• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * jidctred-neon.c - reduced-size IDCT (Arm Neon)
3  *
4  * Copyright (C) 2020, Arm Limited.  All Rights Reserved.
5  * Copyright (C) 2020, D. R. Commander.  All Rights Reserved.
6  *
7  * This software is provided 'as-is', without any express or implied
8  * warranty.  In no event will the authors be held liable for any damages
9  * arising from the use of this software.
10  *
11  * Permission is granted to anyone to use this software for any purpose,
12  * including commercial applications, and to alter it and redistribute it
13  * freely, subject to the following restrictions:
14  *
15  * 1. The origin of this software must not be misrepresented; you must not
16  *    claim that you wrote the original software. If you use this software
17  *    in a product, an acknowledgment in the product documentation would be
18  *    appreciated but is not required.
19  * 2. Altered source versions must be plainly marked as such, and must not be
20  *    misrepresented as being the original software.
21  * 3. This notice may not be removed or altered from any source distribution.
22  */
23 
24 #define JPEG_INTERNALS
25 #include "../../jinclude.h"
26 #include "../../jpeglib.h"
27 #include "../../jsimd.h"
28 #include "../../jdct.h"
29 #include "../../jsimddct.h"
30 #include "../jsimd.h"
31 #include "align.h"
32 #include "neon-compat.h"
33 
34 #include <arm_neon.h>
35 
36 
37 #define CONST_BITS  13
38 #define PASS1_BITS  2
39 
40 #define F_0_211  1730
41 #define F_0_509  4176
42 #define F_0_601  4926
43 #define F_0_720  5906
44 #define F_0_765  6270
45 #define F_0_850  6967
46 #define F_0_899  7373
47 #define F_1_061  8697
48 #define F_1_272  10426
49 #define F_1_451  11893
50 #define F_1_847  15137
51 #define F_2_172  17799
52 #define F_2_562  20995
53 #define F_3_624  29692
54 
55 
56 /* jsimd_idct_2x2_neon() is an inverse DCT function that produces reduced-size
57  * 2x2 output from an 8x8 DCT block.  It uses the same calculations and
58  * produces exactly the same output as IJG's original jpeg_idct_2x2() function
59  * from jpeg-6b, which can be found in jidctred.c.
60  *
61  * Scaled integer constants are used to avoid floating-point arithmetic:
62  *    0.720959822 =  5906 * 2^-13
63  *    0.850430095 =  6967 * 2^-13
64  *    1.272758580 = 10426 * 2^-13
65  *    3.624509785 = 29692 * 2^-13
66  *
67  * See jidctred.c for further details of the 2x2 IDCT algorithm.  Where
68  * possible, the variable names and comments here in jsimd_idct_2x2_neon()
69  * match up with those in jpeg_idct_2x2().
70  */
71 
72 ALIGN(16) static const int16_t jsimd_idct_2x2_neon_consts[] = {
73   -F_0_720, F_0_850, -F_1_272, F_3_624
74 };
75 
jsimd_idct_2x2_neon(void * dct_table,JCOEFPTR coef_block,JSAMPARRAY output_buf,JDIMENSION output_col)76 void jsimd_idct_2x2_neon(void *dct_table, JCOEFPTR coef_block,
77                          JSAMPARRAY output_buf, JDIMENSION output_col)
78 {
79   ISLOW_MULT_TYPE *quantptr = dct_table;
80 
81   /* Load DCT coefficients. */
82   int16x8_t row0 = vld1q_s16(coef_block + 0 * DCTSIZE);
83   int16x8_t row1 = vld1q_s16(coef_block + 1 * DCTSIZE);
84   int16x8_t row3 = vld1q_s16(coef_block + 3 * DCTSIZE);
85   int16x8_t row5 = vld1q_s16(coef_block + 5 * DCTSIZE);
86   int16x8_t row7 = vld1q_s16(coef_block + 7 * DCTSIZE);
87 
88   /* Load quantization table values. */
89   int16x8_t quant_row0 = vld1q_s16(quantptr + 0 * DCTSIZE);
90   int16x8_t quant_row1 = vld1q_s16(quantptr + 1 * DCTSIZE);
91   int16x8_t quant_row3 = vld1q_s16(quantptr + 3 * DCTSIZE);
92   int16x8_t quant_row5 = vld1q_s16(quantptr + 5 * DCTSIZE);
93   int16x8_t quant_row7 = vld1q_s16(quantptr + 7 * DCTSIZE);
94 
95   /* Dequantize DCT coefficients. */
96   row0 = vmulq_s16(row0, quant_row0);
97   row1 = vmulq_s16(row1, quant_row1);
98   row3 = vmulq_s16(row3, quant_row3);
99   row5 = vmulq_s16(row5, quant_row5);
100   row7 = vmulq_s16(row7, quant_row7);
101 
102   /* Load IDCT conversion constants. */
103   const int16x4_t consts = vld1_s16(jsimd_idct_2x2_neon_consts);
104 
105   /* Pass 1: process columns from input, put results in vectors row0 and
106    * row1.
107    */
108 
109   /* Even part */
110   int32x4_t tmp10_l = vshll_n_s16(vget_low_s16(row0), CONST_BITS + 2);
111   int32x4_t tmp10_h = vshll_n_s16(vget_high_s16(row0), CONST_BITS + 2);
112 
113   /* Odd part */
114   int32x4_t tmp0_l = vmull_lane_s16(vget_low_s16(row1), consts, 3);
115   tmp0_l = vmlal_lane_s16(tmp0_l, vget_low_s16(row3), consts, 2);
116   tmp0_l = vmlal_lane_s16(tmp0_l, vget_low_s16(row5), consts, 1);
117   tmp0_l = vmlal_lane_s16(tmp0_l, vget_low_s16(row7), consts, 0);
118   int32x4_t tmp0_h = vmull_lane_s16(vget_high_s16(row1), consts, 3);
119   tmp0_h = vmlal_lane_s16(tmp0_h, vget_high_s16(row3), consts, 2);
120   tmp0_h = vmlal_lane_s16(tmp0_h, vget_high_s16(row5), consts, 1);
121   tmp0_h = vmlal_lane_s16(tmp0_h, vget_high_s16(row7), consts, 0);
122 
123   /* Final output stage: descale and narrow to 16-bit. */
124   row0 = vcombine_s16(vrshrn_n_s32(vaddq_s32(tmp10_l, tmp0_l), CONST_BITS),
125                       vrshrn_n_s32(vaddq_s32(tmp10_h, tmp0_h), CONST_BITS));
126   row1 = vcombine_s16(vrshrn_n_s32(vsubq_s32(tmp10_l, tmp0_l), CONST_BITS),
127                       vrshrn_n_s32(vsubq_s32(tmp10_h, tmp0_h), CONST_BITS));
128 
129   /* Transpose two rows, ready for second pass. */
130   int16x8x2_t cols_0246_1357 = vtrnq_s16(row0, row1);
131   int16x8_t cols_0246 = cols_0246_1357.val[0];
132   int16x8_t cols_1357 = cols_0246_1357.val[1];
133   /* Duplicate columns such that each is accessible in its own vector. */
134   int32x4x2_t cols_1155_3377 = vtrnq_s32(vreinterpretq_s32_s16(cols_1357),
135                                          vreinterpretq_s32_s16(cols_1357));
136   int16x8_t cols_1155 = vreinterpretq_s16_s32(cols_1155_3377.val[0]);
137   int16x8_t cols_3377 = vreinterpretq_s16_s32(cols_1155_3377.val[1]);
138 
139   /* Pass 2: process two rows, store to output array. */
140 
141   /* Even part: we're only interested in col0; the top half of tmp10 is "don't
142    * care."
143    */
144   int32x4_t tmp10 = vshll_n_s16(vget_low_s16(cols_0246), CONST_BITS + 2);
145 
146   /* Odd part: we're only interested in the bottom half of tmp0. */
147   int32x4_t tmp0 = vmull_lane_s16(vget_low_s16(cols_1155), consts, 3);
148   tmp0 = vmlal_lane_s16(tmp0, vget_low_s16(cols_3377), consts, 2);
149   tmp0 = vmlal_lane_s16(tmp0, vget_high_s16(cols_1155), consts, 1);
150   tmp0 = vmlal_lane_s16(tmp0, vget_high_s16(cols_3377), consts, 0);
151 
152   /* Final output stage: descale and clamp to range [0-255]. */
153   int16x8_t output_s16 = vcombine_s16(vaddhn_s32(tmp10, tmp0),
154                                       vsubhn_s32(tmp10, tmp0));
155   output_s16 = vrsraq_n_s16(vdupq_n_s16(CENTERJSAMPLE), output_s16,
156                             CONST_BITS + PASS1_BITS + 3 + 2 - 16);
157   /* Narrow to 8-bit and convert to unsigned. */
158   uint8x8_t output_u8 = vqmovun_s16(output_s16);
159 
160   /* Store 2x2 block to memory. */
161   vst1_lane_u8(output_buf[0] + output_col, output_u8, 0);
162   vst1_lane_u8(output_buf[1] + output_col, output_u8, 1);
163   vst1_lane_u8(output_buf[0] + output_col + 1, output_u8, 4);
164   vst1_lane_u8(output_buf[1] + output_col + 1, output_u8, 5);
165 }
166 
167 
168 /* jsimd_idct_4x4_neon() is an inverse DCT function that produces reduced-size
169  * 4x4 output from an 8x8 DCT block.  It uses the same calculations and
170  * produces exactly the same output as IJG's original jpeg_idct_4x4() function
171  * from jpeg-6b, which can be found in jidctred.c.
172  *
173  * Scaled integer constants are used to avoid floating-point arithmetic:
174  *    0.211164243 =  1730 * 2^-13
175  *    0.509795579 =  4176 * 2^-13
176  *    0.601344887 =  4926 * 2^-13
177  *    0.765366865 =  6270 * 2^-13
178  *    0.899976223 =  7373 * 2^-13
179  *    1.061594337 =  8697 * 2^-13
180  *    1.451774981 = 11893 * 2^-13
181  *    1.847759065 = 15137 * 2^-13
182  *    2.172734803 = 17799 * 2^-13
183  *    2.562915447 = 20995 * 2^-13
184  *
185  * See jidctred.c for further details of the 4x4 IDCT algorithm.  Where
186  * possible, the variable names and comments here in jsimd_idct_4x4_neon()
187  * match up with those in jpeg_idct_4x4().
188  */
189 
190 ALIGN(16) static const int16_t jsimd_idct_4x4_neon_consts[] = {
191   F_1_847, -F_0_765, -F_0_211,  F_1_451,
192  -F_2_172,  F_1_061, -F_0_509, -F_0_601,
193   F_0_899,  F_2_562,        0,        0
194 };
195 
jsimd_idct_4x4_neon(void * dct_table,JCOEFPTR coef_block,JSAMPARRAY output_buf,JDIMENSION output_col)196 void jsimd_idct_4x4_neon(void *dct_table, JCOEFPTR coef_block,
197                          JSAMPARRAY output_buf, JDIMENSION output_col)
198 {
199   ISLOW_MULT_TYPE *quantptr = dct_table;
200 
201   /* Load DCT coefficients. */
202   int16x8_t row0  = vld1q_s16(coef_block + 0 * DCTSIZE);
203   int16x8_t row1  = vld1q_s16(coef_block + 1 * DCTSIZE);
204   int16x8_t row2  = vld1q_s16(coef_block + 2 * DCTSIZE);
205   int16x8_t row3  = vld1q_s16(coef_block + 3 * DCTSIZE);
206   int16x8_t row5  = vld1q_s16(coef_block + 5 * DCTSIZE);
207   int16x8_t row6  = vld1q_s16(coef_block + 6 * DCTSIZE);
208   int16x8_t row7  = vld1q_s16(coef_block + 7 * DCTSIZE);
209 
210   /* Load quantization table values for DC coefficients. */
211   int16x8_t quant_row0 = vld1q_s16(quantptr + 0 * DCTSIZE);
212   /* Dequantize DC coefficients. */
213   row0 = vmulq_s16(row0, quant_row0);
214 
215   /* Construct bitmap to test if all AC coefficients are 0. */
216   int16x8_t bitmap = vorrq_s16(row1, row2);
217   bitmap = vorrq_s16(bitmap, row3);
218   bitmap = vorrq_s16(bitmap, row5);
219   bitmap = vorrq_s16(bitmap, row6);
220   bitmap = vorrq_s16(bitmap, row7);
221 
222   int64_t left_ac_bitmap = vgetq_lane_s64(vreinterpretq_s64_s16(bitmap), 0);
223   int64_t right_ac_bitmap = vgetq_lane_s64(vreinterpretq_s64_s16(bitmap), 1);
224 
225   /* Load constants for IDCT computation. */
226 #ifdef HAVE_VLD1_S16_X3
227   const int16x4x3_t consts = vld1_s16_x3(jsimd_idct_4x4_neon_consts);
228 #else
229   /* GCC does not currently support the intrinsic vld1_<type>_x3(). */
230   const int16x4_t consts1 = vld1_s16(jsimd_idct_4x4_neon_consts);
231   const int16x4_t consts2 = vld1_s16(jsimd_idct_4x4_neon_consts + 4);
232   const int16x4_t consts3 = vld1_s16(jsimd_idct_4x4_neon_consts + 8);
233   const int16x4x3_t consts = { { consts1, consts2, consts3 } };
234 #endif
235 
236   if (left_ac_bitmap == 0 && right_ac_bitmap == 0) {
237     /* All AC coefficients are zero.
238      * Compute DC values and duplicate into row vectors 0, 1, 2, and 3.
239      */
240     int16x8_t dcval = vshlq_n_s16(row0, PASS1_BITS);
241     row0 = dcval;
242     row1 = dcval;
243     row2 = dcval;
244     row3 = dcval;
245   } else if (left_ac_bitmap == 0) {
246     /* AC coefficients are zero for columns 0, 1, 2, and 3.
247      * Compute DC values for these columns.
248      */
249     int16x4_t dcval = vshl_n_s16(vget_low_s16(row0), PASS1_BITS);
250 
251     /* Commence regular IDCT computation for columns 4, 5, 6, and 7. */
252 
253     /* Load quantization table. */
254     int16x4_t quant_row1 = vld1_s16(quantptr + 1 * DCTSIZE + 4);
255     int16x4_t quant_row2 = vld1_s16(quantptr + 2 * DCTSIZE + 4);
256     int16x4_t quant_row3 = vld1_s16(quantptr + 3 * DCTSIZE + 4);
257     int16x4_t quant_row5 = vld1_s16(quantptr + 5 * DCTSIZE + 4);
258     int16x4_t quant_row6 = vld1_s16(quantptr + 6 * DCTSIZE + 4);
259     int16x4_t quant_row7 = vld1_s16(quantptr + 7 * DCTSIZE + 4);
260 
261     /* Even part */
262     int32x4_t tmp0 = vshll_n_s16(vget_high_s16(row0), CONST_BITS + 1);
263 
264     int16x4_t z2 = vmul_s16(vget_high_s16(row2), quant_row2);
265     int16x4_t z3 = vmul_s16(vget_high_s16(row6), quant_row6);
266 
267     int32x4_t tmp2 = vmull_lane_s16(z2, consts.val[0], 0);
268     tmp2 = vmlal_lane_s16(tmp2, z3, consts.val[0], 1);
269 
270     int32x4_t tmp10 = vaddq_s32(tmp0, tmp2);
271     int32x4_t tmp12 = vsubq_s32(tmp0, tmp2);
272 
273     /* Odd part */
274     int16x4_t z1 = vmul_s16(vget_high_s16(row7), quant_row7);
275     z2 = vmul_s16(vget_high_s16(row5), quant_row5);
276     z3 = vmul_s16(vget_high_s16(row3), quant_row3);
277     int16x4_t z4 = vmul_s16(vget_high_s16(row1), quant_row1);
278 
279     tmp0 = vmull_lane_s16(z1, consts.val[0], 2);
280     tmp0 = vmlal_lane_s16(tmp0, z2, consts.val[0], 3);
281     tmp0 = vmlal_lane_s16(tmp0, z3, consts.val[1], 0);
282     tmp0 = vmlal_lane_s16(tmp0, z4, consts.val[1], 1);
283 
284     tmp2 = vmull_lane_s16(z1, consts.val[1], 2);
285     tmp2 = vmlal_lane_s16(tmp2, z2, consts.val[1], 3);
286     tmp2 = vmlal_lane_s16(tmp2, z3, consts.val[2], 0);
287     tmp2 = vmlal_lane_s16(tmp2, z4, consts.val[2], 1);
288 
289     /* Final output stage: descale and narrow to 16-bit. */
290     row0 = vcombine_s16(dcval, vrshrn_n_s32(vaddq_s32(tmp10, tmp2),
291                                             CONST_BITS - PASS1_BITS + 1));
292     row3 = vcombine_s16(dcval, vrshrn_n_s32(vsubq_s32(tmp10, tmp2),
293                                             CONST_BITS - PASS1_BITS + 1));
294     row1 = vcombine_s16(dcval, vrshrn_n_s32(vaddq_s32(tmp12, tmp0),
295                                             CONST_BITS - PASS1_BITS + 1));
296     row2 = vcombine_s16(dcval, vrshrn_n_s32(vsubq_s32(tmp12, tmp0),
297                                             CONST_BITS - PASS1_BITS + 1));
298   } else if (right_ac_bitmap == 0) {
299     /* AC coefficients are zero for columns 4, 5, 6, and 7.
300      * Compute DC values for these columns.
301      */
302     int16x4_t dcval = vshl_n_s16(vget_high_s16(row0), PASS1_BITS);
303 
304     /* Commence regular IDCT computation for columns 0, 1, 2, and 3. */
305 
306     /* Load quantization table. */
307     int16x4_t quant_row1 = vld1_s16(quantptr + 1 * DCTSIZE);
308     int16x4_t quant_row2 = vld1_s16(quantptr + 2 * DCTSIZE);
309     int16x4_t quant_row3 = vld1_s16(quantptr + 3 * DCTSIZE);
310     int16x4_t quant_row5 = vld1_s16(quantptr + 5 * DCTSIZE);
311     int16x4_t quant_row6 = vld1_s16(quantptr + 6 * DCTSIZE);
312     int16x4_t quant_row7 = vld1_s16(quantptr + 7 * DCTSIZE);
313 
314     /* Even part */
315     int32x4_t tmp0 = vshll_n_s16(vget_low_s16(row0), CONST_BITS + 1);
316 
317     int16x4_t z2 = vmul_s16(vget_low_s16(row2), quant_row2);
318     int16x4_t z3 = vmul_s16(vget_low_s16(row6), quant_row6);
319 
320     int32x4_t tmp2 = vmull_lane_s16(z2, consts.val[0], 0);
321     tmp2 = vmlal_lane_s16(tmp2, z3, consts.val[0], 1);
322 
323     int32x4_t tmp10 = vaddq_s32(tmp0, tmp2);
324     int32x4_t tmp12 = vsubq_s32(tmp0, tmp2);
325 
326     /* Odd part */
327     int16x4_t z1 = vmul_s16(vget_low_s16(row7), quant_row7);
328     z2 = vmul_s16(vget_low_s16(row5), quant_row5);
329     z3 = vmul_s16(vget_low_s16(row3), quant_row3);
330     int16x4_t z4 = vmul_s16(vget_low_s16(row1), quant_row1);
331 
332     tmp0 = vmull_lane_s16(z1, consts.val[0], 2);
333     tmp0 = vmlal_lane_s16(tmp0, z2, consts.val[0], 3);
334     tmp0 = vmlal_lane_s16(tmp0, z3, consts.val[1], 0);
335     tmp0 = vmlal_lane_s16(tmp0, z4, consts.val[1], 1);
336 
337     tmp2 = vmull_lane_s16(z1, consts.val[1], 2);
338     tmp2 = vmlal_lane_s16(tmp2, z2, consts.val[1], 3);
339     tmp2 = vmlal_lane_s16(tmp2, z3, consts.val[2], 0);
340     tmp2 = vmlal_lane_s16(tmp2, z4, consts.val[2], 1);
341 
342     /* Final output stage: descale and narrow to 16-bit. */
343     row0 = vcombine_s16(vrshrn_n_s32(vaddq_s32(tmp10, tmp2),
344                                      CONST_BITS - PASS1_BITS + 1), dcval);
345     row3 = vcombine_s16(vrshrn_n_s32(vsubq_s32(tmp10, tmp2),
346                                      CONST_BITS - PASS1_BITS + 1), dcval);
347     row1 = vcombine_s16(vrshrn_n_s32(vaddq_s32(tmp12, tmp0),
348                                      CONST_BITS - PASS1_BITS + 1), dcval);
349     row2 = vcombine_s16(vrshrn_n_s32(vsubq_s32(tmp12, tmp0),
350                                      CONST_BITS - PASS1_BITS + 1), dcval);
351   } else {
352     /* All AC coefficients are non-zero; full IDCT calculation required. */
353     int16x8_t quant_row1 = vld1q_s16(quantptr + 1 * DCTSIZE);
354     int16x8_t quant_row2 = vld1q_s16(quantptr + 2 * DCTSIZE);
355     int16x8_t quant_row3 = vld1q_s16(quantptr + 3 * DCTSIZE);
356     int16x8_t quant_row5 = vld1q_s16(quantptr + 5 * DCTSIZE);
357     int16x8_t quant_row6 = vld1q_s16(quantptr + 6 * DCTSIZE);
358     int16x8_t quant_row7 = vld1q_s16(quantptr + 7 * DCTSIZE);
359 
360     /* Even part */
361     int32x4_t tmp0_l = vshll_n_s16(vget_low_s16(row0), CONST_BITS + 1);
362     int32x4_t tmp0_h = vshll_n_s16(vget_high_s16(row0), CONST_BITS + 1);
363 
364     int16x8_t z2 = vmulq_s16(row2, quant_row2);
365     int16x8_t z3 = vmulq_s16(row6, quant_row6);
366 
367     int32x4_t tmp2_l = vmull_lane_s16(vget_low_s16(z2), consts.val[0], 0);
368     int32x4_t tmp2_h = vmull_lane_s16(vget_high_s16(z2), consts.val[0], 0);
369     tmp2_l = vmlal_lane_s16(tmp2_l, vget_low_s16(z3), consts.val[0], 1);
370     tmp2_h = vmlal_lane_s16(tmp2_h, vget_high_s16(z3), consts.val[0], 1);
371 
372     int32x4_t tmp10_l = vaddq_s32(tmp0_l, tmp2_l);
373     int32x4_t tmp10_h = vaddq_s32(tmp0_h, tmp2_h);
374     int32x4_t tmp12_l = vsubq_s32(tmp0_l, tmp2_l);
375     int32x4_t tmp12_h = vsubq_s32(tmp0_h, tmp2_h);
376 
377     /* Odd part */
378     int16x8_t z1 = vmulq_s16(row7, quant_row7);
379     z2 = vmulq_s16(row5, quant_row5);
380     z3 = vmulq_s16(row3, quant_row3);
381     int16x8_t z4 = vmulq_s16(row1, quant_row1);
382 
383     tmp0_l = vmull_lane_s16(vget_low_s16(z1), consts.val[0], 2);
384     tmp0_l = vmlal_lane_s16(tmp0_l, vget_low_s16(z2), consts.val[0], 3);
385     tmp0_l = vmlal_lane_s16(tmp0_l, vget_low_s16(z3), consts.val[1], 0);
386     tmp0_l = vmlal_lane_s16(tmp0_l, vget_low_s16(z4), consts.val[1], 1);
387     tmp0_h = vmull_lane_s16(vget_high_s16(z1), consts.val[0], 2);
388     tmp0_h = vmlal_lane_s16(tmp0_h, vget_high_s16(z2), consts.val[0], 3);
389     tmp0_h = vmlal_lane_s16(tmp0_h, vget_high_s16(z3), consts.val[1], 0);
390     tmp0_h = vmlal_lane_s16(tmp0_h, vget_high_s16(z4), consts.val[1], 1);
391 
392     tmp2_l = vmull_lane_s16(vget_low_s16(z1), consts.val[1], 2);
393     tmp2_l = vmlal_lane_s16(tmp2_l, vget_low_s16(z2), consts.val[1], 3);
394     tmp2_l = vmlal_lane_s16(tmp2_l, vget_low_s16(z3), consts.val[2], 0);
395     tmp2_l = vmlal_lane_s16(tmp2_l, vget_low_s16(z4), consts.val[2], 1);
396     tmp2_h = vmull_lane_s16(vget_high_s16(z1), consts.val[1], 2);
397     tmp2_h = vmlal_lane_s16(tmp2_h, vget_high_s16(z2), consts.val[1], 3);
398     tmp2_h = vmlal_lane_s16(tmp2_h, vget_high_s16(z3), consts.val[2], 0);
399     tmp2_h = vmlal_lane_s16(tmp2_h, vget_high_s16(z4), consts.val[2], 1);
400 
401     /* Final output stage: descale and narrow to 16-bit. */
402     row0 = vcombine_s16(vrshrn_n_s32(vaddq_s32(tmp10_l, tmp2_l),
403                                      CONST_BITS - PASS1_BITS + 1),
404                         vrshrn_n_s32(vaddq_s32(tmp10_h, tmp2_h),
405                                      CONST_BITS - PASS1_BITS + 1));
406     row3 = vcombine_s16(vrshrn_n_s32(vsubq_s32(tmp10_l, tmp2_l),
407                                      CONST_BITS - PASS1_BITS + 1),
408                         vrshrn_n_s32(vsubq_s32(tmp10_h, tmp2_h),
409                                      CONST_BITS - PASS1_BITS + 1));
410     row1 = vcombine_s16(vrshrn_n_s32(vaddq_s32(tmp12_l, tmp0_l),
411                                      CONST_BITS - PASS1_BITS + 1),
412                         vrshrn_n_s32(vaddq_s32(tmp12_h, tmp0_h),
413                                      CONST_BITS - PASS1_BITS + 1));
414     row2 = vcombine_s16(vrshrn_n_s32(vsubq_s32(tmp12_l, tmp0_l),
415                                      CONST_BITS - PASS1_BITS + 1),
416                         vrshrn_n_s32(vsubq_s32(tmp12_h, tmp0_h),
417                                      CONST_BITS - PASS1_BITS + 1));
418   }
419 
420   /* Transpose 8x4 block to perform IDCT on rows in second pass. */
421   int16x8x2_t row_01 = vtrnq_s16(row0, row1);
422   int16x8x2_t row_23 = vtrnq_s16(row2, row3);
423 
424   int32x4x2_t cols_0426 = vtrnq_s32(vreinterpretq_s32_s16(row_01.val[0]),
425                                     vreinterpretq_s32_s16(row_23.val[0]));
426   int32x4x2_t cols_1537 = vtrnq_s32(vreinterpretq_s32_s16(row_01.val[1]),
427                                     vreinterpretq_s32_s16(row_23.val[1]));
428 
429   int16x4_t col0 = vreinterpret_s16_s32(vget_low_s32(cols_0426.val[0]));
430   int16x4_t col1 = vreinterpret_s16_s32(vget_low_s32(cols_1537.val[0]));
431   int16x4_t col2 = vreinterpret_s16_s32(vget_low_s32(cols_0426.val[1]));
432   int16x4_t col3 = vreinterpret_s16_s32(vget_low_s32(cols_1537.val[1]));
433   int16x4_t col5 = vreinterpret_s16_s32(vget_high_s32(cols_1537.val[0]));
434   int16x4_t col6 = vreinterpret_s16_s32(vget_high_s32(cols_0426.val[1]));
435   int16x4_t col7 = vreinterpret_s16_s32(vget_high_s32(cols_1537.val[1]));
436 
437   /* Commence second pass of IDCT. */
438 
439   /* Even part */
440   int32x4_t tmp0 = vshll_n_s16(col0, CONST_BITS + 1);
441   int32x4_t tmp2 = vmull_lane_s16(col2, consts.val[0], 0);
442   tmp2 = vmlal_lane_s16(tmp2, col6, consts.val[0], 1);
443 
444   int32x4_t tmp10 = vaddq_s32(tmp0, tmp2);
445   int32x4_t tmp12 = vsubq_s32(tmp0, tmp2);
446 
447   /* Odd part */
448   tmp0 = vmull_lane_s16(col7, consts.val[0], 2);
449   tmp0 = vmlal_lane_s16(tmp0, col5, consts.val[0], 3);
450   tmp0 = vmlal_lane_s16(tmp0, col3, consts.val[1], 0);
451   tmp0 = vmlal_lane_s16(tmp0, col1, consts.val[1], 1);
452 
453   tmp2 = vmull_lane_s16(col7, consts.val[1], 2);
454   tmp2 = vmlal_lane_s16(tmp2, col5, consts.val[1], 3);
455   tmp2 = vmlal_lane_s16(tmp2, col3, consts.val[2], 0);
456   tmp2 = vmlal_lane_s16(tmp2, col1, consts.val[2], 1);
457 
458   /* Final output stage: descale and clamp to range [0-255]. */
459   int16x8_t output_cols_02 = vcombine_s16(vaddhn_s32(tmp10, tmp2),
460                                           vsubhn_s32(tmp12, tmp0));
461   int16x8_t output_cols_13 = vcombine_s16(vaddhn_s32(tmp12, tmp0),
462                                           vsubhn_s32(tmp10, tmp2));
463   output_cols_02 = vrsraq_n_s16(vdupq_n_s16(CENTERJSAMPLE), output_cols_02,
464                                 CONST_BITS + PASS1_BITS + 3 + 1 - 16);
465   output_cols_13 = vrsraq_n_s16(vdupq_n_s16(CENTERJSAMPLE), output_cols_13,
466                                 CONST_BITS + PASS1_BITS + 3 + 1 - 16);
467   /* Narrow to 8-bit and convert to unsigned while zipping 8-bit elements.
468    * An interleaving store completes the transpose.
469    */
470   uint8x8x2_t output_0123 = vzip_u8(vqmovun_s16(output_cols_02),
471                                     vqmovun_s16(output_cols_13));
472   uint16x4x2_t output_01_23 = { {
473     vreinterpret_u16_u8(output_0123.val[0]),
474     vreinterpret_u16_u8(output_0123.val[1])
475   } };
476 
477   /* Store 4x4 block to memory. */
478   JSAMPROW outptr0 = output_buf[0] + output_col;
479   JSAMPROW outptr1 = output_buf[1] + output_col;
480   JSAMPROW outptr2 = output_buf[2] + output_col;
481   JSAMPROW outptr3 = output_buf[3] + output_col;
482   vst2_lane_u16((uint16_t *)outptr0, output_01_23, 0);
483   vst2_lane_u16((uint16_t *)outptr1, output_01_23, 1);
484   vst2_lane_u16((uint16_t *)outptr2, output_01_23, 2);
485   vst2_lane_u16((uint16_t *)outptr3, output_01_23, 3);
486 }
487