• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- llvm/Value.h - Definition of the Value class -------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file declares the Value class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef LLVM_IR_VALUE_H
14 #define LLVM_IR_VALUE_H
15 
16 #include "llvm-c/Types.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/iterator_range.h"
19 #include "llvm/IR/Use.h"
20 #include "llvm/Support/Alignment.h"
21 #include "llvm/Support/CBindingWrapping.h"
22 #include "llvm/Support/Casting.h"
23 #include <cassert>
24 #include <iterator>
25 #include <memory>
26 
27 namespace llvm {
28 
29 class APInt;
30 class Argument;
31 class BasicBlock;
32 class Constant;
33 class ConstantData;
34 class ConstantAggregate;
35 class DataLayout;
36 class Function;
37 class GlobalAlias;
38 class GlobalIFunc;
39 class GlobalIndirectSymbol;
40 class GlobalObject;
41 class GlobalValue;
42 class GlobalVariable;
43 class InlineAsm;
44 class Instruction;
45 class LLVMContext;
46 class Module;
47 class ModuleSlotTracker;
48 class raw_ostream;
49 template<typename ValueTy> class StringMapEntry;
50 class StringRef;
51 class Twine;
52 class Type;
53 class User;
54 
55 using ValueName = StringMapEntry<Value *>;
56 
57 //===----------------------------------------------------------------------===//
58 //                                 Value Class
59 //===----------------------------------------------------------------------===//
60 
61 /// LLVM Value Representation
62 ///
63 /// This is a very important LLVM class. It is the base class of all values
64 /// computed by a program that may be used as operands to other values. Value is
65 /// the super class of other important classes such as Instruction and Function.
66 /// All Values have a Type. Type is not a subclass of Value. Some values can
67 /// have a name and they belong to some Module.  Setting the name on the Value
68 /// automatically updates the module's symbol table.
69 ///
70 /// Every value has a "use list" that keeps track of which other Values are
71 /// using this Value.  A Value can also have an arbitrary number of ValueHandle
72 /// objects that watch it and listen to RAUW and Destroy events.  See
73 /// llvm/IR/ValueHandle.h for details.
74 class Value {
75   // The least-significant bit of the first word of Value *must* be zero:
76   //   http://www.llvm.org/docs/ProgrammersManual.html#the-waymarking-algorithm
77   Type *VTy;
78   Use *UseList;
79 
80   friend class ValueAsMetadata; // Allow access to IsUsedByMD.
81   friend class ValueHandleBase;
82 
83   const unsigned char SubclassID;   // Subclass identifier (for isa/dyn_cast)
84   unsigned char HasValueHandle : 1; // Has a ValueHandle pointing to this?
85 
86 protected:
87   /// Hold subclass data that can be dropped.
88   ///
89   /// This member is similar to SubclassData, however it is for holding
90   /// information which may be used to aid optimization, but which may be
91   /// cleared to zero without affecting conservative interpretation.
92   unsigned char SubclassOptionalData : 7;
93 
94 private:
95   /// Hold arbitrary subclass data.
96   ///
97   /// This member is defined by this class, but is not used for anything.
98   /// Subclasses can use it to hold whatever state they find useful.  This
99   /// field is initialized to zero by the ctor.
100   unsigned short SubclassData;
101 
102 protected:
103   /// The number of operands in the subclass.
104   ///
105   /// This member is defined by this class, but not used for anything.
106   /// Subclasses can use it to store their number of operands, if they have
107   /// any.
108   ///
109   /// This is stored here to save space in User on 64-bit hosts.  Since most
110   /// instances of Value have operands, 32-bit hosts aren't significantly
111   /// affected.
112   ///
113   /// Note, this should *NOT* be used directly by any class other than User.
114   /// User uses this value to find the Use list.
115   enum : unsigned { NumUserOperandsBits = 28 };
116   unsigned NumUserOperands : NumUserOperandsBits;
117 
118   // Use the same type as the bitfield above so that MSVC will pack them.
119   unsigned IsUsedByMD : 1;
120   unsigned HasName : 1;
121   unsigned HasHungOffUses : 1;
122   unsigned HasDescriptor : 1;
123 
124 private:
125   template <typename UseT> // UseT == 'Use' or 'const Use'
126   class use_iterator_impl
127       : public std::iterator<std::forward_iterator_tag, UseT *> {
128     friend class Value;
129 
130     UseT *U;
131 
use_iterator_impl(UseT * u)132     explicit use_iterator_impl(UseT *u) : U(u) {}
133 
134   public:
use_iterator_impl()135     use_iterator_impl() : U() {}
136 
137     bool operator==(const use_iterator_impl &x) const { return U == x.U; }
138     bool operator!=(const use_iterator_impl &x) const { return !operator==(x); }
139 
140     use_iterator_impl &operator++() { // Preincrement
141       assert(U && "Cannot increment end iterator!");
142       U = U->getNext();
143       return *this;
144     }
145 
146     use_iterator_impl operator++(int) { // Postincrement
147       auto tmp = *this;
148       ++*this;
149       return tmp;
150     }
151 
152     UseT &operator*() const {
153       assert(U && "Cannot dereference end iterator!");
154       return *U;
155     }
156 
157     UseT *operator->() const { return &operator*(); }
158 
159     operator use_iterator_impl<const UseT>() const {
160       return use_iterator_impl<const UseT>(U);
161     }
162   };
163 
164   template <typename UserTy> // UserTy == 'User' or 'const User'
165   class user_iterator_impl
166       : public std::iterator<std::forward_iterator_tag, UserTy *> {
167     use_iterator_impl<Use> UI;
user_iterator_impl(Use * U)168     explicit user_iterator_impl(Use *U) : UI(U) {}
169     friend class Value;
170 
171   public:
172     user_iterator_impl() = default;
173 
174     bool operator==(const user_iterator_impl &x) const { return UI == x.UI; }
175     bool operator!=(const user_iterator_impl &x) const { return !operator==(x); }
176 
177     /// Returns true if this iterator is equal to user_end() on the value.
atEnd()178     bool atEnd() const { return *this == user_iterator_impl(); }
179 
180     user_iterator_impl &operator++() { // Preincrement
181       ++UI;
182       return *this;
183     }
184 
185     user_iterator_impl operator++(int) { // Postincrement
186       auto tmp = *this;
187       ++*this;
188       return tmp;
189     }
190 
191     // Retrieve a pointer to the current User.
192     UserTy *operator*() const {
193       return UI->getUser();
194     }
195 
196     UserTy *operator->() const { return operator*(); }
197 
198     operator user_iterator_impl<const UserTy>() const {
199       return user_iterator_impl<const UserTy>(*UI);
200     }
201 
getUse()202     Use &getUse() const { return *UI; }
203   };
204 
205 protected:
206   Value(Type *Ty, unsigned scid);
207 
208   /// Value's destructor should be virtual by design, but that would require
209   /// that Value and all of its subclasses have a vtable that effectively
210   /// duplicates the information in the value ID. As a size optimization, the
211   /// destructor has been protected, and the caller should manually call
212   /// deleteValue.
213   ~Value(); // Use deleteValue() to delete a generic Value.
214 
215 public:
216   Value(const Value &) = delete;
217   Value &operator=(const Value &) = delete;
218 
219   /// Delete a pointer to a generic Value.
220   void deleteValue();
221 
222   /// Support for debugging, callable in GDB: V->dump()
223   void dump() const;
224 
225   /// Implement operator<< on Value.
226   /// @{
227   void print(raw_ostream &O, bool IsForDebug = false) const;
228   void print(raw_ostream &O, ModuleSlotTracker &MST,
229              bool IsForDebug = false) const;
230   /// @}
231 
232   /// Print the name of this Value out to the specified raw_ostream.
233   ///
234   /// This is useful when you just want to print 'int %reg126', not the
235   /// instruction that generated it. If you specify a Module for context, then
236   /// even constanst get pretty-printed; for example, the type of a null
237   /// pointer is printed symbolically.
238   /// @{
239   void printAsOperand(raw_ostream &O, bool PrintType = true,
240                       const Module *M = nullptr) const;
241   void printAsOperand(raw_ostream &O, bool PrintType,
242                       ModuleSlotTracker &MST) const;
243   /// @}
244 
245   /// All values are typed, get the type of this value.
getType()246   Type *getType() const { return VTy; }
247 
248   /// All values hold a context through their type.
249   LLVMContext &getContext() const;
250 
251   // All values can potentially be named.
hasName()252   bool hasName() const { return HasName; }
253   ValueName *getValueName() const;
254   void setValueName(ValueName *VN);
255 
256 private:
257   void destroyValueName();
258   enum class ReplaceMetadataUses { No, Yes };
259   void doRAUW(Value *New, ReplaceMetadataUses);
260   void setNameImpl(const Twine &Name);
261 
262 public:
263   /// Return a constant reference to the value's name.
264   ///
265   /// This guaranteed to return the same reference as long as the value is not
266   /// modified.  If the value has a name, this does a hashtable lookup, so it's
267   /// not free.
268   StringRef getName() const;
269 
270   /// Change the name of the value.
271   ///
272   /// Choose a new unique name if the provided name is taken.
273   ///
274   /// \param Name The new name; or "" if the value's name should be removed.
275   void setName(const Twine &Name);
276 
277   /// Transfer the name from V to this value.
278   ///
279   /// After taking V's name, sets V's name to empty.
280   ///
281   /// \note It is an error to call V->takeName(V).
282   void takeName(Value *V);
283 
284   /// Change all uses of this to point to a new Value.
285   ///
286   /// Go through the uses list for this definition and make each use point to
287   /// "V" instead of "this".  After this completes, 'this's use list is
288   /// guaranteed to be empty.
289   void replaceAllUsesWith(Value *V);
290 
291   /// Change non-metadata uses of this to point to a new Value.
292   ///
293   /// Go through the uses list for this definition and make each use point to
294   /// "V" instead of "this". This function skips metadata entries in the list.
295   void replaceNonMetadataUsesWith(Value *V);
296 
297   /// Go through the uses list for this definition and make each use point
298   /// to "V" if the callback ShouldReplace returns true for the given Use.
299   /// Unlike replaceAllUsesWith() this function does not support basic block
300   /// values or constant users.
replaceUsesWithIf(Value * New,llvm::function_ref<bool (Use & U)> ShouldReplace)301   void replaceUsesWithIf(Value *New,
302                          llvm::function_ref<bool(Use &U)> ShouldReplace) {
303     assert(New && "Value::replaceUsesWithIf(<null>) is invalid!");
304     assert(New->getType() == getType() &&
305            "replaceUses of value with new value of different type!");
306 
307     for (use_iterator UI = use_begin(), E = use_end(); UI != E;) {
308       Use &U = *UI;
309       ++UI;
310       if (!ShouldReplace(U))
311         continue;
312       U.set(New);
313     }
314   }
315 
316   /// replaceUsesOutsideBlock - Go through the uses list for this definition and
317   /// make each use point to "V" instead of "this" when the use is outside the
318   /// block. 'This's use list is expected to have at least one element.
319   /// Unlike replaceAllUsesWith() this function does not support basic block
320   /// values or constant users.
321   void replaceUsesOutsideBlock(Value *V, BasicBlock *BB);
322 
323   //----------------------------------------------------------------------
324   // Methods for handling the chain of uses of this Value.
325   //
326   // Materializing a function can introduce new uses, so these methods come in
327   // two variants:
328   // The methods that start with materialized_ check the uses that are
329   // currently known given which functions are materialized. Be very careful
330   // when using them since you might not get all uses.
331   // The methods that don't start with materialized_ assert that modules is
332   // fully materialized.
333   void assertModuleIsMaterializedImpl() const;
334   // This indirection exists so we can keep assertModuleIsMaterializedImpl()
335   // around in release builds of Value.cpp to be linked with other code built
336   // in debug mode. But this avoids calling it in any of the release built code.
assertModuleIsMaterialized()337   void assertModuleIsMaterialized() const {
338 #ifndef NDEBUG
339     assertModuleIsMaterializedImpl();
340 #endif
341   }
342 
use_empty()343   bool use_empty() const {
344     assertModuleIsMaterialized();
345     return UseList == nullptr;
346   }
347 
materialized_use_empty()348   bool materialized_use_empty() const {
349     return UseList == nullptr;
350   }
351 
352   using use_iterator = use_iterator_impl<Use>;
353   using const_use_iterator = use_iterator_impl<const Use>;
354 
materialized_use_begin()355   use_iterator materialized_use_begin() { return use_iterator(UseList); }
materialized_use_begin()356   const_use_iterator materialized_use_begin() const {
357     return const_use_iterator(UseList);
358   }
use_begin()359   use_iterator use_begin() {
360     assertModuleIsMaterialized();
361     return materialized_use_begin();
362   }
use_begin()363   const_use_iterator use_begin() const {
364     assertModuleIsMaterialized();
365     return materialized_use_begin();
366   }
use_end()367   use_iterator use_end() { return use_iterator(); }
use_end()368   const_use_iterator use_end() const { return const_use_iterator(); }
materialized_uses()369   iterator_range<use_iterator> materialized_uses() {
370     return make_range(materialized_use_begin(), use_end());
371   }
materialized_uses()372   iterator_range<const_use_iterator> materialized_uses() const {
373     return make_range(materialized_use_begin(), use_end());
374   }
uses()375   iterator_range<use_iterator> uses() {
376     assertModuleIsMaterialized();
377     return materialized_uses();
378   }
uses()379   iterator_range<const_use_iterator> uses() const {
380     assertModuleIsMaterialized();
381     return materialized_uses();
382   }
383 
user_empty()384   bool user_empty() const {
385     assertModuleIsMaterialized();
386     return UseList == nullptr;
387   }
388 
389   using user_iterator = user_iterator_impl<User>;
390   using const_user_iterator = user_iterator_impl<const User>;
391 
materialized_user_begin()392   user_iterator materialized_user_begin() { return user_iterator(UseList); }
materialized_user_begin()393   const_user_iterator materialized_user_begin() const {
394     return const_user_iterator(UseList);
395   }
user_begin()396   user_iterator user_begin() {
397     assertModuleIsMaterialized();
398     return materialized_user_begin();
399   }
user_begin()400   const_user_iterator user_begin() const {
401     assertModuleIsMaterialized();
402     return materialized_user_begin();
403   }
user_end()404   user_iterator user_end() { return user_iterator(); }
user_end()405   const_user_iterator user_end() const { return const_user_iterator(); }
user_back()406   User *user_back() {
407     assertModuleIsMaterialized();
408     return *materialized_user_begin();
409   }
user_back()410   const User *user_back() const {
411     assertModuleIsMaterialized();
412     return *materialized_user_begin();
413   }
materialized_users()414   iterator_range<user_iterator> materialized_users() {
415     return make_range(materialized_user_begin(), user_end());
416   }
materialized_users()417   iterator_range<const_user_iterator> materialized_users() const {
418     return make_range(materialized_user_begin(), user_end());
419   }
users()420   iterator_range<user_iterator> users() {
421     assertModuleIsMaterialized();
422     return materialized_users();
423   }
users()424   iterator_range<const_user_iterator> users() const {
425     assertModuleIsMaterialized();
426     return materialized_users();
427   }
428 
429   /// Return true if there is exactly one user of this value.
430   ///
431   /// This is specialized because it is a common request and does not require
432   /// traversing the whole use list.
hasOneUse()433   bool hasOneUse() const {
434     const_use_iterator I = use_begin(), E = use_end();
435     if (I == E) return false;
436     return ++I == E;
437   }
438 
439   /// Return true if this Value has exactly N users.
440   bool hasNUses(unsigned N) const;
441 
442   /// Return true if this value has N users or more.
443   ///
444   /// This is logically equivalent to getNumUses() >= N.
445   bool hasNUsesOrMore(unsigned N) const;
446 
447   /// Check if this value is used in the specified basic block.
448   bool isUsedInBasicBlock(const BasicBlock *BB) const;
449 
450   /// This method computes the number of uses of this Value.
451   ///
452   /// This is a linear time operation.  Use hasOneUse, hasNUses, or
453   /// hasNUsesOrMore to check for specific values.
454   unsigned getNumUses() const;
455 
456   /// This method should only be used by the Use class.
addUse(Use & U)457   void addUse(Use &U) { U.addToList(&UseList); }
458 
459   /// Concrete subclass of this.
460   ///
461   /// An enumeration for keeping track of the concrete subclass of Value that
462   /// is actually instantiated. Values of this enumeration are kept in the
463   /// Value classes SubclassID field. They are used for concrete type
464   /// identification.
465   enum ValueTy {
466 #define HANDLE_VALUE(Name) Name##Val,
467 #include "llvm/IR/Value.def"
468 
469     // Markers:
470 #define HANDLE_CONSTANT_MARKER(Marker, Constant) Marker = Constant##Val,
471 #include "llvm/IR/Value.def"
472   };
473 
474   /// Return an ID for the concrete type of this object.
475   ///
476   /// This is used to implement the classof checks.  This should not be used
477   /// for any other purpose, as the values may change as LLVM evolves.  Also,
478   /// note that for instructions, the Instruction's opcode is added to
479   /// InstructionVal. So this means three things:
480   /// # there is no value with code InstructionVal (no opcode==0).
481   /// # there are more possible values for the value type than in ValueTy enum.
482   /// # the InstructionVal enumerator must be the highest valued enumerator in
483   ///   the ValueTy enum.
getValueID()484   unsigned getValueID() const {
485     return SubclassID;
486   }
487 
488   /// Return the raw optional flags value contained in this value.
489   ///
490   /// This should only be used when testing two Values for equivalence.
getRawSubclassOptionalData()491   unsigned getRawSubclassOptionalData() const {
492     return SubclassOptionalData;
493   }
494 
495   /// Clear the optional flags contained in this value.
clearSubclassOptionalData()496   void clearSubclassOptionalData() {
497     SubclassOptionalData = 0;
498   }
499 
500   /// Check the optional flags for equality.
hasSameSubclassOptionalData(const Value * V)501   bool hasSameSubclassOptionalData(const Value *V) const {
502     return SubclassOptionalData == V->SubclassOptionalData;
503   }
504 
505   /// Return true if there is a value handle associated with this value.
hasValueHandle()506   bool hasValueHandle() const { return HasValueHandle; }
507 
508   /// Return true if there is metadata referencing this value.
isUsedByMetadata()509   bool isUsedByMetadata() const { return IsUsedByMD; }
510 
511   /// Return true if this value is a swifterror value.
512   ///
513   /// swifterror values can be either a function argument or an alloca with a
514   /// swifterror attribute.
515   bool isSwiftError() const;
516 
517   /// Strip off pointer casts, all-zero GEPs and address space casts.
518   ///
519   /// Returns the original uncasted value.  If this is called on a non-pointer
520   /// value, it returns 'this'.
521   const Value *stripPointerCasts() const;
stripPointerCasts()522   Value *stripPointerCasts() {
523     return const_cast<Value *>(
524         static_cast<const Value *>(this)->stripPointerCasts());
525   }
526 
527   /// Strip off pointer casts, all-zero GEPs, address space casts, and aliases.
528   ///
529   /// Returns the original uncasted value.  If this is called on a non-pointer
530   /// value, it returns 'this'.
531   const Value *stripPointerCastsAndAliases() const;
stripPointerCastsAndAliases()532   Value *stripPointerCastsAndAliases() {
533     return const_cast<Value *>(
534         static_cast<const Value *>(this)->stripPointerCastsAndAliases());
535   }
536 
537   /// Strip off pointer casts, all-zero GEPs and address space casts
538   /// but ensures the representation of the result stays the same.
539   ///
540   /// Returns the original uncasted value with the same representation. If this
541   /// is called on a non-pointer value, it returns 'this'.
542   const Value *stripPointerCastsSameRepresentation() const;
stripPointerCastsSameRepresentation()543   Value *stripPointerCastsSameRepresentation() {
544     return const_cast<Value *>(static_cast<const Value *>(this)
545                                    ->stripPointerCastsSameRepresentation());
546   }
547 
548   /// Strip off pointer casts, all-zero GEPs and invariant group info.
549   ///
550   /// Returns the original uncasted value.  If this is called on a non-pointer
551   /// value, it returns 'this'. This function should be used only in
552   /// Alias analysis.
553   const Value *stripPointerCastsAndInvariantGroups() const;
stripPointerCastsAndInvariantGroups()554   Value *stripPointerCastsAndInvariantGroups() {
555     return const_cast<Value *>(static_cast<const Value *>(this)
556                                    ->stripPointerCastsAndInvariantGroups());
557   }
558 
559   /// Strip off pointer casts and all-constant inbounds GEPs.
560   ///
561   /// Returns the original pointer value.  If this is called on a non-pointer
562   /// value, it returns 'this'.
563   const Value *stripInBoundsConstantOffsets() const;
stripInBoundsConstantOffsets()564   Value *stripInBoundsConstantOffsets() {
565     return const_cast<Value *>(
566               static_cast<const Value *>(this)->stripInBoundsConstantOffsets());
567   }
568 
569   /// Accumulate the constant offset this value has compared to a base pointer.
570   /// Only 'getelementptr' instructions (GEPs) with constant indices are
571   /// accumulated but other instructions, e.g., casts, are stripped away as
572   /// well. The accumulated constant offset is added to \p Offset and the base
573   /// pointer is returned.
574   ///
575   /// The APInt \p Offset has to have a bit-width equal to the IntPtr type for
576   /// the address space of 'this' pointer value, e.g., use
577   /// DataLayout::getIndexTypeSizeInBits(Ty).
578   ///
579   /// If \p AllowNonInbounds is true, constant offsets in GEPs are stripped and
580   /// accumulated even if the GEP is not "inbounds".
581   ///
582   /// If this is called on a non-pointer value, it returns 'this' and the
583   /// \p Offset is not modified.
584   ///
585   /// Note that this function will never return a nullptr. It will also never
586   /// manipulate the \p Offset in a way that would not match the difference
587   /// between the underlying value and the returned one. Thus, if no constant
588   /// offset was found, the returned value is the underlying one and \p Offset
589   /// is unchanged.
590   const Value *stripAndAccumulateConstantOffsets(const DataLayout &DL,
591                                                  APInt &Offset,
592                                                  bool AllowNonInbounds) const;
stripAndAccumulateConstantOffsets(const DataLayout & DL,APInt & Offset,bool AllowNonInbounds)593   Value *stripAndAccumulateConstantOffsets(const DataLayout &DL, APInt &Offset,
594                                            bool AllowNonInbounds) {
595     return const_cast<Value *>(
596         static_cast<const Value *>(this)->stripAndAccumulateConstantOffsets(
597             DL, Offset, AllowNonInbounds));
598   }
599 
600   /// This is a wrapper around stripAndAccumulateConstantOffsets with the
601   /// in-bounds requirement set to false.
stripAndAccumulateInBoundsConstantOffsets(const DataLayout & DL,APInt & Offset)602   const Value *stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL,
603                                                          APInt &Offset) const {
604     return stripAndAccumulateConstantOffsets(DL, Offset,
605                                              /* AllowNonInbounds */ false);
606   }
stripAndAccumulateInBoundsConstantOffsets(const DataLayout & DL,APInt & Offset)607   Value *stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL,
608                                                    APInt &Offset) {
609     return stripAndAccumulateConstantOffsets(DL, Offset,
610                                              /* AllowNonInbounds */ false);
611   }
612 
613   /// Strip off pointer casts and inbounds GEPs.
614   ///
615   /// Returns the original pointer value.  If this is called on a non-pointer
616   /// value, it returns 'this'.
617   const Value *stripInBoundsOffsets() const;
stripInBoundsOffsets()618   Value *stripInBoundsOffsets() {
619     return const_cast<Value *>(
620                       static_cast<const Value *>(this)->stripInBoundsOffsets());
621   }
622 
623   /// Returns the number of bytes known to be dereferenceable for the
624   /// pointer value.
625   ///
626   /// If CanBeNull is set by this function the pointer can either be null or be
627   /// dereferenceable up to the returned number of bytes.
628   uint64_t getPointerDereferenceableBytes(const DataLayout &DL,
629                                           bool &CanBeNull) const;
630 
631   /// Returns an alignment of the pointer value.
632   ///
633   /// Returns an alignment which is either specified explicitly, e.g. via
634   /// align attribute of a function argument, or guaranteed by DataLayout.
635   MaybeAlign getPointerAlignment(const DataLayout &DL) const;
636 
637   /// Translate PHI node to its predecessor from the given basic block.
638   ///
639   /// If this value is a PHI node with CurBB as its parent, return the value in
640   /// the PHI node corresponding to PredBB.  If not, return ourself.  This is
641   /// useful if you want to know the value something has in a predecessor
642   /// block.
643   const Value *DoPHITranslation(const BasicBlock *CurBB,
644                                 const BasicBlock *PredBB) const;
DoPHITranslation(const BasicBlock * CurBB,const BasicBlock * PredBB)645   Value *DoPHITranslation(const BasicBlock *CurBB, const BasicBlock *PredBB) {
646     return const_cast<Value *>(
647              static_cast<const Value *>(this)->DoPHITranslation(CurBB, PredBB));
648   }
649 
650   /// The maximum alignment for instructions.
651   ///
652   /// This is the greatest alignment value supported by load, store, and alloca
653   /// instructions, and global values.
654   static const unsigned MaxAlignmentExponent = 29;
655   static const unsigned MaximumAlignment = 1u << MaxAlignmentExponent;
656 
657   /// Mutate the type of this Value to be of the specified type.
658   ///
659   /// Note that this is an extremely dangerous operation which can create
660   /// completely invalid IR very easily.  It is strongly recommended that you
661   /// recreate IR objects with the right types instead of mutating them in
662   /// place.
mutateType(Type * Ty)663   void mutateType(Type *Ty) {
664     VTy = Ty;
665   }
666 
667   /// Sort the use-list.
668   ///
669   /// Sorts the Value's use-list by Cmp using a stable mergesort.  Cmp is
670   /// expected to compare two \a Use references.
671   template <class Compare> void sortUseList(Compare Cmp);
672 
673   /// Reverse the use-list.
674   void reverseUseList();
675 
676 private:
677   /// Merge two lists together.
678   ///
679   /// Merges \c L and \c R using \c Cmp.  To enable stable sorts, always pushes
680   /// "equal" items from L before items from R.
681   ///
682   /// \return the first element in the list.
683   ///
684   /// \note Completely ignores \a Use::Prev (doesn't read, doesn't update).
685   template <class Compare>
mergeUseLists(Use * L,Use * R,Compare Cmp)686   static Use *mergeUseLists(Use *L, Use *R, Compare Cmp) {
687     Use *Merged;
688     Use **Next = &Merged;
689 
690     while (true) {
691       if (!L) {
692         *Next = R;
693         break;
694       }
695       if (!R) {
696         *Next = L;
697         break;
698       }
699       if (Cmp(*R, *L)) {
700         *Next = R;
701         Next = &R->Next;
702         R = R->Next;
703       } else {
704         *Next = L;
705         Next = &L->Next;
706         L = L->Next;
707       }
708     }
709 
710     return Merged;
711   }
712 
713 protected:
getSubclassDataFromValue()714   unsigned short getSubclassDataFromValue() const { return SubclassData; }
setValueSubclassData(unsigned short D)715   void setValueSubclassData(unsigned short D) { SubclassData = D; }
716 };
717 
operatorValueDeleter718 struct ValueDeleter { void operator()(Value *V) { V->deleteValue(); } };
719 
720 /// Use this instead of std::unique_ptr<Value> or std::unique_ptr<Instruction>.
721 /// Those don't work because Value and Instruction's destructors are protected,
722 /// aren't virtual, and won't destroy the complete object.
723 using unique_value = std::unique_ptr<Value, ValueDeleter>;
724 
725 inline raw_ostream &operator<<(raw_ostream &OS, const Value &V) {
726   V.print(OS);
727   return OS;
728 }
729 
set(Value * V)730 void Use::set(Value *V) {
731   if (Val) removeFromList();
732   Val = V;
733   if (V) V->addUse(*this);
734 }
735 
736 Value *Use::operator=(Value *RHS) {
737   set(RHS);
738   return RHS;
739 }
740 
741 const Use &Use::operator=(const Use &RHS) {
742   set(RHS.Val);
743   return *this;
744 }
745 
sortUseList(Compare Cmp)746 template <class Compare> void Value::sortUseList(Compare Cmp) {
747   if (!UseList || !UseList->Next)
748     // No need to sort 0 or 1 uses.
749     return;
750 
751   // Note: this function completely ignores Prev pointers until the end when
752   // they're fixed en masse.
753 
754   // Create a binomial vector of sorted lists, visiting uses one at a time and
755   // merging lists as necessary.
756   const unsigned MaxSlots = 32;
757   Use *Slots[MaxSlots];
758 
759   // Collect the first use, turning it into a single-item list.
760   Use *Next = UseList->Next;
761   UseList->Next = nullptr;
762   unsigned NumSlots = 1;
763   Slots[0] = UseList;
764 
765   // Collect all but the last use.
766   while (Next->Next) {
767     Use *Current = Next;
768     Next = Current->Next;
769 
770     // Turn Current into a single-item list.
771     Current->Next = nullptr;
772 
773     // Save Current in the first available slot, merging on collisions.
774     unsigned I;
775     for (I = 0; I < NumSlots; ++I) {
776       if (!Slots[I])
777         break;
778 
779       // Merge two lists, doubling the size of Current and emptying slot I.
780       //
781       // Since the uses in Slots[I] originally preceded those in Current, send
782       // Slots[I] in as the left parameter to maintain a stable sort.
783       Current = mergeUseLists(Slots[I], Current, Cmp);
784       Slots[I] = nullptr;
785     }
786     // Check if this is a new slot.
787     if (I == NumSlots) {
788       ++NumSlots;
789       assert(NumSlots <= MaxSlots && "Use list bigger than 2^32");
790     }
791 
792     // Found an open slot.
793     Slots[I] = Current;
794   }
795 
796   // Merge all the lists together.
797   assert(Next && "Expected one more Use");
798   assert(!Next->Next && "Expected only one Use");
799   UseList = Next;
800   for (unsigned I = 0; I < NumSlots; ++I)
801     if (Slots[I])
802       // Since the uses in Slots[I] originally preceded those in UseList, send
803       // Slots[I] in as the left parameter to maintain a stable sort.
804       UseList = mergeUseLists(Slots[I], UseList, Cmp);
805 
806   // Fix the Prev pointers.
807   for (Use *I = UseList, **Prev = &UseList; I; I = I->Next) {
808     I->setPrev(Prev);
809     Prev = &I->Next;
810   }
811 }
812 
813 // isa - Provide some specializations of isa so that we don't have to include
814 // the subtype header files to test to see if the value is a subclass...
815 //
816 template <> struct isa_impl<Constant, Value> {
817   static inline bool doit(const Value &Val) {
818     static_assert(Value::ConstantFirstVal == 0, "Val.getValueID() >= Value::ConstantFirstVal");
819     return Val.getValueID() <= Value::ConstantLastVal;
820   }
821 };
822 
823 template <> struct isa_impl<ConstantData, Value> {
824   static inline bool doit(const Value &Val) {
825     return Val.getValueID() >= Value::ConstantDataFirstVal &&
826            Val.getValueID() <= Value::ConstantDataLastVal;
827   }
828 };
829 
830 template <> struct isa_impl<ConstantAggregate, Value> {
831   static inline bool doit(const Value &Val) {
832     return Val.getValueID() >= Value::ConstantAggregateFirstVal &&
833            Val.getValueID() <= Value::ConstantAggregateLastVal;
834   }
835 };
836 
837 template <> struct isa_impl<Argument, Value> {
838   static inline bool doit (const Value &Val) {
839     return Val.getValueID() == Value::ArgumentVal;
840   }
841 };
842 
843 template <> struct isa_impl<InlineAsm, Value> {
844   static inline bool doit(const Value &Val) {
845     return Val.getValueID() == Value::InlineAsmVal;
846   }
847 };
848 
849 template <> struct isa_impl<Instruction, Value> {
850   static inline bool doit(const Value &Val) {
851     return Val.getValueID() >= Value::InstructionVal;
852   }
853 };
854 
855 template <> struct isa_impl<BasicBlock, Value> {
856   static inline bool doit(const Value &Val) {
857     return Val.getValueID() == Value::BasicBlockVal;
858   }
859 };
860 
861 template <> struct isa_impl<Function, Value> {
862   static inline bool doit(const Value &Val) {
863     return Val.getValueID() == Value::FunctionVal;
864   }
865 };
866 
867 template <> struct isa_impl<GlobalVariable, Value> {
868   static inline bool doit(const Value &Val) {
869     return Val.getValueID() == Value::GlobalVariableVal;
870   }
871 };
872 
873 template <> struct isa_impl<GlobalAlias, Value> {
874   static inline bool doit(const Value &Val) {
875     return Val.getValueID() == Value::GlobalAliasVal;
876   }
877 };
878 
879 template <> struct isa_impl<GlobalIFunc, Value> {
880   static inline bool doit(const Value &Val) {
881     return Val.getValueID() == Value::GlobalIFuncVal;
882   }
883 };
884 
885 template <> struct isa_impl<GlobalIndirectSymbol, Value> {
886   static inline bool doit(const Value &Val) {
887     return isa<GlobalAlias>(Val) || isa<GlobalIFunc>(Val);
888   }
889 };
890 
891 template <> struct isa_impl<GlobalValue, Value> {
892   static inline bool doit(const Value &Val) {
893     return isa<GlobalObject>(Val) || isa<GlobalIndirectSymbol>(Val);
894   }
895 };
896 
897 template <> struct isa_impl<GlobalObject, Value> {
898   static inline bool doit(const Value &Val) {
899     return isa<GlobalVariable>(Val) || isa<Function>(Val);
900   }
901 };
902 
903 // Create wrappers for C Binding types (see CBindingWrapping.h).
904 DEFINE_ISA_CONVERSION_FUNCTIONS(Value, LLVMValueRef)
905 
906 // Specialized opaque value conversions.
907 inline Value **unwrap(LLVMValueRef *Vals) {
908   return reinterpret_cast<Value**>(Vals);
909 }
910 
911 template<typename T>
912 inline T **unwrap(LLVMValueRef *Vals, unsigned Length) {
913 #ifndef NDEBUG
914   for (LLVMValueRef *I = Vals, *E = Vals + Length; I != E; ++I)
915     unwrap<T>(*I); // For side effect of calling assert on invalid usage.
916 #endif
917   (void)Length;
918   return reinterpret_cast<T**>(Vals);
919 }
920 
921 inline LLVMValueRef *wrap(const Value **Vals) {
922   return reinterpret_cast<LLVMValueRef*>(const_cast<Value**>(Vals));
923 }
924 
925 } // end namespace llvm
926 
927 #endif // LLVM_IR_VALUE_H
928