1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * linux/fs/jbd2/journal.c
4 *
5 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
6 *
7 * Copyright 1998 Red Hat corp --- All Rights Reserved
8 *
9 * Generic filesystem journal-writing code; part of the ext2fs
10 * journaling system.
11 *
12 * This file manages journals: areas of disk reserved for logging
13 * transactional updates. This includes the kernel journaling thread
14 * which is responsible for scheduling updates to the log.
15 *
16 * We do not actually manage the physical storage of the journal in this
17 * file: that is left to a per-journal policy function, which allows us
18 * to store the journal within a filesystem-specified area for ext2
19 * journaling (ext2 can use a reserved inode for storing the log).
20 */
21
22 #include <linux/module.h>
23 #include <linux/time.h>
24 #include <linux/fs.h>
25 #include <linux/jbd2.h>
26 #include <linux/errno.h>
27 #include <linux/slab.h>
28 #include <linux/init.h>
29 #include <linux/mm.h>
30 #include <linux/freezer.h>
31 #include <linux/pagemap.h>
32 #include <linux/kthread.h>
33 #include <linux/poison.h>
34 #include <linux/proc_fs.h>
35 #include <linux/seq_file.h>
36 #include <linux/math64.h>
37 #include <linux/hash.h>
38 #include <linux/log2.h>
39 #include <linux/vmalloc.h>
40 #include <linux/backing-dev.h>
41 #include <linux/bitops.h>
42 #include <linux/ratelimit.h>
43 #include <linux/sched/mm.h>
44
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/jbd2.h>
47
48 #include <linux/uaccess.h>
49 #include <asm/page.h>
50
51 #ifdef CONFIG_JBD2_DEBUG
52 ushort jbd2_journal_enable_debug __read_mostly;
53 EXPORT_SYMBOL(jbd2_journal_enable_debug);
54
55 module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644);
56 MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2");
57 #endif
58
59 EXPORT_SYMBOL(jbd2_journal_extend);
60 EXPORT_SYMBOL(jbd2_journal_stop);
61 EXPORT_SYMBOL(jbd2_journal_lock_updates);
62 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
63 EXPORT_SYMBOL(jbd2_journal_get_write_access);
64 EXPORT_SYMBOL(jbd2_journal_get_create_access);
65 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
66 EXPORT_SYMBOL(jbd2_journal_set_triggers);
67 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
68 EXPORT_SYMBOL(jbd2_journal_forget);
69 EXPORT_SYMBOL(jbd2_journal_flush);
70 EXPORT_SYMBOL(jbd2_journal_revoke);
71
72 EXPORT_SYMBOL(jbd2_journal_init_dev);
73 EXPORT_SYMBOL(jbd2_journal_init_inode);
74 EXPORT_SYMBOL(jbd2_journal_check_used_features);
75 EXPORT_SYMBOL(jbd2_journal_check_available_features);
76 EXPORT_SYMBOL(jbd2_journal_set_features);
77 EXPORT_SYMBOL(jbd2_journal_load);
78 EXPORT_SYMBOL(jbd2_journal_destroy);
79 EXPORT_SYMBOL(jbd2_journal_abort);
80 EXPORT_SYMBOL(jbd2_journal_errno);
81 EXPORT_SYMBOL(jbd2_journal_ack_err);
82 EXPORT_SYMBOL(jbd2_journal_clear_err);
83 EXPORT_SYMBOL(jbd2_log_wait_commit);
84 EXPORT_SYMBOL(jbd2_log_start_commit);
85 EXPORT_SYMBOL(jbd2_journal_start_commit);
86 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
87 EXPORT_SYMBOL(jbd2_journal_wipe);
88 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
89 EXPORT_SYMBOL(jbd2_journal_invalidatepage);
90 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
91 EXPORT_SYMBOL(jbd2_journal_force_commit);
92 EXPORT_SYMBOL(jbd2_journal_inode_ranged_write);
93 EXPORT_SYMBOL(jbd2_journal_inode_ranged_wait);
94 EXPORT_SYMBOL(jbd2_journal_submit_inode_data_buffers);
95 EXPORT_SYMBOL(jbd2_journal_finish_inode_data_buffers);
96 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
97 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
98 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
99 EXPORT_SYMBOL(jbd2_inode_cache);
100
101 static int jbd2_journal_create_slab(size_t slab_size);
102
103 #ifdef CONFIG_JBD2_DEBUG
__jbd2_debug(int level,const char * file,const char * func,unsigned int line,const char * fmt,...)104 void __jbd2_debug(int level, const char *file, const char *func,
105 unsigned int line, const char *fmt, ...)
106 {
107 struct va_format vaf;
108 va_list args;
109
110 if (level > jbd2_journal_enable_debug)
111 return;
112 va_start(args, fmt);
113 vaf.fmt = fmt;
114 vaf.va = &args;
115 printk(KERN_DEBUG "%s: (%s, %u): %pV", file, func, line, &vaf);
116 va_end(args);
117 }
118 EXPORT_SYMBOL(__jbd2_debug);
119 #endif
120
121 /* Checksumming functions */
jbd2_verify_csum_type(journal_t * j,journal_superblock_t * sb)122 static int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb)
123 {
124 if (!jbd2_journal_has_csum_v2or3_feature(j))
125 return 1;
126
127 return sb->s_checksum_type == JBD2_CRC32C_CHKSUM;
128 }
129
jbd2_superblock_csum(journal_t * j,journal_superblock_t * sb)130 static __be32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb)
131 {
132 __u32 csum;
133 __be32 old_csum;
134
135 old_csum = sb->s_checksum;
136 sb->s_checksum = 0;
137 csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t));
138 sb->s_checksum = old_csum;
139
140 return cpu_to_be32(csum);
141 }
142
143 /*
144 * Helper function used to manage commit timeouts
145 */
146
commit_timeout(struct timer_list * t)147 static void commit_timeout(struct timer_list *t)
148 {
149 journal_t *journal = from_timer(journal, t, j_commit_timer);
150
151 wake_up_process(journal->j_task);
152 }
153
154 /*
155 * kjournald2: The main thread function used to manage a logging device
156 * journal.
157 *
158 * This kernel thread is responsible for two things:
159 *
160 * 1) COMMIT: Every so often we need to commit the current state of the
161 * filesystem to disk. The journal thread is responsible for writing
162 * all of the metadata buffers to disk. If a fast commit is ongoing
163 * journal thread waits until it's done and then continues from
164 * there on.
165 *
166 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
167 * of the data in that part of the log has been rewritten elsewhere on
168 * the disk. Flushing these old buffers to reclaim space in the log is
169 * known as checkpointing, and this thread is responsible for that job.
170 */
171
kjournald2(void * arg)172 static int kjournald2(void *arg)
173 {
174 journal_t *journal = arg;
175 transaction_t *transaction;
176
177 /*
178 * Set up an interval timer which can be used to trigger a commit wakeup
179 * after the commit interval expires
180 */
181 timer_setup(&journal->j_commit_timer, commit_timeout, 0);
182
183 set_freezable();
184
185 /* Record that the journal thread is running */
186 journal->j_task = current;
187 wake_up(&journal->j_wait_done_commit);
188
189 /*
190 * Make sure that no allocations from this kernel thread will ever
191 * recurse to the fs layer because we are responsible for the
192 * transaction commit and any fs involvement might get stuck waiting for
193 * the trasn. commit.
194 */
195 memalloc_nofs_save();
196
197 /*
198 * And now, wait forever for commit wakeup events.
199 */
200 write_lock(&journal->j_state_lock);
201
202 loop:
203 if (journal->j_flags & JBD2_UNMOUNT)
204 goto end_loop;
205
206 jbd_debug(1, "commit_sequence=%u, commit_request=%u\n",
207 journal->j_commit_sequence, journal->j_commit_request);
208
209 if (journal->j_commit_sequence != journal->j_commit_request) {
210 jbd_debug(1, "OK, requests differ\n");
211 write_unlock(&journal->j_state_lock);
212 del_timer_sync(&journal->j_commit_timer);
213 jbd2_journal_commit_transaction(journal);
214 write_lock(&journal->j_state_lock);
215 goto loop;
216 }
217
218 wake_up(&journal->j_wait_done_commit);
219 if (freezing(current)) {
220 /*
221 * The simpler the better. Flushing journal isn't a
222 * good idea, because that depends on threads that may
223 * be already stopped.
224 */
225 jbd_debug(1, "Now suspending kjournald2\n");
226 write_unlock(&journal->j_state_lock);
227 try_to_freeze();
228 write_lock(&journal->j_state_lock);
229 } else {
230 /*
231 * We assume on resume that commits are already there,
232 * so we don't sleep
233 */
234 DEFINE_WAIT(wait);
235 int should_sleep = 1;
236
237 prepare_to_wait(&journal->j_wait_commit, &wait,
238 TASK_INTERRUPTIBLE);
239 if (journal->j_commit_sequence != journal->j_commit_request)
240 should_sleep = 0;
241 transaction = journal->j_running_transaction;
242 if (transaction && time_after_eq(jiffies,
243 transaction->t_expires))
244 should_sleep = 0;
245 if (journal->j_flags & JBD2_UNMOUNT)
246 should_sleep = 0;
247 if (should_sleep) {
248 write_unlock(&journal->j_state_lock);
249 schedule();
250 write_lock(&journal->j_state_lock);
251 }
252 finish_wait(&journal->j_wait_commit, &wait);
253 }
254
255 jbd_debug(1, "kjournald2 wakes\n");
256
257 /*
258 * Were we woken up by a commit wakeup event?
259 */
260 transaction = journal->j_running_transaction;
261 if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
262 journal->j_commit_request = transaction->t_tid;
263 jbd_debug(1, "woke because of timeout\n");
264 }
265 goto loop;
266
267 end_loop:
268 del_timer_sync(&journal->j_commit_timer);
269 journal->j_task = NULL;
270 wake_up(&journal->j_wait_done_commit);
271 jbd_debug(1, "Journal thread exiting.\n");
272 write_unlock(&journal->j_state_lock);
273 return 0;
274 }
275
jbd2_journal_start_thread(journal_t * journal)276 static int jbd2_journal_start_thread(journal_t *journal)
277 {
278 struct task_struct *t;
279
280 t = kthread_run(kjournald2, journal, "jbd2/%s",
281 journal->j_devname);
282 if (IS_ERR(t))
283 return PTR_ERR(t);
284
285 wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
286 return 0;
287 }
288
journal_kill_thread(journal_t * journal)289 static void journal_kill_thread(journal_t *journal)
290 {
291 write_lock(&journal->j_state_lock);
292 journal->j_flags |= JBD2_UNMOUNT;
293
294 while (journal->j_task) {
295 write_unlock(&journal->j_state_lock);
296 wake_up(&journal->j_wait_commit);
297 wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
298 write_lock(&journal->j_state_lock);
299 }
300 write_unlock(&journal->j_state_lock);
301 }
302
303 /*
304 * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
305 *
306 * Writes a metadata buffer to a given disk block. The actual IO is not
307 * performed but a new buffer_head is constructed which labels the data
308 * to be written with the correct destination disk block.
309 *
310 * Any magic-number escaping which needs to be done will cause a
311 * copy-out here. If the buffer happens to start with the
312 * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
313 * magic number is only written to the log for descripter blocks. In
314 * this case, we copy the data and replace the first word with 0, and we
315 * return a result code which indicates that this buffer needs to be
316 * marked as an escaped buffer in the corresponding log descriptor
317 * block. The missing word can then be restored when the block is read
318 * during recovery.
319 *
320 * If the source buffer has already been modified by a new transaction
321 * since we took the last commit snapshot, we use the frozen copy of
322 * that data for IO. If we end up using the existing buffer_head's data
323 * for the write, then we have to make sure nobody modifies it while the
324 * IO is in progress. do_get_write_access() handles this.
325 *
326 * The function returns a pointer to the buffer_head to be used for IO.
327 *
328 *
329 * Return value:
330 * <0: Error
331 * >=0: Finished OK
332 *
333 * On success:
334 * Bit 0 set == escape performed on the data
335 * Bit 1 set == buffer copy-out performed (kfree the data after IO)
336 */
337
jbd2_journal_write_metadata_buffer(transaction_t * transaction,struct journal_head * jh_in,struct buffer_head ** bh_out,sector_t blocknr)338 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
339 struct journal_head *jh_in,
340 struct buffer_head **bh_out,
341 sector_t blocknr)
342 {
343 int need_copy_out = 0;
344 int done_copy_out = 0;
345 int do_escape = 0;
346 char *mapped_data;
347 struct buffer_head *new_bh;
348 struct page *new_page;
349 unsigned int new_offset;
350 struct buffer_head *bh_in = jh2bh(jh_in);
351 journal_t *journal = transaction->t_journal;
352
353 /*
354 * The buffer really shouldn't be locked: only the current committing
355 * transaction is allowed to write it, so nobody else is allowed
356 * to do any IO.
357 *
358 * akpm: except if we're journalling data, and write() output is
359 * also part of a shared mapping, and another thread has
360 * decided to launch a writepage() against this buffer.
361 */
362 J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
363
364 new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
365
366 /* keep subsequent assertions sane */
367 atomic_set(&new_bh->b_count, 1);
368
369 spin_lock(&jh_in->b_state_lock);
370 repeat:
371 /*
372 * If a new transaction has already done a buffer copy-out, then
373 * we use that version of the data for the commit.
374 */
375 if (jh_in->b_frozen_data) {
376 done_copy_out = 1;
377 new_page = virt_to_page(jh_in->b_frozen_data);
378 new_offset = offset_in_page(jh_in->b_frozen_data);
379 } else {
380 new_page = jh2bh(jh_in)->b_page;
381 new_offset = offset_in_page(jh2bh(jh_in)->b_data);
382 }
383
384 mapped_data = kmap_atomic(new_page);
385 /*
386 * Fire data frozen trigger if data already wasn't frozen. Do this
387 * before checking for escaping, as the trigger may modify the magic
388 * offset. If a copy-out happens afterwards, it will have the correct
389 * data in the buffer.
390 */
391 if (!done_copy_out)
392 jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset,
393 jh_in->b_triggers);
394
395 /*
396 * Check for escaping
397 */
398 if (*((__be32 *)(mapped_data + new_offset)) ==
399 cpu_to_be32(JBD2_MAGIC_NUMBER)) {
400 need_copy_out = 1;
401 do_escape = 1;
402 }
403 kunmap_atomic(mapped_data);
404
405 /*
406 * Do we need to do a data copy?
407 */
408 if (need_copy_out && !done_copy_out) {
409 char *tmp;
410
411 spin_unlock(&jh_in->b_state_lock);
412 tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
413 if (!tmp) {
414 brelse(new_bh);
415 return -ENOMEM;
416 }
417 spin_lock(&jh_in->b_state_lock);
418 if (jh_in->b_frozen_data) {
419 jbd2_free(tmp, bh_in->b_size);
420 goto repeat;
421 }
422
423 jh_in->b_frozen_data = tmp;
424 mapped_data = kmap_atomic(new_page);
425 memcpy(tmp, mapped_data + new_offset, bh_in->b_size);
426 kunmap_atomic(mapped_data);
427
428 new_page = virt_to_page(tmp);
429 new_offset = offset_in_page(tmp);
430 done_copy_out = 1;
431
432 /*
433 * This isn't strictly necessary, as we're using frozen
434 * data for the escaping, but it keeps consistency with
435 * b_frozen_data usage.
436 */
437 jh_in->b_frozen_triggers = jh_in->b_triggers;
438 }
439
440 /*
441 * Did we need to do an escaping? Now we've done all the
442 * copying, we can finally do so.
443 */
444 if (do_escape) {
445 mapped_data = kmap_atomic(new_page);
446 *((unsigned int *)(mapped_data + new_offset)) = 0;
447 kunmap_atomic(mapped_data);
448 }
449
450 set_bh_page(new_bh, new_page, new_offset);
451 new_bh->b_size = bh_in->b_size;
452 new_bh->b_bdev = journal->j_dev;
453 new_bh->b_blocknr = blocknr;
454 new_bh->b_private = bh_in;
455 set_buffer_mapped(new_bh);
456 set_buffer_dirty(new_bh);
457
458 *bh_out = new_bh;
459
460 /*
461 * The to-be-written buffer needs to get moved to the io queue,
462 * and the original buffer whose contents we are shadowing or
463 * copying is moved to the transaction's shadow queue.
464 */
465 JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
466 spin_lock(&journal->j_list_lock);
467 __jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
468 spin_unlock(&journal->j_list_lock);
469 set_buffer_shadow(bh_in);
470 spin_unlock(&jh_in->b_state_lock);
471
472 return do_escape | (done_copy_out << 1);
473 }
474
475 /*
476 * Allocation code for the journal file. Manage the space left in the
477 * journal, so that we can begin checkpointing when appropriate.
478 */
479
480 /*
481 * Called with j_state_lock locked for writing.
482 * Returns true if a transaction commit was started.
483 */
__jbd2_log_start_commit(journal_t * journal,tid_t target)484 int __jbd2_log_start_commit(journal_t *journal, tid_t target)
485 {
486 /* Return if the txn has already requested to be committed */
487 if (journal->j_commit_request == target)
488 return 0;
489
490 /*
491 * The only transaction we can possibly wait upon is the
492 * currently running transaction (if it exists). Otherwise,
493 * the target tid must be an old one.
494 */
495 if (journal->j_running_transaction &&
496 journal->j_running_transaction->t_tid == target) {
497 /*
498 * We want a new commit: OK, mark the request and wakeup the
499 * commit thread. We do _not_ do the commit ourselves.
500 */
501
502 journal->j_commit_request = target;
503 jbd_debug(1, "JBD2: requesting commit %u/%u\n",
504 journal->j_commit_request,
505 journal->j_commit_sequence);
506 journal->j_running_transaction->t_requested = jiffies;
507 wake_up(&journal->j_wait_commit);
508 return 1;
509 } else if (!tid_geq(journal->j_commit_request, target))
510 /* This should never happen, but if it does, preserve
511 the evidence before kjournald goes into a loop and
512 increments j_commit_sequence beyond all recognition. */
513 WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
514 journal->j_commit_request,
515 journal->j_commit_sequence,
516 target, journal->j_running_transaction ?
517 journal->j_running_transaction->t_tid : 0);
518 return 0;
519 }
520
jbd2_log_start_commit(journal_t * journal,tid_t tid)521 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
522 {
523 int ret;
524
525 write_lock(&journal->j_state_lock);
526 ret = __jbd2_log_start_commit(journal, tid);
527 write_unlock(&journal->j_state_lock);
528 return ret;
529 }
530
531 /*
532 * Force and wait any uncommitted transactions. We can only force the running
533 * transaction if we don't have an active handle, otherwise, we will deadlock.
534 * Returns: <0 in case of error,
535 * 0 if nothing to commit,
536 * 1 if transaction was successfully committed.
537 */
__jbd2_journal_force_commit(journal_t * journal)538 static int __jbd2_journal_force_commit(journal_t *journal)
539 {
540 transaction_t *transaction = NULL;
541 tid_t tid;
542 int need_to_start = 0, ret = 0;
543
544 read_lock(&journal->j_state_lock);
545 if (journal->j_running_transaction && !current->journal_info) {
546 transaction = journal->j_running_transaction;
547 if (!tid_geq(journal->j_commit_request, transaction->t_tid))
548 need_to_start = 1;
549 } else if (journal->j_committing_transaction)
550 transaction = journal->j_committing_transaction;
551
552 if (!transaction) {
553 /* Nothing to commit */
554 read_unlock(&journal->j_state_lock);
555 return 0;
556 }
557 tid = transaction->t_tid;
558 read_unlock(&journal->j_state_lock);
559 if (need_to_start)
560 jbd2_log_start_commit(journal, tid);
561 ret = jbd2_log_wait_commit(journal, tid);
562 if (!ret)
563 ret = 1;
564
565 return ret;
566 }
567
568 /**
569 * jbd2_journal_force_commit_nested - Force and wait upon a commit if the
570 * calling process is not within transaction.
571 *
572 * @journal: journal to force
573 * Returns true if progress was made.
574 *
575 * This is used for forcing out undo-protected data which contains
576 * bitmaps, when the fs is running out of space.
577 */
jbd2_journal_force_commit_nested(journal_t * journal)578 int jbd2_journal_force_commit_nested(journal_t *journal)
579 {
580 int ret;
581
582 ret = __jbd2_journal_force_commit(journal);
583 return ret > 0;
584 }
585
586 /**
587 * jbd2_journal_force_commit() - force any uncommitted transactions
588 * @journal: journal to force
589 *
590 * Caller want unconditional commit. We can only force the running transaction
591 * if we don't have an active handle, otherwise, we will deadlock.
592 */
jbd2_journal_force_commit(journal_t * journal)593 int jbd2_journal_force_commit(journal_t *journal)
594 {
595 int ret;
596
597 J_ASSERT(!current->journal_info);
598 ret = __jbd2_journal_force_commit(journal);
599 if (ret > 0)
600 ret = 0;
601 return ret;
602 }
603
604 /*
605 * Start a commit of the current running transaction (if any). Returns true
606 * if a transaction is going to be committed (or is currently already
607 * committing), and fills its tid in at *ptid
608 */
jbd2_journal_start_commit(journal_t * journal,tid_t * ptid)609 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
610 {
611 int ret = 0;
612
613 write_lock(&journal->j_state_lock);
614 if (journal->j_running_transaction) {
615 tid_t tid = journal->j_running_transaction->t_tid;
616
617 __jbd2_log_start_commit(journal, tid);
618 /* There's a running transaction and we've just made sure
619 * it's commit has been scheduled. */
620 if (ptid)
621 *ptid = tid;
622 ret = 1;
623 } else if (journal->j_committing_transaction) {
624 /*
625 * If commit has been started, then we have to wait for
626 * completion of that transaction.
627 */
628 if (ptid)
629 *ptid = journal->j_committing_transaction->t_tid;
630 ret = 1;
631 }
632 write_unlock(&journal->j_state_lock);
633 return ret;
634 }
635
636 /*
637 * Return 1 if a given transaction has not yet sent barrier request
638 * connected with a transaction commit. If 0 is returned, transaction
639 * may or may not have sent the barrier. Used to avoid sending barrier
640 * twice in common cases.
641 */
jbd2_trans_will_send_data_barrier(journal_t * journal,tid_t tid)642 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
643 {
644 int ret = 0;
645 transaction_t *commit_trans;
646
647 if (!(journal->j_flags & JBD2_BARRIER))
648 return 0;
649 read_lock(&journal->j_state_lock);
650 /* Transaction already committed? */
651 if (tid_geq(journal->j_commit_sequence, tid))
652 goto out;
653 commit_trans = journal->j_committing_transaction;
654 if (!commit_trans || commit_trans->t_tid != tid) {
655 ret = 1;
656 goto out;
657 }
658 /*
659 * Transaction is being committed and we already proceeded to
660 * submitting a flush to fs partition?
661 */
662 if (journal->j_fs_dev != journal->j_dev) {
663 if (!commit_trans->t_need_data_flush ||
664 commit_trans->t_state >= T_COMMIT_DFLUSH)
665 goto out;
666 } else {
667 if (commit_trans->t_state >= T_COMMIT_JFLUSH)
668 goto out;
669 }
670 ret = 1;
671 out:
672 read_unlock(&journal->j_state_lock);
673 return ret;
674 }
675 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier);
676
677 /*
678 * Wait for a specified commit to complete.
679 * The caller may not hold the journal lock.
680 */
jbd2_log_wait_commit(journal_t * journal,tid_t tid)681 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
682 {
683 int err = 0;
684
685 read_lock(&journal->j_state_lock);
686 #ifdef CONFIG_PROVE_LOCKING
687 /*
688 * Some callers make sure transaction is already committing and in that
689 * case we cannot block on open handles anymore. So don't warn in that
690 * case.
691 */
692 if (tid_gt(tid, journal->j_commit_sequence) &&
693 (!journal->j_committing_transaction ||
694 journal->j_committing_transaction->t_tid != tid)) {
695 read_unlock(&journal->j_state_lock);
696 jbd2_might_wait_for_commit(journal);
697 read_lock(&journal->j_state_lock);
698 }
699 #endif
700 #ifdef CONFIG_JBD2_DEBUG
701 if (!tid_geq(journal->j_commit_request, tid)) {
702 printk(KERN_ERR
703 "%s: error: j_commit_request=%u, tid=%u\n",
704 __func__, journal->j_commit_request, tid);
705 }
706 #endif
707 while (tid_gt(tid, journal->j_commit_sequence)) {
708 jbd_debug(1, "JBD2: want %u, j_commit_sequence=%u\n",
709 tid, journal->j_commit_sequence);
710 read_unlock(&journal->j_state_lock);
711 wake_up(&journal->j_wait_commit);
712 wait_event(journal->j_wait_done_commit,
713 !tid_gt(tid, journal->j_commit_sequence));
714 read_lock(&journal->j_state_lock);
715 }
716 read_unlock(&journal->j_state_lock);
717
718 if (unlikely(is_journal_aborted(journal)))
719 err = -EIO;
720 return err;
721 }
722
723 /*
724 * Start a fast commit. If there's an ongoing fast or full commit wait for
725 * it to complete. Returns 0 if a new fast commit was started. Returns -EALREADY
726 * if a fast commit is not needed, either because there's an already a commit
727 * going on or this tid has already been committed. Returns -EINVAL if no jbd2
728 * commit has yet been performed.
729 */
jbd2_fc_begin_commit(journal_t * journal,tid_t tid)730 int jbd2_fc_begin_commit(journal_t *journal, tid_t tid)
731 {
732 if (unlikely(is_journal_aborted(journal)))
733 return -EIO;
734 /*
735 * Fast commits only allowed if at least one full commit has
736 * been processed.
737 */
738 if (!journal->j_stats.ts_tid)
739 return -EINVAL;
740
741 write_lock(&journal->j_state_lock);
742 if (tid <= journal->j_commit_sequence) {
743 write_unlock(&journal->j_state_lock);
744 return -EALREADY;
745 }
746
747 if (journal->j_flags & JBD2_FULL_COMMIT_ONGOING ||
748 (journal->j_flags & JBD2_FAST_COMMIT_ONGOING)) {
749 DEFINE_WAIT(wait);
750
751 prepare_to_wait(&journal->j_fc_wait, &wait,
752 TASK_UNINTERRUPTIBLE);
753 write_unlock(&journal->j_state_lock);
754 schedule();
755 finish_wait(&journal->j_fc_wait, &wait);
756 return -EALREADY;
757 }
758 journal->j_flags |= JBD2_FAST_COMMIT_ONGOING;
759 write_unlock(&journal->j_state_lock);
760
761 return 0;
762 }
763 EXPORT_SYMBOL(jbd2_fc_begin_commit);
764
765 /*
766 * Stop a fast commit. If fallback is set, this function starts commit of
767 * TID tid before any other fast commit can start.
768 */
__jbd2_fc_end_commit(journal_t * journal,tid_t tid,bool fallback)769 static int __jbd2_fc_end_commit(journal_t *journal, tid_t tid, bool fallback)
770 {
771 if (journal->j_fc_cleanup_callback)
772 journal->j_fc_cleanup_callback(journal, 0);
773 write_lock(&journal->j_state_lock);
774 journal->j_flags &= ~JBD2_FAST_COMMIT_ONGOING;
775 if (fallback)
776 journal->j_flags |= JBD2_FULL_COMMIT_ONGOING;
777 write_unlock(&journal->j_state_lock);
778 wake_up(&journal->j_fc_wait);
779 if (fallback)
780 return jbd2_complete_transaction(journal, tid);
781 return 0;
782 }
783
jbd2_fc_end_commit(journal_t * journal)784 int jbd2_fc_end_commit(journal_t *journal)
785 {
786 return __jbd2_fc_end_commit(journal, 0, false);
787 }
788 EXPORT_SYMBOL(jbd2_fc_end_commit);
789
jbd2_fc_end_commit_fallback(journal_t * journal)790 int jbd2_fc_end_commit_fallback(journal_t *journal)
791 {
792 tid_t tid;
793
794 read_lock(&journal->j_state_lock);
795 tid = journal->j_running_transaction ?
796 journal->j_running_transaction->t_tid : 0;
797 read_unlock(&journal->j_state_lock);
798 return __jbd2_fc_end_commit(journal, tid, true);
799 }
800 EXPORT_SYMBOL(jbd2_fc_end_commit_fallback);
801
802 /* Return 1 when transaction with given tid has already committed. */
jbd2_transaction_committed(journal_t * journal,tid_t tid)803 int jbd2_transaction_committed(journal_t *journal, tid_t tid)
804 {
805 int ret = 1;
806
807 read_lock(&journal->j_state_lock);
808 if (journal->j_running_transaction &&
809 journal->j_running_transaction->t_tid == tid)
810 ret = 0;
811 if (journal->j_committing_transaction &&
812 journal->j_committing_transaction->t_tid == tid)
813 ret = 0;
814 read_unlock(&journal->j_state_lock);
815 return ret;
816 }
817 EXPORT_SYMBOL(jbd2_transaction_committed);
818
819 /*
820 * When this function returns the transaction corresponding to tid
821 * will be completed. If the transaction has currently running, start
822 * committing that transaction before waiting for it to complete. If
823 * the transaction id is stale, it is by definition already completed,
824 * so just return SUCCESS.
825 */
jbd2_complete_transaction(journal_t * journal,tid_t tid)826 int jbd2_complete_transaction(journal_t *journal, tid_t tid)
827 {
828 int need_to_wait = 1;
829
830 read_lock(&journal->j_state_lock);
831 if (journal->j_running_transaction &&
832 journal->j_running_transaction->t_tid == tid) {
833 if (journal->j_commit_request != tid) {
834 /* transaction not yet started, so request it */
835 read_unlock(&journal->j_state_lock);
836 jbd2_log_start_commit(journal, tid);
837 goto wait_commit;
838 }
839 } else if (!(journal->j_committing_transaction &&
840 journal->j_committing_transaction->t_tid == tid))
841 need_to_wait = 0;
842 read_unlock(&journal->j_state_lock);
843 if (!need_to_wait)
844 return 0;
845 wait_commit:
846 return jbd2_log_wait_commit(journal, tid);
847 }
848 EXPORT_SYMBOL(jbd2_complete_transaction);
849
850 /*
851 * Log buffer allocation routines:
852 */
853
jbd2_journal_next_log_block(journal_t * journal,unsigned long long * retp)854 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
855 {
856 unsigned long blocknr;
857
858 write_lock(&journal->j_state_lock);
859 J_ASSERT(journal->j_free > 1);
860
861 blocknr = journal->j_head;
862 journal->j_head++;
863 journal->j_free--;
864 if (journal->j_head == journal->j_last)
865 journal->j_head = journal->j_first;
866 write_unlock(&journal->j_state_lock);
867 return jbd2_journal_bmap(journal, blocknr, retp);
868 }
869
870 /* Map one fast commit buffer for use by the file system */
jbd2_fc_get_buf(journal_t * journal,struct buffer_head ** bh_out)871 int jbd2_fc_get_buf(journal_t *journal, struct buffer_head **bh_out)
872 {
873 unsigned long long pblock;
874 unsigned long blocknr;
875 int ret = 0;
876 struct buffer_head *bh;
877 int fc_off;
878
879 *bh_out = NULL;
880
881 if (journal->j_fc_off + journal->j_fc_first < journal->j_fc_last) {
882 fc_off = journal->j_fc_off;
883 blocknr = journal->j_fc_first + fc_off;
884 journal->j_fc_off++;
885 } else {
886 ret = -EINVAL;
887 }
888
889 if (ret)
890 return ret;
891
892 ret = jbd2_journal_bmap(journal, blocknr, &pblock);
893 if (ret)
894 return ret;
895
896 bh = __getblk(journal->j_dev, pblock, journal->j_blocksize);
897 if (!bh)
898 return -ENOMEM;
899
900
901 journal->j_fc_wbuf[fc_off] = bh;
902
903 *bh_out = bh;
904
905 return 0;
906 }
907 EXPORT_SYMBOL(jbd2_fc_get_buf);
908
909 /*
910 * Wait on fast commit buffers that were allocated by jbd2_fc_get_buf
911 * for completion.
912 */
jbd2_fc_wait_bufs(journal_t * journal,int num_blks)913 int jbd2_fc_wait_bufs(journal_t *journal, int num_blks)
914 {
915 struct buffer_head *bh;
916 int i, j_fc_off;
917
918 j_fc_off = journal->j_fc_off;
919
920 /*
921 * Wait in reverse order to minimize chances of us being woken up before
922 * all IOs have completed
923 */
924 for (i = j_fc_off - 1; i >= j_fc_off - num_blks; i--) {
925 bh = journal->j_fc_wbuf[i];
926 wait_on_buffer(bh);
927 put_bh(bh);
928 journal->j_fc_wbuf[i] = NULL;
929 if (unlikely(!buffer_uptodate(bh)))
930 return -EIO;
931 }
932
933 return 0;
934 }
935 EXPORT_SYMBOL(jbd2_fc_wait_bufs);
936
937 /*
938 * Wait on fast commit buffers that were allocated by jbd2_fc_get_buf
939 * for completion.
940 */
jbd2_fc_release_bufs(journal_t * journal)941 int jbd2_fc_release_bufs(journal_t *journal)
942 {
943 struct buffer_head *bh;
944 int i, j_fc_off;
945
946 j_fc_off = journal->j_fc_off;
947
948 /*
949 * Wait in reverse order to minimize chances of us being woken up before
950 * all IOs have completed
951 */
952 for (i = j_fc_off - 1; i >= 0; i--) {
953 bh = journal->j_fc_wbuf[i];
954 if (!bh)
955 break;
956 put_bh(bh);
957 journal->j_fc_wbuf[i] = NULL;
958 }
959
960 return 0;
961 }
962 EXPORT_SYMBOL(jbd2_fc_release_bufs);
963
964 /*
965 * Conversion of logical to physical block numbers for the journal
966 *
967 * On external journals the journal blocks are identity-mapped, so
968 * this is a no-op. If needed, we can use j_blk_offset - everything is
969 * ready.
970 */
jbd2_journal_bmap(journal_t * journal,unsigned long blocknr,unsigned long long * retp)971 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
972 unsigned long long *retp)
973 {
974 int err = 0;
975 unsigned long long ret;
976 sector_t block = 0;
977
978 if (journal->j_inode) {
979 block = blocknr;
980 ret = bmap(journal->j_inode, &block);
981
982 if (ret || !block) {
983 printk(KERN_ALERT "%s: journal block not found "
984 "at offset %lu on %s\n",
985 __func__, blocknr, journal->j_devname);
986 err = -EIO;
987 jbd2_journal_abort(journal, err);
988 } else {
989 *retp = block;
990 }
991
992 } else {
993 *retp = blocknr; /* +journal->j_blk_offset */
994 }
995 return err;
996 }
997
998 /*
999 * We play buffer_head aliasing tricks to write data/metadata blocks to
1000 * the journal without copying their contents, but for journal
1001 * descriptor blocks we do need to generate bona fide buffers.
1002 *
1003 * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
1004 * the buffer's contents they really should run flush_dcache_page(bh->b_page).
1005 * But we don't bother doing that, so there will be coherency problems with
1006 * mmaps of blockdevs which hold live JBD-controlled filesystems.
1007 */
1008 struct buffer_head *
jbd2_journal_get_descriptor_buffer(transaction_t * transaction,int type)1009 jbd2_journal_get_descriptor_buffer(transaction_t *transaction, int type)
1010 {
1011 journal_t *journal = transaction->t_journal;
1012 struct buffer_head *bh;
1013 unsigned long long blocknr;
1014 journal_header_t *header;
1015 int err;
1016
1017 err = jbd2_journal_next_log_block(journal, &blocknr);
1018
1019 if (err)
1020 return NULL;
1021
1022 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
1023 if (!bh)
1024 return NULL;
1025 atomic_dec(&transaction->t_outstanding_credits);
1026 lock_buffer(bh);
1027 memset(bh->b_data, 0, journal->j_blocksize);
1028 header = (journal_header_t *)bh->b_data;
1029 header->h_magic = cpu_to_be32(JBD2_MAGIC_NUMBER);
1030 header->h_blocktype = cpu_to_be32(type);
1031 header->h_sequence = cpu_to_be32(transaction->t_tid);
1032 set_buffer_uptodate(bh);
1033 unlock_buffer(bh);
1034 BUFFER_TRACE(bh, "return this buffer");
1035 return bh;
1036 }
1037
jbd2_descriptor_block_csum_set(journal_t * j,struct buffer_head * bh)1038 void jbd2_descriptor_block_csum_set(journal_t *j, struct buffer_head *bh)
1039 {
1040 struct jbd2_journal_block_tail *tail;
1041 __u32 csum;
1042
1043 if (!jbd2_journal_has_csum_v2or3(j))
1044 return;
1045
1046 tail = (struct jbd2_journal_block_tail *)(bh->b_data + j->j_blocksize -
1047 sizeof(struct jbd2_journal_block_tail));
1048 tail->t_checksum = 0;
1049 csum = jbd2_chksum(j, j->j_csum_seed, bh->b_data, j->j_blocksize);
1050 tail->t_checksum = cpu_to_be32(csum);
1051 }
1052
1053 /*
1054 * Return tid of the oldest transaction in the journal and block in the journal
1055 * where the transaction starts.
1056 *
1057 * If the journal is now empty, return which will be the next transaction ID
1058 * we will write and where will that transaction start.
1059 *
1060 * The return value is 0 if journal tail cannot be pushed any further, 1 if
1061 * it can.
1062 */
jbd2_journal_get_log_tail(journal_t * journal,tid_t * tid,unsigned long * block)1063 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid,
1064 unsigned long *block)
1065 {
1066 transaction_t *transaction;
1067 int ret;
1068
1069 read_lock(&journal->j_state_lock);
1070 spin_lock(&journal->j_list_lock);
1071 transaction = journal->j_checkpoint_transactions;
1072 if (transaction) {
1073 *tid = transaction->t_tid;
1074 *block = transaction->t_log_start;
1075 } else if ((transaction = journal->j_committing_transaction) != NULL) {
1076 *tid = transaction->t_tid;
1077 *block = transaction->t_log_start;
1078 } else if ((transaction = journal->j_running_transaction) != NULL) {
1079 *tid = transaction->t_tid;
1080 *block = journal->j_head;
1081 } else {
1082 *tid = journal->j_transaction_sequence;
1083 *block = journal->j_head;
1084 }
1085 ret = tid_gt(*tid, journal->j_tail_sequence);
1086 spin_unlock(&journal->j_list_lock);
1087 read_unlock(&journal->j_state_lock);
1088
1089 return ret;
1090 }
1091
1092 /*
1093 * Update information in journal structure and in on disk journal superblock
1094 * about log tail. This function does not check whether information passed in
1095 * really pushes log tail further. It's responsibility of the caller to make
1096 * sure provided log tail information is valid (e.g. by holding
1097 * j_checkpoint_mutex all the time between computing log tail and calling this
1098 * function as is the case with jbd2_cleanup_journal_tail()).
1099 *
1100 * Requires j_checkpoint_mutex
1101 */
__jbd2_update_log_tail(journal_t * journal,tid_t tid,unsigned long block)1102 int __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
1103 {
1104 unsigned long freed;
1105 int ret;
1106
1107 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1108
1109 /*
1110 * We cannot afford for write to remain in drive's caches since as
1111 * soon as we update j_tail, next transaction can start reusing journal
1112 * space and if we lose sb update during power failure we'd replay
1113 * old transaction with possibly newly overwritten data.
1114 */
1115 ret = jbd2_journal_update_sb_log_tail(journal, tid, block,
1116 REQ_SYNC | REQ_FUA);
1117 if (ret)
1118 goto out;
1119
1120 write_lock(&journal->j_state_lock);
1121 freed = block - journal->j_tail;
1122 if (block < journal->j_tail)
1123 freed += journal->j_last - journal->j_first;
1124
1125 trace_jbd2_update_log_tail(journal, tid, block, freed);
1126 jbd_debug(1,
1127 "Cleaning journal tail from %u to %u (offset %lu), "
1128 "freeing %lu\n",
1129 journal->j_tail_sequence, tid, block, freed);
1130
1131 journal->j_free += freed;
1132 journal->j_tail_sequence = tid;
1133 journal->j_tail = block;
1134 write_unlock(&journal->j_state_lock);
1135
1136 out:
1137 return ret;
1138 }
1139
1140 /*
1141 * This is a variation of __jbd2_update_log_tail which checks for validity of
1142 * provided log tail and locks j_checkpoint_mutex. So it is safe against races
1143 * with other threads updating log tail.
1144 */
jbd2_update_log_tail(journal_t * journal,tid_t tid,unsigned long block)1145 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
1146 {
1147 mutex_lock_io(&journal->j_checkpoint_mutex);
1148 if (tid_gt(tid, journal->j_tail_sequence))
1149 __jbd2_update_log_tail(journal, tid, block);
1150 mutex_unlock(&journal->j_checkpoint_mutex);
1151 }
1152
1153 struct jbd2_stats_proc_session {
1154 journal_t *journal;
1155 struct transaction_stats_s *stats;
1156 int start;
1157 int max;
1158 };
1159
jbd2_seq_info_start(struct seq_file * seq,loff_t * pos)1160 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
1161 {
1162 return *pos ? NULL : SEQ_START_TOKEN;
1163 }
1164
jbd2_seq_info_next(struct seq_file * seq,void * v,loff_t * pos)1165 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
1166 {
1167 (*pos)++;
1168 return NULL;
1169 }
1170
jbd2_seq_info_show(struct seq_file * seq,void * v)1171 static int jbd2_seq_info_show(struct seq_file *seq, void *v)
1172 {
1173 struct jbd2_stats_proc_session *s = seq->private;
1174
1175 if (v != SEQ_START_TOKEN)
1176 return 0;
1177 seq_printf(seq, "%lu transactions (%lu requested), "
1178 "each up to %u blocks\n",
1179 s->stats->ts_tid, s->stats->ts_requested,
1180 s->journal->j_max_transaction_buffers);
1181 if (s->stats->ts_tid == 0)
1182 return 0;
1183 seq_printf(seq, "average: \n %ums waiting for transaction\n",
1184 jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
1185 seq_printf(seq, " %ums request delay\n",
1186 (s->stats->ts_requested == 0) ? 0 :
1187 jiffies_to_msecs(s->stats->run.rs_request_delay /
1188 s->stats->ts_requested));
1189 seq_printf(seq, " %ums running transaction\n",
1190 jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
1191 seq_printf(seq, " %ums transaction was being locked\n",
1192 jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
1193 seq_printf(seq, " %ums flushing data (in ordered mode)\n",
1194 jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
1195 seq_printf(seq, " %ums logging transaction\n",
1196 jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
1197 seq_printf(seq, " %lluus average transaction commit time\n",
1198 div_u64(s->journal->j_average_commit_time, 1000));
1199 seq_printf(seq, " %lu handles per transaction\n",
1200 s->stats->run.rs_handle_count / s->stats->ts_tid);
1201 seq_printf(seq, " %lu blocks per transaction\n",
1202 s->stats->run.rs_blocks / s->stats->ts_tid);
1203 seq_printf(seq, " %lu logged blocks per transaction\n",
1204 s->stats->run.rs_blocks_logged / s->stats->ts_tid);
1205 return 0;
1206 }
1207
jbd2_seq_info_stop(struct seq_file * seq,void * v)1208 static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
1209 {
1210 }
1211
1212 static const struct seq_operations jbd2_seq_info_ops = {
1213 .start = jbd2_seq_info_start,
1214 .next = jbd2_seq_info_next,
1215 .stop = jbd2_seq_info_stop,
1216 .show = jbd2_seq_info_show,
1217 };
1218
jbd2_seq_info_open(struct inode * inode,struct file * file)1219 static int jbd2_seq_info_open(struct inode *inode, struct file *file)
1220 {
1221 journal_t *journal = PDE_DATA(inode);
1222 struct jbd2_stats_proc_session *s;
1223 int rc, size;
1224
1225 s = kmalloc(sizeof(*s), GFP_KERNEL);
1226 if (s == NULL)
1227 return -ENOMEM;
1228 size = sizeof(struct transaction_stats_s);
1229 s->stats = kmalloc(size, GFP_KERNEL);
1230 if (s->stats == NULL) {
1231 kfree(s);
1232 return -ENOMEM;
1233 }
1234 spin_lock(&journal->j_history_lock);
1235 memcpy(s->stats, &journal->j_stats, size);
1236 s->journal = journal;
1237 spin_unlock(&journal->j_history_lock);
1238
1239 rc = seq_open(file, &jbd2_seq_info_ops);
1240 if (rc == 0) {
1241 struct seq_file *m = file->private_data;
1242 m->private = s;
1243 } else {
1244 kfree(s->stats);
1245 kfree(s);
1246 }
1247 return rc;
1248
1249 }
1250
jbd2_seq_info_release(struct inode * inode,struct file * file)1251 static int jbd2_seq_info_release(struct inode *inode, struct file *file)
1252 {
1253 struct seq_file *seq = file->private_data;
1254 struct jbd2_stats_proc_session *s = seq->private;
1255 kfree(s->stats);
1256 kfree(s);
1257 return seq_release(inode, file);
1258 }
1259
1260 static const struct proc_ops jbd2_info_proc_ops = {
1261 .proc_open = jbd2_seq_info_open,
1262 .proc_read = seq_read,
1263 .proc_lseek = seq_lseek,
1264 .proc_release = jbd2_seq_info_release,
1265 };
1266
1267 static struct proc_dir_entry *proc_jbd2_stats;
1268
jbd2_stats_proc_init(journal_t * journal)1269 static void jbd2_stats_proc_init(journal_t *journal)
1270 {
1271 journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
1272 if (journal->j_proc_entry) {
1273 proc_create_data("info", S_IRUGO, journal->j_proc_entry,
1274 &jbd2_info_proc_ops, journal);
1275 }
1276 }
1277
jbd2_stats_proc_exit(journal_t * journal)1278 static void jbd2_stats_proc_exit(journal_t *journal)
1279 {
1280 remove_proc_entry("info", journal->j_proc_entry);
1281 remove_proc_entry(journal->j_devname, proc_jbd2_stats);
1282 }
1283
1284 /* Minimum size of descriptor tag */
jbd2_min_tag_size(void)1285 static int jbd2_min_tag_size(void)
1286 {
1287 /*
1288 * Tag with 32-bit block numbers does not use last four bytes of the
1289 * structure
1290 */
1291 return sizeof(journal_block_tag_t) - 4;
1292 }
1293
1294 /**
1295 * jbd2_journal_shrink_scan()
1296 *
1297 * Scan the checkpointed buffer on the checkpoint list and release the
1298 * journal_head.
1299 */
jbd2_journal_shrink_scan(struct shrinker * shrink,struct shrink_control * sc)1300 static unsigned long jbd2_journal_shrink_scan(struct shrinker *shrink,
1301 struct shrink_control *sc)
1302 {
1303 journal_t *journal = container_of(shrink, journal_t, j_shrinker);
1304 unsigned long nr_to_scan = sc->nr_to_scan;
1305 unsigned long nr_shrunk;
1306 unsigned long count;
1307
1308 count = percpu_counter_read_positive(&journal->j_checkpoint_jh_count);
1309 trace_jbd2_shrink_scan_enter(journal, sc->nr_to_scan, count);
1310
1311 nr_shrunk = jbd2_journal_shrink_checkpoint_list(journal, &nr_to_scan);
1312
1313 count = percpu_counter_read_positive(&journal->j_checkpoint_jh_count);
1314 trace_jbd2_shrink_scan_exit(journal, nr_to_scan, nr_shrunk, count);
1315
1316 return nr_shrunk;
1317 }
1318
1319 /**
1320 * jbd2_journal_shrink_count()
1321 *
1322 * Count the number of checkpoint buffers on the checkpoint list.
1323 */
jbd2_journal_shrink_count(struct shrinker * shrink,struct shrink_control * sc)1324 static unsigned long jbd2_journal_shrink_count(struct shrinker *shrink,
1325 struct shrink_control *sc)
1326 {
1327 journal_t *journal = container_of(shrink, journal_t, j_shrinker);
1328 unsigned long count;
1329
1330 count = percpu_counter_read_positive(&journal->j_checkpoint_jh_count);
1331 trace_jbd2_shrink_count(journal, sc->nr_to_scan, count);
1332
1333 return count;
1334 }
1335
1336 /*
1337 * Management for journal control blocks: functions to create and
1338 * destroy journal_t structures, and to initialise and read existing
1339 * journal blocks from disk. */
1340
1341 /* First: create and setup a journal_t object in memory. We initialise
1342 * very few fields yet: that has to wait until we have created the
1343 * journal structures from from scratch, or loaded them from disk. */
1344
journal_init_common(struct block_device * bdev,struct block_device * fs_dev,unsigned long long start,int len,int blocksize)1345 static journal_t *journal_init_common(struct block_device *bdev,
1346 struct block_device *fs_dev,
1347 unsigned long long start, int len, int blocksize)
1348 {
1349 static struct lock_class_key jbd2_trans_commit_key;
1350 journal_t *journal;
1351 int err;
1352 struct buffer_head *bh;
1353 int n;
1354
1355 journal = kzalloc(sizeof(*journal), GFP_KERNEL);
1356 if (!journal)
1357 return NULL;
1358
1359 init_waitqueue_head(&journal->j_wait_transaction_locked);
1360 init_waitqueue_head(&journal->j_wait_done_commit);
1361 init_waitqueue_head(&journal->j_wait_commit);
1362 init_waitqueue_head(&journal->j_wait_updates);
1363 init_waitqueue_head(&journal->j_wait_reserved);
1364 init_waitqueue_head(&journal->j_fc_wait);
1365 mutex_init(&journal->j_abort_mutex);
1366 mutex_init(&journal->j_barrier);
1367 mutex_init(&journal->j_checkpoint_mutex);
1368 spin_lock_init(&journal->j_revoke_lock);
1369 spin_lock_init(&journal->j_list_lock);
1370 rwlock_init(&journal->j_state_lock);
1371
1372 journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
1373 journal->j_min_batch_time = 0;
1374 journal->j_max_batch_time = 15000; /* 15ms */
1375 atomic_set(&journal->j_reserved_credits, 0);
1376
1377 /* The journal is marked for error until we succeed with recovery! */
1378 journal->j_flags = JBD2_ABORT;
1379
1380 /* Set up a default-sized revoke table for the new mount. */
1381 err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
1382 if (err)
1383 goto err_cleanup;
1384
1385 spin_lock_init(&journal->j_history_lock);
1386
1387 lockdep_init_map(&journal->j_trans_commit_map, "jbd2_handle",
1388 &jbd2_trans_commit_key, 0);
1389
1390 /* journal descriptor can store up to n blocks -bzzz */
1391 journal->j_blocksize = blocksize;
1392 journal->j_dev = bdev;
1393 journal->j_fs_dev = fs_dev;
1394 journal->j_blk_offset = start;
1395 journal->j_total_len = len;
1396 /* We need enough buffers to write out full descriptor block. */
1397 n = journal->j_blocksize / jbd2_min_tag_size();
1398 journal->j_wbufsize = n;
1399 journal->j_fc_wbuf = NULL;
1400 journal->j_wbuf = kmalloc_array(n, sizeof(struct buffer_head *),
1401 GFP_KERNEL);
1402 if (!journal->j_wbuf)
1403 goto err_cleanup;
1404
1405 bh = getblk_unmovable(journal->j_dev, start, journal->j_blocksize);
1406 if (!bh) {
1407 pr_err("%s: Cannot get buffer for journal superblock\n",
1408 __func__);
1409 goto err_cleanup;
1410 }
1411 journal->j_sb_buffer = bh;
1412 journal->j_superblock = (journal_superblock_t *)bh->b_data;
1413
1414 journal->j_shrink_transaction = NULL;
1415 journal->j_shrinker.scan_objects = jbd2_journal_shrink_scan;
1416 journal->j_shrinker.count_objects = jbd2_journal_shrink_count;
1417 journal->j_shrinker.seeks = DEFAULT_SEEKS;
1418 journal->j_shrinker.batch = journal->j_max_transaction_buffers;
1419
1420 if (percpu_counter_init(&journal->j_checkpoint_jh_count, 0, GFP_KERNEL))
1421 goto err_cleanup;
1422
1423 if (register_shrinker(&journal->j_shrinker)) {
1424 percpu_counter_destroy(&journal->j_checkpoint_jh_count);
1425 goto err_cleanup;
1426 }
1427 return journal;
1428
1429 err_cleanup:
1430 brelse(journal->j_sb_buffer);
1431 kfree(journal->j_wbuf);
1432 jbd2_journal_destroy_revoke(journal);
1433 kfree(journal);
1434 return NULL;
1435 }
1436
1437 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
1438 *
1439 * Create a journal structure assigned some fixed set of disk blocks to
1440 * the journal. We don't actually touch those disk blocks yet, but we
1441 * need to set up all of the mapping information to tell the journaling
1442 * system where the journal blocks are.
1443 *
1444 */
1445
1446 /**
1447 * journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1448 * @bdev: Block device on which to create the journal
1449 * @fs_dev: Device which hold journalled filesystem for this journal.
1450 * @start: Block nr Start of journal.
1451 * @len: Length of the journal in blocks.
1452 * @blocksize: blocksize of journalling device
1453 *
1454 * Returns: a newly created journal_t *
1455 *
1456 * jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1457 * range of blocks on an arbitrary block device.
1458 *
1459 */
jbd2_journal_init_dev(struct block_device * bdev,struct block_device * fs_dev,unsigned long long start,int len,int blocksize)1460 journal_t *jbd2_journal_init_dev(struct block_device *bdev,
1461 struct block_device *fs_dev,
1462 unsigned long long start, int len, int blocksize)
1463 {
1464 journal_t *journal;
1465
1466 journal = journal_init_common(bdev, fs_dev, start, len, blocksize);
1467 if (!journal)
1468 return NULL;
1469
1470 bdevname(journal->j_dev, journal->j_devname);
1471 strreplace(journal->j_devname, '/', '!');
1472 jbd2_stats_proc_init(journal);
1473
1474 return journal;
1475 }
1476
1477 /**
1478 * journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1479 * @inode: An inode to create the journal in
1480 *
1481 * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1482 * the journal. The inode must exist already, must support bmap() and
1483 * must have all data blocks preallocated.
1484 */
jbd2_journal_init_inode(struct inode * inode)1485 journal_t *jbd2_journal_init_inode(struct inode *inode)
1486 {
1487 journal_t *journal;
1488 sector_t blocknr;
1489 char *p;
1490 int err = 0;
1491
1492 blocknr = 0;
1493 err = bmap(inode, &blocknr);
1494
1495 if (err || !blocknr) {
1496 pr_err("%s: Cannot locate journal superblock\n",
1497 __func__);
1498 return NULL;
1499 }
1500
1501 jbd_debug(1, "JBD2: inode %s/%ld, size %lld, bits %d, blksize %ld\n",
1502 inode->i_sb->s_id, inode->i_ino, (long long) inode->i_size,
1503 inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1504
1505 journal = journal_init_common(inode->i_sb->s_bdev, inode->i_sb->s_bdev,
1506 blocknr, inode->i_size >> inode->i_sb->s_blocksize_bits,
1507 inode->i_sb->s_blocksize);
1508 if (!journal)
1509 return NULL;
1510
1511 journal->j_inode = inode;
1512 bdevname(journal->j_dev, journal->j_devname);
1513 p = strreplace(journal->j_devname, '/', '!');
1514 sprintf(p, "-%lu", journal->j_inode->i_ino);
1515 jbd2_stats_proc_init(journal);
1516
1517 return journal;
1518 }
1519
1520 /*
1521 * If the journal init or create aborts, we need to mark the journal
1522 * superblock as being NULL to prevent the journal destroy from writing
1523 * back a bogus superblock.
1524 */
journal_fail_superblock(journal_t * journal)1525 static void journal_fail_superblock(journal_t *journal)
1526 {
1527 struct buffer_head *bh = journal->j_sb_buffer;
1528 brelse(bh);
1529 journal->j_sb_buffer = NULL;
1530 }
1531
1532 /*
1533 * Given a journal_t structure, initialise the various fields for
1534 * startup of a new journaling session. We use this both when creating
1535 * a journal, and after recovering an old journal to reset it for
1536 * subsequent use.
1537 */
1538
journal_reset(journal_t * journal)1539 static int journal_reset(journal_t *journal)
1540 {
1541 journal_superblock_t *sb = journal->j_superblock;
1542 unsigned long long first, last;
1543
1544 first = be32_to_cpu(sb->s_first);
1545 last = be32_to_cpu(sb->s_maxlen);
1546 if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1547 printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n",
1548 first, last);
1549 journal_fail_superblock(journal);
1550 return -EINVAL;
1551 }
1552
1553 journal->j_first = first;
1554 journal->j_last = last;
1555
1556 journal->j_head = journal->j_first;
1557 journal->j_tail = journal->j_first;
1558 journal->j_free = journal->j_last - journal->j_first;
1559
1560 journal->j_tail_sequence = journal->j_transaction_sequence;
1561 journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1562 journal->j_commit_request = journal->j_commit_sequence;
1563
1564 journal->j_max_transaction_buffers = jbd2_journal_get_max_txn_bufs(journal);
1565
1566 /*
1567 * Now that journal recovery is done, turn fast commits off here. This
1568 * way, if fast commit was enabled before the crash but if now FS has
1569 * disabled it, we don't enable fast commits.
1570 */
1571 jbd2_clear_feature_fast_commit(journal);
1572
1573 /*
1574 * As a special case, if the on-disk copy is already marked as needing
1575 * no recovery (s_start == 0), then we can safely defer the superblock
1576 * update until the next commit by setting JBD2_FLUSHED. This avoids
1577 * attempting a write to a potential-readonly device.
1578 */
1579 if (sb->s_start == 0) {
1580 jbd_debug(1, "JBD2: Skipping superblock update on recovered sb "
1581 "(start %ld, seq %u, errno %d)\n",
1582 journal->j_tail, journal->j_tail_sequence,
1583 journal->j_errno);
1584 journal->j_flags |= JBD2_FLUSHED;
1585 } else {
1586 /* Lock here to make assertions happy... */
1587 mutex_lock_io(&journal->j_checkpoint_mutex);
1588 /*
1589 * Update log tail information. We use REQ_FUA since new
1590 * transaction will start reusing journal space and so we
1591 * must make sure information about current log tail is on
1592 * disk before that.
1593 */
1594 jbd2_journal_update_sb_log_tail(journal,
1595 journal->j_tail_sequence,
1596 journal->j_tail,
1597 REQ_SYNC | REQ_FUA);
1598 mutex_unlock(&journal->j_checkpoint_mutex);
1599 }
1600 return jbd2_journal_start_thread(journal);
1601 }
1602
1603 /*
1604 * This function expects that the caller will have locked the journal
1605 * buffer head, and will return with it unlocked
1606 */
jbd2_write_superblock(journal_t * journal,int write_flags)1607 static int jbd2_write_superblock(journal_t *journal, int write_flags)
1608 {
1609 struct buffer_head *bh = journal->j_sb_buffer;
1610 journal_superblock_t *sb = journal->j_superblock;
1611 int ret;
1612
1613 /* Buffer got discarded which means block device got invalidated */
1614 if (!buffer_mapped(bh)) {
1615 unlock_buffer(bh);
1616 return -EIO;
1617 }
1618
1619 trace_jbd2_write_superblock(journal, write_flags);
1620 if (!(journal->j_flags & JBD2_BARRIER))
1621 write_flags &= ~(REQ_FUA | REQ_PREFLUSH);
1622 if (buffer_write_io_error(bh)) {
1623 /*
1624 * Oh, dear. A previous attempt to write the journal
1625 * superblock failed. This could happen because the
1626 * USB device was yanked out. Or it could happen to
1627 * be a transient write error and maybe the block will
1628 * be remapped. Nothing we can do but to retry the
1629 * write and hope for the best.
1630 */
1631 printk(KERN_ERR "JBD2: previous I/O error detected "
1632 "for journal superblock update for %s.\n",
1633 journal->j_devname);
1634 clear_buffer_write_io_error(bh);
1635 set_buffer_uptodate(bh);
1636 }
1637 if (jbd2_journal_has_csum_v2or3(journal))
1638 sb->s_checksum = jbd2_superblock_csum(journal, sb);
1639 get_bh(bh);
1640 bh->b_end_io = end_buffer_write_sync;
1641 ret = submit_bh(REQ_OP_WRITE, write_flags, bh);
1642 wait_on_buffer(bh);
1643 if (buffer_write_io_error(bh)) {
1644 clear_buffer_write_io_error(bh);
1645 set_buffer_uptodate(bh);
1646 ret = -EIO;
1647 }
1648 if (ret) {
1649 printk(KERN_ERR "JBD2: Error %d detected when updating "
1650 "journal superblock for %s.\n", ret,
1651 journal->j_devname);
1652 if (!is_journal_aborted(journal))
1653 jbd2_journal_abort(journal, ret);
1654 }
1655
1656 return ret;
1657 }
1658
1659 /**
1660 * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1661 * @journal: The journal to update.
1662 * @tail_tid: TID of the new transaction at the tail of the log
1663 * @tail_block: The first block of the transaction at the tail of the log
1664 * @write_op: With which operation should we write the journal sb
1665 *
1666 * Update a journal's superblock information about log tail and write it to
1667 * disk, waiting for the IO to complete.
1668 */
jbd2_journal_update_sb_log_tail(journal_t * journal,tid_t tail_tid,unsigned long tail_block,int write_op)1669 int jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1670 unsigned long tail_block, int write_op)
1671 {
1672 journal_superblock_t *sb = journal->j_superblock;
1673 int ret;
1674
1675 if (is_journal_aborted(journal))
1676 return -EIO;
1677 if (test_bit(JBD2_CHECKPOINT_IO_ERROR, &journal->j_atomic_flags)) {
1678 jbd2_journal_abort(journal, -EIO);
1679 return -EIO;
1680 }
1681
1682 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1683 jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1684 tail_block, tail_tid);
1685
1686 lock_buffer(journal->j_sb_buffer);
1687 sb->s_sequence = cpu_to_be32(tail_tid);
1688 sb->s_start = cpu_to_be32(tail_block);
1689
1690 ret = jbd2_write_superblock(journal, write_op);
1691 if (ret)
1692 goto out;
1693
1694 /* Log is no longer empty */
1695 write_lock(&journal->j_state_lock);
1696 WARN_ON(!sb->s_sequence);
1697 journal->j_flags &= ~JBD2_FLUSHED;
1698 write_unlock(&journal->j_state_lock);
1699
1700 out:
1701 return ret;
1702 }
1703
1704 /**
1705 * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1706 * @journal: The journal to update.
1707 * @write_op: With which operation should we write the journal sb
1708 *
1709 * Update a journal's dynamic superblock fields to show that journal is empty.
1710 * Write updated superblock to disk waiting for IO to complete.
1711 */
jbd2_mark_journal_empty(journal_t * journal,int write_op)1712 static void jbd2_mark_journal_empty(journal_t *journal, int write_op)
1713 {
1714 journal_superblock_t *sb = journal->j_superblock;
1715 bool had_fast_commit = false;
1716
1717 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1718 lock_buffer(journal->j_sb_buffer);
1719 if (sb->s_start == 0) { /* Is it already empty? */
1720 unlock_buffer(journal->j_sb_buffer);
1721 return;
1722 }
1723
1724 jbd_debug(1, "JBD2: Marking journal as empty (seq %u)\n",
1725 journal->j_tail_sequence);
1726
1727 sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1728 sb->s_start = cpu_to_be32(0);
1729 if (jbd2_has_feature_fast_commit(journal)) {
1730 /*
1731 * When journal is clean, no need to commit fast commit flag and
1732 * make file system incompatible with older kernels.
1733 */
1734 jbd2_clear_feature_fast_commit(journal);
1735 had_fast_commit = true;
1736 }
1737
1738 jbd2_write_superblock(journal, write_op);
1739
1740 if (had_fast_commit)
1741 jbd2_set_feature_fast_commit(journal);
1742
1743 /* Log is no longer empty */
1744 write_lock(&journal->j_state_lock);
1745 journal->j_flags |= JBD2_FLUSHED;
1746 write_unlock(&journal->j_state_lock);
1747 }
1748
1749
1750 /**
1751 * jbd2_journal_update_sb_errno() - Update error in the journal.
1752 * @journal: The journal to update.
1753 *
1754 * Update a journal's errno. Write updated superblock to disk waiting for IO
1755 * to complete.
1756 */
jbd2_journal_update_sb_errno(journal_t * journal)1757 void jbd2_journal_update_sb_errno(journal_t *journal)
1758 {
1759 journal_superblock_t *sb = journal->j_superblock;
1760 int errcode;
1761
1762 lock_buffer(journal->j_sb_buffer);
1763 errcode = journal->j_errno;
1764 if (errcode == -ESHUTDOWN)
1765 errcode = 0;
1766 jbd_debug(1, "JBD2: updating superblock error (errno %d)\n", errcode);
1767 sb->s_errno = cpu_to_be32(errcode);
1768
1769 jbd2_write_superblock(journal, REQ_SYNC | REQ_FUA);
1770 }
1771 EXPORT_SYMBOL(jbd2_journal_update_sb_errno);
1772
journal_revoke_records_per_block(journal_t * journal)1773 static int journal_revoke_records_per_block(journal_t *journal)
1774 {
1775 int record_size;
1776 int space = journal->j_blocksize - sizeof(jbd2_journal_revoke_header_t);
1777
1778 if (jbd2_has_feature_64bit(journal))
1779 record_size = 8;
1780 else
1781 record_size = 4;
1782
1783 if (jbd2_journal_has_csum_v2or3(journal))
1784 space -= sizeof(struct jbd2_journal_block_tail);
1785 return space / record_size;
1786 }
1787
1788 /*
1789 * Read the superblock for a given journal, performing initial
1790 * validation of the format.
1791 */
journal_get_superblock(journal_t * journal)1792 static int journal_get_superblock(journal_t *journal)
1793 {
1794 struct buffer_head *bh;
1795 journal_superblock_t *sb;
1796 int err = -EIO;
1797
1798 bh = journal->j_sb_buffer;
1799
1800 J_ASSERT(bh != NULL);
1801 if (!buffer_uptodate(bh)) {
1802 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1803 wait_on_buffer(bh);
1804 if (!buffer_uptodate(bh)) {
1805 printk(KERN_ERR
1806 "JBD2: IO error reading journal superblock\n");
1807 goto out;
1808 }
1809 }
1810
1811 if (buffer_verified(bh))
1812 return 0;
1813
1814 sb = journal->j_superblock;
1815
1816 err = -EINVAL;
1817
1818 if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1819 sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1820 printk(KERN_WARNING "JBD2: no valid journal superblock found\n");
1821 goto out;
1822 }
1823
1824 switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1825 case JBD2_SUPERBLOCK_V1:
1826 journal->j_format_version = 1;
1827 break;
1828 case JBD2_SUPERBLOCK_V2:
1829 journal->j_format_version = 2;
1830 break;
1831 default:
1832 printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n");
1833 goto out;
1834 }
1835
1836 if (be32_to_cpu(sb->s_maxlen) < journal->j_total_len)
1837 journal->j_total_len = be32_to_cpu(sb->s_maxlen);
1838 else if (be32_to_cpu(sb->s_maxlen) > journal->j_total_len) {
1839 printk(KERN_WARNING "JBD2: journal file too short\n");
1840 goto out;
1841 }
1842
1843 if (be32_to_cpu(sb->s_first) == 0 ||
1844 be32_to_cpu(sb->s_first) >= journal->j_total_len) {
1845 printk(KERN_WARNING
1846 "JBD2: Invalid start block of journal: %u\n",
1847 be32_to_cpu(sb->s_first));
1848 goto out;
1849 }
1850
1851 if (jbd2_has_feature_csum2(journal) &&
1852 jbd2_has_feature_csum3(journal)) {
1853 /* Can't have checksum v2 and v3 at the same time! */
1854 printk(KERN_ERR "JBD2: Can't enable checksumming v2 and v3 "
1855 "at the same time!\n");
1856 goto out;
1857 }
1858
1859 if (jbd2_journal_has_csum_v2or3_feature(journal) &&
1860 jbd2_has_feature_checksum(journal)) {
1861 /* Can't have checksum v1 and v2 on at the same time! */
1862 printk(KERN_ERR "JBD2: Can't enable checksumming v1 and v2/3 "
1863 "at the same time!\n");
1864 goto out;
1865 }
1866
1867 if (!jbd2_verify_csum_type(journal, sb)) {
1868 printk(KERN_ERR "JBD2: Unknown checksum type\n");
1869 goto out;
1870 }
1871
1872 /* Load the checksum driver */
1873 if (jbd2_journal_has_csum_v2or3_feature(journal)) {
1874 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1875 if (IS_ERR(journal->j_chksum_driver)) {
1876 printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
1877 err = PTR_ERR(journal->j_chksum_driver);
1878 journal->j_chksum_driver = NULL;
1879 goto out;
1880 }
1881 }
1882
1883 if (jbd2_journal_has_csum_v2or3(journal)) {
1884 /* Check superblock checksum */
1885 if (sb->s_checksum != jbd2_superblock_csum(journal, sb)) {
1886 printk(KERN_ERR "JBD2: journal checksum error\n");
1887 err = -EFSBADCRC;
1888 goto out;
1889 }
1890
1891 /* Precompute checksum seed for all metadata */
1892 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1893 sizeof(sb->s_uuid));
1894 }
1895
1896 journal->j_revoke_records_per_block =
1897 journal_revoke_records_per_block(journal);
1898 set_buffer_verified(bh);
1899
1900 return 0;
1901
1902 out:
1903 journal_fail_superblock(journal);
1904 return err;
1905 }
1906
1907 /*
1908 * Load the on-disk journal superblock and read the key fields into the
1909 * journal_t.
1910 */
1911
load_superblock(journal_t * journal)1912 static int load_superblock(journal_t *journal)
1913 {
1914 int err;
1915 journal_superblock_t *sb;
1916 int num_fc_blocks;
1917
1918 err = journal_get_superblock(journal);
1919 if (err)
1920 return err;
1921
1922 sb = journal->j_superblock;
1923
1924 journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1925 journal->j_tail = be32_to_cpu(sb->s_start);
1926 journal->j_first = be32_to_cpu(sb->s_first);
1927 journal->j_errno = be32_to_cpu(sb->s_errno);
1928 journal->j_last = be32_to_cpu(sb->s_maxlen);
1929
1930 if (jbd2_has_feature_fast_commit(journal)) {
1931 journal->j_fc_last = be32_to_cpu(sb->s_maxlen);
1932 num_fc_blocks = be32_to_cpu(sb->s_num_fc_blks);
1933 if (!num_fc_blocks)
1934 num_fc_blocks = JBD2_MIN_FC_BLOCKS;
1935 if (journal->j_last - num_fc_blocks >= JBD2_MIN_JOURNAL_BLOCKS)
1936 journal->j_last = journal->j_fc_last - num_fc_blocks;
1937 journal->j_fc_first = journal->j_last + 1;
1938 journal->j_fc_off = 0;
1939 }
1940
1941 return 0;
1942 }
1943
1944
1945 /**
1946 * jbd2_journal_load() - Read journal from disk.
1947 * @journal: Journal to act on.
1948 *
1949 * Given a journal_t structure which tells us which disk blocks contain
1950 * a journal, read the journal from disk to initialise the in-memory
1951 * structures.
1952 */
jbd2_journal_load(journal_t * journal)1953 int jbd2_journal_load(journal_t *journal)
1954 {
1955 int err;
1956 journal_superblock_t *sb;
1957
1958 err = load_superblock(journal);
1959 if (err)
1960 return err;
1961
1962 sb = journal->j_superblock;
1963 /* If this is a V2 superblock, then we have to check the
1964 * features flags on it. */
1965
1966 if (journal->j_format_version >= 2) {
1967 if ((sb->s_feature_ro_compat &
1968 ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1969 (sb->s_feature_incompat &
1970 ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1971 printk(KERN_WARNING
1972 "JBD2: Unrecognised features on journal\n");
1973 return -EINVAL;
1974 }
1975 }
1976
1977 /*
1978 * Create a slab for this blocksize
1979 */
1980 err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
1981 if (err)
1982 return err;
1983
1984 /* Let the recovery code check whether it needs to recover any
1985 * data from the journal. */
1986 if (jbd2_journal_recover(journal))
1987 goto recovery_error;
1988
1989 if (journal->j_failed_commit) {
1990 printk(KERN_ERR "JBD2: journal transaction %u on %s "
1991 "is corrupt.\n", journal->j_failed_commit,
1992 journal->j_devname);
1993 return -EFSCORRUPTED;
1994 }
1995 /*
1996 * clear JBD2_ABORT flag initialized in journal_init_common
1997 * here to update log tail information with the newest seq.
1998 */
1999 journal->j_flags &= ~JBD2_ABORT;
2000
2001 /* OK, we've finished with the dynamic journal bits:
2002 * reinitialise the dynamic contents of the superblock in memory
2003 * and reset them on disk. */
2004 if (journal_reset(journal))
2005 goto recovery_error;
2006
2007 journal->j_flags |= JBD2_LOADED;
2008 return 0;
2009
2010 recovery_error:
2011 printk(KERN_WARNING "JBD2: recovery failed\n");
2012 return -EIO;
2013 }
2014
2015 /**
2016 * jbd2_journal_destroy() - Release a journal_t structure.
2017 * @journal: Journal to act on.
2018 *
2019 * Release a journal_t structure once it is no longer in use by the
2020 * journaled object.
2021 * Return <0 if we couldn't clean up the journal.
2022 */
jbd2_journal_destroy(journal_t * journal)2023 int jbd2_journal_destroy(journal_t *journal)
2024 {
2025 int err = 0;
2026
2027 /* Wait for the commit thread to wake up and die. */
2028 journal_kill_thread(journal);
2029
2030 /* Force a final log commit */
2031 if (journal->j_running_transaction)
2032 jbd2_journal_commit_transaction(journal);
2033
2034 /* Force any old transactions to disk */
2035
2036 /* Totally anal locking here... */
2037 spin_lock(&journal->j_list_lock);
2038 while (journal->j_checkpoint_transactions != NULL) {
2039 spin_unlock(&journal->j_list_lock);
2040 mutex_lock_io(&journal->j_checkpoint_mutex);
2041 err = jbd2_log_do_checkpoint(journal);
2042 mutex_unlock(&journal->j_checkpoint_mutex);
2043 /*
2044 * If checkpointing failed, just free the buffers to avoid
2045 * looping forever
2046 */
2047 if (err) {
2048 jbd2_journal_destroy_checkpoint(journal);
2049 spin_lock(&journal->j_list_lock);
2050 break;
2051 }
2052 spin_lock(&journal->j_list_lock);
2053 }
2054
2055 J_ASSERT(journal->j_running_transaction == NULL);
2056 J_ASSERT(journal->j_committing_transaction == NULL);
2057 J_ASSERT(journal->j_checkpoint_transactions == NULL);
2058 spin_unlock(&journal->j_list_lock);
2059
2060 /*
2061 * OK, all checkpoint transactions have been checked, now check the
2062 * write out io error flag and abort the journal if some buffer failed
2063 * to write back to the original location, otherwise the filesystem
2064 * may become inconsistent.
2065 */
2066 if (!is_journal_aborted(journal) &&
2067 test_bit(JBD2_CHECKPOINT_IO_ERROR, &journal->j_atomic_flags))
2068 jbd2_journal_abort(journal, -EIO);
2069
2070 if (journal->j_sb_buffer) {
2071 if (!is_journal_aborted(journal)) {
2072 mutex_lock_io(&journal->j_checkpoint_mutex);
2073
2074 write_lock(&journal->j_state_lock);
2075 journal->j_tail_sequence =
2076 ++journal->j_transaction_sequence;
2077 write_unlock(&journal->j_state_lock);
2078
2079 jbd2_mark_journal_empty(journal,
2080 REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
2081 mutex_unlock(&journal->j_checkpoint_mutex);
2082 } else
2083 err = -EIO;
2084 brelse(journal->j_sb_buffer);
2085 }
2086
2087 if (journal->j_shrinker.flags & SHRINKER_REGISTERED) {
2088 percpu_counter_destroy(&journal->j_checkpoint_jh_count);
2089 unregister_shrinker(&journal->j_shrinker);
2090 }
2091 if (journal->j_proc_entry)
2092 jbd2_stats_proc_exit(journal);
2093 iput(journal->j_inode);
2094 if (journal->j_revoke)
2095 jbd2_journal_destroy_revoke(journal);
2096 if (journal->j_chksum_driver)
2097 crypto_free_shash(journal->j_chksum_driver);
2098 kfree(journal->j_fc_wbuf);
2099 kfree(journal->j_wbuf);
2100 kfree(journal);
2101
2102 return err;
2103 }
2104
2105
2106 /**
2107 * jbd2_journal_check_used_features() - Check if features specified are used.
2108 * @journal: Journal to check.
2109 * @compat: bitmask of compatible features
2110 * @ro: bitmask of features that force read-only mount
2111 * @incompat: bitmask of incompatible features
2112 *
2113 * Check whether the journal uses all of a given set of
2114 * features. Return true (non-zero) if it does.
2115 **/
2116
jbd2_journal_check_used_features(journal_t * journal,unsigned long compat,unsigned long ro,unsigned long incompat)2117 int jbd2_journal_check_used_features(journal_t *journal, unsigned long compat,
2118 unsigned long ro, unsigned long incompat)
2119 {
2120 journal_superblock_t *sb;
2121
2122 if (!compat && !ro && !incompat)
2123 return 1;
2124 /* Load journal superblock if it is not loaded yet. */
2125 if (journal->j_format_version == 0 &&
2126 journal_get_superblock(journal) != 0)
2127 return 0;
2128 if (journal->j_format_version == 1)
2129 return 0;
2130
2131 sb = journal->j_superblock;
2132
2133 if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
2134 ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
2135 ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
2136 return 1;
2137
2138 return 0;
2139 }
2140
2141 /**
2142 * jbd2_journal_check_available_features() - Check feature set in journalling layer
2143 * @journal: Journal to check.
2144 * @compat: bitmask of compatible features
2145 * @ro: bitmask of features that force read-only mount
2146 * @incompat: bitmask of incompatible features
2147 *
2148 * Check whether the journaling code supports the use of
2149 * all of a given set of features on this journal. Return true
2150 * (non-zero) if it can. */
2151
jbd2_journal_check_available_features(journal_t * journal,unsigned long compat,unsigned long ro,unsigned long incompat)2152 int jbd2_journal_check_available_features(journal_t *journal, unsigned long compat,
2153 unsigned long ro, unsigned long incompat)
2154 {
2155 if (!compat && !ro && !incompat)
2156 return 1;
2157
2158 /* We can support any known requested features iff the
2159 * superblock is in version 2. Otherwise we fail to support any
2160 * extended sb features. */
2161
2162 if (journal->j_format_version != 2)
2163 return 0;
2164
2165 if ((compat & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
2166 (ro & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
2167 (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
2168 return 1;
2169
2170 return 0;
2171 }
2172
2173 static int
jbd2_journal_initialize_fast_commit(journal_t * journal)2174 jbd2_journal_initialize_fast_commit(journal_t *journal)
2175 {
2176 journal_superblock_t *sb = journal->j_superblock;
2177 unsigned long long num_fc_blks;
2178
2179 num_fc_blks = be32_to_cpu(sb->s_num_fc_blks);
2180 if (num_fc_blks == 0)
2181 num_fc_blks = JBD2_MIN_FC_BLOCKS;
2182 if (journal->j_last - num_fc_blks < JBD2_MIN_JOURNAL_BLOCKS)
2183 return -ENOSPC;
2184
2185 /* Are we called twice? */
2186 WARN_ON(journal->j_fc_wbuf != NULL);
2187 journal->j_fc_wbuf = kmalloc_array(num_fc_blks,
2188 sizeof(struct buffer_head *), GFP_KERNEL);
2189 if (!journal->j_fc_wbuf)
2190 return -ENOMEM;
2191
2192 journal->j_fc_wbufsize = num_fc_blks;
2193 journal->j_fc_last = journal->j_last;
2194 journal->j_last = journal->j_fc_last - num_fc_blks;
2195 journal->j_fc_first = journal->j_last + 1;
2196 journal->j_fc_off = 0;
2197 journal->j_free = journal->j_last - journal->j_first;
2198 journal->j_max_transaction_buffers =
2199 jbd2_journal_get_max_txn_bufs(journal);
2200
2201 return 0;
2202 }
2203
2204 /**
2205 * jbd2_journal_set_features() - Mark a given journal feature in the superblock
2206 * @journal: Journal to act on.
2207 * @compat: bitmask of compatible features
2208 * @ro: bitmask of features that force read-only mount
2209 * @incompat: bitmask of incompatible features
2210 *
2211 * Mark a given journal feature as present on the
2212 * superblock. Returns true if the requested features could be set.
2213 *
2214 */
2215
jbd2_journal_set_features(journal_t * journal,unsigned long compat,unsigned long ro,unsigned long incompat)2216 int jbd2_journal_set_features(journal_t *journal, unsigned long compat,
2217 unsigned long ro, unsigned long incompat)
2218 {
2219 #define INCOMPAT_FEATURE_ON(f) \
2220 ((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f)))
2221 #define COMPAT_FEATURE_ON(f) \
2222 ((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f)))
2223 journal_superblock_t *sb;
2224
2225 if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
2226 return 1;
2227
2228 if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
2229 return 0;
2230
2231 /* If enabling v2 checksums, turn on v3 instead */
2232 if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2) {
2233 incompat &= ~JBD2_FEATURE_INCOMPAT_CSUM_V2;
2234 incompat |= JBD2_FEATURE_INCOMPAT_CSUM_V3;
2235 }
2236
2237 /* Asking for checksumming v3 and v1? Only give them v3. */
2238 if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V3 &&
2239 compat & JBD2_FEATURE_COMPAT_CHECKSUM)
2240 compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM;
2241
2242 jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
2243 compat, ro, incompat);
2244
2245 sb = journal->j_superblock;
2246
2247 if (incompat & JBD2_FEATURE_INCOMPAT_FAST_COMMIT) {
2248 if (jbd2_journal_initialize_fast_commit(journal)) {
2249 pr_err("JBD2: Cannot enable fast commits.\n");
2250 return 0;
2251 }
2252 }
2253
2254 /* Load the checksum driver if necessary */
2255 if ((journal->j_chksum_driver == NULL) &&
2256 INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
2257 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
2258 if (IS_ERR(journal->j_chksum_driver)) {
2259 printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
2260 journal->j_chksum_driver = NULL;
2261 return 0;
2262 }
2263 /* Precompute checksum seed for all metadata */
2264 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
2265 sizeof(sb->s_uuid));
2266 }
2267
2268 lock_buffer(journal->j_sb_buffer);
2269
2270 /* If enabling v3 checksums, update superblock */
2271 if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
2272 sb->s_checksum_type = JBD2_CRC32C_CHKSUM;
2273 sb->s_feature_compat &=
2274 ~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM);
2275 }
2276
2277 /* If enabling v1 checksums, downgrade superblock */
2278 if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM))
2279 sb->s_feature_incompat &=
2280 ~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2 |
2281 JBD2_FEATURE_INCOMPAT_CSUM_V3);
2282
2283 sb->s_feature_compat |= cpu_to_be32(compat);
2284 sb->s_feature_ro_compat |= cpu_to_be32(ro);
2285 sb->s_feature_incompat |= cpu_to_be32(incompat);
2286 unlock_buffer(journal->j_sb_buffer);
2287 journal->j_revoke_records_per_block =
2288 journal_revoke_records_per_block(journal);
2289
2290 return 1;
2291 #undef COMPAT_FEATURE_ON
2292 #undef INCOMPAT_FEATURE_ON
2293 }
2294
2295 /*
2296 * jbd2_journal_clear_features() - Clear a given journal feature in the
2297 * superblock
2298 * @journal: Journal to act on.
2299 * @compat: bitmask of compatible features
2300 * @ro: bitmask of features that force read-only mount
2301 * @incompat: bitmask of incompatible features
2302 *
2303 * Clear a given journal feature as present on the
2304 * superblock.
2305 */
jbd2_journal_clear_features(journal_t * journal,unsigned long compat,unsigned long ro,unsigned long incompat)2306 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
2307 unsigned long ro, unsigned long incompat)
2308 {
2309 journal_superblock_t *sb;
2310
2311 jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
2312 compat, ro, incompat);
2313
2314 sb = journal->j_superblock;
2315
2316 sb->s_feature_compat &= ~cpu_to_be32(compat);
2317 sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
2318 sb->s_feature_incompat &= ~cpu_to_be32(incompat);
2319 journal->j_revoke_records_per_block =
2320 journal_revoke_records_per_block(journal);
2321 }
2322 EXPORT_SYMBOL(jbd2_journal_clear_features);
2323
2324 /**
2325 * jbd2_journal_flush() - Flush journal
2326 * @journal: Journal to act on.
2327 *
2328 * Flush all data for a given journal to disk and empty the journal.
2329 * Filesystems can use this when remounting readonly to ensure that
2330 * recovery does not need to happen on remount.
2331 */
2332
jbd2_journal_flush(journal_t * journal)2333 int jbd2_journal_flush(journal_t *journal)
2334 {
2335 int err = 0;
2336 transaction_t *transaction = NULL;
2337
2338 write_lock(&journal->j_state_lock);
2339
2340 /* Force everything buffered to the log... */
2341 if (journal->j_running_transaction) {
2342 transaction = journal->j_running_transaction;
2343 __jbd2_log_start_commit(journal, transaction->t_tid);
2344 } else if (journal->j_committing_transaction)
2345 transaction = journal->j_committing_transaction;
2346
2347 /* Wait for the log commit to complete... */
2348 if (transaction) {
2349 tid_t tid = transaction->t_tid;
2350
2351 write_unlock(&journal->j_state_lock);
2352 jbd2_log_wait_commit(journal, tid);
2353 } else {
2354 write_unlock(&journal->j_state_lock);
2355 }
2356
2357 /* ...and flush everything in the log out to disk. */
2358 spin_lock(&journal->j_list_lock);
2359 while (!err && journal->j_checkpoint_transactions != NULL) {
2360 spin_unlock(&journal->j_list_lock);
2361 mutex_lock_io(&journal->j_checkpoint_mutex);
2362 err = jbd2_log_do_checkpoint(journal);
2363 mutex_unlock(&journal->j_checkpoint_mutex);
2364 spin_lock(&journal->j_list_lock);
2365 }
2366 spin_unlock(&journal->j_list_lock);
2367
2368 if (is_journal_aborted(journal))
2369 return -EIO;
2370
2371 mutex_lock_io(&journal->j_checkpoint_mutex);
2372 if (!err) {
2373 err = jbd2_cleanup_journal_tail(journal);
2374 if (err < 0) {
2375 mutex_unlock(&journal->j_checkpoint_mutex);
2376 goto out;
2377 }
2378 err = 0;
2379 }
2380
2381 /* Finally, mark the journal as really needing no recovery.
2382 * This sets s_start==0 in the underlying superblock, which is
2383 * the magic code for a fully-recovered superblock. Any future
2384 * commits of data to the journal will restore the current
2385 * s_start value. */
2386 jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA);
2387 mutex_unlock(&journal->j_checkpoint_mutex);
2388 write_lock(&journal->j_state_lock);
2389 J_ASSERT(!journal->j_running_transaction);
2390 J_ASSERT(!journal->j_committing_transaction);
2391 J_ASSERT(!journal->j_checkpoint_transactions);
2392 J_ASSERT(journal->j_head == journal->j_tail);
2393 J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
2394 write_unlock(&journal->j_state_lock);
2395 out:
2396 return err;
2397 }
2398
2399 /**
2400 * jbd2_journal_wipe() - Wipe journal contents
2401 * @journal: Journal to act on.
2402 * @write: flag (see below)
2403 *
2404 * Wipe out all of the contents of a journal, safely. This will produce
2405 * a warning if the journal contains any valid recovery information.
2406 * Must be called between journal_init_*() and jbd2_journal_load().
2407 *
2408 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
2409 * we merely suppress recovery.
2410 */
2411
jbd2_journal_wipe(journal_t * journal,int write)2412 int jbd2_journal_wipe(journal_t *journal, int write)
2413 {
2414 int err = 0;
2415
2416 J_ASSERT (!(journal->j_flags & JBD2_LOADED));
2417
2418 err = load_superblock(journal);
2419 if (err)
2420 return err;
2421
2422 if (!journal->j_tail)
2423 goto no_recovery;
2424
2425 printk(KERN_WARNING "JBD2: %s recovery information on journal\n",
2426 write ? "Clearing" : "Ignoring");
2427
2428 err = jbd2_journal_skip_recovery(journal);
2429 if (write) {
2430 /* Lock to make assertions happy... */
2431 mutex_lock_io(&journal->j_checkpoint_mutex);
2432 jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA);
2433 mutex_unlock(&journal->j_checkpoint_mutex);
2434 }
2435
2436 no_recovery:
2437 return err;
2438 }
2439
2440 /**
2441 * jbd2_journal_abort () - Shutdown the journal immediately.
2442 * @journal: the journal to shutdown.
2443 * @errno: an error number to record in the journal indicating
2444 * the reason for the shutdown.
2445 *
2446 * Perform a complete, immediate shutdown of the ENTIRE
2447 * journal (not of a single transaction). This operation cannot be
2448 * undone without closing and reopening the journal.
2449 *
2450 * The jbd2_journal_abort function is intended to support higher level error
2451 * recovery mechanisms such as the ext2/ext3 remount-readonly error
2452 * mode.
2453 *
2454 * Journal abort has very specific semantics. Any existing dirty,
2455 * unjournaled buffers in the main filesystem will still be written to
2456 * disk by bdflush, but the journaling mechanism will be suspended
2457 * immediately and no further transaction commits will be honoured.
2458 *
2459 * Any dirty, journaled buffers will be written back to disk without
2460 * hitting the journal. Atomicity cannot be guaranteed on an aborted
2461 * filesystem, but we _do_ attempt to leave as much data as possible
2462 * behind for fsck to use for cleanup.
2463 *
2464 * Any attempt to get a new transaction handle on a journal which is in
2465 * ABORT state will just result in an -EROFS error return. A
2466 * jbd2_journal_stop on an existing handle will return -EIO if we have
2467 * entered abort state during the update.
2468 *
2469 * Recursive transactions are not disturbed by journal abort until the
2470 * final jbd2_journal_stop, which will receive the -EIO error.
2471 *
2472 * Finally, the jbd2_journal_abort call allows the caller to supply an errno
2473 * which will be recorded (if possible) in the journal superblock. This
2474 * allows a client to record failure conditions in the middle of a
2475 * transaction without having to complete the transaction to record the
2476 * failure to disk. ext3_error, for example, now uses this
2477 * functionality.
2478 *
2479 */
2480
jbd2_journal_abort(journal_t * journal,int errno)2481 void jbd2_journal_abort(journal_t *journal, int errno)
2482 {
2483 transaction_t *transaction;
2484
2485 /*
2486 * Lock the aborting procedure until everything is done, this avoid
2487 * races between filesystem's error handling flow (e.g. ext4_abort()),
2488 * ensure panic after the error info is written into journal's
2489 * superblock.
2490 */
2491 mutex_lock(&journal->j_abort_mutex);
2492 /*
2493 * ESHUTDOWN always takes precedence because a file system check
2494 * caused by any other journal abort error is not required after
2495 * a shutdown triggered.
2496 */
2497 write_lock(&journal->j_state_lock);
2498 if (journal->j_flags & JBD2_ABORT) {
2499 int old_errno = journal->j_errno;
2500
2501 write_unlock(&journal->j_state_lock);
2502 if (old_errno != -ESHUTDOWN && errno == -ESHUTDOWN) {
2503 journal->j_errno = errno;
2504 jbd2_journal_update_sb_errno(journal);
2505 }
2506 mutex_unlock(&journal->j_abort_mutex);
2507 return;
2508 }
2509
2510 /*
2511 * Mark the abort as occurred and start current running transaction
2512 * to release all journaled buffer.
2513 */
2514 pr_err("Aborting journal on device %s.\n", journal->j_devname);
2515
2516 journal->j_flags |= JBD2_ABORT;
2517 journal->j_errno = errno;
2518 transaction = journal->j_running_transaction;
2519 if (transaction)
2520 __jbd2_log_start_commit(journal, transaction->t_tid);
2521 write_unlock(&journal->j_state_lock);
2522
2523 /*
2524 * Record errno to the journal super block, so that fsck and jbd2
2525 * layer could realise that a filesystem check is needed.
2526 */
2527 jbd2_journal_update_sb_errno(journal);
2528 mutex_unlock(&journal->j_abort_mutex);
2529 }
2530
2531 /**
2532 * jbd2_journal_errno() - returns the journal's error state.
2533 * @journal: journal to examine.
2534 *
2535 * This is the errno number set with jbd2_journal_abort(), the last
2536 * time the journal was mounted - if the journal was stopped
2537 * without calling abort this will be 0.
2538 *
2539 * If the journal has been aborted on this mount time -EROFS will
2540 * be returned.
2541 */
jbd2_journal_errno(journal_t * journal)2542 int jbd2_journal_errno(journal_t *journal)
2543 {
2544 int err;
2545
2546 read_lock(&journal->j_state_lock);
2547 if (journal->j_flags & JBD2_ABORT)
2548 err = -EROFS;
2549 else
2550 err = journal->j_errno;
2551 read_unlock(&journal->j_state_lock);
2552 return err;
2553 }
2554
2555 /**
2556 * jbd2_journal_clear_err() - clears the journal's error state
2557 * @journal: journal to act on.
2558 *
2559 * An error must be cleared or acked to take a FS out of readonly
2560 * mode.
2561 */
jbd2_journal_clear_err(journal_t * journal)2562 int jbd2_journal_clear_err(journal_t *journal)
2563 {
2564 int err = 0;
2565
2566 write_lock(&journal->j_state_lock);
2567 if (journal->j_flags & JBD2_ABORT)
2568 err = -EROFS;
2569 else
2570 journal->j_errno = 0;
2571 write_unlock(&journal->j_state_lock);
2572 return err;
2573 }
2574
2575 /**
2576 * jbd2_journal_ack_err() - Ack journal err.
2577 * @journal: journal to act on.
2578 *
2579 * An error must be cleared or acked to take a FS out of readonly
2580 * mode.
2581 */
jbd2_journal_ack_err(journal_t * journal)2582 void jbd2_journal_ack_err(journal_t *journal)
2583 {
2584 write_lock(&journal->j_state_lock);
2585 if (journal->j_errno)
2586 journal->j_flags |= JBD2_ACK_ERR;
2587 write_unlock(&journal->j_state_lock);
2588 }
2589
jbd2_journal_blocks_per_page(struct inode * inode)2590 int jbd2_journal_blocks_per_page(struct inode *inode)
2591 {
2592 return 1 << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
2593 }
2594
2595 /*
2596 * helper functions to deal with 32 or 64bit block numbers.
2597 */
journal_tag_bytes(journal_t * journal)2598 size_t journal_tag_bytes(journal_t *journal)
2599 {
2600 size_t sz;
2601
2602 if (jbd2_has_feature_csum3(journal))
2603 return sizeof(journal_block_tag3_t);
2604
2605 sz = sizeof(journal_block_tag_t);
2606
2607 if (jbd2_has_feature_csum2(journal))
2608 sz += sizeof(__u16);
2609
2610 if (jbd2_has_feature_64bit(journal))
2611 return sz;
2612 else
2613 return sz - sizeof(__u32);
2614 }
2615
2616 /*
2617 * JBD memory management
2618 *
2619 * These functions are used to allocate block-sized chunks of memory
2620 * used for making copies of buffer_head data. Very often it will be
2621 * page-sized chunks of data, but sometimes it will be in
2622 * sub-page-size chunks. (For example, 16k pages on Power systems
2623 * with a 4k block file system.) For blocks smaller than a page, we
2624 * use a SLAB allocator. There are slab caches for each block size,
2625 * which are allocated at mount time, if necessary, and we only free
2626 * (all of) the slab caches when/if the jbd2 module is unloaded. For
2627 * this reason we don't need to a mutex to protect access to
2628 * jbd2_slab[] allocating or releasing memory; only in
2629 * jbd2_journal_create_slab().
2630 */
2631 #define JBD2_MAX_SLABS 8
2632 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
2633
2634 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
2635 "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
2636 "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
2637 };
2638
2639
jbd2_journal_destroy_slabs(void)2640 static void jbd2_journal_destroy_slabs(void)
2641 {
2642 int i;
2643
2644 for (i = 0; i < JBD2_MAX_SLABS; i++) {
2645 kmem_cache_destroy(jbd2_slab[i]);
2646 jbd2_slab[i] = NULL;
2647 }
2648 }
2649
jbd2_journal_create_slab(size_t size)2650 static int jbd2_journal_create_slab(size_t size)
2651 {
2652 static DEFINE_MUTEX(jbd2_slab_create_mutex);
2653 int i = order_base_2(size) - 10;
2654 size_t slab_size;
2655
2656 if (size == PAGE_SIZE)
2657 return 0;
2658
2659 if (i >= JBD2_MAX_SLABS)
2660 return -EINVAL;
2661
2662 if (unlikely(i < 0))
2663 i = 0;
2664 mutex_lock(&jbd2_slab_create_mutex);
2665 if (jbd2_slab[i]) {
2666 mutex_unlock(&jbd2_slab_create_mutex);
2667 return 0; /* Already created */
2668 }
2669
2670 slab_size = 1 << (i+10);
2671 jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
2672 slab_size, 0, NULL);
2673 mutex_unlock(&jbd2_slab_create_mutex);
2674 if (!jbd2_slab[i]) {
2675 printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
2676 return -ENOMEM;
2677 }
2678 return 0;
2679 }
2680
get_slab(size_t size)2681 static struct kmem_cache *get_slab(size_t size)
2682 {
2683 int i = order_base_2(size) - 10;
2684
2685 BUG_ON(i >= JBD2_MAX_SLABS);
2686 if (unlikely(i < 0))
2687 i = 0;
2688 BUG_ON(jbd2_slab[i] == NULL);
2689 return jbd2_slab[i];
2690 }
2691
jbd2_alloc(size_t size,gfp_t flags)2692 void *jbd2_alloc(size_t size, gfp_t flags)
2693 {
2694 void *ptr;
2695
2696 BUG_ON(size & (size-1)); /* Must be a power of 2 */
2697
2698 if (size < PAGE_SIZE)
2699 ptr = kmem_cache_alloc(get_slab(size), flags);
2700 else
2701 ptr = (void *)__get_free_pages(flags, get_order(size));
2702
2703 /* Check alignment; SLUB has gotten this wrong in the past,
2704 * and this can lead to user data corruption! */
2705 BUG_ON(((unsigned long) ptr) & (size-1));
2706
2707 return ptr;
2708 }
2709
jbd2_free(void * ptr,size_t size)2710 void jbd2_free(void *ptr, size_t size)
2711 {
2712 if (size < PAGE_SIZE)
2713 kmem_cache_free(get_slab(size), ptr);
2714 else
2715 free_pages((unsigned long)ptr, get_order(size));
2716 };
2717
2718 /*
2719 * Journal_head storage management
2720 */
2721 static struct kmem_cache *jbd2_journal_head_cache;
2722 #ifdef CONFIG_JBD2_DEBUG
2723 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
2724 #endif
2725
jbd2_journal_init_journal_head_cache(void)2726 static int __init jbd2_journal_init_journal_head_cache(void)
2727 {
2728 J_ASSERT(!jbd2_journal_head_cache);
2729 jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
2730 sizeof(struct journal_head),
2731 0, /* offset */
2732 SLAB_TEMPORARY | SLAB_TYPESAFE_BY_RCU,
2733 NULL); /* ctor */
2734 if (!jbd2_journal_head_cache) {
2735 printk(KERN_EMERG "JBD2: no memory for journal_head cache\n");
2736 return -ENOMEM;
2737 }
2738 return 0;
2739 }
2740
jbd2_journal_destroy_journal_head_cache(void)2741 static void jbd2_journal_destroy_journal_head_cache(void)
2742 {
2743 kmem_cache_destroy(jbd2_journal_head_cache);
2744 jbd2_journal_head_cache = NULL;
2745 }
2746
2747 /*
2748 * journal_head splicing and dicing
2749 */
journal_alloc_journal_head(void)2750 static struct journal_head *journal_alloc_journal_head(void)
2751 {
2752 struct journal_head *ret;
2753
2754 #ifdef CONFIG_JBD2_DEBUG
2755 atomic_inc(&nr_journal_heads);
2756 #endif
2757 ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS);
2758 if (!ret) {
2759 jbd_debug(1, "out of memory for journal_head\n");
2760 pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
2761 ret = kmem_cache_zalloc(jbd2_journal_head_cache,
2762 GFP_NOFS | __GFP_NOFAIL);
2763 }
2764 if (ret)
2765 spin_lock_init(&ret->b_state_lock);
2766 return ret;
2767 }
2768
journal_free_journal_head(struct journal_head * jh)2769 static void journal_free_journal_head(struct journal_head *jh)
2770 {
2771 #ifdef CONFIG_JBD2_DEBUG
2772 atomic_dec(&nr_journal_heads);
2773 memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2774 #endif
2775 kmem_cache_free(jbd2_journal_head_cache, jh);
2776 }
2777
2778 /*
2779 * A journal_head is attached to a buffer_head whenever JBD has an
2780 * interest in the buffer.
2781 *
2782 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2783 * is set. This bit is tested in core kernel code where we need to take
2784 * JBD-specific actions. Testing the zeroness of ->b_private is not reliable
2785 * there.
2786 *
2787 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2788 *
2789 * When a buffer has its BH_JBD bit set it is immune from being released by
2790 * core kernel code, mainly via ->b_count.
2791 *
2792 * A journal_head is detached from its buffer_head when the journal_head's
2793 * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2794 * transaction (b_cp_transaction) hold their references to b_jcount.
2795 *
2796 * Various places in the kernel want to attach a journal_head to a buffer_head
2797 * _before_ attaching the journal_head to a transaction. To protect the
2798 * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2799 * journal_head's b_jcount refcount by one. The caller must call
2800 * jbd2_journal_put_journal_head() to undo this.
2801 *
2802 * So the typical usage would be:
2803 *
2804 * (Attach a journal_head if needed. Increments b_jcount)
2805 * struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2806 * ...
2807 * (Get another reference for transaction)
2808 * jbd2_journal_grab_journal_head(bh);
2809 * jh->b_transaction = xxx;
2810 * (Put original reference)
2811 * jbd2_journal_put_journal_head(jh);
2812 */
2813
2814 /*
2815 * Give a buffer_head a journal_head.
2816 *
2817 * May sleep.
2818 */
jbd2_journal_add_journal_head(struct buffer_head * bh)2819 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2820 {
2821 struct journal_head *jh;
2822 struct journal_head *new_jh = NULL;
2823
2824 repeat:
2825 if (!buffer_jbd(bh))
2826 new_jh = journal_alloc_journal_head();
2827
2828 jbd_lock_bh_journal_head(bh);
2829 if (buffer_jbd(bh)) {
2830 jh = bh2jh(bh);
2831 } else {
2832 J_ASSERT_BH(bh,
2833 (atomic_read(&bh->b_count) > 0) ||
2834 (bh->b_page && bh->b_page->mapping));
2835
2836 if (!new_jh) {
2837 jbd_unlock_bh_journal_head(bh);
2838 goto repeat;
2839 }
2840
2841 jh = new_jh;
2842 new_jh = NULL; /* We consumed it */
2843 set_buffer_jbd(bh);
2844 bh->b_private = jh;
2845 jh->b_bh = bh;
2846 get_bh(bh);
2847 BUFFER_TRACE(bh, "added journal_head");
2848 }
2849 jh->b_jcount++;
2850 jbd_unlock_bh_journal_head(bh);
2851 if (new_jh)
2852 journal_free_journal_head(new_jh);
2853 return bh->b_private;
2854 }
2855
2856 /*
2857 * Grab a ref against this buffer_head's journal_head. If it ended up not
2858 * having a journal_head, return NULL
2859 */
jbd2_journal_grab_journal_head(struct buffer_head * bh)2860 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2861 {
2862 struct journal_head *jh = NULL;
2863
2864 jbd_lock_bh_journal_head(bh);
2865 if (buffer_jbd(bh)) {
2866 jh = bh2jh(bh);
2867 jh->b_jcount++;
2868 }
2869 jbd_unlock_bh_journal_head(bh);
2870 return jh;
2871 }
2872 EXPORT_SYMBOL(jbd2_journal_grab_journal_head);
2873
__journal_remove_journal_head(struct buffer_head * bh)2874 static void __journal_remove_journal_head(struct buffer_head *bh)
2875 {
2876 struct journal_head *jh = bh2jh(bh);
2877
2878 J_ASSERT_JH(jh, jh->b_transaction == NULL);
2879 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2880 J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
2881 J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2882 J_ASSERT_BH(bh, buffer_jbd(bh));
2883 J_ASSERT_BH(bh, jh2bh(jh) == bh);
2884 BUFFER_TRACE(bh, "remove journal_head");
2885
2886 /* Unlink before dropping the lock */
2887 bh->b_private = NULL;
2888 jh->b_bh = NULL; /* debug, really */
2889 clear_buffer_jbd(bh);
2890 }
2891
journal_release_journal_head(struct journal_head * jh,size_t b_size)2892 static void journal_release_journal_head(struct journal_head *jh, size_t b_size)
2893 {
2894 if (jh->b_frozen_data) {
2895 printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
2896 jbd2_free(jh->b_frozen_data, b_size);
2897 }
2898 if (jh->b_committed_data) {
2899 printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
2900 jbd2_free(jh->b_committed_data, b_size);
2901 }
2902 journal_free_journal_head(jh);
2903 }
2904
2905 /*
2906 * Drop a reference on the passed journal_head. If it fell to zero then
2907 * release the journal_head from the buffer_head.
2908 */
jbd2_journal_put_journal_head(struct journal_head * jh)2909 void jbd2_journal_put_journal_head(struct journal_head *jh)
2910 {
2911 struct buffer_head *bh = jh2bh(jh);
2912
2913 jbd_lock_bh_journal_head(bh);
2914 J_ASSERT_JH(jh, jh->b_jcount > 0);
2915 --jh->b_jcount;
2916 if (!jh->b_jcount) {
2917 __journal_remove_journal_head(bh);
2918 jbd_unlock_bh_journal_head(bh);
2919 journal_release_journal_head(jh, bh->b_size);
2920 __brelse(bh);
2921 } else {
2922 jbd_unlock_bh_journal_head(bh);
2923 }
2924 }
2925 EXPORT_SYMBOL(jbd2_journal_put_journal_head);
2926
2927 /*
2928 * Initialize jbd inode head
2929 */
jbd2_journal_init_jbd_inode(struct jbd2_inode * jinode,struct inode * inode)2930 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
2931 {
2932 jinode->i_transaction = NULL;
2933 jinode->i_next_transaction = NULL;
2934 jinode->i_vfs_inode = inode;
2935 jinode->i_flags = 0;
2936 jinode->i_dirty_start = 0;
2937 jinode->i_dirty_end = 0;
2938 INIT_LIST_HEAD(&jinode->i_list);
2939 }
2940
2941 /*
2942 * Function to be called before we start removing inode from memory (i.e.,
2943 * clear_inode() is a fine place to be called from). It removes inode from
2944 * transaction's lists.
2945 */
jbd2_journal_release_jbd_inode(journal_t * journal,struct jbd2_inode * jinode)2946 void jbd2_journal_release_jbd_inode(journal_t *journal,
2947 struct jbd2_inode *jinode)
2948 {
2949 if (!journal)
2950 return;
2951 restart:
2952 spin_lock(&journal->j_list_lock);
2953 /* Is commit writing out inode - we have to wait */
2954 if (jinode->i_flags & JI_COMMIT_RUNNING) {
2955 wait_queue_head_t *wq;
2956 DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
2957 wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
2958 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2959 spin_unlock(&journal->j_list_lock);
2960 schedule();
2961 finish_wait(wq, &wait.wq_entry);
2962 goto restart;
2963 }
2964
2965 if (jinode->i_transaction) {
2966 list_del(&jinode->i_list);
2967 jinode->i_transaction = NULL;
2968 }
2969 spin_unlock(&journal->j_list_lock);
2970 }
2971
2972
2973 #ifdef CONFIG_PROC_FS
2974
2975 #define JBD2_STATS_PROC_NAME "fs/jbd2"
2976
jbd2_create_jbd_stats_proc_entry(void)2977 static void __init jbd2_create_jbd_stats_proc_entry(void)
2978 {
2979 proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
2980 }
2981
jbd2_remove_jbd_stats_proc_entry(void)2982 static void __exit jbd2_remove_jbd_stats_proc_entry(void)
2983 {
2984 if (proc_jbd2_stats)
2985 remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
2986 }
2987
2988 #else
2989
2990 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2991 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2992
2993 #endif
2994
2995 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
2996
jbd2_journal_init_inode_cache(void)2997 static int __init jbd2_journal_init_inode_cache(void)
2998 {
2999 J_ASSERT(!jbd2_inode_cache);
3000 jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
3001 if (!jbd2_inode_cache) {
3002 pr_emerg("JBD2: failed to create inode cache\n");
3003 return -ENOMEM;
3004 }
3005 return 0;
3006 }
3007
jbd2_journal_init_handle_cache(void)3008 static int __init jbd2_journal_init_handle_cache(void)
3009 {
3010 J_ASSERT(!jbd2_handle_cache);
3011 jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
3012 if (!jbd2_handle_cache) {
3013 printk(KERN_EMERG "JBD2: failed to create handle cache\n");
3014 return -ENOMEM;
3015 }
3016 return 0;
3017 }
3018
jbd2_journal_destroy_inode_cache(void)3019 static void jbd2_journal_destroy_inode_cache(void)
3020 {
3021 kmem_cache_destroy(jbd2_inode_cache);
3022 jbd2_inode_cache = NULL;
3023 }
3024
jbd2_journal_destroy_handle_cache(void)3025 static void jbd2_journal_destroy_handle_cache(void)
3026 {
3027 kmem_cache_destroy(jbd2_handle_cache);
3028 jbd2_handle_cache = NULL;
3029 }
3030
3031 /*
3032 * Module startup and shutdown
3033 */
3034
journal_init_caches(void)3035 static int __init journal_init_caches(void)
3036 {
3037 int ret;
3038
3039 ret = jbd2_journal_init_revoke_record_cache();
3040 if (ret == 0)
3041 ret = jbd2_journal_init_revoke_table_cache();
3042 if (ret == 0)
3043 ret = jbd2_journal_init_journal_head_cache();
3044 if (ret == 0)
3045 ret = jbd2_journal_init_handle_cache();
3046 if (ret == 0)
3047 ret = jbd2_journal_init_inode_cache();
3048 if (ret == 0)
3049 ret = jbd2_journal_init_transaction_cache();
3050 return ret;
3051 }
3052
jbd2_journal_destroy_caches(void)3053 static void jbd2_journal_destroy_caches(void)
3054 {
3055 jbd2_journal_destroy_revoke_record_cache();
3056 jbd2_journal_destroy_revoke_table_cache();
3057 jbd2_journal_destroy_journal_head_cache();
3058 jbd2_journal_destroy_handle_cache();
3059 jbd2_journal_destroy_inode_cache();
3060 jbd2_journal_destroy_transaction_cache();
3061 jbd2_journal_destroy_slabs();
3062 }
3063
journal_init(void)3064 static int __init journal_init(void)
3065 {
3066 int ret;
3067
3068 BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
3069
3070 ret = journal_init_caches();
3071 if (ret == 0) {
3072 jbd2_create_jbd_stats_proc_entry();
3073 } else {
3074 jbd2_journal_destroy_caches();
3075 }
3076 return ret;
3077 }
3078
journal_exit(void)3079 static void __exit journal_exit(void)
3080 {
3081 #ifdef CONFIG_JBD2_DEBUG
3082 int n = atomic_read(&nr_journal_heads);
3083 if (n)
3084 printk(KERN_ERR "JBD2: leaked %d journal_heads!\n", n);
3085 #endif
3086 jbd2_remove_jbd_stats_proc_entry();
3087 jbd2_journal_destroy_caches();
3088 }
3089
3090 MODULE_LICENSE("GPL");
3091 module_init(journal_init);
3092 module_exit(journal_exit);
3093
3094