
4443 * subtractions involving (x >> 1). subtractSaturate(a, b) ==
4444 * subtractSaturate(subtractSaturate(a, (b >> 1)), b - (b >> 1)).
4445 *
4446 * 3. For unsigned sources, it is sufficient to replace the
4447 * subtractSaturate with (a > b) ? a - b : 0.
4448 *
4449 * It may also be possible to use the SUBB instruction. This
4450 * implicitly writes the accumulator, so it could only be used in the
4451 * same situations as #1 above. It is further limited by only
4452 * allowing UD sources.
4453 */
4454 if (inst->exec_size == 8 && inst->src[0].type != BRW_REGISTER_TYPE_Q &&
4455 inst->src[0].type != BRW_REGISTER_TYPE_UQ) {
4456 fs_reg acc(ARF, BRW_ARF_ACCUMULATOR, inst->src[1].type);
4457
4458 ibld.MOV(acc, inst->src[1]);
4459 fs_inst *add = ibld.ADD(inst->dst, acc, inst->src[0]);
4460 add->saturate = true;
4461 add->src[0].negate = true;
4462 } else if (inst->opcode == SHADER_OPCODE_ISUB_SAT) {
4463 /* tmp = src1 >> 1;
4464 * dst = add.sat(add.sat(src0, -tmp), -(src1 - tmp));
4465 */
4466 fs_reg tmp1 = ibld.vgrf(inst->src[0].type);
4467 fs_reg tmp2 = ibld.vgrf(inst->src[0].type);
4468 fs_reg tmp3 = ibld.vgrf(inst->src[0].type);
4469 fs_inst *add;
4470
4471 ibld.SHR(tmp1, inst->src[1], brw_imm_d(1));
4472
4473 add = ibld.ADD(tmp2, inst->src[1], tmp1);
4474 add->src[1].negate = true;
4475
4476 add = ibld.ADD(tmp3, inst->src[0], tmp1);
4477 add->src[1].negate = true;
4478 add->saturate = true;
4479
4480 add = ibld.ADD(inst->dst, tmp3, tmp2);
4481 add->src[1].negate = true;
4482 add->saturate = true;
4483 } else {
4484 /* a > b ? a - b : 0 */
4485 ibld.CMP(ibld.null_reg_d(), inst->src[0], inst->src[1],
4486 BRW_CONDITIONAL_G);
4487
4488 fs_inst *add = ibld.ADD(inst->dst, inst->src[0], inst->src[1]);
4489 add->src[1].negate = !add->src[1].negate;
4490
4491 ibld.SEL(inst->dst, inst->dst, brw_imm_ud(0))
4492 ->predicate = BRW_PREDICATE_NORMAL;
4493 }
4494
4495 inst->remove(block);
4496 progress = true;
4497 }
4498 }
4499
4500 if (progress)
4501 invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES);
4502
4503 return progress;
4504 }
4505
4506 /**
4507 * Get the mask of SIMD channels enabled during dispatch and not yet disabled
4508 * by discard. Due to the layout of the sample mask in the fragment shader
4509 * thread payload, \p bld is required to have a dispatch_width() not greater
4510 * than 16 for fragment shaders.
4511 */
4512 static fs_reg
sample_mask_reg(const fs_builder & bld)4513 sample_mask_reg(const fs_builder &bld)
4514 {
4515 const fs_visitor *v = static_cast<const fs_visitor *>(bld.shader);
4516
4517 if (v->stage != MESA_SHADER_FRAGMENT) {
4518 return brw_imm_ud(0xffffffff);
4519 } else if (brw_wm_prog_data(v->stage_prog_data)->uses_kill) {
4520 assert(bld.dispatch_width() <= 16);
4521 return brw_flag_subreg(sample_mask_flag_subreg(v) + bld.group() / 16);
4522 } else {
4523 assert(v->devinfo->ver >= 6 && bld.dispatch_width() <= 16);
4524 return retype(brw_vec1_grf((bld.group() >= 16 ? 2 : 1), 7),
4525 BRW_REGISTER_TYPE_UW);
4526 }
4527 }
4528
4529 static void
setup_color_payload(const fs_builder & bld,const brw_wm_prog_key * key,fs_reg * dst,fs_reg color,unsigned components)4530 setup_color_payload(const fs_builder &bld, const brw_wm_prog_key *key,
4531 fs_reg *dst, fs_reg color, unsigned components)
4532 {
4533 if (key->clamp_fragment_color) {
4534 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_F, 4);
4535 assert(color.type == BRW_REGISTER_TYPE_F);
4536
4537 for (unsigned i = 0; i < components; i++)
4538 set_saturate(true,
4539 bld.MOV(offset(tmp, bld, i), offset(color, bld, i)));
4540
4541 color = tmp;
4542 }
4543
4544 for (unsigned i = 0; i < components; i++)
4545 dst[i] = offset(color, bld, i);
4546 }
4547
4548 uint32_t
brw_fb_write_msg_control(const fs_inst * inst,const struct brw_wm_prog_data * prog_data)4549 brw_fb_write_msg_control(const fs_inst *inst,
4550 const struct brw_wm_prog_data *prog_data)
4551 {
4552 uint32_t mctl;
4553
4554 if (inst->opcode == FS_OPCODE_REP_FB_WRITE) {
4555 assert(inst->group == 0 && inst->exec_size == 16);
4556 mctl = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD16_SINGLE_SOURCE_REPLICATED;
4557 } else if (prog_data->dual_src_blend) {
4558 assert(inst->exec_size == 8);
4559
4560 if (inst->group % 16 == 0)
4561 mctl = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD8_DUAL_SOURCE_SUBSPAN01;
4562 else if (inst->group % 16 == 8)
4563 mctl = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD8_DUAL_SOURCE_SUBSPAN23;
4564 else
4565 unreachable("Invalid dual-source FB write instruction group");
4566 } else {
4567 assert(inst->group == 0 || (inst->group == 16 && inst->exec_size == 16));
4568
4569 if (inst->exec_size == 16)
4570 mctl = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD16_SINGLE_SOURCE;
4571 else if (inst->exec_size == 8)
4572 mctl = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD8_SINGLE_SOURCE_SUBSPAN01;
4573 else
4574 unreachable("Invalid FB write execution size");
4575 }
4576
4577 return mctl;
4578 }
4579
4580 static void
lower_fb_write_logical_send(const fs_builder & bld,fs_inst * inst,const struct brw_wm_prog_data * prog_data,const brw_wm_prog_key * key,const fs_visitor::thread_payload & payload)4581 lower_fb_write_logical_send(const fs_builder &bld, fs_inst *inst,
4582 const struct brw_wm_prog_data *prog_data,
4583 const brw_wm_prog_key *key,
4584 const fs_visitor::thread_payload &payload)
4585 {
4586 assert(inst->src[FB_WRITE_LOGICAL_SRC_COMPONENTS].file == IMM);
4587 const intel_device_info *devinfo = bld.shader->devinfo;
4588 const fs_reg &color0 = inst->src[FB_WRITE_LOGICAL_SRC_COLOR0];
4589 const fs_reg &color1 = inst->src[FB_WRITE_LOGICAL_SRC_COLOR1];
4590 const fs_reg &src0_alpha = inst->src[FB_WRITE_LOGICAL_SRC_SRC0_ALPHA];
4591 const fs_reg &src_depth = inst->src[FB_WRITE_LOGICAL_SRC_SRC_DEPTH];
4592 const fs_reg &dst_depth = inst->src[FB_WRITE_LOGICAL_SRC_DST_DEPTH];
4593 const fs_reg &src_stencil = inst->src[FB_WRITE_LOGICAL_SRC_SRC_STENCIL];
4594 fs_reg sample_mask = inst->src[FB_WRITE_LOGICAL_SRC_OMASK];
4595 const unsigned components =
4596 inst->src[FB_WRITE_LOGICAL_SRC_COMPONENTS].ud;
4597
4598 assert(inst->target != 0 || src0_alpha.file == BAD_FILE);
4599
4600 /* We can potentially have a message length of up to 15, so we have to set
4601 * base_mrf to either 0 or 1 in order to fit in m0..m15.
4602 */
4603 fs_reg sources[15];
4604 int header_size = 2, payload_header_size;
4605 unsigned length = 0;
4606
4607 if (devinfo->ver < 6) {
4608 /* TODO: Support SIMD32 on gfx4-5 */
4609 assert(bld.group() < 16);
4610
4611 /* For gfx4-5, we always have a header consisting of g0 and g1. We have
4612 * an implied MOV from g0,g1 to the start of the message. The MOV from
4613 * g0 is handled by the hardware and the MOV from g1 is provided by the
4614 * generator. This is required because, on gfx4-5, the generator may
4615 * generate two write messages with different message lengths in order
4616 * to handle AA data properly.
4617 *
4618 * Also, since the pixel mask goes in the g0 portion of the message and
4619 * since render target writes are the last thing in the shader, we write
4620 * the pixel mask directly into g0 and it will get copied as part of the
4621 * implied write.
4622 */
4623 if (prog_data->uses_kill) {
4624 bld.exec_all().group(1, 0)
4625 .MOV(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UW),
4626 sample_mask_reg(bld));
4627 }
4628
4629 assert(length == 0);
4630 length = 2;
4631 } else if ((devinfo->verx10 <= 70 &&
4632 prog_data->uses_kill) ||
4633 (devinfo->ver < 11 &&
4634 (color1.file != BAD_FILE || key->nr_color_regions > 1))) {
4635 /* From the Sandy Bridge PRM, volume 4, page 198:
4636 *
4637 * "Dispatched Pixel Enables. One bit per pixel indicating
4638 * which pixels were originally enabled when the thread was
4639 * dispatched. This field is only required for the end-of-
4640 * thread message and on all dual-source messages."
4641 */
4642 const fs_builder ubld = bld.exec_all().group(8, 0);
4643
4644 fs_reg header = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
4645 if (bld.group() < 16) {
4646 /* The header starts off as g0 and g1 for the first half */
4647 ubld.group(16, 0).MOV(header, retype(brw_vec8_grf(0, 0),
4648 BRW_REGISTER_TYPE_UD));
4649 } else {
4650 /* The header starts off as g0 and g2 for the second half */
4651 assert(bld.group() < 32);
4652 const fs_reg header_sources[2] = {
4653 retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD),
4654 retype(brw_vec8_grf(2, 0), BRW_REGISTER_TYPE_UD),
4655 };
4656 ubld.LOAD_PAYLOAD(header, header_sources, 2, 0);
4657
4658 /* Gfx12 will require additional fix-ups if we ever hit this path. */
4659 assert(devinfo->ver < 12);
4660 }
4661
4662 uint32_t g00_bits = 0;
4663
4664 /* Set "Source0 Alpha Present to RenderTarget" bit in message
4665 * header.
4666 */
4667 if (src0_alpha.file != BAD_FILE)
4668 g00_bits |= 1 << 11;
4669
4670 /* Set computes stencil to render target */
4671 if (prog_data->computed_stencil)
4672 g00_bits |= 1 << 14;
4673
4674 if (g00_bits) {
4675 /* OR extra bits into g0.0 */
4676 ubld.group(1, 0).OR(component(header, 0),
4677 retype(brw_vec1_grf(0, 0),
4678 BRW_REGISTER_TYPE_UD),
4679 brw_imm_ud(g00_bits));
4680 }
4681
4682 /* Set the render target index for choosing BLEND_STATE. */
4683 if (inst->target > 0) {
4684 ubld.group(1, 0).MOV(component(header, 2), brw_imm_ud(inst->target));
4685 }
4686
4687 if (prog_data->uses_kill) {
4688 ubld.group(1, 0).MOV(retype(component(header, 15),
4689 BRW_REGISTER_TYPE_UW),
4690 sample_mask_reg(bld));
4691 }
4692
4693 assert(length == 0);
4694 sources[0] = header;
4695 sources[1] = horiz_offset(header, 8);
4696 length = 2;
4697 }
4698 assert(length == 0 || length == 2);
4699 header_size = length;
4700
4701 if (payload.aa_dest_stencil_reg[0]) {
4702 assert(inst->group < 16);
4703 sources[length] = fs_reg(VGRF, bld.shader->alloc.allocate(1));
4704 bld.group(8, 0).exec_all().annotate("FB write stencil/AA alpha")
4705 .MOV(sources[length],
4706 fs_reg(brw_vec8_grf(payload.aa_dest_stencil_reg[0], 0)));
4707 length++;
4708 }
4709
4710 if (src0_alpha.file != BAD_FILE) {
4711 for (unsigned i = 0; i < bld.dispatch_width() / 8; i++) {
4712 const fs_builder &ubld = bld.exec_all().group(8, i)
4713 .annotate("FB write src0 alpha");
4714 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_F);
4715 ubld.MOV(tmp, horiz_offset(src0_alpha, i * 8));
4716 setup_color_payload(ubld, key, &sources[length], tmp, 1);
4717 length++;
4718 }
4719 }
4720
4721 if (sample_mask.file != BAD_FILE) {
4722 sources[length] = fs_reg(VGRF, bld.shader->alloc.allocate(1),
4723 BRW_REGISTER_TYPE_UD);
4724
4725 /* Hand over gl_SampleMask. Only the lower 16 bits of each channel are
4726 * relevant. Since it's unsigned single words one vgrf is always
4727 * 16-wide, but only the lower or higher 8 channels will be used by the
4728 * hardware when doing a SIMD8 write depending on whether we have
4729 * selected the subspans for the first or second half respectively.
4730 */
4731 assert(sample_mask.file != BAD_FILE && type_sz(sample_mask.type) == 4);
4732 sample_mask.type = BRW_REGISTER_TYPE_UW;
4733 sample_mask.stride *= 2;
4734
4735 bld.exec_all().annotate("FB write oMask")
4736 .MOV(horiz_offset(retype(sources[length], BRW_REGISTER_TYPE_UW),
4737 inst->group % 16),
4738 sample_mask);
4739 length++;
4740 }
4741
4742 payload_header_size = length;
4743
4744 setup_color_payload(bld, key, &sources[length], color0, components);
4745 length += 4;
4746
4747 if (color1.file != BAD_FILE) {
4748 setup_color_payload(bld, key, &sources[length], color1, components);
4749 length += 4;
4750 }
4751
4752 if (src_depth.file != BAD_FILE) {
4753 sources[length] = src_depth;
4754 length++;
4755 }
4756
4757 if (dst_depth.file != BAD_FILE) {
4758 sources[length] = dst_depth;
4759 length++;
4760 }
4761
4762 if (src_stencil.file != BAD_FILE) {
4763 assert(devinfo->ver >= 9);
4764 assert(bld.dispatch_width() == 8);
4765
4766 /* XXX: src_stencil is only available on gfx9+. dst_depth is never
4767 * available on gfx9+. As such it's impossible to have both enabled at the
4768 * same time and therefore length cannot overrun the array.
4769 */
4770 assert(length < 15);
4771
4772 sources[length] = bld.vgrf(BRW_REGISTER_TYPE_UD);
4773 bld.exec_all().annotate("FB write OS")
4774 .MOV(retype(sources[length], BRW_REGISTER_TYPE_UB),
4775 subscript(src_stencil, BRW_REGISTER_TYPE_UB, 0));
4776 length++;
4777 }
4778
4779 fs_inst *load;
4780 if (devinfo->ver >= 7) {
4781 /* Send from the GRF */
4782 fs_reg payload = fs_reg(VGRF, -1, BRW_REGISTER_TYPE_F);
4783 load = bld.LOAD_PAYLOAD(payload, sources, length, payload_header_size);
4784 payload.nr = bld.shader->alloc.allocate(regs_written(load));
4785 load->dst = payload;
4786
4787 uint32_t msg_ctl = brw_fb_write_msg_control(inst, prog_data);
4788
4789 inst->desc =
4790 (inst->group / 16) << 11 | /* rt slot group */
4791 brw_fb_write_desc(devinfo, inst->target, msg_ctl, inst->last_rt,
4792 prog_data->per_coarse_pixel_dispatch);
4793
4794 uint32_t ex_desc = 0;
4795 if (devinfo->ver >= 11) {
4796 /* Set the "Render Target Index" and "Src0 Alpha Present" fields
4797 * in the extended message descriptor, in lieu of using a header.
4798 */
4799 ex_desc = inst->target << 12 | (src0_alpha.file != BAD_FILE) << 15;
4800
4801 if (key->nr_color_regions == 0)
4802 ex_desc |= 1 << 20; /* Null Render Target */
4803 }
4804 inst->ex_desc = ex_desc;
4805
4806 inst->opcode = SHADER_OPCODE_SEND;
4807 inst->resize_sources(3);
4808 inst->sfid = GFX6_SFID_DATAPORT_RENDER_CACHE;
4809 inst->src[0] = brw_imm_ud(0);
4810 inst->src[1] = brw_imm_ud(0);
4811 inst->src[2] = payload;
4812 inst->mlen = regs_written(load);
4813 inst->ex_mlen = 0;
4814 inst->header_size = header_size;
4815 inst->check_tdr = true;
4816 inst->send_has_side_effects = true;
4817 } else {
4818 /* Send from the MRF */
4819 load = bld.LOAD_PAYLOAD(fs_reg(MRF, 1, BRW_REGISTER_TYPE_F),
4820 sources, length, payload_header_size);
4821
4822 /* On pre-SNB, we have to interlace the color values. LOAD_PAYLOAD
4823 * will do this for us if we just give it a COMPR4 destination.
4824 */
4825 if (devinfo->ver < 6 && bld.dispatch_width() == 16)
4826 load->dst.nr |= BRW_MRF_COMPR4;
4827
4828 if (devinfo->ver < 6) {
4829 /* Set up src[0] for the implied MOV from grf0-1 */
4830 inst->resize_sources(1);
4831 inst->src[0] = brw_vec8_grf(0, 0);
4832 } else {
4833 inst->resize_sources(0);
4834 }
4835 inst->base_mrf = 1;
4836 inst->opcode = FS_OPCODE_FB_WRITE;
4837 inst->mlen = regs_written(load);
4838 inst->header_size = header_size;
4839 }
4840 }
4841
4842 static void
lower_fb_read_logical_send(const fs_builder & bld,fs_inst * inst)4843 lower_fb_read_logical_send(const fs_builder &bld, fs_inst *inst)
4844 {
4845 const intel_device_info *devinfo = bld.shader->devinfo;
4846 const fs_builder &ubld = bld.exec_all().group(8, 0);
4847 const unsigned length = 2;
4848 const fs_reg header = ubld.vgrf(BRW_REGISTER_TYPE_UD, length);
4849
4850 if (bld.group() < 16) {
4851 ubld.group(16, 0).MOV(header, retype(brw_vec8_grf(0, 0),
4852 BRW_REGISTER_TYPE_UD));
4853 } else {
4854 assert(bld.group() < 32);
4855 const fs_reg header_sources[] = {
4856 retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD),
4857 retype(brw_vec8_grf(2, 0), BRW_REGISTER_TYPE_UD)
4858 };
4859 ubld.LOAD_PAYLOAD(header, header_sources, ARRAY_SIZE(header_sources), 0);
4860
4861 if (devinfo->ver >= 12) {
4862 /* On Gfx12 the Viewport and Render Target Array Index fields (AKA
4863 * Poly 0 Info) are provided in r1.1 instead of r0.0, and the render
4864 * target message header format was updated accordingly -- However
4865 * the updated format only works for the lower 16 channels in a
4866 * SIMD32 thread, since the higher 16 channels want the subspan data
4867 * from r2 instead of r1, so we need to copy over the contents of
4868 * r1.1 in order to fix things up.
4869 */
4870 ubld.group(1, 0).MOV(component(header, 9),
4871 retype(brw_vec1_grf(1, 1), BRW_REGISTER_TYPE_UD));
4872 }
4873 }
4874
4875 /* BSpec 12470 (Gfx8-11), BSpec 47842 (Gfx12+) :
4876 *
4877 * "Must be zero for Render Target Read message."
4878 *
4879 * For bits :
4880 * - 14 : Stencil Present to Render Target
4881 * - 13 : Source Depth Present to Render Target
4882 * - 12 : oMask to Render Target
4883 * - 11 : Source0 Alpha Present to Render Target
4884 */
4885 ubld.group(1, 0).AND(component(header, 0),
4886 component(header, 0),
4887 brw_imm_ud(~INTEL_MASK(14, 11)));
4888
4889 inst->resize_sources(1);
4890 inst->src[0] = header;
4891 inst->opcode = FS_OPCODE_FB_READ;
4892 inst->mlen = length;
4893 inst->header_size = length;
4894 }
4895
4896 static void
lower_sampler_logical_send_gfx4(const fs_builder & bld,fs_inst * inst,opcode op,const fs_reg & coordinate,const fs_reg & shadow_c,const fs_reg & lod,const fs_reg & lod2,const fs_reg & surface,const fs_reg & sampler,unsigned coord_components,unsigned grad_components)4897 lower_sampler_logical_send_gfx4(const fs_builder &bld, fs_inst *inst, opcode op,
4898 const fs_reg &coordinate,
4899 const fs_reg &shadow_c,
4900 const fs_reg &lod, const fs_reg &lod2,
4901 const fs_reg &surface,
4902 const fs_reg &sampler,
4903 unsigned coord_components,
4904 unsigned grad_components)
4905 {
4906 const bool has_lod = (op == SHADER_OPCODE_TXL || op == FS_OPCODE_TXB ||
4907 op == SHADER_OPCODE_TXF || op == SHADER_OPCODE_TXS);
4908 fs_reg msg_begin(MRF, 1, BRW_REGISTER_TYPE_F);
4909 fs_reg msg_end = msg_begin;
4910
4911 /* g0 header. */
4912 msg_end = offset(msg_end, bld.group(8, 0), 1);
4913
4914 for (unsigned i = 0; i < coord_components; i++)
4915 bld.MOV(retype(offset(msg_end, bld, i), coordinate.type),
4916 offset(coordinate, bld, i));
4917
4918 msg_end = offset(msg_end, bld, coord_components);
4919
4920 /* Messages other than SAMPLE and RESINFO in SIMD16 and TXD in SIMD8
4921 * require all three components to be present and zero if they are unused.
4922 */
4923 if (coord_components > 0 &&
4924 (has_lod || shadow_c.file != BAD_FILE ||
4925 (op == SHADER_OPCODE_TEX && bld.dispatch_width() == 8))) {
4926 assert(coord_components <= 3);
4927 for (unsigned i = 0; i < 3 - coord_components; i++)
4928 bld.MOV(offset(msg_end, bld, i), brw_imm_f(0.0f));
4929
4930 msg_end = offset(msg_end, bld, 3 - coord_components);
4931 }
4932
4933 if (op == SHADER_OPCODE_TXD) {
4934 /* TXD unsupported in SIMD16 mode. */
4935 assert(bld.dispatch_width() == 8);
4936
4937 /* the slots for u and v are always present, but r is optional */
4938 if (coord_components < 2)
4939 msg_end = offset(msg_end, bld, 2 - coord_components);
4940
4941 /* P = u, v, r
4942 * dPdx = dudx, dvdx, drdx
4943 * dPdy = dudy, dvdy, drdy
4944 *
4945 * 1-arg: Does not exist.
4946 *
4947 * 2-arg: dudx dvdx dudy dvdy
4948 * dPdx.x dPdx.y dPdy.x dPdy.y
4949 * m4 m5 m6 m7
4950 *
4951 * 3-arg: dudx dvdx drdx dudy dvdy drdy
4952 * dPdx.x dPdx.y dPdx.z dPdy.x dPdy.y dPdy.z
4953 * m5 m6 m7 m8 m9 m10
4954 */
4955 for (unsigned i = 0; i < grad_components; i++)
4956 bld.MOV(offset(msg_end, bld, i), offset(lod, bld, i));
4957
4958 msg_end = offset(msg_end, bld, MAX2(grad_components, 2));
4959
4960 for (unsigned i = 0; i < grad_components; i++)
4961 bld.MOV(offset(msg_end, bld, i), offset(lod2, bld, i));
4962
4963 msg_end = offset(msg_end, bld, MAX2(grad_components, 2));
4964 }
4965
4966 if (has_lod) {
4967 /* Bias/LOD with shadow comparator is unsupported in SIMD16 -- *Without*
4968 * shadow comparator (including RESINFO) it's unsupported in SIMD8 mode.
4969 */
4970 assert(shadow_c.file != BAD_FILE ? bld.dispatch_width() == 8 :
4971 bld.dispatch_width() == 16);
4972
4973 const brw_reg_type type =
4974 (op == SHADER_OPCODE_TXF || op == SHADER_OPCODE_TXS ?
4975 BRW_REGISTER_TYPE_UD : BRW_REGISTER_TYPE_F);
4976 bld.MOV(retype(msg_end, type), lod);
4977 msg_end = offset(msg_end, bld, 1);
4978 }
4979
4980 if (shadow_c.file != BAD_FILE) {
4981 if (op == SHADER_OPCODE_TEX && bld.dispatch_width() == 8) {
4982 /* There's no plain shadow compare message, so we use shadow
4983 * compare with a bias of 0.0.
4984 */
4985 bld.MOV(msg_end, brw_imm_f(0.0f));
4986 msg_end = offset(msg_end, bld, 1);
4987 }
4988
4989 bld.MOV(msg_end, shadow_c);
4990 msg_end = offset(msg_end, bld, 1);
4991 }
4992
4993 inst->opcode = op;
4994 inst->src[0] = reg_undef;
4995 inst->src[1] = surface;
4996 inst->src[2] = sampler;
4997 inst->resize_sources(3);
4998 inst->base_mrf = msg_begin.nr;
4999 inst->mlen = msg_end.nr - msg_begin.nr;
5000 inst->header_size = 1;
5001 }
5002
5003 static void
lower_sampler_logical_send_gfx5(const fs_builder & bld,fs_inst * inst,opcode op,const fs_reg & coordinate,const fs_reg & shadow_c,const fs_reg & lod,const fs_reg & lod2,const fs_reg & sample_index,const fs_reg & surface,const fs_reg & sampler,unsigned coord_components,unsigned grad_components)5004 lower_sampler_logical_send_gfx5(const fs_builder &bld, fs_inst *inst, opcode op,
5005 const fs_reg &coordinate,
5006 const fs_reg &shadow_c,
5007 const fs_reg &lod, const fs_reg &lod2,
5008 const fs_reg &sample_index,
5009 const fs_reg &surface,
5010 const fs_reg &sampler,
5011 unsigned coord_components,
5012 unsigned grad_components)
5013 {
5014 fs_reg message(MRF, 2, BRW_REGISTER_TYPE_F);
5015 fs_reg msg_coords = message;
5016 unsigned header_size = 0;
5017
5018 if (inst->offset != 0) {
5019 /* The offsets set up by the visitor are in the m1 header, so we can't
5020 * go headerless.
5021 */
5022 header_size = 1;
5023 message.nr--;
5024 }
5025
5026 for (unsigned i = 0; i < coord_components; i++)
5027 bld.MOV(retype(offset(msg_coords, bld, i), coordinate.type),
5028 offset(coordinate, bld, i));
5029
5030 fs_reg msg_end = offset(msg_coords, bld, coord_components);
5031 fs_reg msg_lod = offset(msg_coords, bld, 4);
5032
5033 if (shadow_c.file != BAD_FILE) {
5034 fs_reg msg_shadow = msg_lod;
5035 bld.MOV(msg_shadow, shadow_c);
5036 msg_lod = offset(msg_shadow, bld, 1);
5037 msg_end = msg_lod;
5038 }
5039
5040 switch (op) {
5041 case SHADER_OPCODE_TXL:
5042 case FS_OPCODE_TXB:
5043 bld.MOV(msg_lod, lod);
5044 msg_end = offset(msg_lod, bld, 1);
5045 break;
5046 case SHADER_OPCODE_TXD:
5047 /**
5048 * P = u, v, r
5049 * dPdx = dudx, dvdx, drdx
5050 * dPdy = dudy, dvdy, drdy
5051 *
5052 * Load up these values:
5053 * - dudx dudy dvdx dvdy drdx drdy
5054 * - dPdx.x dPdy.x dPdx.y dPdy.y dPdx.z dPdy.z
5055 */
5056 msg_end = msg_lod;
5057 for (unsigned i = 0; i < grad_components; i++) {
5058 bld.MOV(msg_end, offset(lod, bld, i));
5059 msg_end = offset(msg_end, bld, 1);
5060
5061 bld.MOV(msg_end, offset(lod2, bld, i));
5062 msg_end = offset(msg_end, bld, 1);
5063 }
5064 break;
5065 case SHADER_OPCODE_TXS:
5066 msg_lod = retype(msg_end, BRW_REGISTER_TYPE_UD);
5067 bld.MOV(msg_lod, lod);
5068 msg_end = offset(msg_lod, bld, 1);
5069 break;
5070 case SHADER_OPCODE_TXF:
5071 msg_lod = offset(msg_coords, bld, 3);
5072 bld.MOV(retype(msg_lod, BRW_REGISTER_TYPE_UD), lod);
5073 msg_end = offset(msg_lod, bld, 1);
5074 break;
5075 case SHADER_OPCODE_TXF_CMS:
5076 msg_lod = offset(msg_coords, bld, 3);
5077 /* lod */
5078 bld.MOV(retype(msg_lod, BRW_REGISTER_TYPE_UD), brw_imm_ud(0u));
5079 /* sample index */
5080 bld.MOV(retype(offset(msg_lod, bld, 1), BRW_REGISTER_TYPE_UD), sample_index);
5081 msg_end = offset(msg_lod, bld, 2);
5082 break;
5083 default:
5084 break;
5085 }
5086
5087 inst->opcode = op;
5088 inst->src[0] = reg_undef;
5089 inst->src[1] = surface;
5090 inst->src[2] = sampler;
5091 inst->resize_sources(3);
5092 inst->base_mrf = message.nr;
5093 inst->mlen = msg_end.nr - message.nr;
5094 inst->header_size = header_size;
5095
5096 /* Message length > MAX_SAMPLER_MESSAGE_SIZE disallowed by hardware. */
5097 assert(inst->mlen <= MAX_SAMPLER_MESSAGE_SIZE);
5098 }
5099
5100 static bool
is_high_sampler(const struct intel_device_info * devinfo,const fs_reg & sampler)5101 is_high_sampler(const struct intel_device_info *devinfo, const fs_reg &sampler)
5102 {
5103 if (devinfo->verx10 <= 70)
5104 return false;
5105
5106 return sampler.file != IMM || sampler.ud >= 16;
5107 }
5108
5109 static unsigned
sampler_msg_type(const intel_device_info * devinfo,opcode opcode,bool shadow_compare)5110 sampler_msg_type(const intel_device_info *devinfo,
5111 opcode opcode, bool shadow_compare)
5112 {
5113 assert(devinfo->ver >= 5);
5114 switch (opcode) {
5115 case SHADER_OPCODE_TEX:
5116 return shadow_compare ? GFX5_SAMPLER_MESSAGE_SAMPLE_COMPARE :
5117 GFX5_SAMPLER_MESSAGE_SAMPLE;
5118 case FS_OPCODE_TXB:
5119 return shadow_compare ? GFX5_SAMPLER_MESSAGE_SAMPLE_BIAS_COMPARE :
5120 GFX5_SAMPLER_MESSAGE_SAMPLE_BIAS;
5121 case SHADER_OPCODE_TXL:
5122 return shadow_compare ? GFX5_SAMPLER_MESSAGE_SAMPLE_LOD_COMPARE :
5123 GFX5_SAMPLER_MESSAGE_SAMPLE_LOD;
5124 case SHADER_OPCODE_TXL_LZ:
5125 return shadow_compare ? GFX9_SAMPLER_MESSAGE_SAMPLE_C_LZ :
5126 GFX9_SAMPLER_MESSAGE_SAMPLE_LZ;
5127 case SHADER_OPCODE_TXS:
5128 case SHADER_OPCODE_IMAGE_SIZE_LOGICAL:
5129 return GFX5_SAMPLER_MESSAGE_SAMPLE_RESINFO;
5130 case SHADER_OPCODE_TXD:
5131 assert(!shadow_compare || devinfo->verx10 >= 75);
5132 return shadow_compare ? HSW_SAMPLER_MESSAGE_SAMPLE_DERIV_COMPARE :
5133 GFX5_SAMPLER_MESSAGE_SAMPLE_DERIVS;
5134 case SHADER_OPCODE_TXF:
5135 return GFX5_SAMPLER_MESSAGE_SAMPLE_LD;
5136 case SHADER_OPCODE_TXF_LZ:
5137 assert(devinfo->ver >= 9);
5138 return GFX9_SAMPLER_MESSAGE_SAMPLE_LD_LZ;
5139 case SHADER_OPCODE_TXF_CMS_W:
5140 assert(devinfo->ver >= 9);
5141 return GFX9_SAMPLER_MESSAGE_SAMPLE_LD2DMS_W;
5142 case SHADER_OPCODE_TXF_CMS:
5143 return devinfo->ver >= 7 ? GFX7_SAMPLER_MESSAGE_SAMPLE_LD2DMS :
5144 GFX5_SAMPLER_MESSAGE_SAMPLE_LD;
5145 case SHADER_OPCODE_TXF_UMS:
5146 assert(devinfo->ver >= 7);
5147 return GFX7_SAMPLER_MESSAGE_SAMPLE_LD2DSS;
5148 case SHADER_OPCODE_TXF_MCS:
5149 assert(devinfo->ver >= 7);
5150 return GFX7_SAMPLER_MESSAGE_SAMPLE_LD_MCS;
5151 case SHADER_OPCODE_LOD:
5152 return GFX5_SAMPLER_MESSAGE_LOD;
5153 case SHADER_OPCODE_TG4:
5154 assert(devinfo->ver >= 7);
5155 return shadow_compare ? GFX7_SAMPLER_MESSAGE_SAMPLE_GATHER4_C :
5156 GFX7_SAMPLER_MESSAGE_SAMPLE_GATHER4;
5157 break;
5158 case SHADER_OPCODE_TG4_OFFSET:
5159 assert(devinfo->ver >= 7);
5160 return shadow_compare ? GFX7_SAMPLER_MESSAGE_SAMPLE_GATHER4_PO_C :
5161 GFX7_SAMPLER_MESSAGE_SAMPLE_GATHER4_PO;
5162 case SHADER_OPCODE_SAMPLEINFO:
5163 return GFX6_SAMPLER_MESSAGE_SAMPLE_SAMPLEINFO;
5164 default:
5165 unreachable("not reached");
5166 }
5167 }
5168
5169 static void
lower_sampler_logical_send_gfx7(const fs_builder & bld,fs_inst * inst,opcode op,const fs_reg & coordinate,const fs_reg & shadow_c,fs_reg lod,const fs_reg & lod2,const fs_reg & min_lod,const fs_reg & sample_index,const fs_reg & mcs,const fs_reg & surface,const fs_reg & sampler,const fs_reg & surface_handle,const fs_reg & sampler_handle,const fs_reg & tg4_offset,unsigned coord_components,unsigned grad_components)5170 lower_sampler_logical_send_gfx7(const fs_builder &bld, fs_inst *inst, opcode op,
5171 const fs_reg &coordinate,
5172 const fs_reg &shadow_c,
5173 fs_reg lod, const fs_reg &lod2,
5174 const fs_reg &min_lod,
5175 const fs_reg &sample_index,
5176 const fs_reg &mcs,
5177 const fs_reg &surface,
5178 const fs_reg &sampler,
5179 const fs_reg &surface_handle,
5180 const fs_reg &sampler_handle,
5181 const fs_reg &tg4_offset,
5182 unsigned coord_components,
5183 unsigned grad_components)
5184 {
5185 const intel_device_info *devinfo = bld.shader->devinfo;
5186 const brw_stage_prog_data *prog_data = bld.shader->stage_prog_data;
5187 unsigned reg_width = bld.dispatch_width() / 8;
5188 unsigned header_size = 0, length = 0;
5189 fs_reg sources[MAX_SAMPLER_MESSAGE_SIZE];
5190 for (unsigned i = 0; i < ARRAY_SIZE(sources); i++)
5191 sources[i] = bld.vgrf(BRW_REGISTER_TYPE_F);
5192
5193 /* We must have exactly one of surface/sampler and surface/sampler_handle */
5194 assert((surface.file == BAD_FILE) != (surface_handle.file == BAD_FILE));
5195 assert((sampler.file == BAD_FILE) != (sampler_handle.file == BAD_FILE));
5196
5197 if (op == SHADER_OPCODE_TG4 || op == SHADER_OPCODE_TG4_OFFSET ||
5198 inst->offset != 0 || inst->eot ||
5199 op == SHADER_OPCODE_SAMPLEINFO ||
5200 sampler_handle.file != BAD_FILE ||
5201 is_high_sampler(devinfo, sampler)) {
5202 /* For general texture offsets (no txf workaround), we need a header to
5203 * put them in.
5204 *
5205 * TG4 needs to place its channel select in the header, for interaction
5206 * with ARB_texture_swizzle. The sampler index is only 4-bits, so for
5207 * larger sampler numbers we need to offset the Sampler State Pointer in
5208 * the header.
5209 */
5210 fs_reg header = retype(sources[0], BRW_REGISTER_TYPE_UD);
5211 header_size = 1;
5212 length++;
5213
5214 /* If we're requesting fewer than four channels worth of response,
5215 * and we have an explicit header, we need to set up the sampler
5216 * writemask. It's reversed from normal: 1 means "don't write".
5217 */
5218 if (!inst->eot && regs_written(inst) != 4 * reg_width) {
5219 assert(regs_written(inst) % reg_width == 0);
5220 unsigned mask = ~((1 << (regs_written(inst) / reg_width)) - 1) & 0xf;
5221 inst->offset |= mask << 12;
5222 }
5223
5224 /* Build the actual header */
5225 const fs_builder ubld = bld.exec_all().group(8, 0);
5226 const fs_builder ubld1 = ubld.group(1, 0);
5227 ubld.MOV(header, retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
5228 if (inst->offset) {
5229 ubld1.MOV(component(header, 2), brw_imm_ud(inst->offset));
5230 } else if (bld.shader->stage != MESA_SHADER_VERTEX &&
5231 bld.shader->stage != MESA_SHADER_FRAGMENT) {
5232 /* The vertex and fragment stages have g0.2 set to 0, so
5233 * header0.2 is 0 when g0 is copied. Other stages may not, so we
5234 * must set it to 0 to avoid setting undesirable bits in the
5235 * message.
5236 */
5237 ubld1.MOV(component(header, 2), brw_imm_ud(0));
5238 }
5239
5240 if (sampler_handle.file != BAD_FILE) {
5241 /* Bindless sampler handles aren't relative to the sampler state
5242 * pointer passed into the shader through SAMPLER_STATE_POINTERS_*.
5243 * Instead, it's an absolute pointer relative to dynamic state base
5244 * address.
5245 *
5246 * Sampler states are 16 bytes each and the pointer we give here has
5247 * to be 32-byte aligned. In order to avoid more indirect messages
5248 * than required, we assume that all bindless sampler states are
5249 * 32-byte aligned. This sacrifices a bit of general state base
5250 * address space but means we can do something more efficient in the
5251 * shader.
5252 */
5253 ubld1.MOV(component(header, 3), sampler_handle);
5254 } else if (is_high_sampler(devinfo, sampler)) {
5255 fs_reg sampler_state_ptr =
5256 retype(brw_vec1_grf(0, 3), BRW_REGISTER_TYPE_UD);
5257
5258 /* Gfx11+ sampler message headers include bits in 4:0 which conflict
5259 * with the ones included in g0.3 bits 4:0. Mask them out.
5260 */
5261 if (devinfo->ver >= 11) {
5262 sampler_state_ptr = ubld1.vgrf(BRW_REGISTER_TYPE_UD);
5263 ubld1.AND(sampler_state_ptr,
5264 retype(brw_vec1_grf(0, 3), BRW_REGISTER_TYPE_UD),
5265 brw_imm_ud(INTEL_MASK(31, 5)));
5266 }
5267
5268 if (sampler.file == BRW_IMMEDIATE_VALUE) {
5269 assert(sampler.ud >= 16);
5270 const int sampler_state_size = 16; /* 16 bytes */
5271
5272 ubld1.ADD(component(header, 3), sampler_state_ptr,
5273 brw_imm_ud(16 * (sampler.ud / 16) * sampler_state_size));
5274 } else {
5275 fs_reg tmp = ubld1.vgrf(BRW_REGISTER_TYPE_UD);
5276 ubld1.AND(tmp, sampler, brw_imm_ud(0x0f0));
5277 ubld1.SHL(tmp, tmp, brw_imm_ud(4));
5278 ubld1.ADD(component(header, 3), sampler_state_ptr, tmp);
5279 }
5280 } else if (devinfo->ver >= 11) {
5281 /* Gfx11+ sampler message headers include bits in 4:0 which conflict
5282 * with the ones included in g0.3 bits 4:0. Mask them out.
5283 */
5284 ubld1.AND(component(header, 3),
5285 retype(brw_vec1_grf(0, 3), BRW_REGISTER_TYPE_UD),
5286 brw_imm_ud(INTEL_MASK(31, 5)));
5287 }
5288 }
5289
5290 if (shadow_c.file != BAD_FILE) {
5291 bld.MOV(sources[length], shadow_c);
5292 length++;
5293 }
5294
5295 bool coordinate_done = false;
5296
5297 /* Set up the LOD info */
5298 switch (op) {
5299 case FS_OPCODE_TXB:
5300 case SHADER_OPCODE_TXL:
5301 if (devinfo->ver >= 9 && op == SHADER_OPCODE_TXL && lod.is_zero()) {
5302 op = SHADER_OPCODE_TXL_LZ;
5303 break;
5304 }
5305 bld.MOV(sources[length], lod);
5306 length++;
5307 break;
5308 case SHADER_OPCODE_TXD:
5309 /* TXD should have been lowered in SIMD16 mode. */
5310 assert(bld.dispatch_width() == 8);
5311
5312 /* Load dPdx and the coordinate together:
5313 * [hdr], [ref], x, dPdx.x, dPdy.x, y, dPdx.y, dPdy.y, z, dPdx.z, dPdy.z
5314 */
5315 for (unsigned i = 0; i < coord_components; i++) {
5316 bld.MOV(sources[length++], offset(coordinate, bld, i));
5317
5318 /* For cube map array, the coordinate is (u,v,r,ai) but there are
5319 * only derivatives for (u, v, r).
5320 */
5321 if (i < grad_components) {
5322 bld.MOV(sources[length++], offset(lod, bld, i));
5323 bld.MOV(sources[length++], offset(lod2, bld, i));
5324 }
5325 }
5326
5327 coordinate_done = true;
5328 break;
5329 case SHADER_OPCODE_TXS:
5330 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), lod);
5331 length++;
5332 break;
5333 case SHADER_OPCODE_IMAGE_SIZE_LOGICAL:
5334 /* We need an LOD; just use 0 */
5335 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), brw_imm_ud(0));
5336 length++;
5337 break;
5338 case SHADER_OPCODE_TXF:
5339 /* Unfortunately, the parameters for LD are intermixed: u, lod, v, r.
5340 * On Gfx9 they are u, v, lod, r
5341 */
5342 bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D), coordinate);
5343
5344 if (devinfo->ver >= 9) {
5345 if (coord_components >= 2) {
5346 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D),
5347 offset(coordinate, bld, 1));
5348 } else {
5349 sources[length] = brw_imm_d(0);
5350 }
5351 length++;
5352 }
5353
5354 if (devinfo->ver >= 9 && lod.is_zero()) {
5355 op = SHADER_OPCODE_TXF_LZ;
5356 } else {
5357 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D), lod);
5358 length++;
5359 }
5360
5361 for (unsigned i = devinfo->ver >= 9 ? 2 : 1; i < coord_components; i++)
5362 bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D),
5363 offset(coordinate, bld, i));
5364
5365 coordinate_done = true;
5366 break;
5367
5368 case SHADER_OPCODE_TXF_CMS:
5369 case SHADER_OPCODE_TXF_CMS_W:
5370 case SHADER_OPCODE_TXF_UMS:
5371 case SHADER_OPCODE_TXF_MCS:
5372 if (op == SHADER_OPCODE_TXF_UMS ||
5373 op == SHADER_OPCODE_TXF_CMS ||
5374 op == SHADER_OPCODE_TXF_CMS_W) {
5375 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), sample_index);
5376 length++;
5377 }
5378
5379 if (op == SHADER_OPCODE_TXF_CMS || op == SHADER_OPCODE_TXF_CMS_W) {
5380 /* Data from the multisample control surface. */
5381 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), mcs);
5382 length++;
5383
5384 /* On Gfx9+ we'll use ld2dms_w instead which has two registers for
5385 * the MCS data.
5386 */
5387 if (op == SHADER_OPCODE_TXF_CMS_W) {
5388 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD),
5389 mcs.file == IMM ?
5390 mcs :
5391 offset(mcs, bld, 1));
5392 length++;
5393 }
5394 }
5395
5396 /* There is no offsetting for this message; just copy in the integer
5397 * texture coordinates.
5398 */
5399 for (unsigned i = 0; i < coord_components; i++)
5400 bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D),
5401 offset(coordinate, bld, i));
5402
5403 coordinate_done = true;
5404 break;
5405 case SHADER_OPCODE_TG4_OFFSET:
5406 /* More crazy intermixing */
5407 for (unsigned i = 0; i < 2; i++) /* u, v */
5408 bld.MOV(sources[length++], offset(coordinate, bld, i));
5409
5410 for (unsigned i = 0; i < 2; i++) /* offu, offv */
5411 bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D),
5412 offset(tg4_offset, bld, i));
5413
5414 if (coord_components == 3) /* r if present */
5415 bld.MOV(sources[length++], offset(coordinate, bld, 2));
5416
5417 coordinate_done = true;
5418 break;
5419 default:
5420 break;
5421 }
5422
5423 /* Set up the coordinate (except for cases where it was done above) */
5424 if (!coordinate_done) {
5425 for (unsigned i = 0; i < coord_components; i++)
5426 bld.MOV(sources[length++], offset(coordinate, bld, i));
5427 }
5428
5429 if (min_lod.file != BAD_FILE) {
5430 /* Account for all of the missing coordinate sources */
5431 length += 4 - coord_components;
5432 if (op == SHADER_OPCODE_TXD)
5433 length += (3 - grad_components) * 2;
5434
5435 bld.MOV(sources[length++], min_lod);
5436 }
5437
5438 unsigned mlen;
5439 if (reg_width == 2)
5440 mlen = length * reg_width - header_size;
5441 else
5442 mlen = length * reg_width;
5443
5444 const fs_reg src_payload = fs_reg(VGRF, bld.shader->alloc.allocate(mlen),
5445 BRW_REGISTER_TYPE_F);
5446 bld.LOAD_PAYLOAD(src_payload, sources, length, header_size);
5447
5448 /* Generate the SEND. */
5449 inst->opcode = SHADER_OPCODE_SEND;
5450 inst->mlen = mlen;
5451 inst->header_size = header_size;
5452
5453 const unsigned msg_type =
5454 sampler_msg_type(devinfo, op, inst->shadow_compare);
5455 const unsigned simd_mode =
5456 inst->exec_size <= 8 ? BRW_SAMPLER_SIMD_MODE_SIMD8 :
5457 BRW_SAMPLER_SIMD_MODE_SIMD16;
5458
5459 uint32_t base_binding_table_index;
5460 switch (op) {
5461 case SHADER_OPCODE_TG4:
5462 case SHADER_OPCODE_TG4_OFFSET:
5463 base_binding_table_index = prog_data->binding_table.gather_texture_start;
5464 break;
5465 case SHADER_OPCODE_IMAGE_SIZE_LOGICAL:
5466 base_binding_table_index = prog_data->binding_table.image_start;
5467 break;
5468 default:
5469 base_binding_table_index = prog_data->binding_table.texture_start;
5470 break;
5471 }
5472
5473 inst->sfid = BRW_SFID_SAMPLER;
5474 if (surface.file == IMM &&
5475 (sampler.file == IMM || sampler_handle.file != BAD_FILE)) {
5476 inst->desc = brw_sampler_desc(devinfo,
5477 surface.ud + base_binding_table_index,
5478 sampler.file == IMM ? sampler.ud % 16 : 0,
5479 msg_type,
5480 simd_mode,
5481 0 /* return_format unused on gfx7+ */);
5482 inst->src[0] = brw_imm_ud(0);
5483 inst->src[1] = brw_imm_ud(0);
5484 } else if (surface_handle.file != BAD_FILE) {
5485 /* Bindless surface */
5486 assert(devinfo->ver >= 9);
5487 inst->desc = brw_sampler_desc(devinfo,
5488 GFX9_BTI_BINDLESS,
5489 sampler.file == IMM ? sampler.ud % 16 : 0,
5490 msg_type,
5491 simd_mode,
5492 0 /* return_format unused on gfx7+ */);
5493
5494 /* For bindless samplers, the entire address is included in the message
5495 * header so we can leave the portion in the message descriptor 0.
5496 */
5497 if (sampler_handle.file != BAD_FILE || sampler.file == IMM) {
5498 inst->src[0] = brw_imm_ud(0);
5499 } else {
5500 const fs_builder ubld = bld.group(1, 0).exec_all();
5501 fs_reg desc = ubld.vgrf(BRW_REGISTER_TYPE_UD);
5502 ubld.SHL(desc, sampler, brw_imm_ud(8));
5503 inst->src[0] = desc;
5504 }
5505
5506 /* We assume that the driver provided the handle in the top 20 bits so
5507 * we can use the surface handle directly as the extended descriptor.
5508 */
5509 inst->src[1] = retype(surface_handle, BRW_REGISTER_TYPE_UD);
5510 } else {
5511 /* Immediate portion of the descriptor */
5512 inst->desc = brw_sampler_desc(devinfo,
5513 0, /* surface */
5514 0, /* sampler */
5515 msg_type,
5516 simd_mode,
5517 0 /* return_format unused on gfx7+ */);
5518 const fs_builder ubld = bld.group(1, 0).exec_all();
5519 fs_reg desc = ubld.vgrf(BRW_REGISTER_TYPE_UD);
5520 if (surface.equals(sampler)) {
5521 /* This case is common in GL */
5522 ubld.MUL(desc, surface, brw_imm_ud(0x101));
5523 } else {
5524 if (sampler_handle.file != BAD_FILE) {
5525 ubld.MOV(desc, surface);
5526 } else if (sampler.file == IMM) {
5527 ubld.OR(desc, surface, brw_imm_ud(sampler.ud << 8));
5528 } else {
5529 ubld.SHL(desc, sampler, brw_imm_ud(8));
5530 ubld.OR(desc, desc, surface);
5531 }
5532 }
5533 if (base_binding_table_index)
5534 ubld.ADD(desc, desc, brw_imm_ud(base_binding_table_index));
5535 ubld.AND(desc, desc, brw_imm_ud(0xfff));
5536
5537 inst->src[0] = component(desc, 0);
5538 inst->src[1] = brw_imm_ud(0); /* ex_desc */
5539 }
5540
5541 inst->ex_desc = 0;
5542
5543 inst->src[2] = src_payload;
5544 inst->resize_sources(3);
5545
5546 if (inst->eot) {
5547 /* EOT sampler messages don't make sense to split because it would
5548 * involve ending half of the thread early.
5549 */
5550 assert(inst->group == 0);
5551 /* We need to use SENDC for EOT sampler messages */
5552 inst->check_tdr = true;
5553 inst->send_has_side_effects = true;
5554 }
5555
5556 /* Message length > MAX_SAMPLER_MESSAGE_SIZE disallowed by hardware. */
5557 assert(inst->mlen <= MAX_SAMPLER_MESSAGE_SIZE);
5558 }
5559
5560 static void
lower_sampler_logical_send(const fs_builder & bld,fs_inst * inst,opcode op)5561 lower_sampler_logical_send(const fs_builder &bld, fs_inst *inst, opcode op)
5562 {
5563 const intel_device_info *devinfo = bld.shader->devinfo;
5564 const fs_reg &coordinate = inst->src[TEX_LOGICAL_SRC_COORDINATE];
5565 const fs_reg &shadow_c = inst->src[TEX_LOGICAL_SRC_SHADOW_C];
5566 const fs_reg &lod = inst->src[TEX_LOGICAL_SRC_LOD];
5567 const fs_reg &lod2 = inst->src[TEX_LOGICAL_SRC_LOD2];
5568 const fs_reg &min_lod = inst->src[TEX_LOGICAL_SRC_MIN_LOD];
5569 const fs_reg &sample_index = inst->src[TEX_LOGICAL_SRC_SAMPLE_INDEX];
5570 const fs_reg &mcs = inst->src[TEX_LOGICAL_SRC_MCS];
5571 const fs_reg &surface = inst->src[TEX_LOGICAL_SRC_SURFACE];
5572 const fs_reg &sampler = inst->src[TEX_LOGICAL_SRC_SAMPLER];
5573 const fs_reg &surface_handle = inst->src[TEX_LOGICAL_SRC_SURFACE_HANDLE];
5574 const fs_reg &sampler_handle = inst->src[TEX_LOGICAL_SRC_SAMPLER_HANDLE];
5575 const fs_reg &tg4_offset = inst->src[TEX_LOGICAL_SRC_TG4_OFFSET];
5576 assert(inst->src[TEX_LOGICAL_SRC_COORD_COMPONENTS].file == IMM);
5577 const unsigned coord_components = inst->src[TEX_LOGICAL_SRC_COORD_COMPONENTS].ud;
5578 assert(inst->src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].file == IMM);
5579 const unsigned grad_components = inst->src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].ud;
5580
5581 if (devinfo->ver >= 7) {
5582 lower_sampler_logical_send_gfx7(bld, inst, op, coordinate,
5583 shadow_c, lod, lod2, min_lod,
5584 sample_index,
5585 mcs, surface, sampler,
5586 surface_handle, sampler_handle,
5587 tg4_offset,
5588 coord_components, grad_components);
5589 } else if (devinfo->ver >= 5) {
5590 lower_sampler_logical_send_gfx5(bld, inst, op, coordinate,
5591 shadow_c, lod, lod2, sample_index,
5592 surface, sampler,
5593 coord_components, grad_components);
5594 } else {
5595 lower_sampler_logical_send_gfx4(bld, inst, op, coordinate,
5596 shadow_c, lod, lod2,
5597 surface, sampler,
5598 coord_components, grad_components);
5599 }
5600 }
5601
5602 /**
5603 * Predicate the specified instruction on the sample mask.
5604 */
5605 static void
emit_predicate_on_sample_mask(const fs_builder & bld,fs_inst * inst)5606 emit_predicate_on_sample_mask(const fs_builder &bld, fs_inst *inst)
5607 {
5608 assert(bld.shader->stage == MESA_SHADER_FRAGMENT &&
5609 bld.group() == inst->group &&
5610 bld.dispatch_width() == inst->exec_size);
5611
5612 const fs_visitor *v = static_cast<const fs_visitor *>(bld.shader);
5613 const fs_reg sample_mask = sample_mask_reg(bld);
5614 const unsigned subreg = sample_mask_flag_subreg(v);
5615
5616 if (brw_wm_prog_data(v->stage_prog_data)->uses_kill) {
5617 assert(sample_mask.file == ARF &&
5618 sample_mask.nr == brw_flag_subreg(subreg).nr &&
5619 sample_mask.subnr == brw_flag_subreg(
5620 subreg + inst->group / 16).subnr);
5621 } else {
5622 bld.group(1, 0).exec_all()
5623 .MOV(brw_flag_subreg(subreg + inst->group / 16), sample_mask);
5624 }
5625
5626 if (inst->predicate) {
5627 assert(inst->predicate == BRW_PREDICATE_NORMAL);
5628 assert(!inst->predicate_inverse);
5629 assert(inst->flag_subreg == 0);
5630 /* Combine the sample mask with the existing predicate by using a
5631 * vertical predication mode.
5632 */
5633 inst->predicate = BRW_PREDICATE_ALIGN1_ALLV;
5634 } else {
5635 inst->flag_subreg = subreg;
5636 inst->predicate = BRW_PREDICATE_NORMAL;
5637 inst->predicate_inverse = false;
5638 }
5639 }
5640
5641 static void
setup_surface_descriptors(const fs_builder & bld,fs_inst * inst,uint32_t desc,const fs_reg & surface,const fs_reg & surface_handle)5642 setup_surface_descriptors(const fs_builder &bld, fs_inst *inst, uint32_t desc,
5643 const fs_reg &surface, const fs_reg &surface_handle)
5644 {
5645 const ASSERTED intel_device_info *devinfo = bld.shader->devinfo;
5646
5647 /* We must have exactly one of surface and surface_handle */
5648 assert((surface.file == BAD_FILE) != (surface_handle.file == BAD_FILE));
5649
5650 if (surface.file == IMM) {
5651 inst->desc = desc | (surface.ud & 0xff);
5652 inst->src[0] = brw_imm_ud(0);
5653 inst->src[1] = brw_imm_ud(0); /* ex_desc */
5654 } else if (surface_handle.file != BAD_FILE) {
5655 /* Bindless surface */
5656 assert(devinfo->ver >= 9);
5657 inst->desc = desc | GFX9_BTI_BINDLESS;
5658 inst->src[0] = brw_imm_ud(0);
5659
5660 /* We assume that the driver provided the handle in the top 20 bits so
5661 * we can use the surface handle directly as the extended descriptor.
5662 */
5663 inst->src[1] = retype(surface_handle, BRW_REGISTER_TYPE_UD);
5664 } else {
5665 inst->desc = desc;
5666 const fs_builder ubld = bld.exec_all().group(1, 0);
5667 fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD);
5668 ubld.AND(tmp, surface, brw_imm_ud(0xff));
5669 inst->src[0] = component(tmp, 0);
5670 inst->src[1] = brw_imm_ud(0); /* ex_desc */
5671 }
5672 }
5673
5674 static void
lower_surface_logical_send(const fs_builder & bld,fs_inst * inst)5675 lower_surface_logical_send(const fs_builder &bld, fs_inst *inst)
5676 {
5677 const intel_device_info *devinfo = bld.shader->devinfo;
5678
5679 /* Get the logical send arguments. */
5680 const fs_reg &addr = inst->src[SURFACE_LOGICAL_SRC_ADDRESS];
5681 const fs_reg &src = inst->src[SURFACE_LOGICAL_SRC_DATA];
5682 const fs_reg &surface = inst->src[SURFACE_LOGICAL_SRC_SURFACE];
5683 const fs_reg &surface_handle = inst->src[SURFACE_LOGICAL_SRC_SURFACE_HANDLE];
5684 const UNUSED fs_reg &dims = inst->src[SURFACE_LOGICAL_SRC_IMM_DIMS];
5685 const fs_reg &arg = inst->src[SURFACE_LOGICAL_SRC_IMM_ARG];
5686 const fs_reg &allow_sample_mask =
5687 inst->src[SURFACE_LOGICAL_SRC_ALLOW_SAMPLE_MASK];
5688 assert(arg.file == IMM);
5689 assert(allow_sample_mask.file == IMM);
5690
5691 /* Calculate the total number of components of the payload. */
5692 const unsigned addr_sz = inst->components_read(SURFACE_LOGICAL_SRC_ADDRESS);
5693 const unsigned src_sz = inst->components_read(SURFACE_LOGICAL_SRC_DATA);
5694
5695 const bool is_typed_access =
5696 inst->opcode == SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL ||
5697 inst->opcode == SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL ||
5698 inst->opcode == SHADER_OPCODE_TYPED_ATOMIC_LOGICAL;
5699
5700 const bool is_surface_access = is_typed_access ||
5701 inst->opcode == SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL ||
5702 inst->opcode == SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL ||
5703 inst->opcode == SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL;
5704
5705 const bool is_stateless =
5706 surface.file == IMM && (surface.ud == BRW_BTI_STATELESS ||
5707 surface.ud == GFX8_BTI_STATELESS_NON_COHERENT);
5708
5709 const bool has_side_effects = inst->has_side_effects();
5710
5711 fs_reg sample_mask = allow_sample_mask.ud ? sample_mask_reg(bld) :
5712 fs_reg(brw_imm_d(0xffff));
5713
5714 /* From the BDW PRM Volume 7, page 147:
5715 *
5716 * "For the Data Cache Data Port*, the header must be present for the
5717 * following message types: [...] Typed read/write/atomics"
5718 *
5719 * Earlier generations have a similar wording. Because of this restriction
5720 * we don't attempt to implement sample masks via predication for such
5721 * messages prior to Gfx9, since we have to provide a header anyway. On
5722 * Gfx11+ the header has been removed so we can only use predication.
5723 *
5724 * For all stateless A32 messages, we also need a header
5725 */
5726 fs_reg header;
5727 if ((devinfo->ver < 9 && is_typed_access) || is_stateless) {
5728 fs_builder ubld = bld.exec_all().group(8, 0);
5729 header = ubld.vgrf(BRW_REGISTER_TYPE_UD);
5730 if (is_stateless) {
5731 assert(!is_surface_access);
5732 ubld.emit(SHADER_OPCODE_SCRATCH_HEADER, header);
5733 } else {
5734 ubld.MOV(header, brw_imm_d(0));
5735 if (is_surface_access)
5736 ubld.group(1, 0).MOV(component(header, 7), sample_mask);
5737 }
5738 }
5739 const unsigned header_sz = header.file != BAD_FILE ? 1 : 0;
5740
5741 fs_reg payload, payload2;
5742 unsigned mlen, ex_mlen = 0;
5743 if (devinfo->ver >= 9 &&
5744 (src.file == BAD_FILE || header.file == BAD_FILE)) {
5745 /* We have split sends on gfx9 and above */
5746 if (header.file == BAD_FILE) {
5747 payload = bld.move_to_vgrf(addr, addr_sz);
5748 payload2 = bld.move_to_vgrf(src, src_sz);
5749 mlen = addr_sz * (inst->exec_size / 8);
5750 ex_mlen = src_sz * (inst->exec_size / 8);
5751 } else {
5752 assert(src.file == BAD_FILE);
5753 payload = header;
5754 payload2 = bld.move_to_vgrf(addr, addr_sz);
5755 mlen = header_sz;
5756 ex_mlen = addr_sz * (inst->exec_size / 8);
5757 }
5758 } else {
5759 /* Allocate space for the payload. */
5760 const unsigned sz = header_sz + addr_sz + src_sz;
5761 payload = bld.vgrf(BRW_REGISTER_TYPE_UD, sz);
5762 fs_reg *const components = new fs_reg[sz];
5763 unsigned n = 0;
5764
5765 /* Construct the payload. */
5766 if (header.file != BAD_FILE)
5767 components[n++] = header;
5768
5769 for (unsigned i = 0; i < addr_sz; i++)
5770 components[n++] = offset(addr, bld, i);
5771
5772 for (unsigned i = 0; i < src_sz; i++)
5773 components[n++] = offset(src, bld, i);
5774
5775 bld.LOAD_PAYLOAD(payload, components, sz, header_sz);
5776 mlen = header_sz + (addr_sz + src_sz) * inst->exec_size / 8;
5777
5778 delete[] components;
5779 }
5780
5781 /* Predicate the instruction on the sample mask if no header is
5782 * provided.
5783 */
5784 if ((header.file == BAD_FILE || !is_surface_access) &&
5785 sample_mask.file != BAD_FILE && sample_mask.file != IMM)
5786 emit_predicate_on_sample_mask(bld, inst);
5787
5788 uint32_t sfid;
5789 switch (inst->opcode) {
5790 case SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL:
5791 case SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL:
5792 /* Byte scattered opcodes go through the normal data cache */
5793 sfid = GFX7_SFID_DATAPORT_DATA_CACHE;
5794 break;
5795
5796 case SHADER_OPCODE_DWORD_SCATTERED_READ_LOGICAL:
5797 case SHADER_OPCODE_DWORD_SCATTERED_WRITE_LOGICAL:
5798 sfid = devinfo->ver >= 7 ? GFX7_SFID_DATAPORT_DATA_CACHE :
5799 devinfo->ver >= 6 ? GFX6_SFID_DATAPORT_RENDER_CACHE :
5800 BRW_DATAPORT_READ_TARGET_RENDER_CACHE;
5801 break;
5802
5803 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
5804 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
5805 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
5806 case SHADER_OPCODE_UNTYPED_ATOMIC_FLOAT_LOGICAL:
5807 /* Untyped Surface messages go through the data cache but the SFID value
5808 * changed on Haswell.
5809 */
5810 sfid = (devinfo->verx10 >= 75 ?
5811 HSW_SFID_DATAPORT_DATA_CACHE_1 :
5812 GFX7_SFID_DATAPORT_DATA_CACHE);
5813 break;
5814
5815 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
5816 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
5817 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
5818 /* Typed surface messages go through the render cache on IVB and the
5819 * data cache on HSW+.
5820 */
5821 sfid = (devinfo->verx10 >= 75 ?
5822 HSW_SFID_DATAPORT_DATA_CACHE_1 :
5823 GFX6_SFID_DATAPORT_RENDER_CACHE);
5824 break;
5825
5826 default:
5827 unreachable("Unsupported surface opcode");
5828 }
5829
5830 uint32_t desc;
5831 switch (inst->opcode) {
5832 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
5833 desc = brw_dp_untyped_surface_rw_desc(devinfo, inst->exec_size,
5834 arg.ud, /* num_channels */
5835 false /* write */);
5836 break;
5837
5838 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
5839 desc = brw_dp_untyped_surface_rw_desc(devinfo, inst->exec_size,
5840 arg.ud, /* num_channels */
5841 true /* write */);
5842 break;
5843
5844 case SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL:
5845 desc = brw_dp_byte_scattered_rw_desc(devinfo, inst->exec_size,
5846 arg.ud, /* bit_size */
5847 false /* write */);
5848 break;
5849
5850 case SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL:
5851 desc = brw_dp_byte_scattered_rw_desc(devinfo, inst->exec_size,
5852 arg.ud, /* bit_size */
5853 true /* write */);
5854 break;
5855
5856 case SHADER_OPCODE_DWORD_SCATTERED_READ_LOGICAL:
5857 assert(arg.ud == 32); /* bit_size */
5858 desc = brw_dp_dword_scattered_rw_desc(devinfo, inst->exec_size,
5859 false /* write */);
5860 break;
5861
5862 case SHADER_OPCODE_DWORD_SCATTERED_WRITE_LOGICAL:
5863 assert(arg.ud == 32); /* bit_size */
5864 desc = brw_dp_dword_scattered_rw_desc(devinfo, inst->exec_size,
5865 true /* write */);
5866 break;
5867
5868 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
5869 desc = brw_dp_untyped_atomic_desc(devinfo, inst->exec_size,
5870 arg.ud, /* atomic_op */
5871 !inst->dst.is_null());
5872 break;
5873
5874 case SHADER_OPCODE_UNTYPED_ATOMIC_FLOAT_LOGICAL:
5875 desc = brw_dp_untyped_atomic_float_desc(devinfo, inst->exec_size,
5876 arg.ud, /* atomic_op */
5877 !inst->dst.is_null());
5878 break;
5879
5880 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
5881 desc = brw_dp_typed_surface_rw_desc(devinfo, inst->exec_size, inst->group,
5882 arg.ud, /* num_channels */
5883 false /* write */);
5884 break;
5885
5886 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
5887 desc = brw_dp_typed_surface_rw_desc(devinfo, inst->exec_size, inst->group,
5888 arg.ud, /* num_channels */
5889 true /* write */);
5890 break;
5891
5892 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
5893 desc = brw_dp_typed_atomic_desc(devinfo, inst->exec_size, inst->group,
5894 arg.ud, /* atomic_op */
5895 !inst->dst.is_null());
5896 break;
5897
5898 default:
5899 unreachable("Unknown surface logical instruction");
5900 }
5901
5902 /* Update the original instruction. */
5903 inst->opcode = SHADER_OPCODE_SEND;
5904 inst->mlen = mlen;
5905 inst->ex_mlen = ex_mlen;
5906 inst->header_size = header_sz;
5907 inst->send_has_side_effects = has_side_effects;
5908 inst->send_is_volatile = !has_side_effects;
5909
5910 /* Set up SFID and descriptors */
5911 inst->sfid = sfid;
5912 setup_surface_descriptors(bld, inst, desc, surface, surface_handle);
5913
5914 /* Finally, the payload */
5915 inst->src[2] = payload;
5916 inst->src[3] = payload2;
5917
5918 inst->resize_sources(4);
5919 }
5920
5921 static enum lsc_opcode
brw_atomic_op_to_lsc_atomic_op(unsigned op)5922 brw_atomic_op_to_lsc_atomic_op(unsigned op)
5923 {
5924 switch(op) {
5925 case BRW_AOP_AND:
5926 return LSC_OP_ATOMIC_AND;
5927 case BRW_AOP_OR:
5928 return LSC_OP_ATOMIC_OR;
5929 case BRW_AOP_XOR:
5930 return LSC_OP_ATOMIC_XOR;
5931 case BRW_AOP_MOV:
5932 return LSC_OP_ATOMIC_STORE;
5933 case BRW_AOP_INC:
5934 return LSC_OP_ATOMIC_INC;
5935 case BRW_AOP_DEC:
5936 return LSC_OP_ATOMIC_DEC;
5937 case BRW_AOP_ADD:
5938 return LSC_OP_ATOMIC_ADD;
5939 case BRW_AOP_SUB:
5940 return LSC_OP_ATOMIC_SUB;
5941 case BRW_AOP_IMAX:
5942 return LSC_OP_ATOMIC_MAX;
5943 case BRW_AOP_IMIN:
5944 return LSC_OP_ATOMIC_MIN;
5945 case BRW_AOP_UMAX:
5946 return LSC_OP_ATOMIC_UMAX;
5947 case BRW_AOP_UMIN:
5948 return LSC_OP_ATOMIC_UMIN;
5949 case BRW_AOP_CMPWR:
5950 return LSC_OP_ATOMIC_CMPXCHG;
5951 default:
5952 assert(false);
5953 unreachable("invalid atomic opcode");
5954 }
5955 }
5956
5957 static enum lsc_opcode
brw_atomic_op_to_lsc_fatomic_op(uint32_t aop)5958 brw_atomic_op_to_lsc_fatomic_op(uint32_t aop)
5959 {
5960 switch(aop) {
5961 case BRW_AOP_FMAX:
5962 return LSC_OP_ATOMIC_FMAX;
5963 case BRW_AOP_FMIN:
5964 return LSC_OP_ATOMIC_FMIN;
5965 case BRW_AOP_FCMPWR:
5966 return LSC_OP_ATOMIC_FCMPXCHG;
5967 case BRW_AOP_FADD:
5968 return LSC_OP_ATOMIC_FADD;
5969 default:
5970 unreachable("Unsupported float atomic opcode");
5971 }
5972 }
5973
5974 static enum lsc_data_size
lsc_bits_to_data_size(unsigned bit_size)5975 lsc_bits_to_data_size(unsigned bit_size)
5976 {
5977 switch (bit_size / 8) {
5978 case 1: return LSC_DATA_SIZE_D8U32;
5979 case 2: return LSC_DATA_SIZE_D16U32;
5980 case 4: return LSC_DATA_SIZE_D32;
5981 case 8: return LSC_DATA_SIZE_D64;
5982 default:
5983 unreachable("Unsupported data size.");
5984 }
5985 }
5986
5987 static void
lower_lsc_surface_logical_send(const fs_builder & bld,fs_inst * inst)5988 lower_lsc_surface_logical_send(const fs_builder &bld, fs_inst *inst)
5989 {
5990 const intel_device_info *devinfo = bld.shader->devinfo;
5991 assert(devinfo->has_lsc);
5992
5993 /* Get the logical send arguments. */
5994 const fs_reg addr = inst->src[SURFACE_LOGICAL_SRC_ADDRESS];
5995 const fs_reg src = inst->src[SURFACE_LOGICAL_SRC_DATA];
5996 const fs_reg surface = inst->src[SURFACE_LOGICAL_SRC_SURFACE];
5997 const fs_reg surface_handle = inst->src[SURFACE_LOGICAL_SRC_SURFACE_HANDLE];
5998 const UNUSED fs_reg &dims = inst->src[SURFACE_LOGICAL_SRC_IMM_DIMS];
5999 const fs_reg arg = inst->src[SURFACE_LOGICAL_SRC_IMM_ARG];
6000 const fs_reg allow_sample_mask =
6001 inst->src[SURFACE_LOGICAL_SRC_ALLOW_SAMPLE_MASK];
6002 assert(arg.file == IMM);
6003 assert(allow_sample_mask.file == IMM);
6004
6005 /* Calculate the total number of components of the payload. */
6006 const unsigned addr_sz = inst->components_read(SURFACE_LOGICAL_SRC_ADDRESS);
6007 const unsigned src_comps = inst->components_read(SURFACE_LOGICAL_SRC_DATA);
6008 const unsigned src_sz = type_sz(src.type);
6009
6010 const bool has_side_effects = inst->has_side_effects();
6011
6012 unsigned ex_mlen = 0;
6013 fs_reg payload, payload2;
6014 payload = bld.move_to_vgrf(addr, addr_sz);
6015 if (src.file != BAD_FILE) {
6016 payload2 = bld.move_to_vgrf(src, src_comps);
6017 ex_mlen = (src_comps * src_sz * inst->exec_size) / REG_SIZE;
6018 }
6019
6020 /* Predicate the instruction on the sample mask if needed */
6021 fs_reg sample_mask = allow_sample_mask.ud ? sample_mask_reg(bld) :
6022 fs_reg(brw_imm_d(0xffff));
6023 if (sample_mask.file != BAD_FILE && sample_mask.file != IMM)
6024 emit_predicate_on_sample_mask(bld, inst);
6025
6026 if (surface.file == IMM && surface.ud == GFX7_BTI_SLM)
6027 inst->sfid = GFX12_SFID_SLM;
6028 else
6029 inst->sfid = GFX12_SFID_UGM;
6030
6031 /* We must have exactly one of surface and surface_handle */
6032 assert((surface.file == BAD_FILE) != (surface_handle.file == BAD_FILE));
6033
6034 enum lsc_addr_surface_type surf_type;
6035 if (surface_handle.file != BAD_FILE)
6036 surf_type = LSC_ADDR_SURFTYPE_BSS;
6037 else if (surface.file == IMM && surface.ud == GFX7_BTI_SLM)
6038 surf_type = LSC_ADDR_SURFTYPE_FLAT;
6039 else
6040 surf_type = LSC_ADDR_SURFTYPE_BTI;
6041
6042 switch (inst->opcode) {
6043 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
6044 inst->desc = lsc_msg_desc(devinfo, LSC_OP_LOAD_CMASK, inst->exec_size,
6045 surf_type, LSC_ADDR_SIZE_A32,
6046 1 /* num_coordinates */,
6047 LSC_DATA_SIZE_D32, arg.ud /* num_channels */,
6048 false /* transpose */,
6049 LSC_CACHE_LOAD_L1STATE_L3MOCS,
6050 true /* has_dest */);
6051 break;
6052 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
6053 inst->desc = lsc_msg_desc(devinfo, LSC_OP_STORE_CMASK, inst->exec_size,
6054 surf_type, LSC_ADDR_SIZE_A32,
6055 1 /* num_coordinates */,
6056 LSC_DATA_SIZE_D32, arg.ud /* num_channels */,
6057 false /* transpose */,
6058 LSC_CACHE_STORE_L1STATE_L3MOCS,
6059 false /* has_dest */);
6060 break;
6061 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
6062 case SHADER_OPCODE_UNTYPED_ATOMIC_FLOAT_LOGICAL: {
6063 /* Bspec: Atomic instruction -> Cache section:
6064 *
6065 * Atomic messages are always forced to "un-cacheable" in the L1
6066 * cache.
6067 */
6068 enum lsc_opcode opcode =
6069 inst->opcode == SHADER_OPCODE_UNTYPED_ATOMIC_FLOAT_LOGICAL ?
6070 brw_atomic_op_to_lsc_fatomic_op(arg.ud) :
6071 brw_atomic_op_to_lsc_atomic_op(arg.ud);
6072 inst->desc = lsc_msg_desc(devinfo, opcode, inst->exec_size,
6073 surf_type, LSC_ADDR_SIZE_A32,
6074 1 /* num_coordinates */,
6075 lsc_bits_to_data_size(src_sz * 8),
6076 1 /* num_channels */,
6077 false /* transpose */,
6078 LSC_CACHE_STORE_L1UC_L3WB,
6079 !inst->dst.is_null());
6080 break;
6081 }
6082 case SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL:
6083 inst->desc = lsc_msg_desc(devinfo, LSC_OP_LOAD, inst->exec_size,
6084 surf_type, LSC_ADDR_SIZE_A32,
6085 1 /* num_coordinates */,
6086 lsc_bits_to_data_size(arg.ud),
6087 1 /* num_channels */,
6088 false /* transpose */,
6089 LSC_CACHE_LOAD_L1STATE_L3MOCS,
6090 true /* has_dest */);
6091 break;
6092 case SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL:
6093 inst->desc = lsc_msg_desc(devinfo, LSC_OP_STORE, inst->exec_size,
6094 surf_type, LSC_ADDR_SIZE_A32,
6095 1 /* num_coordinates */,
6096 lsc_bits_to_data_size(arg.ud),
6097 1 /* num_channels */,
6098 false /* transpose */,
6099 LSC_CACHE_STORE_L1STATE_L3MOCS,
6100 false /* has_dest */);
6101 break;
6102 default:
6103 unreachable("Unknown surface logical instruction");
6104 }
6105
6106 inst->src[0] = brw_imm_ud(0);
6107
6108 /* Set up extended descriptors */
6109 switch (surf_type) {
6110 case LSC_ADDR_SURFTYPE_FLAT:
6111 inst->src[1] = brw_imm_ud(0);
6112 break;
6113 case LSC_ADDR_SURFTYPE_BSS:
6114 /* We assume that the driver provided the handle in the top 20 bits so
6115 * we can use the surface handle directly as the extended descriptor.
6116 */
6117 inst->src[1] = retype(surface_handle, BRW_REGISTER_TYPE_UD);
6118 break;
6119 case LSC_ADDR_SURFTYPE_BTI:
6120 if (surface.file == IMM) {
6121 inst->src[1] = brw_imm_ud(lsc_bti_ex_desc(devinfo, surface.ud));
6122 } else {
6123 const fs_builder ubld = bld.exec_all().group(1, 0);
6124 fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD);
6125 ubld.SHL(tmp, surface, brw_imm_ud(24));
6126 inst->src[1] = component(tmp, 0);
6127 }
6128 break;
6129 default:
6130 unreachable("Unknown surface type");
6131 }
6132
6133 /* Update the original instruction. */
6134 inst->opcode = SHADER_OPCODE_SEND;
6135 inst->mlen = lsc_msg_desc_src0_len(devinfo, inst->desc);
6136 inst->ex_mlen = ex_mlen;
6137 inst->header_size = 0;
6138 inst->send_has_side_effects = has_side_effects;
6139 inst->send_is_volatile = !has_side_effects;
6140
6141 /* Finally, the payload */
6142 inst->src[2] = payload;
6143 inst->src[3] = payload2;
6144
6145 inst->resize_sources(4);
6146 }
6147
6148 static void
lower_surface_block_logical_send(const fs_builder & bld,fs_inst * inst)6149 lower_surface_block_logical_send(const fs_builder &bld, fs_inst *inst)
6150 {
6151 const intel_device_info *devinfo = bld.shader->devinfo;
6152 assert(devinfo->ver >= 9);
6153
6154 /* Get the logical send arguments. */
6155 const fs_reg &addr = inst->src[SURFACE_LOGICAL_SRC_ADDRESS];
6156 const fs_reg &src = inst->src[SURFACE_LOGICAL_SRC_DATA];
6157 const fs_reg &surface = inst->src[SURFACE_LOGICAL_SRC_SURFACE];
6158 const fs_reg &surface_handle = inst->src[SURFACE_LOGICAL_SRC_SURFACE_HANDLE];
6159 const fs_reg &arg = inst->src[SURFACE_LOGICAL_SRC_IMM_ARG];
6160 assert(arg.file == IMM);
6161 assert(inst->src[SURFACE_LOGICAL_SRC_IMM_DIMS].file == BAD_FILE);
6162 assert(inst->src[SURFACE_LOGICAL_SRC_ALLOW_SAMPLE_MASK].file == BAD_FILE);
6163
6164 const bool is_stateless =
6165 surface.file == IMM && (surface.ud == BRW_BTI_STATELESS ||
6166 surface.ud == GFX8_BTI_STATELESS_NON_COHERENT);
6167
6168 const bool has_side_effects = inst->has_side_effects();
6169
6170 const bool align_16B =
6171 inst->opcode != SHADER_OPCODE_UNALIGNED_OWORD_BLOCK_READ_LOGICAL;
6172
6173 const bool write = inst->opcode == SHADER_OPCODE_OWORD_BLOCK_WRITE_LOGICAL;
6174
6175 /* The address is stored in the header. See MH_A32_GO and MH_BTS_GO. */
6176 fs_builder ubld = bld.exec_all().group(8, 0);
6177 fs_reg header = ubld.vgrf(BRW_REGISTER_TYPE_UD);
6178
6179 if (is_stateless)
6180 ubld.emit(SHADER_OPCODE_SCRATCH_HEADER, header);
6181 else
6182 ubld.MOV(header, brw_imm_d(0));
6183
6184 /* Address in OWord units when aligned to OWords. */
6185 if (align_16B)
6186 ubld.group(1, 0).SHR(component(header, 2), addr, brw_imm_ud(4));
6187 else
6188 ubld.group(1, 0).MOV(component(header, 2), addr);
6189
6190 fs_reg data;
6191 unsigned ex_mlen = 0;
6192 if (write) {
6193 const unsigned src_sz = inst->components_read(SURFACE_LOGICAL_SRC_DATA);
6194 data = retype(bld.move_to_vgrf(src, src_sz), BRW_REGISTER_TYPE_UD);
6195 ex_mlen = src_sz * type_sz(src.type) * inst->exec_size / REG_SIZE;
6196 }
6197
6198 inst->opcode = SHADER_OPCODE_SEND;
6199 inst->mlen = 1;
6200 inst->ex_mlen = ex_mlen;
6201 inst->header_size = 1;
6202 inst->send_has_side_effects = has_side_effects;
6203 inst->send_is_volatile = !has_side_effects;
6204
6205 inst->sfid = GFX7_SFID_DATAPORT_DATA_CACHE;
6206
6207 const uint32_t desc = brw_dp_oword_block_rw_desc(devinfo, align_16B,
6208 arg.ud, write);
6209 setup_surface_descriptors(bld, inst, desc, surface, surface_handle);
6210
6211 inst->src[2] = header;
6212 inst->src[3] = data;
6213
6214 inst->resize_sources(4);
6215 }
6216
6217 static fs_reg
emit_a64_oword_block_header(const fs_builder & bld,const fs_reg & addr)6218 emit_a64_oword_block_header(const fs_builder &bld, const fs_reg &addr)
6219 {
6220 const fs_builder ubld = bld.exec_all().group(8, 0);
6221 fs_reg header = ubld.vgrf(BRW_REGISTER_TYPE_UD);
6222 ubld.MOV(header, brw_imm_ud(0));
6223
6224 /* Use a 2-wide MOV to fill out the address */
6225 assert(type_sz(addr.type) == 8 && addr.stride == 0);
6226 fs_reg addr_vec2 = addr;
6227 addr_vec2.type = BRW_REGISTER_TYPE_UD;
6228 addr_vec2.stride = 1;
6229 ubld.group(2, 0).MOV(header, addr_vec2);
6230
6231 return header;
6232 }
6233
6234 static void
lower_lsc_a64_logical_send(const fs_builder & bld,fs_inst * inst)6235 lower_lsc_a64_logical_send(const fs_builder &bld, fs_inst *inst)
6236 {
6237 const intel_device_info *devinfo = bld.shader->devinfo;
6238
6239 /* Get the logical send arguments. */
6240 const fs_reg &addr = inst->src[0];
6241 const fs_reg &src = inst->src[1];
6242 const unsigned src_sz = type_sz(src.type);
6243
6244 const unsigned src_comps = inst->components_read(1);
6245 assert(inst->src[2].file == IMM);
6246 const unsigned arg = inst->src[2].ud;
6247 const bool has_side_effects = inst->has_side_effects();
6248
6249 /* If the surface message has side effects and we're a fragment shader, we
6250 * have to predicate with the sample mask to avoid helper invocations.
6251 */
6252 if (has_side_effects && bld.shader->stage == MESA_SHADER_FRAGMENT)
6253 emit_predicate_on_sample_mask(bld, inst);
6254
6255 fs_reg payload = retype(bld.move_to_vgrf(addr, 1), BRW_REGISTER_TYPE_UD);
6256 fs_reg payload2 = retype(bld.move_to_vgrf(src, src_comps),
6257 BRW_REGISTER_TYPE_UD);
6258 unsigned ex_mlen = src_comps * src_sz * inst->exec_size / REG_SIZE;
6259
6260 switch (inst->opcode) {
6261 case SHADER_OPCODE_A64_UNTYPED_READ_LOGICAL:
6262 inst->desc = lsc_msg_desc(devinfo, LSC_OP_LOAD_CMASK, inst->exec_size,
6263 LSC_ADDR_SURFTYPE_FLAT, LSC_ADDR_SIZE_A64,
6264 1 /* num_coordinates */,
6265 LSC_DATA_SIZE_D32, arg /* num_channels */,
6266 false /* transpose */,
6267 LSC_CACHE_LOAD_L1STATE_L3MOCS,
6268 true /* has_dest */);
6269 break;
6270 case SHADER_OPCODE_A64_UNTYPED_WRITE_LOGICAL:
6271 inst->desc = lsc_msg_desc(devinfo, LSC_OP_STORE_CMASK, inst->exec_size,
6272 LSC_ADDR_SURFTYPE_FLAT, LSC_ADDR_SIZE_A64,
6273 1 /* num_coordinates */,
6274 LSC_DATA_SIZE_D32, arg /* num_channels */,
6275 false /* transpose */,
6276 LSC_CACHE_STORE_L1STATE_L3MOCS,
6277 false /* has_dest */);
6278 break;
6279 case SHADER_OPCODE_A64_BYTE_SCATTERED_READ_LOGICAL:
6280 inst->desc = lsc_msg_desc(devinfo, LSC_OP_LOAD, inst->exec_size,
6281 LSC_ADDR_SURFTYPE_FLAT, LSC_ADDR_SIZE_A64,
6282 1 /* num_coordinates */,
6283 lsc_bits_to_data_size(arg),
6284 1 /* num_channels */,
6285 false /* transpose */,
6286 LSC_CACHE_STORE_L1STATE_L3MOCS,
6287 true /* has_dest */);
6288 break;
6289 case SHADER_OPCODE_A64_BYTE_SCATTERED_WRITE_LOGICAL:
6290 inst->desc = lsc_msg_desc(devinfo, LSC_OP_STORE, inst->exec_size,
6291 LSC_ADDR_SURFTYPE_FLAT, LSC_ADDR_SIZE_A64,
6292 1 /* num_coordinates */,
6293 lsc_bits_to_data_size(arg),
6294 1 /* num_channels */,
6295 false /* transpose */,
6296 LSC_CACHE_STORE_L1STATE_L3MOCS,
6297 false /* has_dest */);
6298 break;
6299 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_LOGICAL:
6300 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_INT16_LOGICAL:
6301 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_INT64_LOGICAL: {
6302 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_FLOAT16_LOGICAL:
6303 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_FLOAT32_LOGICAL:
6304 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_FLOAT64_LOGICAL:
6305 /* Bspec: Atomic instruction -> Cache section:
6306 *
6307 * Atomic messages are always forced to "un-cacheable" in the L1
6308 * cache.
6309 */
6310 enum lsc_opcode opcode =
6311 (inst->opcode == SHADER_OPCODE_A64_UNTYPED_ATOMIC_LOGICAL ||
6312 inst->opcode == SHADER_OPCODE_A64_UNTYPED_ATOMIC_INT16_LOGICAL ||
6313 inst->opcode == SHADER_OPCODE_A64_UNTYPED_ATOMIC_INT64_LOGICAL) ?
6314 brw_atomic_op_to_lsc_atomic_op(arg) :
6315 brw_atomic_op_to_lsc_fatomic_op(arg);
6316 inst->desc = lsc_msg_desc(devinfo, opcode, inst->exec_size,
6317 LSC_ADDR_SURFTYPE_FLAT, LSC_ADDR_SIZE_A64,
6318 1 /* num_coordinates */,
6319 lsc_bits_to_data_size(src_sz * 8),
6320 1 /* num_channels */,
6321 false /* transpose */,
6322 LSC_CACHE_STORE_L1UC_L3WB,
6323 !inst->dst.is_null());
6324 break;
6325 }
6326 default:
6327 unreachable("Unknown A64 logical instruction");
6328 }
6329
6330 /* Update the original instruction. */
6331 inst->opcode = SHADER_OPCODE_SEND;
6332 inst->mlen = lsc_msg_desc_src0_len(devinfo, inst->desc);
6333 inst->ex_mlen = ex_mlen;
6334 inst->header_size = 0;
6335 inst->send_has_side_effects = has_side_effects;
6336 inst->send_is_volatile = !has_side_effects;
6337
6338 /* Set up SFID and descriptors */
6339 inst->sfid = GFX12_SFID_UGM;
6340 inst->resize_sources(4);
6341 inst->src[0] = brw_imm_ud(0); /* desc */
6342 inst->src[1] = brw_imm_ud(0); /* ex_desc */
6343 inst->src[2] = payload;
6344 inst->src[3] = payload2;
6345 }
6346
6347 static void
lower_a64_logical_send(const fs_builder & bld,fs_inst * inst)6348 lower_a64_logical_send(const fs_builder &bld, fs_inst *inst)
6349 {
6350 const intel_device_info *devinfo = bld.shader->devinfo;
6351
6352 const fs_reg &addr = inst->src[0];
6353 const fs_reg &src = inst->src[1];
6354 const unsigned src_comps = inst->components_read(1);
6355 assert(inst->src[2].file == IMM);
6356 const unsigned arg = inst->src[2].ud;
6357 const bool has_side_effects = inst->has_side_effects();
6358
6359 /* If the surface message has side effects and we're a fragment shader, we
6360 * have to predicate with the sample mask to avoid helper invocations.
6361 */
6362 if (has_side_effects && bld.shader->stage == MESA_SHADER_FRAGMENT)
6363 emit_predicate_on_sample_mask(bld, inst);
6364
6365 fs_reg payload, payload2;
6366 unsigned mlen, ex_mlen = 0, header_size = 0;
6367 if (inst->opcode == SHADER_OPCODE_A64_OWORD_BLOCK_READ_LOGICAL ||
6368 inst->opcode == SHADER_OPCODE_A64_OWORD_BLOCK_WRITE_LOGICAL ||
6369 inst->opcode == SHADER_OPCODE_A64_UNALIGNED_OWORD_BLOCK_READ_LOGICAL) {
6370 assert(devinfo->ver >= 9);
6371
6372 /* OWORD messages only take a scalar address in a header */
6373 mlen = 1;
6374 header_size = 1;
6375 payload = emit_a64_oword_block_header(bld, addr);
6376
6377 if (inst->opcode == SHADER_OPCODE_A64_OWORD_BLOCK_WRITE_LOGICAL) {
6378 ex_mlen = src_comps * type_sz(src.type) * inst->exec_size / REG_SIZE;
6379 payload2 = retype(bld.move_to_vgrf(src, src_comps),
6380 BRW_REGISTER_TYPE_UD);
6381 }
6382 } else if (devinfo->ver >= 9) {
6383 /* On Skylake and above, we have SENDS */
6384 mlen = 2 * (inst->exec_size / 8);
6385 ex_mlen = src_comps * type_sz(src.type) * inst->exec_size / REG_SIZE;
6386 payload = retype(bld.move_to_vgrf(addr, 1), BRW_REGISTER_TYPE_UD);
6387 payload2 = retype(bld.move_to_vgrf(src, src_comps),
6388 BRW_REGISTER_TYPE_UD);
6389 } else {
6390 /* Add two because the address is 64-bit */
6391 const unsigned dwords = 2 + src_comps;
6392 mlen = dwords * (inst->exec_size / 8);
6393
6394 fs_reg sources[5];
6395
6396 sources[0] = addr;
6397
6398 for (unsigned i = 0; i < src_comps; i++)
6399 sources[1 + i] = offset(src, bld, i);
6400
6401 payload = bld.vgrf(BRW_REGISTER_TYPE_UD, dwords);
6402 bld.LOAD_PAYLOAD(payload, sources, 1 + src_comps, 0);
6403 }
6404
6405 uint32_t desc;
6406 switch (inst->opcode) {
6407 case SHADER_OPCODE_A64_UNTYPED_READ_LOGICAL:
6408 desc = brw_dp_a64_untyped_surface_rw_desc(devinfo, inst->exec_size,
6409 arg, /* num_channels */
6410 false /* write */);
6411 break;
6412
6413 case SHADER_OPCODE_A64_UNTYPED_WRITE_LOGICAL:
6414 desc = brw_dp_a64_untyped_surface_rw_desc(devinfo, inst->exec_size,
6415 arg, /* num_channels */
6416 true /* write */);
6417 break;
6418
6419 case SHADER_OPCODE_A64_OWORD_BLOCK_READ_LOGICAL:
6420 desc = brw_dp_a64_oword_block_rw_desc(devinfo,
6421 true, /* align_16B */
6422 arg, /* num_dwords */
6423 false /* write */);
6424 break;
6425
6426 case SHADER_OPCODE_A64_UNALIGNED_OWORD_BLOCK_READ_LOGICAL:
6427 desc = brw_dp_a64_oword_block_rw_desc(devinfo,
6428 false, /* align_16B */
6429 arg, /* num_dwords */
6430 false /* write */);
6431 break;
6432
6433 case SHADER_OPCODE_A64_OWORD_BLOCK_WRITE_LOGICAL:
6434 desc = brw_dp_a64_oword_block_rw_desc(devinfo,
6435 true, /* align_16B */
6436 arg, /* num_dwords */
6437 true /* write */);
6438 break;
6439
6440 case SHADER_OPCODE_A64_BYTE_SCATTERED_READ_LOGICAL:
6441 desc = brw_dp_a64_byte_scattered_rw_desc(devinfo, inst->exec_size,
6442 arg, /* bit_size */
6443 false /* write */);
6444 break;
6445
6446 case SHADER_OPCODE_A64_BYTE_SCATTERED_WRITE_LOGICAL:
6447 desc = brw_dp_a64_byte_scattered_rw_desc(devinfo, inst->exec_size,
6448 arg, /* bit_size */
6449 true /* write */);
6450 break;
6451
6452 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_LOGICAL:
6453 desc = brw_dp_a64_untyped_atomic_desc(devinfo, inst->exec_size, 32,
6454 arg, /* atomic_op */
6455 !inst->dst.is_null());
6456 break;
6457
6458 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_INT16_LOGICAL:
6459 desc = brw_dp_a64_untyped_atomic_desc(devinfo, inst->exec_size, 16,
6460 arg, /* atomic_op */
6461 !inst->dst.is_null());
6462 break;
6463
6464 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_INT64_LOGICAL:
6465 desc = brw_dp_a64_untyped_atomic_desc(devinfo, inst->exec_size, 64,
6466 arg, /* atomic_op */
6467 !inst->dst.is_null());
6468 break;
6469
6470 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_FLOAT16_LOGICAL:
6471 desc = brw_dp_a64_untyped_atomic_float_desc(devinfo, inst->exec_size,
6472 16, /* bit_size */
6473 arg, /* atomic_op */
6474 !inst->dst.is_null());
6475 break;
6476
6477 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_FLOAT32_LOGICAL:
6478 desc = brw_dp_a64_untyped_atomic_float_desc(devinfo, inst->exec_size,
6479 32, /* bit_size */
6480 arg, /* atomic_op */
6481 !inst->dst.is_null());
6482 break;
6483
6484 default:
6485 unreachable("Unknown A64 logical instruction");
6486 }
6487
6488 /* Update the original instruction. */
6489 inst->opcode = SHADER_OPCODE_SEND;
6490 inst->mlen = mlen;
6491 inst->ex_mlen = ex_mlen;
6492 inst->header_size = header_size;
6493 inst->send_has_side_effects = has_side_effects;
6494 inst->send_is_volatile = !has_side_effects;
6495
6496 /* Set up SFID and descriptors */
6497 inst->sfid = HSW_SFID_DATAPORT_DATA_CACHE_1;
6498 inst->desc = desc;
6499 inst->resize_sources(4);
6500 inst->src[0] = brw_imm_ud(0); /* desc */
6501 inst->src[1] = brw_imm_ud(0); /* ex_desc */
6502 inst->src[2] = payload;
6503 inst->src[3] = payload2;
6504 }
6505
6506 static void
lower_lsc_varying_pull_constant_logical_send(const fs_builder & bld,fs_inst * inst)6507 lower_lsc_varying_pull_constant_logical_send(const fs_builder &bld,
6508 fs_inst *inst)
6509 {
6510 const intel_device_info *devinfo = bld.shader->devinfo;
6511 ASSERTED const brw_compiler *compiler = bld.shader->compiler;
6512
6513 fs_reg index = inst->src[0];
6514
6515 /* We are switching the instruction from an ALU-like instruction to a
6516 * send-from-grf instruction. Since sends can't handle strides or
6517 * source modifiers, we have to make a copy of the offset source.
6518 */
6519 fs_reg ubo_offset = bld.move_to_vgrf(inst->src[1], 1);
6520
6521 assert(inst->src[2].file == BRW_IMMEDIATE_VALUE);
6522 unsigned alignment = inst->src[2].ud;
6523
6524 inst->opcode = SHADER_OPCODE_SEND;
6525 inst->sfid = GFX12_SFID_UGM;
6526 inst->resize_sources(3);
6527 inst->src[0] = brw_imm_ud(0);
6528
6529 if (index.file == IMM) {
6530 inst->src[1] = brw_imm_ud(lsc_bti_ex_desc(devinfo, index.ud));
6531 } else {
6532 const fs_builder ubld = bld.exec_all().group(1, 0);
6533 fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD);
6534 ubld.SHL(tmp, index, brw_imm_ud(24));
6535 inst->src[1] = component(tmp, 0);
6536 }
6537
6538 assert(!compiler->indirect_ubos_use_sampler);
6539
6540 inst->src[2] = ubo_offset; /* payload */
6541 if (alignment >= 4) {
6542 inst->desc = lsc_msg_desc(devinfo, LSC_OP_LOAD_CMASK, inst->exec_size,
6543 LSC_ADDR_SURFTYPE_BTI, LSC_ADDR_SIZE_A32,
6544 1 /* num_coordinates */,
6545 LSC_DATA_SIZE_D32,
6546 4 /* num_channels */,
6547 false /* transpose */,
6548 LSC_CACHE_LOAD_L1STATE_L3MOCS,
6549 true /* has_dest */);
6550 inst->mlen = lsc_msg_desc_src0_len(devinfo, inst->desc);
6551 } else {
6552 inst->desc = lsc_msg_desc(devinfo, LSC_OP_LOAD, inst->exec_size,
6553 LSC_ADDR_SURFTYPE_BTI, LSC_ADDR_SIZE_A32,
6554 1 /* num_coordinates */,
6555 LSC_DATA_SIZE_D32,
6556 1 /* num_channels */,
6557 false /* transpose */,
6558 LSC_CACHE_LOAD_L1STATE_L3MOCS,
6559 true /* has_dest */);
6560 inst->mlen = lsc_msg_desc_src0_len(devinfo, inst->desc);
6561 /* The byte scattered messages can only read one dword at a time so
6562 * we have to duplicate the message 4 times to read the full vec4.
6563 * Hopefully, dead code will clean up the mess if some of them aren't
6564 * needed.
6565 */
6566 assert(inst->size_written == 16 * inst->exec_size);
6567 inst->size_written /= 4;
6568 for (unsigned c = 1; c < 4; c++) {
6569 /* Emit a copy of the instruction because we're about to modify
6570 * it. Because this loop starts at 1, we will emit copies for the
6571 * first 3 and the final one will be the modified instruction.
6572 */
6573 bld.emit(*inst);
6574
6575 /* Offset the source */
6576 inst->src[2] = bld.vgrf(BRW_REGISTER_TYPE_UD);
6577 bld.ADD(inst->src[2], ubo_offset, brw_imm_ud(c * 4));
6578
6579 /* Offset the destination */
6580 inst->dst = offset(inst->dst, bld, 1);
6581 }
6582 }
6583 }
6584
6585 static void
lower_varying_pull_constant_logical_send(const fs_builder & bld,fs_inst * inst)6586 lower_varying_pull_constant_logical_send(const fs_builder &bld, fs_inst *inst)
6587 {
6588 const intel_device_info *devinfo = bld.shader->devinfo;
6589 const brw_compiler *compiler = bld.shader->compiler;
6590
6591 if (devinfo->ver >= 7) {
6592 fs_reg index = inst->src[0];
6593 /* We are switching the instruction from an ALU-like instruction to a
6594 * send-from-grf instruction. Since sends can't handle strides or
6595 * source modifiers, we have to make a copy of the offset source.
6596 */
6597 fs_reg ubo_offset = bld.vgrf(BRW_REGISTER_TYPE_UD);
6598 bld.MOV(ubo_offset, inst->src[1]);
6599
6600 assert(inst->src[2].file == BRW_IMMEDIATE_VALUE);
6601 unsigned alignment = inst->src[2].ud;
6602
6603 inst->opcode = SHADER_OPCODE_SEND;
6604 inst->mlen = inst->exec_size / 8;
6605 inst->resize_sources(3);
6606
6607 if (index.file == IMM) {
6608 inst->desc = index.ud & 0xff;
6609 inst->src[0] = brw_imm_ud(0);
6610 } else {
6611 inst->desc = 0;
6612 const fs_builder ubld = bld.exec_all().group(1, 0);
6613 fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD);
6614 ubld.AND(tmp, index, brw_imm_ud(0xff));
6615 inst->src[0] = component(tmp, 0);
6616 }
6617 inst->src[1] = brw_imm_ud(0); /* ex_desc */
6618 inst->src[2] = ubo_offset; /* payload */
6619
6620 if (compiler->indirect_ubos_use_sampler) {
6621 const unsigned simd_mode =
6622 inst->exec_size <= 8 ? BRW_SAMPLER_SIMD_MODE_SIMD8 :
6623 BRW_SAMPLER_SIMD_MODE_SIMD16;
6624
6625 inst->sfid = BRW_SFID_SAMPLER;
6626 inst->desc |= brw_sampler_desc(devinfo, 0, 0,
6627 GFX5_SAMPLER_MESSAGE_SAMPLE_LD,
6628 simd_mode, 0);
6629 } else if (alignment >= 4) {
6630 inst->sfid = (devinfo->verx10 >= 75 ?
6631 HSW_SFID_DATAPORT_DATA_CACHE_1 :
6632 GFX7_SFID_DATAPORT_DATA_CACHE);
6633 inst->desc |= brw_dp_untyped_surface_rw_desc(devinfo, inst->exec_size,
6634 4, /* num_channels */
6635 false /* write */);
6636 } else {
6637 inst->sfid = GFX7_SFID_DATAPORT_DATA_CACHE;
6638 inst->desc |= brw_dp_byte_scattered_rw_desc(devinfo, inst->exec_size,
6639 32, /* bit_size */
6640 false /* write */);
6641 /* The byte scattered messages can only read one dword at a time so
6642 * we have to duplicate the message 4 times to read the full vec4.
6643 * Hopefully, dead code will clean up the mess if some of them aren't
6644 * needed.
6645 */
6646 assert(inst->size_written == 16 * inst->exec_size);
6647 inst->size_written /= 4;
6648 for (unsigned c = 1; c < 4; c++) {
6649 /* Emit a copy of the instruction because we're about to modify
6650 * it. Because this loop starts at 1, we will emit copies for the
6651 * first 3 and the final one will be the modified instruction.
6652 */
6653 bld.emit(*inst);
6654
6655 /* Offset the source */
6656 inst->src[2] = bld.vgrf(BRW_REGISTER_TYPE_UD);
6657 bld.ADD(inst->src[2], ubo_offset, brw_imm_ud(c * 4));
6658
6659 /* Offset the destination */
6660 inst->dst = offset(inst->dst, bld, 1);
6661 }
6662 }
6663 } else {
6664 const fs_reg payload(MRF, FIRST_PULL_LOAD_MRF(devinfo->ver),
6665 BRW_REGISTER_TYPE_UD);
6666
6667 bld.MOV(byte_offset(payload, REG_SIZE), inst->src[1]);
6668
6669 inst->opcode = FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GFX4;
6670 inst->resize_sources(1);
6671 inst->base_mrf = payload.nr;
6672 inst->header_size = 1;
6673 inst->mlen = 1 + inst->exec_size / 8;
6674 }
6675 }
6676
6677 static void
lower_math_logical_send(const fs_builder & bld,fs_inst * inst)6678 lower_math_logical_send(const fs_builder &bld, fs_inst *inst)
6679 {
6680 assert(bld.shader->devinfo->ver < 6);
6681
6682 inst->base_mrf = 2;
6683 inst->mlen = inst->sources * inst->exec_size / 8;
6684
6685 if (inst->sources > 1) {
6686 /* From the Ironlake PRM, Volume 4, Part 1, Section 6.1.13
6687 * "Message Payload":
6688 *
6689 * "Operand0[7]. For the INT DIV functions, this operand is the
6690 * denominator."
6691 * ...
6692 * "Operand1[7]. For the INT DIV functions, this operand is the
6693 * numerator."
6694 */
6695 const bool is_int_div = inst->opcode != SHADER_OPCODE_POW;
6696 const fs_reg src0 = is_int_div ? inst->src[1] : inst->src[0];
6697 const fs_reg src1 = is_int_div ? inst->src[0] : inst->src[1];
6698
6699 inst->resize_sources(1);
6700 inst->src[0] = src0;
6701
6702 assert(inst->exec_size == 8);
6703 bld.MOV(fs_reg(MRF, inst->base_mrf + 1, src1.type), src1);
6704 }
6705 }
6706
6707 static void
lower_btd_logical_send(const fs_builder & bld,fs_inst * inst)6708 lower_btd_logical_send(const fs_builder &bld, fs_inst *inst)
6709 {
6710 const intel_device_info *devinfo = bld.shader->devinfo;
6711 fs_reg global_addr = inst->src[0];
6712 const fs_reg &btd_record = inst->src[1];
6713
6714 const unsigned mlen = 2;
6715 const fs_builder ubld = bld.exec_all().group(8, 0);
6716 fs_reg header = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
6717
6718 ubld.MOV(header, brw_imm_ud(0));
6719 switch (inst->opcode) {
6720 case SHADER_OPCODE_BTD_SPAWN_LOGICAL:
6721 assert(type_sz(global_addr.type) == 8 && global_addr.stride == 0);
6722 global_addr.type = BRW_REGISTER_TYPE_UD;
6723 global_addr.stride = 1;
6724 ubld.group(2, 0).MOV(header, global_addr);
6725 break;
6726
6727 case SHADER_OPCODE_BTD_RETIRE_LOGICAL:
6728 /* The bottom bit is the Stack ID release bit */
6729 ubld.group(1, 0).MOV(header, brw_imm_ud(1));
6730 break;
6731
6732 default:
6733 unreachable("Invalid BTD message");
6734 }
6735
6736 /* Stack IDs are always in R1 regardless of whether we're coming from a
6737 * bindless shader or a regular compute shader.
6738 */
6739 fs_reg stack_ids =
6740 retype(byte_offset(header, REG_SIZE), BRW_REGISTER_TYPE_UW);
6741 bld.MOV(stack_ids, retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UW));
6742
6743 unsigned ex_mlen = 0;
6744 fs_reg payload;
6745 if (inst->opcode == SHADER_OPCODE_BTD_SPAWN_LOGICAL) {
6746 ex_mlen = 2 * (inst->exec_size / 8);
6747 payload = bld.move_to_vgrf(btd_record, 1);
6748 } else {
6749 assert(inst->opcode == SHADER_OPCODE_BTD_RETIRE_LOGICAL);
6750 /* All these messages take a BTD and things complain if we don't provide
6751 * one for RETIRE. However, it shouldn't ever actually get used so fill
6752 * it with zero.
6753 */
6754 ex_mlen = 2 * (inst->exec_size / 8);
6755 payload = bld.move_to_vgrf(brw_imm_uq(0), 1);
6756 }
6757
6758 /* Update the original instruction. */
6759 inst->opcode = SHADER_OPCODE_SEND;
6760 inst->mlen = mlen;
6761 inst->ex_mlen = ex_mlen;
6762 inst->header_size = 0; /* HW docs require has_header = false */
6763 inst->send_has_side_effects = true;
6764 inst->send_is_volatile = false;
6765
6766 /* Set up SFID and descriptors */
6767 inst->sfid = GEN_RT_SFID_BINDLESS_THREAD_DISPATCH;
6768 inst->desc = brw_btd_spawn_desc(devinfo, inst->exec_size,
6769 GEN_RT_BTD_MESSAGE_SPAWN);
6770 inst->resize_sources(4);
6771 inst->src[0] = brw_imm_ud(0); /* desc */
6772 inst->src[1] = brw_imm_ud(0); /* ex_desc */
6773 inst->src[2] = header;
6774 inst->src[3] = payload;
6775 }
6776
6777 static void
lower_trace_ray_logical_send(const fs_builder & bld,fs_inst * inst)6778 lower_trace_ray_logical_send(const fs_builder &bld, fs_inst *inst)
6779 {
6780 const intel_device_info *devinfo = bld.shader->devinfo;
6781 const fs_reg &bvh_level = inst->src[0];
6782 assert(inst->src[1].file == BRW_IMMEDIATE_VALUE);
6783 const uint32_t trace_ray_control = inst->src[1].ud;
6784
6785 const unsigned mlen = 1;
6786 const fs_builder ubld = bld.exec_all().group(8, 0);
6787 fs_reg header = ubld.vgrf(BRW_REGISTER_TYPE_UD);
6788 ubld.MOV(header, brw_imm_ud(0));
6789 ubld.group(2, 0).MOV(header,
6790 retype(brw_vec2_grf(2, 0), BRW_REGISTER_TYPE_UD));
6791 /* TODO: Bit 128 is ray_query */
6792
6793 const unsigned ex_mlen = inst->exec_size / 8;
6794 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD);
6795 const uint32_t trc_bits = SET_BITS(trace_ray_control, 9, 8);
6796 if (bvh_level.file == BRW_IMMEDIATE_VALUE) {
6797 bld.MOV(payload, brw_imm_ud(trc_bits | (bvh_level.ud & 0x7)));
6798 } else {
6799 bld.AND(payload, bvh_level, brw_imm_ud(0x7));
6800 if (trc_bits != 0)
6801 bld.OR(payload, payload, brw_imm_ud(trc_bits));
6802 }
6803 bld.AND(subscript(payload, BRW_REGISTER_TYPE_UW, 1),
6804 retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UW),
6805 brw_imm_uw(0x7ff));
6806
6807 /* Update the original instruction. */
6808 inst->opcode = SHADER_OPCODE_SEND;
6809 inst->mlen = mlen;
6810 inst->ex_mlen = ex_mlen;
6811 inst->header_size = 0; /* HW docs require has_header = false */
6812 inst->send_has_side_effects = true;
6813 inst->send_is_volatile = false;
6814
6815 /* Set up SFID and descriptors */
6816 inst->sfid = GEN_RT_SFID_RAY_TRACE_ACCELERATOR;
6817 inst->desc = brw_rt_trace_ray_desc(devinfo, inst->exec_size);
6818 inst->resize_sources(4);
6819 inst->src[0] = brw_imm_ud(0); /* desc */
6820 inst->src[1] = brw_imm_ud(0); /* ex_desc */
6821 inst->src[2] = header;
6822 inst->src[3] = payload;
6823 }
6824
6825 bool
lower_logical_sends()6826 fs_visitor::lower_logical_sends()
6827 {
6828 bool progress = false;
6829
6830 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
6831 const fs_builder ibld(this, block, inst);
6832
6833 switch (inst->opcode) {
6834 case FS_OPCODE_FB_WRITE_LOGICAL:
6835 assert(stage == MESA_SHADER_FRAGMENT);
6836 lower_fb_write_logical_send(ibld, inst,
6837 brw_wm_prog_data(prog_data),
6838 (const brw_wm_prog_key *)key,
6839 payload);
6840 break;
6841
6842 case FS_OPCODE_FB_READ_LOGICAL:
6843 lower_fb_read_logical_send(ibld, inst);
6844 break;
6845
6846 case SHADER_OPCODE_TEX_LOGICAL:
6847 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TEX);
6848 break;
6849
6850 case SHADER_OPCODE_TXD_LOGICAL:
6851 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXD);
6852 break;
6853
6854 case SHADER_OPCODE_TXF_LOGICAL:
6855 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF);
6856 break;
6857
6858 case SHADER_OPCODE_TXL_LOGICAL:
6859 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXL);
6860 break;
6861
6862 case SHADER_OPCODE_TXS_LOGICAL:
6863 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXS);
6864 break;
6865
6866 case SHADER_OPCODE_IMAGE_SIZE_LOGICAL:
6867 lower_sampler_logical_send(ibld, inst,
6868 SHADER_OPCODE_IMAGE_SIZE_LOGICAL);
6869 break;
6870
6871 case FS_OPCODE_TXB_LOGICAL:
6872 lower_sampler_logical_send(ibld, inst, FS_OPCODE_TXB);
6873 break;
6874
6875 case SHADER_OPCODE_TXF_CMS_LOGICAL:
6876 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_CMS);
6877 break;
6878
6879 case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
6880 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_CMS_W);
6881 break;
6882
6883 case SHADER_OPCODE_TXF_UMS_LOGICAL:
6884 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_UMS);
6885 break;
6886
6887 case SHADER_OPCODE_TXF_MCS_LOGICAL:
6888 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_MCS);
6889 break;
6890
6891 case SHADER_OPCODE_LOD_LOGICAL:
6892 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_LOD);
6893 break;
6894
6895 case SHADER_OPCODE_TG4_LOGICAL:
6896 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TG4);
6897 break;
6898
6899 case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
6900 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TG4_OFFSET);
6901 break;
6902
6903 case SHADER_OPCODE_SAMPLEINFO_LOGICAL:
6904 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_SAMPLEINFO);
6905 break;
6906
6907 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
6908 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
6909 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
6910 case SHADER_OPCODE_UNTYPED_ATOMIC_FLOAT_LOGICAL:
6911 case SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL:
6912 case SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL:
6913 if (devinfo->has_lsc) {
6914 lower_lsc_surface_logical_send(ibld, inst);
6915 break;
6916 }
6917 case SHADER_OPCODE_DWORD_SCATTERED_READ_LOGICAL:
6918 case SHADER_OPCODE_DWORD_SCATTERED_WRITE_LOGICAL:
6919 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
6920 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
6921 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
6922 lower_surface_logical_send(ibld, inst);
6923 break;
6924
6925 case SHADER_OPCODE_OWORD_BLOCK_READ_LOGICAL:
6926 case SHADER_OPCODE_UNALIGNED_OWORD_BLOCK_READ_LOGICAL:
6927 case SHADER_OPCODE_OWORD_BLOCK_WRITE_LOGICAL:
6928 lower_surface_block_logical_send(ibld, inst);
6929 break;
6930
6931 case SHADER_OPCODE_A64_UNTYPED_WRITE_LOGICAL:
6932 case SHADER_OPCODE_A64_UNTYPED_READ_LOGICAL:
6933 case SHADER_OPCODE_A64_BYTE_SCATTERED_WRITE_LOGICAL:
6934 case SHADER_OPCODE_A64_BYTE_SCATTERED_READ_LOGICAL:
6935 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_LOGICAL:
6936 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_INT16_LOGICAL:
6937 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_INT64_LOGICAL:
6938 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_FLOAT16_LOGICAL:
6939 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_FLOAT32_LOGICAL:
6940 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_FLOAT64_LOGICAL:
6941 if (devinfo->has_lsc) {
6942 lower_lsc_a64_logical_send(ibld, inst);
6943 break;
6944 }
6945 case SHADER_OPCODE_A64_OWORD_BLOCK_READ_LOGICAL:
6946 case SHADER_OPCODE_A64_UNALIGNED_OWORD_BLOCK_READ_LOGICAL:
6947 case SHADER_OPCODE_A64_OWORD_BLOCK_WRITE_LOGICAL:
6948 lower_a64_logical_send(ibld, inst);
6949 break;
6950
6951 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL:
6952 if (devinfo->has_lsc && !compiler->indirect_ubos_use_sampler)
6953 lower_lsc_varying_pull_constant_logical_send(ibld, inst);
6954 else
6955 lower_varying_pull_constant_logical_send(ibld, inst);
6956 break;
6957
6958 case SHADER_OPCODE_RCP:
6959 case SHADER_OPCODE_RSQ:
6960 case SHADER_OPCODE_SQRT:
6961 case SHADER_OPCODE_EXP2:
6962 case SHADER_OPCODE_LOG2:
6963 case SHADER_OPCODE_SIN:
6964 case SHADER_OPCODE_COS:
6965 case SHADER_OPCODE_POW:
6966 case SHADER_OPCODE_INT_QUOTIENT:
6967 case SHADER_OPCODE_INT_REMAINDER:
6968 /* The math opcodes are overloaded for the send-like and
6969 * expression-like instructions which seems kind of icky. Gfx6+ has
6970 * a native (but rather quirky) MATH instruction so we don't need to
6971 * do anything here. On Gfx4-5 we'll have to lower the Gfx6-like
6972 * logical instructions (which we can easily recognize because they
6973 * have mlen = 0) into send-like virtual instructions.
6974 */
6975 if (devinfo->ver < 6 && inst->mlen == 0) {
6976 lower_math_logical_send(ibld, inst);
6977 break;
6978
6979 } else {
6980 continue;
6981 }
6982
6983 case SHADER_OPCODE_BTD_SPAWN_LOGICAL:
6984 case SHADER_OPCODE_BTD_RETIRE_LOGICAL:
6985 lower_btd_logical_send(ibld, inst);
6986 break;
6987
6988 case RT_OPCODE_TRACE_RAY_LOGICAL:
6989 lower_trace_ray_logical_send(ibld, inst);
6990 break;
6991
6992 default:
6993 continue;
6994 }
6995
6996 progress = true;
6997 }
6998
6999 if (progress)
7000 invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES);
7001
7002 return progress;
7003 }
7004
7005 static bool
is_mixed_float_with_fp32_dst(const fs_inst * inst)7006 is_mixed_float_with_fp32_dst(const fs_inst *inst)
7007 {
7008 /* This opcode sometimes uses :W type on the source even if the operand is
7009 * a :HF, because in gfx7 there is no support for :HF, and thus it uses :W.
7010 */
7011 if (inst->opcode == BRW_OPCODE_F16TO32)
7012 return true;
7013
7014 if (inst->dst.type != BRW_REGISTER_TYPE_F)
7015 return false;
7016
7017 for (int i = 0; i < inst->sources; i++) {
7018 if (inst->src[i].type == BRW_REGISTER_TYPE_HF)
7019 return true;
7020 }
7021
7022 return false;
7023 }
7024
7025 static bool
is_mixed_float_with_packed_fp16_dst(const fs_inst * inst)7026 is_mixed_float_with_packed_fp16_dst(const fs_inst *inst)
7027 {
7028 /* This opcode sometimes uses :W type on the destination even if the
7029 * destination is a :HF, because in gfx7 there is no support for :HF, and
7030 * thus it uses :W.
7031 */
7032 if (inst->opcode == BRW_OPCODE_F32TO16 &&
7033 inst->dst.stride == 1)
7034 return true;
7035
7036 if (inst->dst.type != BRW_REGISTER_TYPE_HF ||
7037 inst->dst.stride != 1)
7038 return false;
7039
7040 for (int i = 0; i < inst->sources; i++) {
7041 if (inst->src[i].type == BRW_REGISTER_TYPE_F)
7042 return true;
7043 }
7044
7045 return false;
7046 }
7047
7048 /**
7049 * Get the closest allowed SIMD width for instruction \p inst accounting for
7050 * some common regioning and execution control restrictions that apply to FPU
7051 * instructions. These restrictions don't necessarily have any relevance to
7052 * instructions not executed by the FPU pipeline like extended math, control
7053 * flow or send message instructions.
7054 *
7055 * For virtual opcodes it's really up to the instruction -- In some cases
7056 * (e.g. where a virtual instruction unrolls into a simple sequence of FPU
7057 * instructions) it may simplify virtual instruction lowering if we can
7058 * enforce FPU-like regioning restrictions already on the virtual instruction,
7059 * in other cases (e.g. virtual send-like instructions) this may be
7060 * excessively restrictive.
7061 */
7062 static unsigned
get_fpu_lowered_simd_width(const struct intel_device_info * devinfo,const fs_inst * inst)7063 get_fpu_lowered_simd_width(const struct intel_device_info *devinfo,
7064 const fs_inst *inst)
7065 {
7066 /* Maximum execution size representable in the instruction controls. */
7067 unsigned max_width = MIN2(32, inst->exec_size);
7068
7069 /* According to the PRMs:
7070 * "A. In Direct Addressing mode, a source cannot span more than 2
7071 * adjacent GRF registers.
7072 * B. A destination cannot span more than 2 adjacent GRF registers."
7073 *
7074 * Look for the source or destination with the largest register region
7075 * which is the one that is going to limit the overall execution size of
7076 * the instruction due to this rule.
7077 */
7078 unsigned reg_count = DIV_ROUND_UP(inst->size_written, REG_SIZE);
7079
7080 for (unsigned i = 0; i < inst->sources; i++)
7081 reg_count = MAX2(reg_count, DIV_ROUND_UP(inst->size_read(i), REG_SIZE));
7082
7083 /* Calculate the maximum execution size of the instruction based on the
7084 * factor by which it goes over the hardware limit of 2 GRFs.
7085 */
7086 if (reg_count > 2)
7087 max_width = MIN2(max_width, inst->exec_size / DIV_ROUND_UP(reg_count, 2));
7088
7089 /* According to the IVB PRMs:
7090 * "When destination spans two registers, the source MUST span two
7091 * registers. The exception to the above rule:
7092 *
7093 * - When source is scalar, the source registers are not incremented.
7094 * - When source is packed integer Word and destination is packed
7095 * integer DWord, the source register is not incremented but the
7096 * source sub register is incremented."
7097 *
7098 * The hardware specs from Gfx4 to Gfx7.5 mention similar regioning
7099 * restrictions. The code below intentionally doesn't check whether the
7100 * destination type is integer because empirically the hardware doesn't
7101 * seem to care what the actual type is as long as it's dword-aligned.
7102 */
7103 if (devinfo->ver < 8) {
7104 for (unsigned i = 0; i < inst->sources; i++) {
7105 /* IVB implements DF scalars as <0;2,1> regions. */
7106 const bool is_scalar_exception = is_uniform(inst->src[i]) &&
7107 (devinfo->is_haswell || type_sz(inst->src[i].type) != 8);
7108 const bool is_packed_word_exception =
7109 type_sz(inst->dst.type) == 4 && inst->dst.stride == 1 &&
7110 type_sz(inst->src[i].type) == 2 && inst->src[i].stride == 1;
7111
7112 /* We check size_read(i) against size_written instead of REG_SIZE
7113 * because we want to properly handle SIMD32. In SIMD32, you can end
7114 * up with writes to 4 registers and a source that reads 2 registers
7115 * and we may still need to lower all the way to SIMD8 in that case.
7116 */
7117 if (inst->size_written > REG_SIZE &&
7118 inst->size_read(i) != 0 &&
7119 inst->size_read(i) < inst->size_written &&
7120 !is_scalar_exception && !is_packed_word_exception) {
7121 const unsigned reg_count = DIV_ROUND_UP(inst->size_written, REG_SIZE);
7122 max_width = MIN2(max_width, inst->exec_size / reg_count);
7123 }
7124 }
7125 }
7126
7127 if (devinfo->ver < 6) {
7128 /* From the G45 PRM, Volume 4 Page 361:
7129 *
7130 * "Operand Alignment Rule: With the exceptions listed below, a
7131 * source/destination operand in general should be aligned to even
7132 * 256-bit physical register with a region size equal to two 256-bit
7133 * physical registers."
7134 *
7135 * Normally we enforce this by allocating virtual registers to the
7136 * even-aligned class. But we need to handle payload registers.
7137 */
7138 for (unsigned i = 0; i < inst->sources; i++) {
7139 if (inst->src[i].file == FIXED_GRF && (inst->src[i].nr & 1) &&
7140 inst->size_read(i) > REG_SIZE) {
7141 max_width = MIN2(max_width, 8);
7142 }
7143 }
7144 }
7145
7146 /* From the IVB PRMs:
7147 * "When an instruction is SIMD32, the low 16 bits of the execution mask
7148 * are applied for both halves of the SIMD32 instruction. If different
7149 * execution mask channels are required, split the instruction into two
7150 * SIMD16 instructions."
7151 *
7152 * There is similar text in the HSW PRMs. Gfx4-6 don't even implement
7153 * 32-wide control flow support in hardware and will behave similarly.
7154 */
7155 if (devinfo->ver < 8 && !inst->force_writemask_all)
7156 max_width = MIN2(max_width, 16);
7157
7158 /* From the IVB PRMs (applies to HSW too):
7159 * "Instructions with condition modifiers must not use SIMD32."
7160 *
7161 * From the BDW PRMs (applies to later hardware too):
7162 * "Ternary instruction with condition modifiers must not use SIMD32."
7163 */
7164 if (inst->conditional_mod && (devinfo->ver < 8 || inst->is_3src(devinfo)))
7165 max_width = MIN2(max_width, 16);
7166
7167 /* From the IVB PRMs (applies to other devices that don't have the
7168 * intel_device_info::supports_simd16_3src flag set):
7169 * "In Align16 access mode, SIMD16 is not allowed for DW operations and
7170 * SIMD8 is not allowed for DF operations."
7171 */
7172 if (inst->is_3src(devinfo) && !devinfo->supports_simd16_3src)
7173 max_width = MIN2(max_width, inst->exec_size / reg_count);
7174
7175 /* Pre-Gfx8 EUs are hardwired to use the QtrCtrl+1 (where QtrCtrl is
7176 * the 8-bit quarter of the execution mask signals specified in the
7177 * instruction control fields) for the second compressed half of any
7178 * single-precision instruction (for double-precision instructions
7179 * it's hardwired to use NibCtrl+1, at least on HSW), which means that
7180 * the EU will apply the wrong execution controls for the second
7181 * sequential GRF write if the number of channels per GRF is not exactly
7182 * eight in single-precision mode (or four in double-float mode).
7183 *
7184 * In this situation we calculate the maximum size of the split
7185 * instructions so they only ever write to a single register.
7186 */
7187 if (devinfo->ver < 8 && inst->size_written > REG_SIZE &&
7188 !inst->force_writemask_all) {
7189 const unsigned channels_per_grf = inst->exec_size /
7190 DIV_ROUND_UP(inst->size_written, REG_SIZE);
7191 const unsigned exec_type_size = get_exec_type_size(inst);
7192 assert(exec_type_size);
7193
7194 /* The hardware shifts exactly 8 channels per compressed half of the
7195 * instruction in single-precision mode and exactly 4 in double-precision.
7196 */
7197 if (channels_per_grf != (exec_type_size == 8 ? 4 : 8))
7198 max_width = MIN2(max_width, channels_per_grf);
7199
7200 /* Lower all non-force_writemask_all DF instructions to SIMD4 on IVB/BYT
7201 * because HW applies the same channel enable signals to both halves of
7202 * the compressed instruction which will be just wrong under
7203 * non-uniform control flow.
7204 */
7205 if (devinfo->verx10 == 70 &&
7206 (exec_type_size == 8 || type_sz(inst->dst.type) == 8))
7207 max_width = MIN2(max_width, 4);
7208 }
7209
7210 /* From the SKL PRM, Special Restrictions for Handling Mixed Mode
7211 * Float Operations:
7212 *
7213 * "No SIMD16 in mixed mode when destination is f32. Instruction
7214 * execution size must be no more than 8."
7215 *
7216 * FIXME: the simulator doesn't seem to complain if we don't do this and
7217 * empirical testing with existing CTS tests show that they pass just fine
7218 * without implementing this, however, since our interpretation of the PRM
7219 * is that conversion MOVs between HF and F are still mixed-float
7220 * instructions (and therefore subject to this restriction) we decided to
7221 * split them to be safe. Might be useful to do additional investigation to
7222 * lift the restriction if we can ensure that it is safe though, since these
7223 * conversions are common when half-float types are involved since many
7224 * instructions do not support HF types and conversions from/to F are
7225 * required.
7226 */
7227 if (is_mixed_float_with_fp32_dst(inst))
7228 max_width = MIN2(max_width, 8);
7229
7230 /* From the SKL PRM, Special Restrictions for Handling Mixed Mode
7231 * Float Operations:
7232 *
7233 * "No SIMD16 in mixed mode when destination is packed f16 for both
7234 * Align1 and Align16."
7235 */
7236 if (is_mixed_float_with_packed_fp16_dst(inst))
7237 max_width = MIN2(max_width, 8);
7238
7239 /* Only power-of-two execution sizes are representable in the instruction
7240 * control fields.
7241 */
7242 return 1 << util_logbase2(max_width);
7243 }
7244
7245 /**
7246 * Get the maximum allowed SIMD width for instruction \p inst accounting for
7247 * various payload size restrictions that apply to sampler message
7248 * instructions.
7249 *
7250 * This is only intended to provide a maximum theoretical bound for the
7251 * execution size of the message based on the number of argument components
7252 * alone, which in most cases will determine whether the SIMD8 or SIMD16
7253 * variant of the message can be used, though some messages may have
7254 * additional restrictions not accounted for here (e.g. pre-ILK hardware uses
7255 * the message length to determine the exact SIMD width and argument count,
7256 * which makes a number of sampler message combinations impossible to
7257 * represent).
7258 */
7259 static unsigned
get_sampler_lowered_simd_width(const struct intel_device_info * devinfo,const fs_inst * inst)7260 get_sampler_lowered_simd_width(const struct intel_device_info *devinfo,
7261 const fs_inst *inst)
7262 {
7263 /* If we have a min_lod parameter on anything other than a simple sample
7264 * message, it will push it over 5 arguments and we have to fall back to
7265 * SIMD8.
7266 */
7267 if (inst->opcode != SHADER_OPCODE_TEX &&
7268 inst->components_read(TEX_LOGICAL_SRC_MIN_LOD))
7269 return 8;
7270
7271 /* Calculate the number of coordinate components that have to be present
7272 * assuming that additional arguments follow the texel coordinates in the
7273 * message payload. On IVB+ there is no need for padding, on ILK-SNB we
7274 * need to pad to four or three components depending on the message,
7275 * pre-ILK we need to pad to at most three components.
7276 */
7277 const unsigned req_coord_components =
7278 (devinfo->ver >= 7 ||
7279 !inst->components_read(TEX_LOGICAL_SRC_COORDINATE)) ? 0 :
7280 (devinfo->ver >= 5 && inst->opcode != SHADER_OPCODE_TXF_LOGICAL &&
7281 inst->opcode != SHADER_OPCODE_TXF_CMS_LOGICAL) ? 4 :
7282 3;
7283
7284 /* On Gfx9+ the LOD argument is for free if we're able to use the LZ
7285 * variant of the TXL or TXF message.
7286 */
7287 const bool implicit_lod = devinfo->ver >= 9 &&
7288 (inst->opcode == SHADER_OPCODE_TXL ||
7289 inst->opcode == SHADER_OPCODE_TXF) &&
7290 inst->src[TEX_LOGICAL_SRC_LOD].is_zero();
7291
7292 /* Calculate the total number of argument components that need to be passed
7293 * to the sampler unit.
7294 */
7295 const unsigned num_payload_components =
7296 MAX2(inst->components_read(TEX_LOGICAL_SRC_COORDINATE),
7297 req_coord_components) +
7298 inst->components_read(TEX_LOGICAL_SRC_SHADOW_C) +
7299 (implicit_lod ? 0 : inst->components_read(TEX_LOGICAL_SRC_LOD)) +
7300 inst->components_read(TEX_LOGICAL_SRC_LOD2) +
7301 inst->components_read(TEX_LOGICAL_SRC_SAMPLE_INDEX) +
7302 (inst->opcode == SHADER_OPCODE_TG4_OFFSET_LOGICAL ?
7303 inst->components_read(TEX_LOGICAL_SRC_TG4_OFFSET) : 0) +
7304 inst->components_read(TEX_LOGICAL_SRC_MCS);
7305
7306 /* SIMD16 messages with more than five arguments exceed the maximum message
7307 * size supported by the sampler, regardless of whether a header is
7308 * provided or not.
7309 */
7310 return MIN2(inst->exec_size,
7311 num_payload_components > MAX_SAMPLER_MESSAGE_SIZE / 2 ? 8 : 16);
7312 }
7313
7314 /**
7315 * Get the closest native SIMD width supported by the hardware for instruction
7316 * \p inst. The instruction will be left untouched by
7317 * fs_visitor::lower_simd_width() if the returned value is equal to the
7318 * original execution size.
7319 */
7320 static unsigned
get_lowered_simd_width(const struct intel_device_info * devinfo,const fs_inst * inst)7321 get_lowered_simd_width(const struct intel_device_info *devinfo,
7322 const fs_inst *inst)
7323 {
7324 switch (inst->opcode) {
7325 case BRW_OPCODE_MOV:
7326 case BRW_OPCODE_SEL:
7327 case BRW_OPCODE_NOT:
7328 case BRW_OPCODE_AND:
7329 case BRW_OPCODE_OR:
7330 case BRW_OPCODE_XOR:
7331 case BRW_OPCODE_SHR:
7332 case BRW_OPCODE_SHL:
7333 case BRW_OPCODE_ASR:
7334 case BRW_OPCODE_ROR:
7335 case BRW_OPCODE_ROL:
7336 case BRW_OPCODE_CMPN:
7337 case BRW_OPCODE_CSEL:
7338 case BRW_OPCODE_F32TO16:
7339 case BRW_OPCODE_F16TO32:
7340 case BRW_OPCODE_BFREV:
7341 case BRW_OPCODE_BFE:
7342 case BRW_OPCODE_ADD:
7343 case BRW_OPCODE_MUL:
7344 case BRW_OPCODE_AVG:
7345 case BRW_OPCODE_FRC:
7346 case BRW_OPCODE_RNDU:
7347 case BRW_OPCODE_RNDD:
7348 case BRW_OPCODE_RNDE:
7349 case BRW_OPCODE_RNDZ:
7350 case BRW_OPCODE_LZD:
7351 case BRW_OPCODE_FBH:
7352 case BRW_OPCODE_FBL:
7353 case BRW_OPCODE_CBIT:
7354 case BRW_OPCODE_SAD2:
7355 case BRW_OPCODE_MAD:
7356 case BRW_OPCODE_LRP:
7357 case BRW_OPCODE_ADD3:
7358 case FS_OPCODE_PACK:
7359 case SHADER_OPCODE_SEL_EXEC:
7360 case SHADER_OPCODE_CLUSTER_BROADCAST:
7361 case SHADER_OPCODE_MOV_RELOC_IMM:
7362 return get_fpu_lowered_simd_width(devinfo, inst);
7363
7364 case BRW_OPCODE_CMP: {
7365 /* The Ivybridge/BayTrail WaCMPInstFlagDepClearedEarly workaround says that
7366 * when the destination is a GRF the dependency-clear bit on the flag
7367 * register is cleared early.
7368 *
7369 * Suggested workarounds are to disable coissuing CMP instructions
7370 * or to split CMP(16) instructions into two CMP(8) instructions.
7371 *
7372 * We choose to split into CMP(8) instructions since disabling
7373 * coissuing would affect CMP instructions not otherwise affected by
7374 * the errata.
7375 */
7376 const unsigned max_width = (devinfo->verx10 == 70 &&
7377 !inst->dst.is_null() ? 8 : ~0);
7378 return MIN2(max_width, get_fpu_lowered_simd_width(devinfo, inst));
7379 }
7380 case BRW_OPCODE_BFI1:
7381 case BRW_OPCODE_BFI2:
7382 /* The Haswell WaForceSIMD8ForBFIInstruction workaround says that we
7383 * should
7384 * "Force BFI instructions to be executed always in SIMD8."
7385 */
7386 return MIN2(devinfo->is_haswell ? 8 : ~0u,
7387 get_fpu_lowered_simd_width(devinfo, inst));
7388
7389 case BRW_OPCODE_IF:
7390 assert(inst->src[0].file == BAD_FILE || inst->exec_size <= 16);
7391 return inst->exec_size;
7392
7393 case SHADER_OPCODE_RCP:
7394 case SHADER_OPCODE_RSQ:
7395 case SHADER_OPCODE_SQRT:
7396 case SHADER_OPCODE_EXP2:
7397 case SHADER_OPCODE_LOG2:
7398 case SHADER_OPCODE_SIN:
7399 case SHADER_OPCODE_COS: {
7400 /* Unary extended math instructions are limited to SIMD8 on Gfx4 and
7401 * Gfx6. Extended Math Function is limited to SIMD8 with half-float.
7402 */
7403 if (devinfo->ver == 6 || (devinfo->ver == 4 && !devinfo->is_g4x))
7404 return MIN2(8, inst->exec_size);
7405 if (inst->dst.type == BRW_REGISTER_TYPE_HF)
7406 return MIN2(8, inst->exec_size);
7407 return MIN2(16, inst->exec_size);
7408 }
7409
7410 case SHADER_OPCODE_POW: {
7411 /* SIMD16 is only allowed on Gfx7+. Extended Math Function is limited
7412 * to SIMD8 with half-float
7413 */
7414 if (devinfo->ver < 7)
7415 return MIN2(8, inst->exec_size);
7416 if (inst->dst.type == BRW_REGISTER_TYPE_HF)
7417 return MIN2(8, inst->exec_size);
7418 return MIN2(16, inst->exec_size);
7419 }
7420
7421 case SHADER_OPCODE_USUB_SAT:
7422 case SHADER_OPCODE_ISUB_SAT:
7423 return get_fpu_lowered_simd_width(devinfo, inst);
7424
7425 case SHADER_OPCODE_INT_QUOTIENT:
7426 case SHADER_OPCODE_INT_REMAINDER:
7427 /* Integer division is limited to SIMD8 on all generations. */
7428 return MIN2(8, inst->exec_size);
7429
7430 case FS_OPCODE_LINTERP:
7431 case SHADER_OPCODE_GET_BUFFER_SIZE:
7432 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
7433 case FS_OPCODE_PACK_HALF_2x16_SPLIT:
7434 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
7435 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
7436 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
7437 return MIN2(16, inst->exec_size);
7438
7439 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL:
7440 /* Pre-ILK hardware doesn't have a SIMD8 variant of the texel fetch
7441 * message used to implement varying pull constant loads, so expand it
7442 * to SIMD16. An alternative with longer message payload length but
7443 * shorter return payload would be to use the SIMD8 sampler message that
7444 * takes (header, u, v, r) as parameters instead of (header, u).
7445 */
7446 return (devinfo->ver == 4 ? 16 : MIN2(16, inst->exec_size));
7447
7448 case FS_OPCODE_DDX_COARSE:
7449 case FS_OPCODE_DDX_FINE:
7450 case FS_OPCODE_DDY_COARSE:
7451 case FS_OPCODE_DDY_FINE:
7452 /* The implementation of this virtual opcode may require emitting
7453 * compressed Align16 instructions, which are severely limited on some
7454 * generations.
7455 *
7456 * From the Ivy Bridge PRM, volume 4 part 3, section 3.3.9 (Register
7457 * Region Restrictions):
7458 *
7459 * "In Align16 access mode, SIMD16 is not allowed for DW operations
7460 * and SIMD8 is not allowed for DF operations."
7461 *
7462 * In this context, "DW operations" means "operations acting on 32-bit
7463 * values", so it includes operations on floats.
7464 *
7465 * Gfx4 has a similar restriction. From the i965 PRM, section 11.5.3
7466 * (Instruction Compression -> Rules and Restrictions):
7467 *
7468 * "A compressed instruction must be in Align1 access mode. Align16
7469 * mode instructions cannot be compressed."
7470 *
7471 * Similar text exists in the g45 PRM.
7472 *
7473 * Empirically, compressed align16 instructions using odd register
7474 * numbers don't appear to work on Sandybridge either.
7475 */
7476 return (devinfo->ver == 4 || devinfo->ver == 6 ||
7477 (devinfo->verx10 == 70) ?
7478 MIN2(8, inst->exec_size) : MIN2(16, inst->exec_size));
7479
7480 case SHADER_OPCODE_MULH:
7481 /* MULH is lowered to the MUL/MACH sequence using the accumulator, which
7482 * is 8-wide on Gfx7+.
7483 */
7484 return (devinfo->ver >= 7 ? 8 :
7485 get_fpu_lowered_simd_width(devinfo, inst));
7486
7487 case FS_OPCODE_FB_WRITE_LOGICAL:
7488 /* Gfx6 doesn't support SIMD16 depth writes but we cannot handle them
7489 * here.
7490 */
7491 assert(devinfo->ver != 6 ||
7492 inst->src[FB_WRITE_LOGICAL_SRC_SRC_DEPTH].file == BAD_FILE ||
7493 inst->exec_size == 8);
7494 /* Dual-source FB writes are unsupported in SIMD16 mode. */
7495 return (inst->src[FB_WRITE_LOGICAL_SRC_COLOR1].file != BAD_FILE ?
7496 8 : MIN2(16, inst->exec_size));
7497
7498 case FS_OPCODE_FB_READ_LOGICAL:
7499 return MIN2(16, inst->exec_size);
7500
7501 case SHADER_OPCODE_TEX_LOGICAL:
7502 case SHADER_OPCODE_TXF_CMS_LOGICAL:
7503 case SHADER_OPCODE_TXF_UMS_LOGICAL:
7504 case SHADER_OPCODE_TXF_MCS_LOGICAL:
7505 case SHADER_OPCODE_LOD_LOGICAL:
7506 case SHADER_OPCODE_TG4_LOGICAL:
7507 case SHADER_OPCODE_SAMPLEINFO_LOGICAL:
7508 case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
7509 case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
7510 return get_sampler_lowered_simd_width(devinfo, inst);
7511
7512 case SHADER_OPCODE_TXD_LOGICAL:
7513 /* TXD is unsupported in SIMD16 mode. */
7514 return 8;
7515
7516 case SHADER_OPCODE_TXL_LOGICAL:
7517 case FS_OPCODE_TXB_LOGICAL:
7518 /* Only one execution size is representable pre-ILK depending on whether
7519 * the shadow reference argument is present.
7520 */
7521 if (devinfo->ver == 4)
7522 return inst->src[TEX_LOGICAL_SRC_SHADOW_C].file == BAD_FILE ? 16 : 8;
7523 else
7524 return get_sampler_lowered_simd_width(devinfo, inst);
7525
7526 case SHADER_OPCODE_TXF_LOGICAL:
7527 case SHADER_OPCODE_TXS_LOGICAL:
7528 /* Gfx4 doesn't have SIMD8 variants for the RESINFO and LD-with-LOD
7529 * messages. Use SIMD16 instead.
7530 */
7531 if (devinfo->ver == 4)
7532 return 16;
7533 else
7534 return get_sampler_lowered_simd_width(devinfo, inst);
7535
7536 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
7537 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
7538 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
7539 return 8;
7540
7541 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
7542 case SHADER_OPCODE_UNTYPED_ATOMIC_FLOAT_LOGICAL:
7543 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
7544 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
7545 case SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL:
7546 case SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL:
7547 case SHADER_OPCODE_DWORD_SCATTERED_WRITE_LOGICAL:
7548 case SHADER_OPCODE_DWORD_SCATTERED_READ_LOGICAL:
7549 return MIN2(16, inst->exec_size);
7550
7551 case SHADER_OPCODE_A64_UNTYPED_WRITE_LOGICAL:
7552 case SHADER_OPCODE_A64_UNTYPED_READ_LOGICAL:
7553 case SHADER_OPCODE_A64_BYTE_SCATTERED_WRITE_LOGICAL:
7554 case SHADER_OPCODE_A64_BYTE_SCATTERED_READ_LOGICAL:
7555 return devinfo->ver <= 8 ? 8 : MIN2(16, inst->exec_size);
7556
7557 case SHADER_OPCODE_A64_OWORD_BLOCK_READ_LOGICAL:
7558 case SHADER_OPCODE_A64_UNALIGNED_OWORD_BLOCK_READ_LOGICAL:
7559 case SHADER_OPCODE_A64_OWORD_BLOCK_WRITE_LOGICAL:
7560 assert(inst->exec_size <= 16);
7561 return inst->exec_size;
7562
7563 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_LOGICAL:
7564 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_INT16_LOGICAL:
7565 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_INT64_LOGICAL:
7566 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_FLOAT16_LOGICAL:
7567 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_FLOAT32_LOGICAL:
7568 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_FLOAT64_LOGICAL:
7569 return 8;
7570
7571 case SHADER_OPCODE_URB_READ_SIMD8:
7572 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
7573 case SHADER_OPCODE_URB_WRITE_SIMD8:
7574 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
7575 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
7576 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
7577 return MIN2(8, inst->exec_size);
7578
7579 case SHADER_OPCODE_QUAD_SWIZZLE: {
7580 const unsigned swiz = inst->src[1].ud;
7581 return (is_uniform(inst->src[0]) ?
7582 get_fpu_lowered_simd_width(devinfo, inst) :
7583 devinfo->ver < 11 && type_sz(inst->src[0].type) == 4 ? 8 :
7584 swiz == BRW_SWIZZLE_XYXY || swiz == BRW_SWIZZLE_ZWZW ? 4 :
7585 get_fpu_lowered_simd_width(devinfo, inst));
7586 }
7587 case SHADER_OPCODE_MOV_INDIRECT: {
7588 /* From IVB and HSW PRMs:
7589 *
7590 * "2.When the destination requires two registers and the sources are
7591 * indirect, the sources must use 1x1 regioning mode.
7592 *
7593 * In case of DF instructions in HSW/IVB, the exec_size is limited by
7594 * the EU decompression logic not handling VxH indirect addressing
7595 * correctly.
7596 */
7597 const unsigned max_size = (devinfo->ver >= 8 ? 2 : 1) * REG_SIZE;
7598 /* Prior to Broadwell, we only have 8 address subregisters. */
7599 return MIN3(devinfo->ver >= 8 ? 16 : 8,
7600 max_size / (inst->dst.stride * type_sz(inst->dst.type)),
7601 inst->exec_size);
7602 }
7603
7604 case SHADER_OPCODE_LOAD_PAYLOAD: {
7605 const unsigned reg_count =
7606 DIV_ROUND_UP(inst->dst.component_size(inst->exec_size), REG_SIZE);
7607
7608 if (reg_count > 2) {
7609 /* Only LOAD_PAYLOAD instructions with per-channel destination region
7610 * can be easily lowered (which excludes headers and heterogeneous
7611 * types).
7612 */
7613 assert(!inst->header_size);
7614 for (unsigned i = 0; i < inst->sources; i++)
7615 assert(type_sz(inst->dst.type) == type_sz(inst->src[i].type) ||
7616 inst->src[i].file == BAD_FILE);
7617
7618 return inst->exec_size / DIV_ROUND_UP(reg_count, 2);
7619 } else {
7620 return inst->exec_size;
7621 }
7622 }
7623 default:
7624 return inst->exec_size;
7625 }
7626 }
7627
7628 /**
7629 * Return true if splitting out the group of channels of instruction \p inst
7630 * given by lbld.group() requires allocating a temporary for the i-th source
7631 * of the lowered instruction.
7632 */
7633 static inline bool
needs_src_copy(const fs_builder & lbld,const fs_inst * inst,unsigned i)7634 needs_src_copy(const fs_builder &lbld, const fs_inst *inst, unsigned i)
7635 {
7636 return !(is_periodic(inst->src[i], lbld.dispatch_width()) ||
7637 (inst->components_read(i) == 1 &&
7638 lbld.dispatch_width() <= inst->exec_size)) ||
7639 (inst->flags_written(lbld.shader->devinfo) &
7640 flag_mask(inst->src[i], type_sz(inst->src[i].type)));
7641 }
7642
7643 /**
7644 * Extract the data that would be consumed by the channel group given by
7645 * lbld.group() from the i-th source region of instruction \p inst and return
7646 * it as result in packed form.
7647 */
7648 static fs_reg
emit_unzip(const fs_builder & lbld,fs_inst * inst,unsigned i)7649 emit_unzip(const fs_builder &lbld, fs_inst *inst, unsigned i)
7650 {
7651 assert(lbld.group() >= inst->group);
7652
7653 /* Specified channel group from the source region. */
7654 const fs_reg src = horiz_offset(inst->src[i], lbld.group() - inst->group);
7655
7656 if (needs_src_copy(lbld, inst, i)) {
7657 /* Builder of the right width to perform the copy avoiding uninitialized
7658 * data if the lowered execution size is greater than the original
7659 * execution size of the instruction.
7660 */
7661 const fs_builder cbld = lbld.group(MIN2(lbld.dispatch_width(),
7662 inst->exec_size), 0);
7663 const fs_reg tmp = lbld.vgrf(inst->src[i].type, inst->components_read(i));
7664
7665 for (unsigned k = 0; k < inst->components_read(i); ++k)
7666 cbld.MOV(offset(tmp, lbld, k), offset(src, inst->exec_size, k));
7667
7668 return tmp;
7669
7670 } else if (is_periodic(inst->src[i], lbld.dispatch_width())) {
7671 /* The source is invariant for all dispatch_width-wide groups of the
7672 * original region.
7673 */
7674 return inst->src[i];
7675
7676 } else {
7677 /* We can just point the lowered instruction at the right channel group
7678 * from the original region.
7679 */
7680 return src;
7681 }
7682 }
7683
7684 /**
7685 * Return true if splitting out the group of channels of instruction \p inst
7686 * given by lbld.group() requires allocating a temporary for the destination
7687 * of the lowered instruction and copying the data back to the original
7688 * destination region.
7689 */
7690 static inline bool
needs_dst_copy(const fs_builder & lbld,const fs_inst * inst)7691 needs_dst_copy(const fs_builder &lbld, const fs_inst *inst)
7692 {
7693 /* If the instruction writes more than one component we'll have to shuffle
7694 * the results of multiple lowered instructions in order to make sure that
7695 * they end up arranged correctly in the original destination region.
7696 */
7697 if (inst->size_written > inst->dst.component_size(inst->exec_size))
7698 return true;
7699
7700 /* If the lowered execution size is larger than the original the result of
7701 * the instruction won't fit in the original destination, so we'll have to
7702 * allocate a temporary in any case.
7703 */
7704 if (lbld.dispatch_width() > inst->exec_size)
7705 return true;
7706
7707 for (unsigned i = 0; i < inst->sources; i++) {
7708 /* If we already made a copy of the source for other reasons there won't
7709 * be any overlap with the destination.
7710 */
7711 if (needs_src_copy(lbld, inst, i))
7712 continue;
7713
7714 /* In order to keep the logic simple we emit a copy whenever the
7715 * destination region doesn't exactly match an overlapping source, which
7716 * may point at the source and destination not being aligned group by
7717 * group which could cause one of the lowered instructions to overwrite
7718 * the data read from the same source by other lowered instructions.
7719 */
7720 if (regions_overlap(inst->dst, inst->size_written,
7721 inst->src[i], inst->size_read(i)) &&
7722 !inst->dst.equals(inst->src[i]))
7723 return true;
7724 }
7725
7726 return false;
7727 }
7728
7729 /**
7730 * Insert data from a packed temporary into the channel group given by
7731 * lbld.group() of the destination region of instruction \p inst and return
7732 * the temporary as result. Any copy instructions that are required for
7733 * unzipping the previous value (in the case of partial writes) will be
7734 * inserted using \p lbld_before and any copy instructions required for
7735 * zipping up the destination of \p inst will be inserted using \p lbld_after.
7736 */
7737 static fs_reg
emit_zip(const fs_builder & lbld_before,const fs_builder & lbld_after,fs_inst * inst)7738 emit_zip(const fs_builder &lbld_before, const fs_builder &lbld_after,
7739 fs_inst *inst)
7740 {
7741 assert(lbld_before.dispatch_width() == lbld_after.dispatch_width());
7742 assert(lbld_before.group() == lbld_after.group());
7743 assert(lbld_after.group() >= inst->group);
7744
7745 /* Specified channel group from the destination region. */
7746 const fs_reg dst = horiz_offset(inst->dst, lbld_after.group() - inst->group);
7747 const unsigned dst_size = inst->size_written /
7748 inst->dst.component_size(inst->exec_size);
7749
7750 if (needs_dst_copy(lbld_after, inst)) {
7751 const fs_reg tmp = lbld_after.vgrf(inst->dst.type, dst_size);
7752
7753 if (inst->predicate) {
7754 /* Handle predication by copying the original contents of
7755 * the destination into the temporary before emitting the
7756 * lowered instruction.
7757 */
7758 const fs_builder gbld_before =
7759 lbld_before.group(MIN2(lbld_before.dispatch_width(),
7760 inst->exec_size), 0);
7761 for (unsigned k = 0; k < dst_size; ++k) {
7762 gbld_before.MOV(offset(tmp, lbld_before, k),
7763 offset(dst, inst->exec_size, k));
7764 }
7765 }
7766
7767 const fs_builder gbld_after =
7768 lbld_after.group(MIN2(lbld_after.dispatch_width(),
7769 inst->exec_size), 0);
7770 for (unsigned k = 0; k < dst_size; ++k) {
7771 /* Use a builder of the right width to perform the copy avoiding
7772 * uninitialized data if the lowered execution size is greater than
7773 * the original execution size of the instruction.
7774 */
7775 gbld_after.MOV(offset(dst, inst->exec_size, k),
7776 offset(tmp, lbld_after, k));
7777 }
7778
7779 return tmp;
7780
7781 } else {
7782 /* No need to allocate a temporary for the lowered instruction, just
7783 * take the right group of channels from the original region.
7784 */
7785 return dst;
7786 }
7787 }
7788
7789 bool
lower_simd_width()7790 fs_visitor::lower_simd_width()
7791 {
7792 bool progress = false;
7793
7794 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
7795 const unsigned lower_width = get_lowered_simd_width(devinfo, inst);
7796
7797 if (lower_width != inst->exec_size) {
7798 /* Builder matching the original instruction. We may also need to
7799 * emit an instruction of width larger than the original, set the
7800 * execution size of the builder to the highest of both for now so
7801 * we're sure that both cases can be handled.
7802 */
7803 const unsigned max_width = MAX2(inst->exec_size, lower_width);
7804 const fs_builder ibld = bld.at(block, inst)
7805 .exec_all(inst->force_writemask_all)
7806 .group(max_width, inst->group / max_width);
7807
7808 /* Split the copies in chunks of the execution width of either the
7809 * original or the lowered instruction, whichever is lower.
7810 */
7811 const unsigned n = DIV_ROUND_UP(inst->exec_size, lower_width);
7812 const unsigned dst_size = inst->size_written /
7813 inst->dst.component_size(inst->exec_size);
7814
7815 assert(!inst->writes_accumulator && !inst->mlen);
7816
7817 /* Inserting the zip, unzip, and duplicated instructions in all of
7818 * the right spots is somewhat tricky. All of the unzip and any
7819 * instructions from the zip which unzip the destination prior to
7820 * writing need to happen before all of the per-group instructions
7821 * and the zip instructions need to happen after. In order to sort
7822 * this all out, we insert the unzip instructions before \p inst,
7823 * insert the per-group instructions after \p inst (i.e. before
7824 * inst->next), and insert the zip instructions before the
7825 * instruction after \p inst. Since we are inserting instructions
7826 * after \p inst, inst->next is a moving target and we need to save
7827 * it off here so that we insert the zip instructions in the right
7828 * place.
7829 *
7830 * Since we're inserting split instructions after after_inst, the
7831 * instructions will end up in the reverse order that we insert them.
7832 * However, certain render target writes require that the low group
7833 * instructions come before the high group. From the Ivy Bridge PRM
7834 * Vol. 4, Pt. 1, Section 3.9.11:
7835 *
7836 * "If multiple SIMD8 Dual Source messages are delivered by the
7837 * pixel shader thread, each SIMD8_DUALSRC_LO message must be
7838 * issued before the SIMD8_DUALSRC_HI message with the same Slot
7839 * Group Select setting."
7840 *
7841 * And, from Section 3.9.11.1 of the same PRM:
7842 *
7843 * "When SIMD32 or SIMD16 PS threads send render target writes
7844 * with multiple SIMD8 and SIMD16 messages, the following must
7845 * hold:
7846 *
7847 * All the slots (as described above) must have a corresponding
7848 * render target write irrespective of the slot's validity. A slot
7849 * is considered valid when at least one sample is enabled. For
7850 * example, a SIMD16 PS thread must send two SIMD8 render target
7851 * writes to cover all the slots.
7852 *
7853 * PS thread must send SIMD render target write messages with
7854 * increasing slot numbers. For example, SIMD16 thread has
7855 * Slot[15:0] and if two SIMD8 render target writes are used, the
7856 * first SIMD8 render target write must send Slot[7:0] and the
7857 * next one must send Slot[15:8]."
7858 *
7859 * In order to make low group instructions come before high group
7860 * instructions (this is required for some render target writes), we
7861 * split from the highest group to lowest.
7862 */
7863 exec_node *const after_inst = inst->next;
7864 for (int i = n - 1; i >= 0; i--) {
7865 /* Emit a copy of the original instruction with the lowered width.
7866 * If the EOT flag was set throw it away except for the last
7867 * instruction to avoid killing the thread prematurely.
7868 */
7869 fs_inst split_inst = *inst;
7870 split_inst.exec_size = lower_width;
7871 split_inst.eot = inst->eot && i == int(n - 1);
7872
7873 /* Select the correct channel enables for the i-th group, then
7874 * transform the sources and destination and emit the lowered
7875 * instruction.
7876 */
7877 const fs_builder lbld = ibld.group(lower_width, i);
7878
7879 for (unsigned j = 0; j < inst->sources; j++)
7880 split_inst.src[j] = emit_unzip(lbld.at(block, inst), inst, j);
7881
7882 split_inst.dst = emit_zip(lbld.at(block, inst),
7883 lbld.at(block, after_inst), inst);
7884 split_inst.size_written =
7885 split_inst.dst.component_size(lower_width) * dst_size;
7886
7887 lbld.at(block, inst->next).emit(split_inst);
7888 }
7889
7890 inst->remove(block);
7891 progress = true;
7892 }
7893 }
7894
7895 if (progress)
7896 invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES);
7897
7898 return progress;
7899 }
7900
7901 /**
7902 * Transform barycentric vectors into the interleaved form expected by the PLN
7903 * instruction and returned by the Gfx7+ PI shared function.
7904 *
7905 * For channels 0-15 in SIMD16 mode they are expected to be laid out as
7906 * follows in the register file:
7907 *
7908 * rN+0: X[0-7]
7909 * rN+1: Y[0-7]
7910 * rN+2: X[8-15]
7911 * rN+3: Y[8-15]
7912 *
7913 * There is no need to handle SIMD32 here -- This is expected to be run after
7914 * SIMD lowering, since SIMD lowering relies on vectors having the standard
7915 * component layout.
7916 */
7917 bool
lower_barycentrics()7918 fs_visitor::lower_barycentrics()
7919 {
7920 const bool has_interleaved_layout = devinfo->has_pln || devinfo->ver >= 7;
7921 bool progress = false;
7922
7923 if (stage != MESA_SHADER_FRAGMENT || !has_interleaved_layout)
7924 return false;
7925
7926 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
7927 if (inst->exec_size < 16)
7928 continue;
7929
7930 const fs_builder ibld(this, block, inst);
7931 const fs_builder ubld = ibld.exec_all().group(8, 0);
7932
7933 switch (inst->opcode) {
7934 case FS_OPCODE_LINTERP : {
7935 assert(inst->exec_size == 16);
7936 const fs_reg tmp = ibld.vgrf(inst->src[0].type, 2);
7937 fs_reg srcs[4];
7938
7939 for (unsigned i = 0; i < ARRAY_SIZE(srcs); i++)
7940 srcs[i] = horiz_offset(offset(inst->src[0], ibld, i % 2),
7941 8 * (i / 2));
7942
7943 ubld.LOAD_PAYLOAD(tmp, srcs, ARRAY_SIZE(srcs), ARRAY_SIZE(srcs));
7944
7945 inst->src[0] = tmp;
7946 progress = true;
7947 break;
7948 }
7949 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
7950 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
7951 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET: {
7952 assert(inst->exec_size == 16);
7953 const fs_reg tmp = ibld.vgrf(inst->dst.type, 2);
7954
7955 for (unsigned i = 0; i < 2; i++) {
7956 for (unsigned g = 0; g < inst->exec_size / 8; g++) {
7957 fs_inst *mov = ibld.at(block, inst->next).group(8, g)
7958 .MOV(horiz_offset(offset(inst->dst, ibld, i),
7959 8 * g),
7960 offset(tmp, ubld, 2 * g + i));
7961 mov->predicate = inst->predicate;
7962 mov->predicate_inverse = inst->predicate_inverse;
7963 mov->flag_subreg = inst->flag_subreg;
7964 }
7965 }
7966
7967 inst->dst = tmp;
7968 progress = true;
7969 break;
7970 }
7971 default:
7972 break;
7973 }
7974 }
7975
7976 if (progress)
7977 invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES);
7978
7979 return progress;
7980 }
7981
7982 /**
7983 * Lower a derivative instruction as the floating-point difference of two
7984 * swizzles of the source, specified as \p swz0 and \p swz1.
7985 */
7986 static bool
lower_derivative(fs_visitor * v,bblock_t * block,fs_inst * inst,unsigned swz0,unsigned swz1)7987 lower_derivative(fs_visitor *v, bblock_t *block, fs_inst *inst,
7988 unsigned swz0, unsigned swz1)
7989 {
7990 const fs_builder ibld(v, block, inst);
7991 const fs_reg tmp0 = ibld.vgrf(inst->src[0].type);
7992 const fs_reg tmp1 = ibld.vgrf(inst->src[0].type);
7993
7994 ibld.emit(SHADER_OPCODE_QUAD_SWIZZLE, tmp0, inst->src[0], brw_imm_ud(swz0));
7995 ibld.emit(SHADER_OPCODE_QUAD_SWIZZLE, tmp1, inst->src[0], brw_imm_ud(swz1));
7996
7997 inst->resize_sources(2);
7998 inst->src[0] = negate(tmp0);
7999 inst->src[1] = tmp1;
8000 inst->opcode = BRW_OPCODE_ADD;
8001
8002 return true;
8003 }
8004
8005 /**
8006 * Lower derivative instructions on platforms where codegen cannot implement
8007 * them efficiently (i.e. XeHP).
8008 */
8009 bool
lower_derivatives()8010 fs_visitor::lower_derivatives()
8011 {
8012 bool progress = false;
8013
8014 if (devinfo->verx10 < 125)
8015 return false;
8016
8017 foreach_block_and_inst(block, fs_inst, inst, cfg) {
8018 if (inst->opcode == FS_OPCODE_DDX_COARSE)
8019 progress |= lower_derivative(this, block, inst,
8020 BRW_SWIZZLE_XXXX, BRW_SWIZZLE_YYYY);
8021
8022 else if (inst->opcode == FS_OPCODE_DDX_FINE)
8023 progress |= lower_derivative(this, block, inst,
8024 BRW_SWIZZLE_XXZZ, BRW_SWIZZLE_YYWW);
8025
8026 else if (inst->opcode == FS_OPCODE_DDY_COARSE)
8027 progress |= lower_derivative(this, block, inst,
8028 BRW_SWIZZLE_XXXX, BRW_SWIZZLE_ZZZZ);
8029
8030 else if (inst->opcode == FS_OPCODE_DDY_FINE)
8031 progress |= lower_derivative(this, block, inst,
8032 BRW_SWIZZLE_XYXY, BRW_SWIZZLE_ZWZW);
8033 }
8034
8035 if (progress)
8036 invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES);
8037
8038 return progress;
8039 }
8040
8041 void
dump_instructions() const8042 fs_visitor::dump_instructions() const
8043 {
8044 dump_instructions(NULL);
8045 }
8046
8047 void
dump_instructions(const char * name) const8048 fs_visitor::dump_instructions(const char *name) const
8049 {
8050 FILE *file = stderr;
8051 if (name && geteuid() != 0) {
8052 file = fopen(name, "w");
8053 if (!file)
8054 file = stderr;
8055 }
8056
8057 if (cfg) {
8058 const register_pressure &rp = regpressure_analysis.require();
8059 unsigned ip = 0, max_pressure = 0;
8060 foreach_block_and_inst(block, backend_instruction, inst, cfg) {
8061 max_pressure = MAX2(max_pressure, rp.regs_live_at_ip[ip]);
8062 fprintf(file, "{%3d} %4d: ", rp.regs_live_at_ip[ip], ip);
8063 dump_instruction(inst, file);
8064 ip++;
8065 }
8066 fprintf(file, "Maximum %3d registers live at once.\n", max_pressure);
8067 } else {
8068 int ip = 0;
8069 foreach_in_list(backend_instruction, inst, &instructions) {
8070 fprintf(file, "%4d: ", ip++);
8071 dump_instruction(inst, file);
8072 }
8073 }
8074
8075 if (file != stderr) {
8076 fclose(file);
8077 }
8078 }
8079
8080 void
dump_instruction(const backend_instruction * be_inst) const8081 fs_visitor::dump_instruction(const backend_instruction *be_inst) const
8082 {
8083 dump_instruction(be_inst, stderr);
8084 }
8085
8086 void
dump_instruction(const backend_instruction * be_inst,FILE * file) const8087 fs_visitor::dump_instruction(const backend_instruction *be_inst, FILE *file) const
8088 {
8089 const fs_inst *inst = (const fs_inst *)be_inst;
8090
8091 if (inst->predicate) {
8092 fprintf(file, "(%cf%d.%d) ",
8093 inst->predicate_inverse ? '-' : '+',
8094 inst->flag_subreg / 2,
8095 inst->flag_subreg % 2);
8096 }
8097
8098 fprintf(file, "%s", brw_instruction_name(devinfo, inst->opcode));
8099 if (inst->saturate)
8100 fprintf(file, ".sat");
8101 if (inst->conditional_mod) {
8102 fprintf(file, "%s", conditional_modifier[inst->conditional_mod]);
8103 if (!inst->predicate &&
8104 (devinfo->ver < 5 || (inst->opcode != BRW_OPCODE_SEL &&
8105 inst->opcode != BRW_OPCODE_CSEL &&
8106 inst->opcode != BRW_OPCODE_IF &&
8107 inst->opcode != BRW_OPCODE_WHILE))) {
8108 fprintf(file, ".f%d.%d", inst->flag_subreg / 2,
8109 inst->flag_subreg % 2);
8110 }
8111 }
8112 fprintf(file, "(%d) ", inst->exec_size);
8113
8114 if (inst->mlen) {
8115 fprintf(file, "(mlen: %d) ", inst->mlen);
8116 }
8117
8118 if (inst->ex_mlen) {
8119 fprintf(file, "(ex_mlen: %d) ", inst->ex_mlen);
8120 }
8121
8122 if (inst->eot) {
8123 fprintf(file, "(EOT) ");
8124 }
8125
8126 switch (inst->dst.file) {
8127 case VGRF:
8128 fprintf(file, "vgrf%d", inst->dst.nr);
8129 break;
8130 case FIXED_GRF:
8131 fprintf(file, "g%d", inst->dst.nr);
8132 break;
8133 case MRF:
8134 fprintf(file, "m%d", inst->dst.nr);
8135 break;
8136 case BAD_FILE:
8137 fprintf(file, "(null)");
8138 break;
8139 case UNIFORM:
8140 fprintf(file, "***u%d***", inst->dst.nr);
8141 break;
8142 case ATTR:
8143 fprintf(file, "***attr%d***", inst->dst.nr);
8144 break;
8145 case ARF:
8146 switch (inst->dst.nr) {
8147 case BRW_ARF_NULL:
8148 fprintf(file, "null");
8149 break;
8150 case BRW_ARF_ADDRESS:
8151 fprintf(file, "a0.%d", inst->dst.subnr);
8152 break;
8153 case BRW_ARF_ACCUMULATOR:
8154 fprintf(file, "acc%d", inst->dst.subnr);
8155 break;
8156 case BRW_ARF_FLAG:
8157 fprintf(file, "f%d.%d", inst->dst.nr & 0xf, inst->dst.subnr);
8158 break;
8159 default:
8160 fprintf(file, "arf%d.%d", inst->dst.nr & 0xf, inst->dst.subnr);
8161 break;
8162 }
8163 break;
8164 case IMM:
8165 unreachable("not reached");
8166 }
8167
8168 if (inst->dst.offset ||
8169 (inst->dst.file == VGRF &&
8170 alloc.sizes[inst->dst.nr] * REG_SIZE != inst->size_written)) {
8171 const unsigned reg_size = (inst->dst.file == UNIFORM ? 4 : REG_SIZE);
8172 fprintf(file, "+%d.%d", inst->dst.offset / reg_size,
8173 inst->dst.offset % reg_size);
8174 }
8175
8176 if (inst->dst.stride != 1)
8177 fprintf(file, "<%u>", inst->dst.stride);
8178 fprintf(file, ":%s, ", brw_reg_type_to_letters(inst->dst.type));
8179
8180 for (int i = 0; i < inst->sources; i++) {
8181 if (inst->src[i].negate)
8182 fprintf(file, "-");
8183 if (inst->src[i].abs)
8184 fprintf(file, "|");
8185 switch (inst->src[i].file) {
8186 case VGRF:
8187 fprintf(file, "vgrf%d", inst->src[i].nr);
8188 break;
8189 case FIXED_GRF:
8190 fprintf(file, "g%d", inst->src[i].nr);
8191 break;
8192 case MRF:
8193 fprintf(file, "***m%d***", inst->src[i].nr);
8194 break;
8195 case ATTR:
8196 fprintf(file, "attr%d", inst->src[i].nr);
8197 break;
8198 case UNIFORM:
8199 fprintf(file, "u%d", inst->src[i].nr);
8200 break;
8201 case BAD_FILE:
8202 fprintf(file, "(null)");
8203 break;
8204 case IMM:
8205 switch (inst->src[i].type) {
8206 case BRW_REGISTER_TYPE_HF:
8207 fprintf(file, "%-ghf", _mesa_half_to_float(inst->src[i].ud & 0xffff));
8208 break;
8209 case BRW_REGISTER_TYPE_F:
8210 fprintf(file, "%-gf", inst->src[i].f);
8211 break;
8212 case BRW_REGISTER_TYPE_DF:
8213 fprintf(file, "%fdf", inst->src[i].df);
8214 break;
8215 case BRW_REGISTER_TYPE_W:
8216 case BRW_REGISTER_TYPE_D:
8217 fprintf(file, "%dd", inst->src[i].d);
8218 break;
8219 case BRW_REGISTER_TYPE_UW:
8220 case BRW_REGISTER_TYPE_UD:
8221 fprintf(file, "%uu", inst->src[i].ud);
8222 break;
8223 case BRW_REGISTER_TYPE_Q:
8224 fprintf(file, "%" PRId64 "q", inst->src[i].d64);
8225 break;
8226 case BRW_REGISTER_TYPE_UQ:
8227 fprintf(file, "%" PRIu64 "uq", inst->src[i].u64);
8228 break;
8229 case BRW_REGISTER_TYPE_VF:
8230 fprintf(file, "[%-gF, %-gF, %-gF, %-gF]",
8231 brw_vf_to_float((inst->src[i].ud >> 0) & 0xff),
8232 brw_vf_to_float((inst->src[i].ud >> 8) & 0xff),
8233 brw_vf_to_float((inst->src[i].ud >> 16) & 0xff),
8234 brw_vf_to_float((inst->src[i].ud >> 24) & 0xff));
8235 break;
8236 case BRW_REGISTER_TYPE_V:
8237 case BRW_REGISTER_TYPE_UV:
8238 fprintf(file, "%08x%s", inst->src[i].ud,
8239 inst->src[i].type == BRW_REGISTER_TYPE_V ? "V" : "UV");
8240 break;
8241 default:
8242 fprintf(file, "???");
8243 break;
8244 }
8245 break;
8246 case ARF:
8247 switch (inst->src[i].nr) {
8248 case BRW_ARF_NULL:
8249 fprintf(file, "null");
8250 break;
8251 case BRW_ARF_ADDRESS:
8252 fprintf(file, "a0.%d", inst->src[i].subnr);
8253 break;
8254 case BRW_ARF_ACCUMULATOR:
8255 fprintf(file, "acc%d", inst->src[i].subnr);
8256 break;
8257 case BRW_ARF_FLAG:
8258 fprintf(file, "f%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr);
8259 break;
8260 default:
8261 fprintf(file, "arf%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr);
8262 break;
8263 }
8264 break;
8265 }
8266
8267 if (inst->src[i].offset ||
8268 (inst->src[i].file == VGRF &&
8269 alloc.sizes[inst->src[i].nr] * REG_SIZE != inst->size_read(i))) {
8270 const unsigned reg_size = (inst->src[i].file == UNIFORM ? 4 : REG_SIZE);
8271 fprintf(file, "+%d.%d", inst->src[i].offset / reg_size,
8272 inst->src[i].offset % reg_size);
8273 }
8274
8275 if (inst->src[i].abs)
8276 fprintf(file, "|");
8277
8278 if (inst->src[i].file != IMM) {
8279 unsigned stride;
8280 if (inst->src[i].file == ARF || inst->src[i].file == FIXED_GRF) {
8281 unsigned hstride = inst->src[i].hstride;
8282 stride = (hstride == 0 ? 0 : (1 << (hstride - 1)));
8283 } else {
8284 stride = inst->src[i].stride;
8285 }
8286 if (stride != 1)
8287 fprintf(file, "<%u>", stride);
8288
8289 fprintf(file, ":%s", brw_reg_type_to_letters(inst->src[i].type));
8290 }
8291
8292 if (i < inst->sources - 1 && inst->src[i + 1].file != BAD_FILE)
8293 fprintf(file, ", ");
8294 }
8295
8296 fprintf(file, " ");
8297
8298 if (inst->force_writemask_all)
8299 fprintf(file, "NoMask ");
8300
8301 if (inst->exec_size != dispatch_width)
8302 fprintf(file, "group%d ", inst->group);
8303
8304 fprintf(file, "\n");
8305 }
8306
8307 void
setup_fs_payload_gfx6()8308 fs_visitor::setup_fs_payload_gfx6()
8309 {
8310 assert(stage == MESA_SHADER_FRAGMENT);
8311 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
8312 const unsigned payload_width = MIN2(16, dispatch_width);
8313 assert(dispatch_width % payload_width == 0);
8314 assert(devinfo->ver >= 6);
8315
8316 /* R0: PS thread payload header. */
8317 payload.num_regs++;
8318
8319 for (unsigned j = 0; j < dispatch_width / payload_width; j++) {
8320 /* R1: masks, pixel X/Y coordinates. */
8321 payload.subspan_coord_reg[j] = payload.num_regs++;
8322 }
8323
8324 for (unsigned j = 0; j < dispatch_width / payload_width; j++) {
8325 /* R3-26: barycentric interpolation coordinates. These appear in the
8326 * same order that they appear in the brw_barycentric_mode enum. Each
8327 * set of coordinates occupies 2 registers if dispatch width == 8 and 4
8328 * registers if dispatch width == 16. Coordinates only appear if they
8329 * were enabled using the "Barycentric Interpolation Mode" bits in
8330 * WM_STATE.
8331 */
8332 for (int i = 0; i < BRW_BARYCENTRIC_MODE_COUNT; ++i) {
8333 if (prog_data->barycentric_interp_modes & (1 << i)) {
8334 payload.barycentric_coord_reg[i][j] = payload.num_regs;
8335 payload.num_regs += payload_width / 4;
8336 }
8337 }
8338
8339 /* R27-28: interpolated depth if uses source depth */
8340 if (prog_data->uses_src_depth) {
8341 payload.source_depth_reg[j] = payload.num_regs;
8342 payload.num_regs += payload_width / 8;
8343 }
8344
8345 /* R29-30: interpolated W set if GFX6_WM_USES_SOURCE_W. */
8346 if (prog_data->uses_src_w) {
8347 payload.source_w_reg[j] = payload.num_regs;
8348 payload.num_regs += payload_width / 8;
8349 }
8350
8351 /* R31: MSAA position offsets. */
8352 if (prog_data->uses_pos_offset) {
8353 payload.sample_pos_reg[j] = payload.num_regs;
8354 payload.num_regs++;
8355 }
8356
8357 /* R32-33: MSAA input coverage mask */
8358 if (prog_data->uses_sample_mask) {
8359 assert(devinfo->ver >= 7);
8360 payload.sample_mask_in_reg[j] = payload.num_regs;
8361 payload.num_regs += payload_width / 8;
8362 }
8363
8364 /* R66: Source Depth and/or W Attribute Vertex Deltas */
8365 if (prog_data->uses_depth_w_coefficients) {
8366 payload.depth_w_coef_reg[j] = payload.num_regs;
8367 payload.num_regs++;
8368 }
8369 }
8370
8371 if (nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
8372 source_depth_to_render_target = true;
8373 }
8374 }
8375
8376 void
setup_vs_payload()8377 fs_visitor::setup_vs_payload()
8378 {
8379 /* R0: thread header, R1: urb handles */
8380 payload.num_regs = 2;
8381 }
8382
8383 void
setup_gs_payload()8384 fs_visitor::setup_gs_payload()
8385 {
8386 assert(stage == MESA_SHADER_GEOMETRY);
8387
8388 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
8389 struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
8390
8391 /* R0: thread header, R1: output URB handles */
8392 payload.num_regs = 2;
8393
8394 if (gs_prog_data->include_primitive_id) {
8395 /* R2: Primitive ID 0..7 */
8396 payload.num_regs++;
8397 }
8398
8399 /* Always enable VUE handles so we can safely use pull model if needed.
8400 *
8401 * The push model for a GS uses a ton of register space even for trivial
8402 * scenarios with just a few inputs, so just make things easier and a bit
8403 * safer by always having pull model available.
8404 */
8405 gs_prog_data->base.include_vue_handles = true;
8406
8407 /* R3..RN: ICP Handles for each incoming vertex (when using pull model) */
8408 payload.num_regs += nir->info.gs.vertices_in;
8409
8410 /* Use a maximum of 24 registers for push-model inputs. */
8411 const unsigned max_push_components = 24;
8412
8413 /* If pushing our inputs would take too many registers, reduce the URB read
8414 * length (which is in HWords, or 8 registers), and resort to pulling.
8415 *
8416 * Note that the GS reads <URB Read Length> HWords for every vertex - so we
8417 * have to multiply by VerticesIn to obtain the total storage requirement.
8418 */
8419 if (8 * vue_prog_data->urb_read_length * nir->info.gs.vertices_in >
8420 max_push_components) {
8421 vue_prog_data->urb_read_length =
8422 ROUND_DOWN_TO(max_push_components / nir->info.gs.vertices_in, 8) / 8;
8423 }
8424 }
8425
8426 void
setup_cs_payload()8427 fs_visitor::setup_cs_payload()
8428 {
8429 assert(devinfo->ver >= 7);
8430 /* TODO: Fill out uses_btd_stack_ids automatically */
8431 payload.num_regs = 1 + brw_cs_prog_data(prog_data)->uses_btd_stack_ids;
8432 }
8433
register_pressure(const fs_visitor * v)8434 brw::register_pressure::register_pressure(const fs_visitor *v)
8435 {
8436 const fs_live_variables &live = v->live_analysis.require();
8437 const unsigned num_instructions = v->cfg->num_blocks ?
8438 v->cfg->blocks[v->cfg->num_blocks - 1]->end_ip + 1 : 0;
8439
8440 regs_live_at_ip = new unsigned[num_instructions]();
8441
8442 for (unsigned reg = 0; reg < v->alloc.count; reg++) {
8443 for (int ip = live.vgrf_start[reg]; ip <= live.vgrf_end[reg]; ip++)
8444 regs_live_at_ip[ip] += v->alloc.sizes[reg];
8445 }
8446 }
8447
~register_pressure()8448 brw::register_pressure::~register_pressure()
8449 {
8450 delete[] regs_live_at_ip;
8451 }
8452
8453 void
invalidate_analysis(brw::analysis_dependency_class c)8454 fs_visitor::invalidate_analysis(brw::analysis_dependency_class c)
8455 {
8456 backend_shader::invalidate_analysis(c);
8457 live_analysis.invalidate(c);
8458 regpressure_analysis.invalidate(c);
8459 }
8460
8461 void
optimize()8462 fs_visitor::optimize()
8463 {
8464 /* Start by validating the shader we currently have. */
8465 validate();
8466
8467 /* bld is the common builder object pointing at the end of the program we
8468 * used to translate it into i965 IR. For the optimization and lowering
8469 * passes coming next, any code added after the end of the program without
8470 * having explicitly called fs_builder::at() clearly points at a mistake.
8471 * Ideally optimization passes wouldn't be part of the visitor so they
8472 * wouldn't have access to bld at all, but they do, so just in case some
8473 * pass forgets to ask for a location explicitly set it to NULL here to
8474 * make it trip. The dispatch width is initialized to a bogus value to
8475 * make sure that optimizations set the execution controls explicitly to
8476 * match the code they are manipulating instead of relying on the defaults.
8477 */
8478 bld = fs_builder(this, 64);
8479
8480 assign_constant_locations();
8481 lower_constant_loads();
8482
8483 validate();
8484
8485 split_virtual_grfs();
8486 validate();
8487
8488 #define OPT(pass, args...) ({ \
8489 pass_num++; \
8490 bool this_progress = pass(args); \
8491 \
8492 if (INTEL_DEBUG(DEBUG_OPTIMIZER) && this_progress) { \
8493 char filename[64]; \
8494 snprintf(filename, 64, "%s%d-%s-%02d-%02d-" #pass, \
8495 stage_abbrev, dispatch_width, nir->info.name, iteration, pass_num); \
8496 \
8497 backend_shader::dump_instructions(filename); \
8498 } \
8499 \
8500 validate(); \
8501 \
8502 progress = progress || this_progress; \
8503 this_progress; \
8504 })
8505
8506 if (INTEL_DEBUG(DEBUG_OPTIMIZER)) {
8507 char filename[64];
8508 snprintf(filename, 64, "%s%d-%s-00-00-start",
8509 stage_abbrev, dispatch_width, nir->info.name);
8510
8511 backend_shader::dump_instructions(filename);
8512 }
8513
8514 bool progress = false;
8515 int iteration = 0;
8516 int pass_num = 0;
8517
8518 /* Before anything else, eliminate dead code. The results of some NIR
8519 * instructions may effectively be calculated twice. Once when the
8520 * instruction is encountered, and again when the user of that result is
8521 * encountered. Wipe those away before algebraic optimizations and
8522 * especially copy propagation can mix things up.
8523 */
8524 OPT(dead_code_eliminate);
8525
8526 OPT(remove_extra_rounding_modes);
8527
8528 do {
8529 progress = false;
8530 pass_num = 0;
8531 iteration++;
8532
8533 OPT(remove_duplicate_mrf_writes);
8534
8535 OPT(opt_algebraic);
8536 OPT(opt_cse);
8537 OPT(opt_copy_propagation);
8538 OPT(opt_predicated_break, this);
8539 OPT(opt_cmod_propagation);
8540 OPT(dead_code_eliminate);
8541 OPT(opt_peephole_sel);
8542 OPT(dead_control_flow_eliminate, this);
8543 OPT(opt_register_renaming);
8544 OPT(opt_saturate_propagation);
8545 OPT(register_coalesce);
8546 OPT(compute_to_mrf);
8547 OPT(eliminate_find_live_channel);
8548
8549 OPT(compact_virtual_grfs);
8550 } while (progress);
8551
8552 progress = false;
8553 pass_num = 0;
8554
8555 if (OPT(lower_pack)) {
8556 OPT(register_coalesce);
8557 OPT(dead_code_eliminate);
8558 }
8559
8560 OPT(lower_simd_width);
8561 OPT(lower_barycentrics);
8562 OPT(lower_logical_sends);
8563
8564 /* After logical SEND lowering. */
8565 OPT(fixup_nomask_control_flow);
8566
8567 if (progress) {
8568 OPT(opt_copy_propagation);
8569 /* Only run after logical send lowering because it's easier to implement
8570 * in terms of physical sends.
8571 */
8572 if (OPT(opt_zero_samples))
8573 OPT(opt_copy_propagation);
8574 /* Run after logical send lowering to give it a chance to CSE the
8575 * LOAD_PAYLOAD instructions created to construct the payloads of
8576 * e.g. texturing messages in cases where it wasn't possible to CSE the
8577 * whole logical instruction.
8578 */
8579 OPT(opt_cse);
8580 OPT(register_coalesce);
8581 OPT(compute_to_mrf);
8582 OPT(dead_code_eliminate);
8583 OPT(remove_duplicate_mrf_writes);
8584 OPT(opt_peephole_sel);
8585 }
8586
8587 OPT(opt_redundant_halt);
8588
8589 if (OPT(lower_load_payload)) {
8590 split_virtual_grfs();
8591
8592 /* Lower 64 bit MOVs generated by payload lowering. */
8593 if (!devinfo->has_64bit_float && !devinfo->has_64bit_int)
8594 OPT(opt_algebraic);
8595
8596 OPT(register_coalesce);
8597 OPT(lower_simd_width);
8598 OPT(compute_to_mrf);
8599 OPT(dead_code_eliminate);
8600 }
8601
8602 OPT(opt_combine_constants);
8603 if (OPT(lower_integer_multiplication)) {
8604 /* If lower_integer_multiplication made progress, it may have produced
8605 * some 32x32-bit MULs in the process of lowering 64-bit MULs. Run it
8606 * one more time to clean those up if they exist.
8607 */
8608 OPT(lower_integer_multiplication);
8609 }
8610 OPT(lower_sub_sat);
8611
8612 if (devinfo->ver <= 5 && OPT(lower_minmax)) {
8613 OPT(opt_cmod_propagation);
8614 OPT(opt_cse);
8615 OPT(opt_copy_propagation);
8616 OPT(dead_code_eliminate);
8617 }
8618
8619 progress = false;
8620 OPT(lower_derivatives);
8621 OPT(lower_regioning);
8622 if (progress) {
8623 OPT(opt_copy_propagation);
8624 OPT(dead_code_eliminate);
8625 OPT(lower_simd_width);
8626 }
8627
8628 OPT(fixup_sends_duplicate_payload);
8629
8630 lower_uniform_pull_constant_loads();
8631
8632 validate();
8633 }
8634
8635 /**
8636 * From the Skylake PRM Vol. 2a docs for sends:
8637 *
8638 * "It is required that the second block of GRFs does not overlap with the
8639 * first block."
8640 *
8641 * There are plenty of cases where we may accidentally violate this due to
8642 * having, for instance, both sources be the constant 0. This little pass
8643 * just adds a new vgrf for the second payload and copies it over.
8644 */
8645 bool
fixup_sends_duplicate_payload()8646 fs_visitor::fixup_sends_duplicate_payload()
8647 {
8648 bool progress = false;
8649
8650 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
8651 if (inst->opcode == SHADER_OPCODE_SEND && inst->ex_mlen > 0 &&
8652 regions_overlap(inst->src[2], inst->mlen * REG_SIZE,
8653 inst->src[3], inst->ex_mlen * REG_SIZE)) {
8654 fs_reg tmp = fs_reg(VGRF, alloc.allocate(inst->ex_mlen),
8655 BRW_REGISTER_TYPE_UD);
8656 /* Sadly, we've lost all notion of channels and bit sizes at this
8657 * point. Just WE_all it.
8658 */
8659 const fs_builder ibld = bld.at(block, inst).exec_all().group(16, 0);
8660 fs_reg copy_src = retype(inst->src[3], BRW_REGISTER_TYPE_UD);
8661 fs_reg copy_dst = tmp;
8662 for (unsigned i = 0; i < inst->ex_mlen; i += 2) {
8663 if (inst->ex_mlen == i + 1) {
8664 /* Only one register left; do SIMD8 */
8665 ibld.group(8, 0).MOV(copy_dst, copy_src);
8666 } else {
8667 ibld.MOV(copy_dst, copy_src);
8668 }
8669 copy_src = offset(copy_src, ibld, 1);
8670 copy_dst = offset(copy_dst, ibld, 1);
8671 }
8672 inst->src[3] = tmp;
8673 progress = true;
8674 }
8675 }
8676
8677 if (progress)
8678 invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES);
8679
8680 return progress;
8681 }
8682
8683 /**
8684 * Three source instruction must have a GRF/MRF destination register.
8685 * ARF NULL is not allowed. Fix that up by allocating a temporary GRF.
8686 */
8687 void
fixup_3src_null_dest()8688 fs_visitor::fixup_3src_null_dest()
8689 {
8690 bool progress = false;
8691
8692 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
8693 if (inst->is_3src(devinfo) && inst->dst.is_null()) {
8694 inst->dst = fs_reg(VGRF, alloc.allocate(dispatch_width / 8),
8695 inst->dst.type);
8696 progress = true;
8697 }
8698 }
8699
8700 if (progress)
8701 invalidate_analysis(DEPENDENCY_INSTRUCTION_DETAIL |
8702 DEPENDENCY_VARIABLES);
8703 }
8704
8705 /**
8706 * Find the first instruction in the program that might start a region of
8707 * divergent control flow due to a HALT jump. There is no
8708 * find_halt_control_flow_region_end(), the region of divergence extends until
8709 * the only SHADER_OPCODE_HALT_TARGET in the program.
8710 */
8711 static const fs_inst *
find_halt_control_flow_region_start(const fs_visitor * v)8712 find_halt_control_flow_region_start(const fs_visitor *v)
8713 {
8714 foreach_block_and_inst(block, fs_inst, inst, v->cfg) {
8715 if (inst->opcode == BRW_OPCODE_HALT ||
8716 inst->opcode == SHADER_OPCODE_HALT_TARGET)
8717 return inst;
8718 }
8719
8720 return NULL;
8721 }
8722
8723 /**
8724 * Work around the Gfx12 hardware bug filed as Wa_1407528679. EU fusion
8725 * can cause a BB to be executed with all channels disabled, which will lead
8726 * to the execution of any NoMask instructions in it, even though any
8727 * execution-masked instructions will be correctly shot down. This may break
8728 * assumptions of some NoMask SEND messages whose descriptor depends on data
8729 * generated by live invocations of the shader.
8730 *
8731 * This avoids the problem by predicating certain instructions on an ANY
8732 * horizontal predicate that makes sure that their execution is omitted when
8733 * all channels of the program are disabled.
8734 */
8735 bool
fixup_nomask_control_flow()8736 fs_visitor::fixup_nomask_control_flow()
8737 {
8738 if (devinfo->ver != 12)
8739 return false;
8740
8741 const brw_predicate pred = dispatch_width > 16 ? BRW_PREDICATE_ALIGN1_ANY32H :
8742 dispatch_width > 8 ? BRW_PREDICATE_ALIGN1_ANY16H :
8743 BRW_PREDICATE_ALIGN1_ANY8H;
8744 const fs_inst *halt_start = find_halt_control_flow_region_start(this);
8745 unsigned depth = 0;
8746 bool progress = false;
8747
8748 const fs_live_variables &live_vars = live_analysis.require();
8749
8750 /* Scan the program backwards in order to be able to easily determine
8751 * whether the flag register is live at any point.
8752 */
8753 foreach_block_reverse_safe(block, cfg) {
8754 BITSET_WORD flag_liveout = live_vars.block_data[block->num]
8755 .flag_liveout[0];
8756 STATIC_ASSERT(ARRAY_SIZE(live_vars.block_data[0].flag_liveout) == 1);
8757
8758 foreach_inst_in_block_reverse_safe(fs_inst, inst, block) {
8759 if (!inst->predicate && inst->exec_size >= 8)
8760 flag_liveout &= ~inst->flags_written(devinfo);
8761
8762 switch (inst->opcode) {
8763 case BRW_OPCODE_DO:
8764 case BRW_OPCODE_IF:
8765 /* Note that this doesn't handle BRW_OPCODE_HALT since only
8766 * the first one in the program closes the region of divergent
8767 * control flow due to any HALT instructions -- Instead this is
8768 * handled with the halt_start check below.
8769 */
8770 depth--;
8771 break;
8772
8773 case BRW_OPCODE_WHILE:
8774 case BRW_OPCODE_ENDIF:
8775 case SHADER_OPCODE_HALT_TARGET:
8776 depth++;
8777 break;
8778
8779 default:
8780 /* Note that the vast majority of NoMask SEND instructions in the
8781 * program are harmless while executed in a block with all
8782 * channels disabled, since any instructions with side effects we
8783 * could hit here should be execution-masked.
8784 *
8785 * The main concern is NoMask SEND instructions where the message
8786 * descriptor or header depends on data generated by live
8787 * invocations of the shader (RESINFO and
8788 * FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD with a dynamically
8789 * computed surface index seem to be the only examples right now
8790 * where this could easily lead to GPU hangs). Unfortunately we
8791 * have no straightforward way to detect that currently, so just
8792 * predicate any NoMask SEND instructions we find under control
8793 * flow.
8794 *
8795 * If this proves to have a measurable performance impact it can
8796 * be easily extended with a whitelist of messages we know we can
8797 * safely omit the predication for.
8798 */
8799 if (depth && inst->force_writemask_all &&
8800 is_send(inst) && !inst->predicate) {
8801 /* We need to load the execution mask into the flag register by
8802 * using a builder with channel group matching the whole shader
8803 * (rather than the default which is derived from the original
8804 * instruction), in order to avoid getting a right-shifted
8805 * value.
8806 */
8807 const fs_builder ubld = fs_builder(this, block, inst)
8808 .exec_all().group(dispatch_width, 0);
8809 const fs_reg flag = retype(brw_flag_reg(0, 0),
8810 BRW_REGISTER_TYPE_UD);
8811
8812 /* Due to the lack of flag register allocation we need to save
8813 * and restore the flag register if it's live.
8814 */
8815 const bool save_flag = flag_liveout &
8816 flag_mask(flag, dispatch_width / 8);
8817 const fs_reg tmp = ubld.group(1, 0).vgrf(flag.type);
8818
8819 if (save_flag)
8820 ubld.group(1, 0).MOV(tmp, flag);
8821
8822 ubld.emit(FS_OPCODE_LOAD_LIVE_CHANNELS);
8823
8824 set_predicate(pred, inst);
8825 inst->flag_subreg = 0;
8826
8827 if (save_flag)
8828 ubld.group(1, 0).at(block, inst->next).MOV(flag, tmp);
8829
8830 progress = true;
8831 }
8832 break;
8833 }
8834
8835 if (inst == halt_start)
8836 depth--;
8837
8838 flag_liveout |= inst->flags_read(devinfo);
8839 }
8840 }
8841
8842 if (progress)
8843 invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES);
8844
8845 return progress;
8846 }
8847
8848 void
allocate_registers(bool allow_spilling)8849 fs_visitor::allocate_registers(bool allow_spilling)
8850 {
8851 bool allocated;
8852
8853 static const enum instruction_scheduler_mode pre_modes[] = {
8854 SCHEDULE_PRE,
8855 SCHEDULE_PRE_NON_LIFO,
8856 SCHEDULE_PRE_LIFO,
8857 };
8858
8859 static const char *scheduler_mode_name[] = {
8860 "top-down",
8861 "non-lifo",
8862 "lifo"
8863 };
8864
8865 bool spill_all = allow_spilling && INTEL_DEBUG(DEBUG_SPILL_FS);
8866
8867 /* Try each scheduling heuristic to see if it can successfully register
8868 * allocate without spilling. They should be ordered by decreasing
8869 * performance but increasing likelihood of allocating.
8870 */
8871 for (unsigned i = 0; i < ARRAY_SIZE(pre_modes); i++) {
8872 schedule_instructions(pre_modes[i]);
8873 this->shader_stats.scheduler_mode = scheduler_mode_name[i];
8874
8875 if (0) {
8876 assign_regs_trivial();
8877 allocated = true;
8878 break;
8879 }
8880
8881 /* Scheduling may create additional opportunities for CMOD propagation,
8882 * so let's do it again. If CMOD propagation made any progress,
8883 * eliminate dead code one more time.
8884 */
8885 bool progress = false;
8886 const int iteration = 99;
8887 int pass_num = 0;
8888
8889 if (OPT(opt_cmod_propagation)) {
8890 /* dead_code_eliminate "undoes" the fixing done by
8891 * fixup_3src_null_dest, so we have to do it again if
8892 * dead_code_eliminiate makes any progress.
8893 */
8894 if (OPT(dead_code_eliminate))
8895 fixup_3src_null_dest();
8896 }
8897
8898 bool can_spill = allow_spilling &&
8899 (i == ARRAY_SIZE(pre_modes) - 1);
8900
8901 /* We should only spill registers on the last scheduling. */
8902 assert(!spilled_any_registers);
8903
8904 allocated = assign_regs(can_spill, spill_all);
8905 if (allocated)
8906 break;
8907 }
8908
8909 if (!allocated) {
8910 fail("Failure to register allocate. Reduce number of "
8911 "live scalar values to avoid this.");
8912 } else if (spilled_any_registers) {
8913 brw_shader_perf_log(compiler, log_data,
8914 "%s shader triggered register spilling. "
8915 "Try reducing the number of live scalar "
8916 "values to improve performance.\n",
8917 stage_name);
8918 }
8919
8920 /* This must come after all optimization and register allocation, since
8921 * it inserts dead code that happens to have side effects, and it does
8922 * so based on the actual physical registers in use.
8923 */
8924 insert_gfx4_send_dependency_workarounds();
8925
8926 if (failed)
8927 return;
8928
8929 opt_bank_conflicts();
8930
8931 schedule_instructions(SCHEDULE_POST);
8932
8933 if (last_scratch > 0) {
8934 ASSERTED unsigned max_scratch_size = 2 * 1024 * 1024;
8935
8936 prog_data->total_scratch = brw_get_scratch_size(last_scratch);
8937
8938 if (stage == MESA_SHADER_COMPUTE || stage == MESA_SHADER_KERNEL) {
8939 if (devinfo->is_haswell) {
8940 /* According to the MEDIA_VFE_STATE's "Per Thread Scratch Space"
8941 * field documentation, Haswell supports a minimum of 2kB of
8942 * scratch space for compute shaders, unlike every other stage
8943 * and platform.
8944 */
8945 prog_data->total_scratch = MAX2(prog_data->total_scratch, 2048);
8946 } else if (devinfo->ver <= 7) {
8947 /* According to the MEDIA_VFE_STATE's "Per Thread Scratch Space"
8948 * field documentation, platforms prior to Haswell measure scratch
8949 * size linearly with a range of [1kB, 12kB] and 1kB granularity.
8950 */
8951 prog_data->total_scratch = ALIGN(last_scratch, 1024);
8952 max_scratch_size = 12 * 1024;
8953 }
8954 }
8955
8956 /* We currently only support up to 2MB of scratch space. If we
8957 * need to support more eventually, the documentation suggests
8958 * that we could allocate a larger buffer, and partition it out
8959 * ourselves. We'd just have to undo the hardware's address
8960 * calculation by subtracting (FFTID * Per Thread Scratch Space)
8961 * and then add FFTID * (Larger Per Thread Scratch Space).
8962 *
8963 * See 3D-Media-GPGPU Engine > Media GPGPU Pipeline >
8964 * Thread Group Tracking > Local Memory/Scratch Space.
8965 */
8966 assert(prog_data->total_scratch < max_scratch_size);
8967 }
8968
8969 lower_scoreboard();
8970 }
8971
8972 bool
run_vs()8973 fs_visitor::run_vs()
8974 {
8975 assert(stage == MESA_SHADER_VERTEX);
8976
8977 setup_vs_payload();
8978
8979 if (shader_time_index >= 0)
8980 emit_shader_time_begin();
8981
8982 emit_nir_code();
8983
8984 if (failed)
8985 return false;
8986
8987 emit_urb_writes();
8988
8989 if (shader_time_index >= 0)
8990 emit_shader_time_end();
8991
8992 calculate_cfg();
8993
8994 optimize();
8995
8996 assign_curb_setup();
8997 assign_vs_urb_setup();
8998
8999 fixup_3src_null_dest();
9000 allocate_registers(true /* allow_spilling */);
9001
9002 return !failed;
9003 }
9004
9005 void
set_tcs_invocation_id()9006 fs_visitor::set_tcs_invocation_id()
9007 {
9008 struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data);
9009 struct brw_vue_prog_data *vue_prog_data = &tcs_prog_data->base;
9010
9011 const unsigned instance_id_mask =
9012 devinfo->ver >= 11 ? INTEL_MASK(22, 16) : INTEL_MASK(23, 17);
9013 const unsigned instance_id_shift =
9014 devinfo->ver >= 11 ? 16 : 17;
9015
9016 /* Get instance number from g0.2 bits 22:16 or 23:17 */
9017 fs_reg t = bld.vgrf(BRW_REGISTER_TYPE_UD);
9018 bld.AND(t, fs_reg(retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD)),
9019 brw_imm_ud(instance_id_mask));
9020
9021 invocation_id = bld.vgrf(BRW_REGISTER_TYPE_UD);
9022
9023 if (vue_prog_data->dispatch_mode == DISPATCH_MODE_TCS_8_PATCH) {
9024 /* gl_InvocationID is just the thread number */
9025 bld.SHR(invocation_id, t, brw_imm_ud(instance_id_shift));
9026 return;
9027 }
9028
9029 assert(vue_prog_data->dispatch_mode == DISPATCH_MODE_TCS_SINGLE_PATCH);
9030
9031 fs_reg channels_uw = bld.vgrf(BRW_REGISTER_TYPE_UW);
9032 fs_reg channels_ud = bld.vgrf(BRW_REGISTER_TYPE_UD);
9033 bld.MOV(channels_uw, fs_reg(brw_imm_uv(0x76543210)));
9034 bld.MOV(channels_ud, channels_uw);
9035
9036 if (tcs_prog_data->instances == 1) {
9037 invocation_id = channels_ud;
9038 } else {
9039 fs_reg instance_times_8 = bld.vgrf(BRW_REGISTER_TYPE_UD);
9040 bld.SHR(instance_times_8, t, brw_imm_ud(instance_id_shift - 3));
9041 bld.ADD(invocation_id, instance_times_8, channels_ud);
9042 }
9043 }
9044
9045 bool
run_tcs()9046 fs_visitor::run_tcs()
9047 {
9048 assert(stage == MESA_SHADER_TESS_CTRL);
9049
9050 struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
9051 struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data);
9052 struct brw_tcs_prog_key *tcs_key = (struct brw_tcs_prog_key *) key;
9053
9054 assert(vue_prog_data->dispatch_mode == DISPATCH_MODE_TCS_SINGLE_PATCH ||
9055 vue_prog_data->dispatch_mode == DISPATCH_MODE_TCS_8_PATCH);
9056
9057 if (vue_prog_data->dispatch_mode == DISPATCH_MODE_TCS_SINGLE_PATCH) {
9058 /* r1-r4 contain the ICP handles. */
9059 payload.num_regs = 5;
9060 } else {
9061 assert(vue_prog_data->dispatch_mode == DISPATCH_MODE_TCS_8_PATCH);
9062 assert(tcs_key->input_vertices > 0);
9063 /* r1 contains output handles, r2 may contain primitive ID, then the
9064 * ICP handles occupy the next 1-32 registers.
9065 */
9066 payload.num_regs = 2 + tcs_prog_data->include_primitive_id +
9067 tcs_key->input_vertices;
9068 }
9069
9070 if (shader_time_index >= 0)
9071 emit_shader_time_begin();
9072
9073 /* Initialize gl_InvocationID */
9074 set_tcs_invocation_id();
9075
9076 const bool fix_dispatch_mask =
9077 vue_prog_data->dispatch_mode == DISPATCH_MODE_TCS_SINGLE_PATCH &&
9078 (nir->info.tess.tcs_vertices_out % 8) != 0;
9079
9080 /* Fix the disptach mask */
9081 if (fix_dispatch_mask) {
9082 bld.CMP(bld.null_reg_ud(), invocation_id,
9083 brw_imm_ud(nir->info.tess.tcs_vertices_out), BRW_CONDITIONAL_L);
9084 bld.IF(BRW_PREDICATE_NORMAL);
9085 }
9086
9087 emit_nir_code();
9088
9089 if (fix_dispatch_mask) {
9090 bld.emit(BRW_OPCODE_ENDIF);
9091 }
9092
9093 /* Emit EOT write; set TR DS Cache bit */
9094 fs_reg srcs[3] = {
9095 fs_reg(get_tcs_output_urb_handle()),
9096 fs_reg(brw_imm_ud(WRITEMASK_X << 16)),
9097 fs_reg(brw_imm_ud(0)),
9098 };
9099 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 3);
9100 bld.LOAD_PAYLOAD(payload, srcs, 3, 2);
9101
9102 fs_inst *inst = bld.emit(SHADER_OPCODE_URB_WRITE_SIMD8_MASKED,
9103 bld.null_reg_ud(), payload);
9104 inst->mlen = 3;
9105 inst->eot = true;
9106
9107 if (shader_time_index >= 0)
9108 emit_shader_time_end();
9109
9110 if (failed)
9111 return false;
9112
9113 calculate_cfg();
9114
9115 optimize();
9116
9117 assign_curb_setup();
9118 assign_tcs_urb_setup();
9119
9120 fixup_3src_null_dest();
9121 allocate_registers(true /* allow_spilling */);
9122
9123 return !failed;
9124 }
9125
9126 bool
run_tes()9127 fs_visitor::run_tes()
9128 {
9129 assert(stage == MESA_SHADER_TESS_EVAL);
9130
9131 /* R0: thread header, R1-3: gl_TessCoord.xyz, R4: URB handles */
9132 payload.num_regs = 5;
9133
9134 if (shader_time_index >= 0)
9135 emit_shader_time_begin();
9136
9137 emit_nir_code();
9138
9139 if (failed)
9140 return false;
9141
9142 emit_urb_writes();
9143
9144 if (shader_time_index >= 0)
9145 emit_shader_time_end();
9146
9147 calculate_cfg();
9148
9149 optimize();
9150
9151 assign_curb_setup();
9152 assign_tes_urb_setup();
9153
9154 fixup_3src_null_dest();
9155 allocate_registers(true /* allow_spilling */);
9156
9157 return !failed;
9158 }
9159
9160 bool
run_gs()9161 fs_visitor::run_gs()
9162 {
9163 assert(stage == MESA_SHADER_GEOMETRY);
9164
9165 setup_gs_payload();
9166
9167 this->final_gs_vertex_count = vgrf(glsl_type::uint_type);
9168
9169 if (gs_compile->control_data_header_size_bits > 0) {
9170 /* Create a VGRF to store accumulated control data bits. */
9171 this->control_data_bits = vgrf(glsl_type::uint_type);
9172
9173 /* If we're outputting more than 32 control data bits, then EmitVertex()
9174 * will set control_data_bits to 0 after emitting the first vertex.
9175 * Otherwise, we need to initialize it to 0 here.
9176 */
9177 if (gs_compile->control_data_header_size_bits <= 32) {
9178 const fs_builder abld = bld.annotate("initialize control data bits");
9179 abld.MOV(this->control_data_bits, brw_imm_ud(0u));
9180 }
9181 }
9182
9183 if (shader_time_index >= 0)
9184 emit_shader_time_begin();
9185
9186 emit_nir_code();
9187
9188 emit_gs_thread_end();
9189
9190 if (shader_time_index >= 0)
9191 emit_shader_time_end();
9192
9193 if (failed)
9194 return false;
9195
9196 calculate_cfg();
9197
9198 optimize();
9199
9200 assign_curb_setup();
9201 assign_gs_urb_setup();
9202
9203 fixup_3src_null_dest();
9204 allocate_registers(true /* allow_spilling */);
9205
9206 return !failed;
9207 }
9208
9209 /* From the SKL PRM, Volume 16, Workarounds:
9210 *
9211 * 0877 3D Pixel Shader Hang possible when pixel shader dispatched with
9212 * only header phases (R0-R2)
9213 *
9214 * WA: Enable a non-header phase (e.g. push constant) when dispatch would
9215 * have been header only.
9216 *
9217 * Instead of enabling push constants one can alternatively enable one of the
9218 * inputs. Here one simply chooses "layer" which shouldn't impose much
9219 * overhead.
9220 */
9221 static void
gfx9_ps_header_only_workaround(struct brw_wm_prog_data * wm_prog_data)9222 gfx9_ps_header_only_workaround(struct brw_wm_prog_data *wm_prog_data)
9223 {
9224 if (wm_prog_data->num_varying_inputs)
9225 return;
9226
9227 if (wm_prog_data->base.curb_read_length)
9228 return;
9229
9230 wm_prog_data->urb_setup[VARYING_SLOT_LAYER] = 0;
9231 wm_prog_data->num_varying_inputs = 1;
9232
9233 brw_compute_urb_setup_index(wm_prog_data);
9234 }
9235
9236 bool
run_fs(bool allow_spilling,bool do_rep_send)9237 fs_visitor::run_fs(bool allow_spilling, bool do_rep_send)
9238 {
9239 struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(this->prog_data);
9240 brw_wm_prog_key *wm_key = (brw_wm_prog_key *) this->key;
9241
9242 assert(stage == MESA_SHADER_FRAGMENT);
9243
9244 if (devinfo->ver >= 6)
9245 setup_fs_payload_gfx6();
9246 else
9247 setup_fs_payload_gfx4();
9248
9249 if (0) {
9250 emit_dummy_fs();
9251 } else if (do_rep_send) {
9252 assert(dispatch_width == 16);
9253 emit_repclear_shader();
9254 } else {
9255 if (shader_time_index >= 0)
9256 emit_shader_time_begin();
9257
9258 if (nir->info.inputs_read > 0 ||
9259 BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_FRAG_COORD) ||
9260 (nir->info.outputs_read > 0 && !wm_key->coherent_fb_fetch)) {
9261 if (devinfo->ver < 6)
9262 emit_interpolation_setup_gfx4();
9263 else
9264 emit_interpolation_setup_gfx6();
9265 }
9266
9267 /* We handle discards by keeping track of the still-live pixels in f0.1.
9268 * Initialize it with the dispatched pixels.
9269 */
9270 if (wm_prog_data->uses_kill) {
9271 const unsigned lower_width = MIN2(dispatch_width, 16);
9272 for (unsigned i = 0; i < dispatch_width / lower_width; i++) {
9273 const fs_reg dispatch_mask =
9274 devinfo->ver >= 6 ? brw_vec1_grf((i ? 2 : 1), 7) :
9275 brw_vec1_grf(0, 0);
9276 bld.exec_all().group(1, 0)
9277 .MOV(sample_mask_reg(bld.group(lower_width, i)),
9278 retype(dispatch_mask, BRW_REGISTER_TYPE_UW));
9279 }
9280 }
9281
9282 if (nir->info.writes_memory)
9283 wm_prog_data->has_side_effects = true;
9284
9285 emit_nir_code();
9286
9287 if (failed)
9288 return false;
9289
9290 if (wm_key->alpha_test_func)
9291 emit_alpha_test();
9292
9293 emit_fb_writes();
9294
9295 if (shader_time_index >= 0)
9296 emit_shader_time_end();
9297
9298 calculate_cfg();
9299
9300 optimize();
9301
9302 assign_curb_setup();
9303
9304 if (devinfo->ver >= 9)
9305 gfx9_ps_header_only_workaround(wm_prog_data);
9306
9307 assign_urb_setup();
9308
9309 fixup_3src_null_dest();
9310
9311 allocate_registers(allow_spilling);
9312
9313 if (failed)
9314 return false;
9315 }
9316
9317 return !failed;
9318 }
9319
9320 bool
run_cs(bool allow_spilling)9321 fs_visitor::run_cs(bool allow_spilling)
9322 {
9323 assert(stage == MESA_SHADER_COMPUTE || stage == MESA_SHADER_KERNEL);
9324
9325 setup_cs_payload();
9326
9327 if (shader_time_index >= 0)
9328 emit_shader_time_begin();
9329
9330 if (devinfo->is_haswell && prog_data->total_shared > 0) {
9331 /* Move SLM index from g0.0[27:24] to sr0.1[11:8] */
9332 const fs_builder abld = bld.exec_all().group(1, 0);
9333 abld.MOV(retype(brw_sr0_reg(1), BRW_REGISTER_TYPE_UW),
9334 suboffset(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UW), 1));
9335 }
9336
9337 emit_nir_code();
9338
9339 if (failed)
9340 return false;
9341
9342 emit_cs_terminate();
9343
9344 if (shader_time_index >= 0)
9345 emit_shader_time_end();
9346
9347 calculate_cfg();
9348
9349 optimize();
9350
9351 assign_curb_setup();
9352
9353 fixup_3src_null_dest();
9354 allocate_registers(allow_spilling);
9355
9356 if (failed)
9357 return false;
9358
9359 return !failed;
9360 }
9361
9362 bool
run_bs(bool allow_spilling)9363 fs_visitor::run_bs(bool allow_spilling)
9364 {
9365 assert(stage >= MESA_SHADER_RAYGEN && stage <= MESA_SHADER_CALLABLE);
9366
9367 /* R0: thread header, R1: stack IDs, R2: argument addresses */
9368 payload.num_regs = 3;
9369
9370 if (shader_time_index >= 0)
9371 emit_shader_time_begin();
9372
9373 emit_nir_code();
9374
9375 if (failed)
9376 return false;
9377
9378 /* TODO(RT): Perhaps rename this? */
9379 emit_cs_terminate();
9380
9381 if (shader_time_index >= 0)
9382 emit_shader_time_end();
9383
9384 calculate_cfg();
9385
9386 optimize();
9387
9388 assign_curb_setup();
9389
9390 fixup_3src_null_dest();
9391 allocate_registers(allow_spilling);
9392
9393 if (failed)
9394 return false;
9395
9396 return !failed;
9397 }
9398
9399 static bool
is_used_in_not_interp_frag_coord(nir_ssa_def * def)9400 is_used_in_not_interp_frag_coord(nir_ssa_def *def)
9401 {
9402 nir_foreach_use(src, def) {
9403 if (src->parent_instr->type != nir_instr_type_intrinsic)
9404 return true;
9405
9406 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(src->parent_instr);
9407 if (intrin->intrinsic != nir_intrinsic_load_frag_coord)
9408 return true;
9409 }
9410
9411 nir_foreach_if_use(src, def)
9412 return true;
9413
9414 return false;
9415 }
9416
9417 /**
9418 * Return a bitfield where bit n is set if barycentric interpolation mode n
9419 * (see enum brw_barycentric_mode) is needed by the fragment shader.
9420 *
9421 * We examine the load_barycentric intrinsics rather than looking at input
9422 * variables so that we catch interpolateAtCentroid() messages too, which
9423 * also need the BRW_BARYCENTRIC_[NON]PERSPECTIVE_CENTROID mode set up.
9424 */
9425 static unsigned
brw_compute_barycentric_interp_modes(const struct intel_device_info * devinfo,const nir_shader * shader)9426 brw_compute_barycentric_interp_modes(const struct intel_device_info *devinfo,
9427 const nir_shader *shader)
9428 {
9429 unsigned barycentric_interp_modes = 0;
9430
9431 nir_foreach_function(f, shader) {
9432 if (!f->impl)
9433 continue;
9434
9435 nir_foreach_block(block, f->impl) {
9436 nir_foreach_instr(instr, block) {
9437 if (instr->type != nir_instr_type_intrinsic)
9438 continue;
9439
9440 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
9441 switch (intrin->intrinsic) {
9442 case nir_intrinsic_load_barycentric_pixel:
9443 case nir_intrinsic_load_barycentric_centroid:
9444 case nir_intrinsic_load_barycentric_sample:
9445 break;
9446 default:
9447 continue;
9448 }
9449
9450 /* Ignore WPOS; it doesn't require interpolation. */
9451 assert(intrin->dest.is_ssa);
9452 if (!is_used_in_not_interp_frag_coord(&intrin->dest.ssa))
9453 continue;
9454
9455 enum glsl_interp_mode interp = (enum glsl_interp_mode)
9456 nir_intrinsic_interp_mode(intrin);
9457 nir_intrinsic_op bary_op = intrin->intrinsic;
9458 enum brw_barycentric_mode bary =
9459 brw_barycentric_mode(interp, bary_op);
9460
9461 barycentric_interp_modes |= 1 << bary;
9462
9463 if (devinfo->needs_unlit_centroid_workaround &&
9464 bary_op == nir_intrinsic_load_barycentric_centroid)
9465 barycentric_interp_modes |= 1 << centroid_to_pixel(bary);
9466 }
9467 }
9468 }
9469
9470 return barycentric_interp_modes;
9471 }
9472
9473 static void
brw_compute_flat_inputs(struct brw_wm_prog_data * prog_data,const nir_shader * shader)9474 brw_compute_flat_inputs(struct brw_wm_prog_data *prog_data,
9475 const nir_shader *shader)
9476 {
9477 prog_data->flat_inputs = 0;
9478
9479 nir_foreach_shader_in_variable(var, shader) {
9480 unsigned slots = glsl_count_attribute_slots(var->type, false);
9481 for (unsigned s = 0; s < slots; s++) {
9482 int input_index = prog_data->urb_setup[var->data.location + s];
9483
9484 if (input_index < 0)
9485 continue;
9486
9487 /* flat shading */
9488 if (var->data.interpolation == INTERP_MODE_FLAT)
9489 prog_data->flat_inputs |= 1 << input_index;
9490 }
9491 }
9492 }
9493
9494 static uint8_t
computed_depth_mode(const nir_shader * shader)9495 computed_depth_mode(const nir_shader *shader)
9496 {
9497 if (shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
9498 switch (shader->info.fs.depth_layout) {
9499 case FRAG_DEPTH_LAYOUT_NONE:
9500 case FRAG_DEPTH_LAYOUT_ANY:
9501 return BRW_PSCDEPTH_ON;
9502 case FRAG_DEPTH_LAYOUT_GREATER:
9503 return BRW_PSCDEPTH_ON_GE;
9504 case FRAG_DEPTH_LAYOUT_LESS:
9505 return BRW_PSCDEPTH_ON_LE;
9506 case FRAG_DEPTH_LAYOUT_UNCHANGED:
9507 return BRW_PSCDEPTH_OFF;
9508 }
9509 }
9510 return BRW_PSCDEPTH_OFF;
9511 }
9512
9513 /**
9514 * Move load_interpolated_input with simple (payload-based) barycentric modes
9515 * to the top of the program so we don't emit multiple PLNs for the same input.
9516 *
9517 * This works around CSE not being able to handle non-dominating cases
9518 * such as:
9519 *
9520 * if (...) {
9521 * interpolate input
9522 * } else {
9523 * interpolate the same exact input
9524 * }
9525 *
9526 * This should be replaced by global value numbering someday.
9527 */
9528 bool
brw_nir_move_interpolation_to_top(nir_shader * nir)9529 brw_nir_move_interpolation_to_top(nir_shader *nir)
9530 {
9531 bool progress = false;
9532
9533 nir_foreach_function(f, nir) {
9534 if (!f->impl)
9535 continue;
9536
9537 nir_block *top = nir_start_block(f->impl);
9538 exec_node *cursor_node = NULL;
9539
9540 nir_foreach_block(block, f->impl) {
9541 if (block == top)
9542 continue;
9543
9544 nir_foreach_instr_safe(instr, block) {
9545 if (instr->type != nir_instr_type_intrinsic)
9546 continue;
9547
9548 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
9549 if (intrin->intrinsic != nir_intrinsic_load_interpolated_input)
9550 continue;
9551 nir_intrinsic_instr *bary_intrinsic =
9552 nir_instr_as_intrinsic(intrin->src[0].ssa->parent_instr);
9553 nir_intrinsic_op op = bary_intrinsic->intrinsic;
9554
9555 /* Leave interpolateAtSample/Offset() where they are. */
9556 if (op == nir_intrinsic_load_barycentric_at_sample ||
9557 op == nir_intrinsic_load_barycentric_at_offset)
9558 continue;
9559
9560 nir_instr *move[3] = {
9561 &bary_intrinsic->instr,
9562 intrin->src[1].ssa->parent_instr,
9563 instr
9564 };
9565
9566 for (unsigned i = 0; i < ARRAY_SIZE(move); i++) {
9567 if (move[i]->block != top) {
9568 move[i]->block = top;
9569 exec_node_remove(&move[i]->node);
9570 if (cursor_node) {
9571 exec_node_insert_after(cursor_node, &move[i]->node);
9572 } else {
9573 exec_list_push_head(&top->instr_list, &move[i]->node);
9574 }
9575 cursor_node = &move[i]->node;
9576 progress = true;
9577 }
9578 }
9579 }
9580 }
9581 nir_metadata_preserve(f->impl, nir_metadata_block_index |
9582 nir_metadata_dominance);
9583 }
9584
9585 return progress;
9586 }
9587
9588 static bool
brw_nir_demote_sample_qualifiers_instr(nir_builder * b,nir_instr * instr,UNUSED void * cb_data)9589 brw_nir_demote_sample_qualifiers_instr(nir_builder *b,
9590 nir_instr *instr,
9591 UNUSED void *cb_data)
9592 {
9593 if (instr->type != nir_instr_type_intrinsic)
9594 return false;
9595
9596 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
9597 if (intrin->intrinsic != nir_intrinsic_load_barycentric_sample &&
9598 intrin->intrinsic != nir_intrinsic_load_barycentric_at_sample)
9599 return false;
9600
9601 b->cursor = nir_before_instr(instr);
9602 nir_ssa_def *centroid =
9603 nir_load_barycentric(b, nir_intrinsic_load_barycentric_centroid,
9604 nir_intrinsic_interp_mode(intrin));
9605 nir_ssa_def_rewrite_uses(&intrin->dest.ssa, centroid);
9606 nir_instr_remove(instr);
9607 return true;
9608 }
9609
9610 /**
9611 * Demote per-sample barycentric intrinsics to centroid.
9612 *
9613 * Useful when rendering to a non-multisampled buffer.
9614 */
9615 bool
brw_nir_demote_sample_qualifiers(nir_shader * nir)9616 brw_nir_demote_sample_qualifiers(nir_shader *nir)
9617 {
9618 return nir_shader_instructions_pass(nir,
9619 brw_nir_demote_sample_qualifiers_instr,
9620 nir_metadata_block_index |
9621 nir_metadata_dominance,
9622 NULL);
9623 }
9624
9625 void
brw_nir_populate_wm_prog_data(const nir_shader * shader,const struct intel_device_info * devinfo,const struct brw_wm_prog_key * key,struct brw_wm_prog_data * prog_data)9626 brw_nir_populate_wm_prog_data(const nir_shader *shader,
9627 const struct intel_device_info *devinfo,
9628 const struct brw_wm_prog_key *key,
9629 struct brw_wm_prog_data *prog_data)
9630 {
9631 /* key->alpha_test_func means simulating alpha testing via discards,
9632 * so the shader definitely kills pixels.
9633 */
9634 prog_data->uses_kill = shader->info.fs.uses_discard ||
9635 key->alpha_test_func;
9636 prog_data->uses_omask = !key->ignore_sample_mask_out &&
9637 (shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_SAMPLE_MASK));
9638 prog_data->computed_depth_mode = computed_depth_mode(shader);
9639 prog_data->computed_stencil =
9640 shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_STENCIL);
9641
9642 prog_data->persample_dispatch =
9643 key->multisample_fbo &&
9644 (key->persample_interp ||
9645 BITSET_TEST(shader->info.system_values_read, SYSTEM_VALUE_SAMPLE_ID) ||
9646 BITSET_TEST(shader->info.system_values_read, SYSTEM_VALUE_SAMPLE_POS) ||
9647 shader->info.fs.uses_sample_qualifier ||
9648 shader->info.outputs_read);
9649
9650 if (devinfo->ver >= 6) {
9651 prog_data->uses_sample_mask =
9652 BITSET_TEST(shader->info.system_values_read, SYSTEM_VALUE_SAMPLE_MASK_IN);
9653
9654 /* From the Ivy Bridge PRM documentation for 3DSTATE_PS:
9655 *
9656 * "MSDISPMODE_PERSAMPLE is required in order to select
9657 * POSOFFSET_SAMPLE"
9658 *
9659 * So we can only really get sample positions if we are doing real
9660 * per-sample dispatch. If we need gl_SamplePosition and we don't have
9661 * persample dispatch, we hard-code it to 0.5.
9662 */
9663 prog_data->uses_pos_offset = prog_data->persample_dispatch &&
9664 BITSET_TEST(shader->info.system_values_read, SYSTEM_VALUE_SAMPLE_POS);
9665 }
9666
9667 prog_data->has_render_target_reads = shader->info.outputs_read != 0ull;
9668
9669 prog_data->early_fragment_tests = shader->info.fs.early_fragment_tests;
9670 prog_data->post_depth_coverage = shader->info.fs.post_depth_coverage;
9671 prog_data->inner_coverage = shader->info.fs.inner_coverage;
9672
9673 prog_data->barycentric_interp_modes =
9674 brw_compute_barycentric_interp_modes(devinfo, shader);
9675
9676 prog_data->per_coarse_pixel_dispatch =
9677 key->coarse_pixel &&
9678 !prog_data->persample_dispatch &&
9679 !prog_data->uses_sample_mask &&
9680 (prog_data->computed_depth_mode == BRW_PSCDEPTH_OFF) &&
9681 !prog_data->computed_stencil;
9682
9683 prog_data->uses_src_w =
9684 BITSET_TEST(shader->info.system_values_read, SYSTEM_VALUE_FRAG_COORD);
9685 prog_data->uses_src_depth =
9686 BITSET_TEST(shader->info.system_values_read, SYSTEM_VALUE_FRAG_COORD) &&
9687 !prog_data->per_coarse_pixel_dispatch;
9688 prog_data->uses_depth_w_coefficients =
9689 BITSET_TEST(shader->info.system_values_read, SYSTEM_VALUE_FRAG_COORD) &&
9690 prog_data->per_coarse_pixel_dispatch;
9691
9692 calculate_urb_setup(devinfo, key, prog_data, shader);
9693 brw_compute_flat_inputs(prog_data, shader);
9694 }
9695
9696 /**
9697 * Pre-gfx6, the register file of the EUs was shared between threads,
9698 * and each thread used some subset allocated on a 16-register block
9699 * granularity. The unit states wanted these block counts.
9700 */
9701 static inline int
brw_register_blocks(int reg_count)9702 brw_register_blocks(int reg_count)
9703 {
9704 return ALIGN(reg_count, 16) / 16 - 1;
9705 }
9706
9707 const unsigned *
brw_compile_fs(const struct brw_compiler * compiler,void * mem_ctx,struct brw_compile_fs_params * params)9708 brw_compile_fs(const struct brw_compiler *compiler,
9709 void *mem_ctx,
9710 struct brw_compile_fs_params *params)
9711 {
9712 struct nir_shader *nir = params->nir;
9713 const struct brw_wm_prog_key *key = params->key;
9714 struct brw_wm_prog_data *prog_data = params->prog_data;
9715 bool allow_spilling = params->allow_spilling;
9716 const bool debug_enabled =
9717 INTEL_DEBUG(params->debug_flag ? params->debug_flag : DEBUG_WM);
9718
9719 prog_data->base.stage = MESA_SHADER_FRAGMENT;
9720
9721 const struct intel_device_info *devinfo = compiler->devinfo;
9722 const unsigned max_subgroup_size = compiler->devinfo->ver >= 6 ? 32 : 16;
9723
9724 brw_nir_apply_key(nir, compiler, &key->base, max_subgroup_size, true);
9725 brw_nir_lower_fs_inputs(nir, devinfo, key);
9726 brw_nir_lower_fs_outputs(nir);
9727
9728 if (devinfo->ver < 6)
9729 brw_setup_vue_interpolation(params->vue_map, nir, prog_data);
9730
9731 /* From the SKL PRM, Volume 7, "Alpha Coverage":
9732 * "If Pixel Shader outputs oMask, AlphaToCoverage is disabled in
9733 * hardware, regardless of the state setting for this feature."
9734 */
9735 if (devinfo->ver > 6 && key->alpha_to_coverage) {
9736 /* Run constant fold optimization in order to get the correct source
9737 * offset to determine render target 0 store instruction in
9738 * emit_alpha_to_coverage pass.
9739 */
9740 NIR_PASS_V(nir, nir_opt_constant_folding);
9741 NIR_PASS_V(nir, brw_nir_lower_alpha_to_coverage);
9742 }
9743
9744 if (!key->multisample_fbo)
9745 NIR_PASS_V(nir, brw_nir_demote_sample_qualifiers);
9746 NIR_PASS_V(nir, brw_nir_move_interpolation_to_top);
9747 brw_postprocess_nir(nir, compiler, true, debug_enabled,
9748 key->base.robust_buffer_access);
9749
9750 brw_nir_populate_wm_prog_data(nir, compiler->devinfo, key, prog_data);
9751
9752 fs_visitor *v8 = NULL, *v16 = NULL, *v32 = NULL;
9753 cfg_t *simd8_cfg = NULL, *simd16_cfg = NULL, *simd32_cfg = NULL;
9754 float throughput = 0;
9755 bool has_spilled = false;
9756
9757 v8 = new fs_visitor(compiler, params->log_data, mem_ctx, &key->base,
9758 &prog_data->base, nir, 8,
9759 params->shader_time ? params->shader_time_index8 : -1,
9760 debug_enabled);
9761 if (!v8->run_fs(allow_spilling, false /* do_rep_send */)) {
9762 params->error_str = ralloc_strdup(mem_ctx, v8->fail_msg);
9763 delete v8;
9764 return NULL;
9765 } else if (!INTEL_DEBUG(DEBUG_NO8)) {
9766 simd8_cfg = v8->cfg;
9767 prog_data->base.dispatch_grf_start_reg = v8->payload.num_regs;
9768 prog_data->reg_blocks_8 = brw_register_blocks(v8->grf_used);
9769 const performance &perf = v8->performance_analysis.require();
9770 throughput = MAX2(throughput, perf.throughput);
9771 has_spilled = v8->spilled_any_registers;
9772 allow_spilling = false;
9773 }
9774
9775 /* Limit dispatch width to simd8 with dual source blending on gfx8.
9776 * See: https://gitlab.freedesktop.org/mesa/mesa/-/issues/1917
9777 */
9778 if (devinfo->ver == 8 && prog_data->dual_src_blend &&
9779 !INTEL_DEBUG(DEBUG_NO8)) {
9780 assert(!params->use_rep_send);
9781 v8->limit_dispatch_width(8, "gfx8 workaround: "
9782 "using SIMD8 when dual src blending.\n");
9783 }
9784
9785 if (key->coarse_pixel) {
9786 if (prog_data->dual_src_blend) {
9787 v8->limit_dispatch_width(8, "SIMD16 coarse pixel shading cannot"
9788 " use SIMD8 messages.\n");
9789 }
9790 v8->limit_dispatch_width(16, "SIMD32 not supported with coarse"
9791 " pixel shading.\n");
9792 }
9793
9794 if (!has_spilled &&
9795 v8->max_dispatch_width >= 16 &&
9796 (!INTEL_DEBUG(DEBUG_NO16) || params->use_rep_send)) {
9797 /* Try a SIMD16 compile */
9798 v16 = new fs_visitor(compiler, params->log_data, mem_ctx, &key->base,
9799 &prog_data->base, nir, 16,
9800 params->shader_time ? params->shader_time_index16 : -1,
9801 debug_enabled);
9802 v16->import_uniforms(v8);
9803 if (!v16->run_fs(allow_spilling, params->use_rep_send)) {
9804 brw_shader_perf_log(compiler, params->log_data,
9805 "SIMD16 shader failed to compile: %s\n",
9806 v16->fail_msg);
9807 } else {
9808 simd16_cfg = v16->cfg;
9809 prog_data->dispatch_grf_start_reg_16 = v16->payload.num_regs;
9810 prog_data->reg_blocks_16 = brw_register_blocks(v16->grf_used);
9811 const performance &perf = v16->performance_analysis.require();
9812 throughput = MAX2(throughput, perf.throughput);
9813 has_spilled = v16->spilled_any_registers;
9814 allow_spilling = false;
9815 }
9816 }
9817
9818 const bool simd16_failed = v16 && !simd16_cfg;
9819
9820 /* Currently, the compiler only supports SIMD32 on SNB+ */
9821 if (!has_spilled &&
9822 v8->max_dispatch_width >= 32 && !params->use_rep_send &&
9823 devinfo->ver >= 6 && !simd16_failed &&
9824 !INTEL_DEBUG(DEBUG_NO32)) {
9825 /* Try a SIMD32 compile */
9826 v32 = new fs_visitor(compiler, params->log_data, mem_ctx, &key->base,
9827 &prog_data->base, nir, 32,
9828 params->shader_time ? params->shader_time_index32 : -1,
9829 debug_enabled);
9830 v32->import_uniforms(v8);
9831 if (!v32->run_fs(allow_spilling, false)) {
9832 brw_shader_perf_log(compiler, params->log_data,
9833 "SIMD32 shader failed to compile: %s\n",
9834 v32->fail_msg);
9835 } else {
9836 const performance &perf = v32->performance_analysis.require();
9837
9838 if (!INTEL_DEBUG(DEBUG_DO32) && throughput >= perf.throughput) {
9839 brw_shader_perf_log(compiler, params->log_data,
9840 "SIMD32 shader inefficient\n");
9841 } else {
9842 simd32_cfg = v32->cfg;
9843 prog_data->dispatch_grf_start_reg_32 = v32->payload.num_regs;
9844 prog_data->reg_blocks_32 = brw_register_blocks(v32->grf_used);
9845 throughput = MAX2(throughput, perf.throughput);
9846 }
9847 }
9848 }
9849
9850 /* When the caller requests a repclear shader, they want SIMD16-only */
9851 if (params->use_rep_send)
9852 simd8_cfg = NULL;
9853
9854 /* Prior to Iron Lake, the PS had a single shader offset with a jump table
9855 * at the top to select the shader. We've never implemented that.
9856 * Instead, we just give them exactly one shader and we pick the widest one
9857 * available.
9858 */
9859 if (compiler->devinfo->ver < 5) {
9860 if (simd32_cfg || simd16_cfg)
9861 simd8_cfg = NULL;
9862 if (simd32_cfg)
9863 simd16_cfg = NULL;
9864 }
9865
9866 /* If computed depth is enabled SNB only allows SIMD8. */
9867 if (compiler->devinfo->ver == 6 &&
9868 prog_data->computed_depth_mode != BRW_PSCDEPTH_OFF)
9869 assert(simd16_cfg == NULL && simd32_cfg == NULL);
9870
9871 if (compiler->devinfo->ver <= 5 && !simd8_cfg) {
9872 /* Iron lake and earlier only have one Dispatch GRF start field. Make
9873 * the data available in the base prog data struct for convenience.
9874 */
9875 if (simd16_cfg) {
9876 prog_data->base.dispatch_grf_start_reg =
9877 prog_data->dispatch_grf_start_reg_16;
9878 } else if (simd32_cfg) {
9879 prog_data->base.dispatch_grf_start_reg =
9880 prog_data->dispatch_grf_start_reg_32;
9881 }
9882 }
9883
9884 if (prog_data->persample_dispatch) {
9885 /* Starting with SandyBridge (where we first get MSAA), the different
9886 * pixel dispatch combinations are grouped into classifications A
9887 * through F (SNB PRM Vol. 2 Part 1 Section 7.7.1). On most hardware
9888 * generations, the only configurations supporting persample dispatch
9889 * are those in which only one dispatch width is enabled.
9890 *
9891 * The Gfx12 hardware spec has a similar dispatch grouping table, but
9892 * the following conflicting restriction applies (from the page on
9893 * "Structure_3DSTATE_PS_BODY"), so we need to keep the SIMD16 shader:
9894 *
9895 * "SIMD32 may only be enabled if SIMD16 or (dual)SIMD8 is also
9896 * enabled."
9897 */
9898 if (simd32_cfg || simd16_cfg)
9899 simd8_cfg = NULL;
9900 if (simd32_cfg && devinfo->ver < 12)
9901 simd16_cfg = NULL;
9902 }
9903
9904 fs_generator g(compiler, params->log_data, mem_ctx, &prog_data->base,
9905 v8->runtime_check_aads_emit, MESA_SHADER_FRAGMENT);
9906
9907 if (unlikely(debug_enabled)) {
9908 g.enable_debug(ralloc_asprintf(mem_ctx, "%s fragment shader %s",
9909 nir->info.label ?
9910 nir->info.label : "unnamed",
9911 nir->info.name));
9912 }
9913
9914 struct brw_compile_stats *stats = params->stats;
9915
9916 if (simd8_cfg) {
9917 prog_data->dispatch_8 = true;
9918 g.generate_code(simd8_cfg, 8, v8->shader_stats,
9919 v8->performance_analysis.require(), stats);
9920 stats = stats ? stats + 1 : NULL;
9921 }
9922
9923 if (simd16_cfg) {
9924 prog_data->dispatch_16 = true;
9925 prog_data->prog_offset_16 = g.generate_code(
9926 simd16_cfg, 16, v16->shader_stats,
9927 v16->performance_analysis.require(), stats);
9928 stats = stats ? stats + 1 : NULL;
9929 }
9930
9931 if (simd32_cfg) {
9932 prog_data->dispatch_32 = true;
9933 prog_data->prog_offset_32 = g.generate_code(
9934 simd32_cfg, 32, v32->shader_stats,
9935 v32->performance_analysis.require(), stats);
9936 stats = stats ? stats + 1 : NULL;
9937 }
9938
9939 g.add_const_data(nir->constant_data, nir->constant_data_size);
9940
9941 delete v8;
9942 delete v16;
9943 delete v32;
9944
9945 return g.get_assembly();
9946 }
9947
9948 fs_reg *
emit_cs_work_group_id_setup()9949 fs_visitor::emit_cs_work_group_id_setup()
9950 {
9951 assert(stage == MESA_SHADER_COMPUTE || stage == MESA_SHADER_KERNEL);
9952
9953 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::uvec3_type));
9954
9955 struct brw_reg r0_1(retype(brw_vec1_grf(0, 1), BRW_REGISTER_TYPE_UD));
9956 struct brw_reg r0_6(retype(brw_vec1_grf(0, 6), BRW_REGISTER_TYPE_UD));
9957 struct brw_reg r0_7(retype(brw_vec1_grf(0, 7), BRW_REGISTER_TYPE_UD));
9958
9959 bld.MOV(*reg, r0_1);
9960 bld.MOV(offset(*reg, bld, 1), r0_6);
9961 bld.MOV(offset(*reg, bld, 2), r0_7);
9962
9963 return reg;
9964 }
9965
9966 unsigned
brw_cs_push_const_total_size(const struct brw_cs_prog_data * cs_prog_data,unsigned threads)9967 brw_cs_push_const_total_size(const struct brw_cs_prog_data *cs_prog_data,
9968 unsigned threads)
9969 {
9970 assert(cs_prog_data->push.per_thread.size % REG_SIZE == 0);
9971 assert(cs_prog_data->push.cross_thread.size % REG_SIZE == 0);
9972 return cs_prog_data->push.per_thread.size * threads +
9973 cs_prog_data->push.cross_thread.size;
9974 }
9975
9976 static void
fill_push_const_block_info(struct brw_push_const_block * block,unsigned dwords)9977 fill_push_const_block_info(struct brw_push_const_block *block, unsigned dwords)
9978 {
9979 block->dwords = dwords;
9980 block->regs = DIV_ROUND_UP(dwords, 8);
9981 block->size = block->regs * 32;
9982 }
9983
9984 static void
cs_fill_push_const_info(const struct intel_device_info * devinfo,struct brw_cs_prog_data * cs_prog_data)9985 cs_fill_push_const_info(const struct intel_device_info *devinfo,
9986 struct brw_cs_prog_data *cs_prog_data)
9987 {
9988 const struct brw_stage_prog_data *prog_data = &cs_prog_data->base;
9989 int subgroup_id_index = get_subgroup_id_param_index(devinfo, prog_data);
9990 bool cross_thread_supported = devinfo->verx10 >= 75;
9991
9992 /* The thread ID should be stored in the last param dword */
9993 assert(subgroup_id_index == -1 ||
9994 subgroup_id_index == (int)prog_data->nr_params - 1);
9995
9996 unsigned cross_thread_dwords, per_thread_dwords;
9997 if (!cross_thread_supported) {
9998 cross_thread_dwords = 0u;
9999 per_thread_dwords = prog_data->nr_params;
10000 } else if (subgroup_id_index >= 0) {
10001 /* Fill all but the last register with cross-thread payload */
10002 cross_thread_dwords = 8 * (subgroup_id_index / 8);
10003 per_thread_dwords = prog_data->nr_params - cross_thread_dwords;
10004 assert(per_thread_dwords > 0 && per_thread_dwords <= 8);
10005 } else {
10006 /* Fill all data using cross-thread payload */
10007 cross_thread_dwords = prog_data->nr_params;
10008 per_thread_dwords = 0u;
10009 }
10010
10011 fill_push_const_block_info(&cs_prog_data->push.cross_thread, cross_thread_dwords);
10012 fill_push_const_block_info(&cs_prog_data->push.per_thread, per_thread_dwords);
10013
10014 assert(cs_prog_data->push.cross_thread.dwords % 8 == 0 ||
10015 cs_prog_data->push.per_thread.size == 0);
10016 assert(cs_prog_data->push.cross_thread.dwords +
10017 cs_prog_data->push.per_thread.dwords ==
10018 prog_data->nr_params);
10019 }
10020
10021 static bool
filter_simd(const nir_instr * instr,const void *)10022 filter_simd(const nir_instr *instr, const void * /* options */)
10023 {
10024 if (instr->type != nir_instr_type_intrinsic)
10025 return false;
10026
10027 switch (nir_instr_as_intrinsic(instr)->intrinsic) {
10028 case nir_intrinsic_load_simd_width_intel:
10029 case nir_intrinsic_load_subgroup_id:
10030 return true;
10031
10032 default:
10033 return false;
10034 }
10035 }
10036
10037 static nir_ssa_def *
lower_simd(nir_builder * b,nir_instr * instr,void * options)10038 lower_simd(nir_builder *b, nir_instr *instr, void *options)
10039 {
10040 uintptr_t simd_width = (uintptr_t)options;
10041
10042 switch (nir_instr_as_intrinsic(instr)->intrinsic) {
10043 case nir_intrinsic_load_simd_width_intel:
10044 return nir_imm_int(b, simd_width);
10045
10046 case nir_intrinsic_load_subgroup_id:
10047 /* If the whole workgroup fits in one thread, we can lower subgroup_id
10048 * to a constant zero.
10049 */
10050 if (!b->shader->info.workgroup_size_variable) {
10051 unsigned local_workgroup_size = b->shader->info.workgroup_size[0] *
10052 b->shader->info.workgroup_size[1] *
10053 b->shader->info.workgroup_size[2];
10054 if (local_workgroup_size <= simd_width)
10055 return nir_imm_int(b, 0);
10056 }
10057 return NULL;
10058
10059 default:
10060 return NULL;
10061 }
10062 }
10063
10064 static void
brw_nir_lower_simd(nir_shader * nir,unsigned dispatch_width)10065 brw_nir_lower_simd(nir_shader *nir, unsigned dispatch_width)
10066 {
10067 nir_shader_lower_instructions(nir, filter_simd, lower_simd,
10068 (void *)(uintptr_t)dispatch_width);
10069 }
10070
10071 static nir_shader *
compile_cs_to_nir(const struct brw_compiler * compiler,void * mem_ctx,const struct brw_cs_prog_key * key,const nir_shader * src_shader,unsigned dispatch_width,bool debug_enabled)10072 compile_cs_to_nir(const struct brw_compiler *compiler,
10073 void *mem_ctx,
10074 const struct brw_cs_prog_key *key,
10075 const nir_shader *src_shader,
10076 unsigned dispatch_width,
10077 bool debug_enabled)
10078 {
10079 nir_shader *shader = nir_shader_clone(mem_ctx, src_shader);
10080 brw_nir_apply_key(shader, compiler, &key->base, dispatch_width, true);
10081
10082 NIR_PASS_V(shader, brw_nir_lower_simd, dispatch_width);
10083
10084 /* Clean up after the local index and ID calculations. */
10085 NIR_PASS_V(shader, nir_opt_constant_folding);
10086 NIR_PASS_V(shader, nir_opt_dce);
10087
10088 brw_postprocess_nir(shader, compiler, true, debug_enabled,
10089 key->base.robust_buffer_access);
10090
10091 return shader;
10092 }
10093
10094 const unsigned *
brw_compile_cs(const struct brw_compiler * compiler,void * mem_ctx,struct brw_compile_cs_params * params)10095 brw_compile_cs(const struct brw_compiler *compiler,
10096 void *mem_ctx,
10097 struct brw_compile_cs_params *params)
10098 {
10099 const nir_shader *nir = params->nir;
10100 const struct brw_cs_prog_key *key = params->key;
10101 struct brw_cs_prog_data *prog_data = params->prog_data;
10102 int shader_time_index = params->shader_time ? params->shader_time_index : -1;
10103
10104 const bool debug_enabled =
10105 INTEL_DEBUG(params->debug_flag ? params->debug_flag : DEBUG_CS);
10106
10107 prog_data->base.stage = MESA_SHADER_COMPUTE;
10108 prog_data->base.total_shared = nir->info.shared_size;
10109
10110 /* Generate code for all the possible SIMD variants. */
10111 bool generate_all;
10112
10113 unsigned min_dispatch_width;
10114 unsigned max_dispatch_width;
10115
10116 if (nir->info.workgroup_size_variable) {
10117 generate_all = true;
10118 min_dispatch_width = 8;
10119 max_dispatch_width = 32;
10120 } else {
10121 generate_all = false;
10122 prog_data->local_size[0] = nir->info.workgroup_size[0];
10123 prog_data->local_size[1] = nir->info.workgroup_size[1];
10124 prog_data->local_size[2] = nir->info.workgroup_size[2];
10125 unsigned local_workgroup_size = prog_data->local_size[0] *
10126 prog_data->local_size[1] *
10127 prog_data->local_size[2];
10128
10129 /* Limit max_threads to 64 for the GPGPU_WALKER command */
10130 const uint32_t max_threads = compiler->devinfo->max_cs_workgroup_threads;
10131 min_dispatch_width = util_next_power_of_two(
10132 MAX2(8, DIV_ROUND_UP(local_workgroup_size, max_threads)));
10133 assert(min_dispatch_width <= 32);
10134 max_dispatch_width = 32;
10135 }
10136
10137 unsigned required_dispatch_width = 0;
10138 if ((int)key->base.subgroup_size_type >= (int)BRW_SUBGROUP_SIZE_REQUIRE_8) {
10139 /* These enum values are expressly chosen to be equal to the subgroup
10140 * size that they require.
10141 */
10142 required_dispatch_width = (unsigned)key->base.subgroup_size_type;
10143 }
10144
10145 if (nir->info.cs.subgroup_size > 0) {
10146 assert(required_dispatch_width == 0 ||
10147 required_dispatch_width == nir->info.cs.subgroup_size);
10148 required_dispatch_width = nir->info.cs.subgroup_size;
10149 }
10150
10151 if (required_dispatch_width > 0) {
10152 assert(required_dispatch_width == 8 ||
10153 required_dispatch_width == 16 ||
10154 required_dispatch_width == 32);
10155 if (required_dispatch_width < min_dispatch_width ||
10156 required_dispatch_width > max_dispatch_width) {
10157 params->error_str = ralloc_strdup(mem_ctx,
10158 "Cannot satisfy explicit subgroup size");
10159 return NULL;
10160 }
10161 min_dispatch_width = max_dispatch_width = required_dispatch_width;
10162 }
10163
10164 assert(min_dispatch_width <= max_dispatch_width);
10165
10166 fs_visitor *v8 = NULL, *v16 = NULL, *v32 = NULL;
10167 fs_visitor *v = NULL;
10168
10169 if (!INTEL_DEBUG(DEBUG_NO8) &&
10170 min_dispatch_width <= 8 && max_dispatch_width >= 8) {
10171 nir_shader *nir8 = compile_cs_to_nir(compiler, mem_ctx, key,
10172 nir, 8, debug_enabled);
10173 v8 = new fs_visitor(compiler, params->log_data, mem_ctx, &key->base,
10174 &prog_data->base,
10175 nir8, 8, shader_time_index, debug_enabled);
10176 if (!v8->run_cs(true /* allow_spilling */)) {
10177 params->error_str = ralloc_strdup(mem_ctx, v8->fail_msg);
10178 delete v8;
10179 return NULL;
10180 }
10181
10182 /* We should always be able to do SIMD32 for compute shaders */
10183 assert(v8->max_dispatch_width >= 32);
10184
10185 v = v8;
10186 prog_data->prog_mask |= 1 << 0;
10187 if (v8->spilled_any_registers)
10188 prog_data->prog_spilled |= 1 << 0;
10189 cs_fill_push_const_info(compiler->devinfo, prog_data);
10190 }
10191
10192 if (!INTEL_DEBUG(DEBUG_NO16) &&
10193 (generate_all || !prog_data->prog_spilled) &&
10194 min_dispatch_width <= 16 && max_dispatch_width >= 16) {
10195 /* Try a SIMD16 compile */
10196 nir_shader *nir16 = compile_cs_to_nir(compiler, mem_ctx, key,
10197 nir, 16, debug_enabled);
10198 v16 = new fs_visitor(compiler, params->log_data, mem_ctx, &key->base,
10199 &prog_data->base,
10200 nir16, 16, shader_time_index, debug_enabled);
10201 if (v8)
10202 v16->import_uniforms(v8);
10203
10204 const bool allow_spilling = generate_all || v == NULL;
10205 if (!v16->run_cs(allow_spilling)) {
10206 brw_shader_perf_log(compiler, params->log_data,
10207 "SIMD16 shader failed to compile: %s\n",
10208 v16->fail_msg);
10209 if (!v) {
10210 assert(v8 == NULL);
10211 params->error_str = ralloc_asprintf(
10212 mem_ctx, "Not enough threads for SIMD8 and "
10213 "couldn't generate SIMD16: %s", v16->fail_msg);
10214 delete v16;
10215 return NULL;
10216 }
10217 } else {
10218 /* We should always be able to do SIMD32 for compute shaders */
10219 assert(v16->max_dispatch_width >= 32);
10220
10221 v = v16;
10222 prog_data->prog_mask |= 1 << 1;
10223 if (v16->spilled_any_registers)
10224 prog_data->prog_spilled |= 1 << 1;
10225 cs_fill_push_const_info(compiler->devinfo, prog_data);
10226 }
10227 }
10228
10229 /* The SIMD32 is only enabled for cases it is needed unless forced.
10230 *
10231 * TODO: Use performance_analysis and drop this boolean.
10232 */
10233 const bool needs_32 = v == NULL ||
10234 INTEL_DEBUG(DEBUG_DO32) ||
10235 generate_all;
10236
10237 if (!INTEL_DEBUG(DEBUG_NO32) &&
10238 (generate_all || !prog_data->prog_spilled) &&
10239 needs_32 &&
10240 min_dispatch_width <= 32 && max_dispatch_width >= 32) {
10241 /* Try a SIMD32 compile */
10242 nir_shader *nir32 = compile_cs_to_nir(compiler, mem_ctx, key,
10243 nir, 32, debug_enabled);
10244 v32 = new fs_visitor(compiler, params->log_data, mem_ctx, &key->base,
10245 &prog_data->base,
10246 nir32, 32, shader_time_index, debug_enabled);
10247 if (v8)
10248 v32->import_uniforms(v8);
10249 else if (v16)
10250 v32->import_uniforms(v16);
10251
10252 const bool allow_spilling = generate_all || v == NULL;
10253 if (!v32->run_cs(allow_spilling)) {
10254 brw_shader_perf_log(compiler, params->log_data,
10255 "SIMD32 shader failed to compile: %s\n",
10256 v32->fail_msg);
10257 if (!v) {
10258 assert(v8 == NULL);
10259 assert(v16 == NULL);
10260 params->error_str = ralloc_asprintf(
10261 mem_ctx, "Not enough threads for SIMD16 and "
10262 "couldn't generate SIMD32: %s", v32->fail_msg);
10263 delete v32;
10264 return NULL;
10265 }
10266 } else {
10267 v = v32;
10268 prog_data->prog_mask |= 1 << 2;
10269 if (v32->spilled_any_registers)
10270 prog_data->prog_spilled |= 1 << 2;
10271 cs_fill_push_const_info(compiler->devinfo, prog_data);
10272 }
10273 }
10274
10275 if (unlikely(!v) && INTEL_DEBUG(DEBUG_NO8 | DEBUG_NO16 | DEBUG_NO32)) {
10276 params->error_str =
10277 ralloc_strdup(mem_ctx,
10278 "Cannot satisfy INTEL_DEBUG flags SIMD restrictions");
10279 return NULL;
10280 }
10281
10282 assert(v);
10283
10284 const unsigned *ret = NULL;
10285
10286 fs_generator g(compiler, params->log_data, mem_ctx, &prog_data->base,
10287 v->runtime_check_aads_emit, MESA_SHADER_COMPUTE);
10288 if (unlikely(debug_enabled)) {
10289 char *name = ralloc_asprintf(mem_ctx, "%s compute shader %s",
10290 nir->info.label ?
10291 nir->info.label : "unnamed",
10292 nir->info.name);
10293 g.enable_debug(name);
10294 }
10295
10296 struct brw_compile_stats *stats = params->stats;
10297 if (generate_all) {
10298 if (prog_data->prog_mask & (1 << 0)) {
10299 assert(v8);
10300 prog_data->prog_offset[0] =
10301 g.generate_code(v8->cfg, 8, v8->shader_stats,
10302 v8->performance_analysis.require(), stats);
10303 stats = stats ? stats + 1 : NULL;
10304 }
10305
10306 if (prog_data->prog_mask & (1 << 1)) {
10307 assert(v16);
10308 prog_data->prog_offset[1] =
10309 g.generate_code(v16->cfg, 16, v16->shader_stats,
10310 v16->performance_analysis.require(), stats);
10311 stats = stats ? stats + 1 : NULL;
10312 }
10313
10314 if (prog_data->prog_mask & (1 << 2)) {
10315 assert(v32);
10316 prog_data->prog_offset[2] =
10317 g.generate_code(v32->cfg, 32, v32->shader_stats,
10318 v32->performance_analysis.require(), stats);
10319 stats = stats ? stats + 1 : NULL;
10320 }
10321 } else {
10322 /* Only one dispatch width will be valid, and will be at offset 0,
10323 * which is already the default value of prog_offset_* fields.
10324 */
10325 prog_data->prog_mask = 1 << (v->dispatch_width / 16);
10326 g.generate_code(v->cfg, v->dispatch_width, v->shader_stats,
10327 v->performance_analysis.require(), stats);
10328 }
10329
10330 g.add_const_data(nir->constant_data, nir->constant_data_size);
10331
10332 ret = g.get_assembly();
10333
10334 delete v8;
10335 delete v16;
10336 delete v32;
10337
10338 return ret;
10339 }
10340
10341 static unsigned
brw_cs_simd_size_for_group_size(const struct intel_device_info * devinfo,const struct brw_cs_prog_data * cs_prog_data,unsigned group_size)10342 brw_cs_simd_size_for_group_size(const struct intel_device_info *devinfo,
10343 const struct brw_cs_prog_data *cs_prog_data,
10344 unsigned group_size)
10345 {
10346 const unsigned mask = cs_prog_data->prog_mask;
10347 assert(mask != 0);
10348
10349 static const unsigned simd8 = 1 << 0;
10350 static const unsigned simd16 = 1 << 1;
10351 static const unsigned simd32 = 1 << 2;
10352
10353 if (INTEL_DEBUG(DEBUG_DO32) && (mask & simd32))
10354 return 32;
10355
10356 const uint32_t max_threads = devinfo->max_cs_workgroup_threads;
10357
10358 if ((mask & simd8) && group_size <= 8 * max_threads) {
10359 /* Prefer SIMD16 if can do without spilling. Matches logic in
10360 * brw_compile_cs.
10361 */
10362 if ((mask & simd16) && (~cs_prog_data->prog_spilled & simd16))
10363 return 16;
10364 return 8;
10365 }
10366
10367 if ((mask & simd16) && group_size <= 16 * max_threads)
10368 return 16;
10369
10370 assert(mask & simd32);
10371 assert(group_size <= 32 * max_threads);
10372 return 32;
10373 }
10374
10375 struct brw_cs_dispatch_info
brw_cs_get_dispatch_info(const struct intel_device_info * devinfo,const struct brw_cs_prog_data * prog_data,const unsigned * override_local_size)10376 brw_cs_get_dispatch_info(const struct intel_device_info *devinfo,
10377 const struct brw_cs_prog_data *prog_data,
10378 const unsigned *override_local_size)
10379 {
10380 struct brw_cs_dispatch_info info = {};
10381
10382 const unsigned *sizes =
10383 override_local_size ? override_local_size :
10384 prog_data->local_size;
10385
10386 info.group_size = sizes[0] * sizes[1] * sizes[2];
10387 info.simd_size =
10388 brw_cs_simd_size_for_group_size(devinfo, prog_data, info.group_size);
10389 info.threads = DIV_ROUND_UP(info.group_size, info.simd_size);
10390
10391 const uint32_t remainder = info.group_size & (info.simd_size - 1);
10392 if (remainder > 0)
10393 info.right_mask = ~0u >> (32 - remainder);
10394 else
10395 info.right_mask = ~0u >> (32 - info.simd_size);
10396
10397 return info;
10398 }
10399
10400 static uint8_t
compile_single_bs(const struct brw_compiler * compiler,void * log_data,void * mem_ctx,const struct brw_bs_prog_key * key,struct brw_bs_prog_data * prog_data,nir_shader * shader,fs_generator * g,struct brw_compile_stats * stats,int * prog_offset,char ** error_str)10401 compile_single_bs(const struct brw_compiler *compiler, void *log_data,
10402 void *mem_ctx,
10403 const struct brw_bs_prog_key *key,
10404 struct brw_bs_prog_data *prog_data,
10405 nir_shader *shader,
10406 fs_generator *g,
10407 struct brw_compile_stats *stats,
10408 int *prog_offset,
10409 char **error_str)
10410 {
10411 const bool debug_enabled = INTEL_DEBUG(DEBUG_RT);
10412
10413 prog_data->base.stage = shader->info.stage;
10414 prog_data->max_stack_size = MAX2(prog_data->max_stack_size,
10415 shader->scratch_size);
10416
10417 const unsigned max_dispatch_width = 16;
10418 brw_nir_apply_key(shader, compiler, &key->base, max_dispatch_width, true);
10419 brw_postprocess_nir(shader, compiler, true, debug_enabled,
10420 key->base.robust_buffer_access);
10421
10422 fs_visitor *v = NULL, *v8 = NULL, *v16 = NULL;
10423 bool has_spilled = false;
10424
10425 uint8_t simd_size = 0;
10426 if (!INTEL_DEBUG(DEBUG_NO8)) {
10427 v8 = new fs_visitor(compiler, log_data, mem_ctx, &key->base,
10428 &prog_data->base, shader,
10429 8, -1 /* shader time */, debug_enabled);
10430 const bool allow_spilling = true;
10431 if (!v8->run_bs(allow_spilling)) {
10432 if (error_str)
10433 *error_str = ralloc_strdup(mem_ctx, v8->fail_msg);
10434 delete v8;
10435 return 0;
10436 } else {
10437 v = v8;
10438 simd_size = 8;
10439 if (v8->spilled_any_registers)
10440 has_spilled = true;
10441 }
10442 }
10443
10444 if (!has_spilled && !INTEL_DEBUG(DEBUG_NO16)) {
10445 v16 = new fs_visitor(compiler, log_data, mem_ctx, &key->base,
10446 &prog_data->base, shader,
10447 16, -1 /* shader time */, debug_enabled);
10448 const bool allow_spilling = (v == NULL);
10449 if (!v16->run_bs(allow_spilling)) {
10450 brw_shader_perf_log(compiler, log_data,
10451 "SIMD16 shader failed to compile: %s\n",
10452 v16->fail_msg);
10453 if (v == NULL) {
10454 assert(v8 == NULL);
10455 if (error_str) {
10456 *error_str = ralloc_asprintf(
10457 mem_ctx, "SIMD8 disabled and couldn't generate SIMD16: %s",
10458 v16->fail_msg);
10459 }
10460 delete v16;
10461 return 0;
10462 }
10463 } else {
10464 v = v16;
10465 simd_size = 16;
10466 if (v16->spilled_any_registers)
10467 has_spilled = true;
10468 }
10469 }
10470
10471 if (unlikely(v == NULL)) {
10472 assert(INTEL_DEBUG(DEBUG_NO8 | DEBUG_NO16));
10473 if (error_str) {
10474 *error_str = ralloc_strdup(mem_ctx,
10475 "Cannot satisfy INTEL_DEBUG flags SIMD restrictions");
10476 }
10477 return false;
10478 }
10479
10480 assert(v);
10481
10482 int offset = g->generate_code(v->cfg, simd_size, v->shader_stats,
10483 v->performance_analysis.require(), stats);
10484 if (prog_offset)
10485 *prog_offset = offset;
10486 else
10487 assert(offset == 0);
10488
10489 delete v8;
10490 delete v16;
10491
10492 return simd_size;
10493 }
10494
10495 uint64_t
brw_bsr(const struct intel_device_info * devinfo,uint32_t offset,uint8_t simd_size,uint8_t local_arg_offset)10496 brw_bsr(const struct intel_device_info *devinfo,
10497 uint32_t offset, uint8_t simd_size, uint8_t local_arg_offset)
10498 {
10499 assert(offset % 64 == 0);
10500 assert(simd_size == 8 || simd_size == 16);
10501 assert(local_arg_offset % 8 == 0);
10502
10503 return offset |
10504 SET_BITS(simd_size > 8, 4, 4) |
10505 SET_BITS(local_arg_offset / 8, 2, 0);
10506 }
10507
10508 const unsigned *
brw_compile_bs(const struct brw_compiler * compiler,void * log_data,void * mem_ctx,const struct brw_bs_prog_key * key,struct brw_bs_prog_data * prog_data,nir_shader * shader,unsigned num_resume_shaders,struct nir_shader ** resume_shaders,struct brw_compile_stats * stats,char ** error_str)10509 brw_compile_bs(const struct brw_compiler *compiler, void *log_data,
10510 void *mem_ctx,
10511 const struct brw_bs_prog_key *key,
10512 struct brw_bs_prog_data *prog_data,
10513 nir_shader *shader,
10514 unsigned num_resume_shaders,
10515 struct nir_shader **resume_shaders,
10516 struct brw_compile_stats *stats,
10517 char **error_str)
10518 {
10519 const bool debug_enabled = INTEL_DEBUG(DEBUG_RT);
10520
10521 prog_data->base.stage = shader->info.stage;
10522 prog_data->max_stack_size = 0;
10523
10524 fs_generator g(compiler, log_data, mem_ctx, &prog_data->base,
10525 false, shader->info.stage);
10526 if (unlikely(debug_enabled)) {
10527 char *name = ralloc_asprintf(mem_ctx, "%s %s shader %s",
10528 shader->info.label ?
10529 shader->info.label : "unnamed",
10530 gl_shader_stage_name(shader->info.stage),
10531 shader->info.name);
10532 g.enable_debug(name);
10533 }
10534
10535 prog_data->simd_size =
10536 compile_single_bs(compiler, log_data, mem_ctx, key, prog_data,
10537 shader, &g, stats, NULL, error_str);
10538 if (prog_data->simd_size == 0)
10539 return NULL;
10540
10541 uint64_t *resume_sbt = ralloc_array(mem_ctx, uint64_t, num_resume_shaders);
10542 for (unsigned i = 0; i < num_resume_shaders; i++) {
10543 if (INTEL_DEBUG(DEBUG_RT)) {
10544 char *name = ralloc_asprintf(mem_ctx, "%s %s resume(%u) shader %s",
10545 shader->info.label ?
10546 shader->info.label : "unnamed",
10547 gl_shader_stage_name(shader->info.stage),
10548 i, shader->info.name);
10549 g.enable_debug(name);
10550 }
10551
10552 /* TODO: Figure out shader stats etc. for resume shaders */
10553 int offset = 0;
10554 uint8_t simd_size =
10555 compile_single_bs(compiler, log_data, mem_ctx, key, prog_data,
10556 resume_shaders[i], &g, NULL, &offset, error_str);
10557 if (simd_size == 0)
10558 return NULL;
10559
10560 assert(offset > 0);
10561 resume_sbt[i] = brw_bsr(compiler->devinfo, offset, simd_size, 0);
10562 }
10563
10564 /* We only have one constant data so we want to make sure they're all the
10565 * same.
10566 */
10567 for (unsigned i = 0; i < num_resume_shaders; i++) {
10568 assert(resume_shaders[i]->constant_data_size ==
10569 shader->constant_data_size);
10570 assert(memcmp(resume_shaders[i]->constant_data,
10571 shader->constant_data,
10572 shader->constant_data_size) == 0);
10573 }
10574
10575 g.add_const_data(shader->constant_data, shader->constant_data_size);
10576 g.add_resume_sbt(num_resume_shaders, resume_sbt);
10577
10578 return g.get_assembly();
10579 }
10580
10581 /**
10582 * Test the dispatch mask packing assumptions of
10583 * brw_stage_has_packed_dispatch(). Call this from e.g. the top of
10584 * fs_visitor::emit_nir_code() to cause a GPU hang if any shader invocation is
10585 * executed with an unexpected dispatch mask.
10586 */
10587 static UNUSED void
brw_fs_test_dispatch_packing(const fs_builder & bld)10588 brw_fs_test_dispatch_packing(const fs_builder &bld)
10589 {
10590 const gl_shader_stage stage = bld.shader->stage;
10591
10592 if (brw_stage_has_packed_dispatch(bld.shader->devinfo, stage,
10593 bld.shader->stage_prog_data)) {
10594 const fs_builder ubld = bld.exec_all().group(1, 0);
10595 const fs_reg tmp = component(bld.vgrf(BRW_REGISTER_TYPE_UD), 0);
10596 const fs_reg mask = (stage == MESA_SHADER_FRAGMENT ? brw_vmask_reg() :
10597 brw_dmask_reg());
10598
10599 ubld.ADD(tmp, mask, brw_imm_ud(1));
10600 ubld.AND(tmp, mask, tmp);
10601
10602 /* This will loop forever if the dispatch mask doesn't have the expected
10603 * form '2^n-1', in which case tmp will be non-zero.
10604 */
10605 bld.emit(BRW_OPCODE_DO);
10606 bld.CMP(bld.null_reg_ud(), tmp, brw_imm_ud(0), BRW_CONDITIONAL_NZ);
10607 set_predicate(BRW_PREDICATE_NORMAL, bld.emit(BRW_OPCODE_WHILE));
10608 }
10609 }
10610
10611 unsigned
workgroup_size() const10612 fs_visitor::workgroup_size() const
10613 {
10614 assert(stage == MESA_SHADER_COMPUTE);
10615 const struct brw_cs_prog_data *cs = brw_cs_prog_data(prog_data);
10616 return cs->local_size[0] * cs->local_size[1] * cs->local_size[2];
10617 }
10618