• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kernel/locking/mutex.c
4  *
5  * Mutexes: blocking mutual exclusion locks
6  *
7  * Started by Ingo Molnar:
8  *
9  *  Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
10  *
11  * Many thanks to Arjan van de Ven, Thomas Gleixner, Steven Rostedt and
12  * David Howells for suggestions and improvements.
13  *
14  *  - Adaptive spinning for mutexes by Peter Zijlstra. (Ported to mainline
15  *    from the -rt tree, where it was originally implemented for rtmutexes
16  *    by Steven Rostedt, based on work by Gregory Haskins, Peter Morreale
17  *    and Sven Dietrich.
18  *
19  * Also see Documentation/locking/mutex-design.rst.
20  */
21 #include <linux/mutex.h>
22 #include <linux/ww_mutex.h>
23 #include <linux/sched/signal.h>
24 #include <linux/sched/rt.h>
25 #include <linux/sched/wake_q.h>
26 #include <linux/sched/debug.h>
27 #include <linux/export.h>
28 #include <linux/spinlock.h>
29 #include <linux/interrupt.h>
30 #include <linux/debug_locks.h>
31 #include <linux/osq_lock.h>
32 
33 #ifdef CONFIG_DEBUG_MUTEXES
34 # include "mutex-debug.h"
35 #else
36 # include "mutex.h"
37 #endif
38 
39 void
__mutex_init(struct mutex * lock,const char * name,struct lock_class_key * key)40 __mutex_init(struct mutex *lock, const char *name, struct lock_class_key *key)
41 {
42 	atomic_long_set(&lock->owner, 0);
43 	spin_lock_init(&lock->wait_lock);
44 	INIT_LIST_HEAD(&lock->wait_list);
45 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
46 	osq_lock_init(&lock->osq);
47 #endif
48 
49 	debug_mutex_init(lock, name, key);
50 }
51 EXPORT_SYMBOL(__mutex_init);
52 
53 /*
54  * @owner: contains: 'struct task_struct *' to the current lock owner,
55  * NULL means not owned. Since task_struct pointers are aligned at
56  * at least L1_CACHE_BYTES, we have low bits to store extra state.
57  *
58  * Bit0 indicates a non-empty waiter list; unlock must issue a wakeup.
59  * Bit1 indicates unlock needs to hand the lock to the top-waiter
60  * Bit2 indicates handoff has been done and we're waiting for pickup.
61  */
62 #define MUTEX_FLAG_WAITERS	0x01
63 #define MUTEX_FLAG_HANDOFF	0x02
64 #define MUTEX_FLAG_PICKUP	0x04
65 
66 #define MUTEX_FLAGS		0x07
67 
68 /*
69  * Internal helper function; C doesn't allow us to hide it :/
70  *
71  * DO NOT USE (outside of mutex code).
72  */
__mutex_owner(struct mutex * lock)73 static inline struct task_struct *__mutex_owner(struct mutex *lock)
74 {
75 	return (struct task_struct *)(atomic_long_read(&lock->owner) & ~MUTEX_FLAGS);
76 }
77 
__owner_task(unsigned long owner)78 static inline struct task_struct *__owner_task(unsigned long owner)
79 {
80 	return (struct task_struct *)(owner & ~MUTEX_FLAGS);
81 }
82 
mutex_is_locked(struct mutex * lock)83 bool mutex_is_locked(struct mutex *lock)
84 {
85 	return __mutex_owner(lock) != NULL;
86 }
87 EXPORT_SYMBOL(mutex_is_locked);
88 
89 __must_check enum mutex_trylock_recursive_enum
mutex_trylock_recursive(struct mutex * lock)90 mutex_trylock_recursive(struct mutex *lock)
91 {
92 	if (unlikely(__mutex_owner(lock) == current))
93 		return MUTEX_TRYLOCK_RECURSIVE;
94 
95 	return mutex_trylock(lock);
96 }
97 EXPORT_SYMBOL(mutex_trylock_recursive);
98 
__owner_flags(unsigned long owner)99 static inline unsigned long __owner_flags(unsigned long owner)
100 {
101 	return owner & MUTEX_FLAGS;
102 }
103 
104 /*
105  * Trylock variant that retuns the owning task on failure.
106  */
__mutex_trylock_or_owner(struct mutex * lock)107 static inline struct task_struct *__mutex_trylock_or_owner(struct mutex *lock)
108 {
109 	unsigned long owner, curr = (unsigned long)current;
110 
111 	owner = atomic_long_read(&lock->owner);
112 	for (;;) { /* must loop, can race against a flag */
113 		unsigned long old, flags = __owner_flags(owner);
114 		unsigned long task = owner & ~MUTEX_FLAGS;
115 
116 		if (task) {
117 			if (likely(task != curr))
118 				break;
119 
120 			if (likely(!(flags & MUTEX_FLAG_PICKUP)))
121 				break;
122 
123 			flags &= ~MUTEX_FLAG_PICKUP;
124 		} else {
125 #ifdef CONFIG_DEBUG_MUTEXES
126 			DEBUG_LOCKS_WARN_ON(flags & MUTEX_FLAG_PICKUP);
127 #endif
128 		}
129 
130 		/*
131 		 * We set the HANDOFF bit, we must make sure it doesn't live
132 		 * past the point where we acquire it. This would be possible
133 		 * if we (accidentally) set the bit on an unlocked mutex.
134 		 */
135 		flags &= ~MUTEX_FLAG_HANDOFF;
136 
137 		old = atomic_long_cmpxchg_acquire(&lock->owner, owner, curr | flags);
138 		if (old == owner)
139 			return NULL;
140 
141 		owner = old;
142 	}
143 
144 	return __owner_task(owner);
145 }
146 
147 /*
148  * Actual trylock that will work on any unlocked state.
149  */
__mutex_trylock(struct mutex * lock)150 static inline bool __mutex_trylock(struct mutex *lock)
151 {
152 	return !__mutex_trylock_or_owner(lock);
153 }
154 
155 #ifndef CONFIG_DEBUG_LOCK_ALLOC
156 /*
157  * Lockdep annotations are contained to the slow paths for simplicity.
158  * There is nothing that would stop spreading the lockdep annotations outwards
159  * except more code.
160  */
161 
162 /*
163  * Optimistic trylock that only works in the uncontended case. Make sure to
164  * follow with a __mutex_trylock() before failing.
165  */
__mutex_trylock_fast(struct mutex * lock)166 static __always_inline bool __mutex_trylock_fast(struct mutex *lock)
167 {
168 	unsigned long curr = (unsigned long)current;
169 	unsigned long zero = 0UL;
170 
171 	if (atomic_long_try_cmpxchg_acquire(&lock->owner, &zero, curr))
172 		return true;
173 
174 	return false;
175 }
176 
__mutex_unlock_fast(struct mutex * lock)177 static __always_inline bool __mutex_unlock_fast(struct mutex *lock)
178 {
179 	unsigned long curr = (unsigned long)current;
180 
181 	if (atomic_long_cmpxchg_release(&lock->owner, curr, 0UL) == curr)
182 		return true;
183 
184 	return false;
185 }
186 #endif
187 
__mutex_set_flag(struct mutex * lock,unsigned long flag)188 static inline void __mutex_set_flag(struct mutex *lock, unsigned long flag)
189 {
190 	atomic_long_or(flag, &lock->owner);
191 }
192 
__mutex_clear_flag(struct mutex * lock,unsigned long flag)193 static inline void __mutex_clear_flag(struct mutex *lock, unsigned long flag)
194 {
195 	atomic_long_andnot(flag, &lock->owner);
196 }
197 
__mutex_waiter_is_first(struct mutex * lock,struct mutex_waiter * waiter)198 static inline bool __mutex_waiter_is_first(struct mutex *lock, struct mutex_waiter *waiter)
199 {
200 	return list_first_entry(&lock->wait_list, struct mutex_waiter, list) == waiter;
201 }
202 
203 /*
204  * Add @waiter to a given location in the lock wait_list and set the
205  * FLAG_WAITERS flag if it's the first waiter.
206  */
207 static void
__mutex_add_waiter(struct mutex * lock,struct mutex_waiter * waiter,struct list_head * list)208 __mutex_add_waiter(struct mutex *lock, struct mutex_waiter *waiter,
209 		   struct list_head *list)
210 {
211 	debug_mutex_add_waiter(lock, waiter, current);
212 
213 	list_add_tail(&waiter->list, list);
214 	if (__mutex_waiter_is_first(lock, waiter))
215 		__mutex_set_flag(lock, MUTEX_FLAG_WAITERS);
216 }
217 
218 static void
__mutex_remove_waiter(struct mutex * lock,struct mutex_waiter * waiter)219 __mutex_remove_waiter(struct mutex *lock, struct mutex_waiter *waiter)
220 {
221 	list_del(&waiter->list);
222 	if (likely(list_empty(&lock->wait_list)))
223 		__mutex_clear_flag(lock, MUTEX_FLAGS);
224 
225 	debug_mutex_remove_waiter(lock, waiter, current);
226 }
227 
228 /*
229  * Give up ownership to a specific task, when @task = NULL, this is equivalent
230  * to a regular unlock. Sets PICKUP on a handoff, clears HANDOF, preserves
231  * WAITERS. Provides RELEASE semantics like a regular unlock, the
232  * __mutex_trylock() provides a matching ACQUIRE semantics for the handoff.
233  */
__mutex_handoff(struct mutex * lock,struct task_struct * task)234 static void __mutex_handoff(struct mutex *lock, struct task_struct *task)
235 {
236 	unsigned long owner = atomic_long_read(&lock->owner);
237 
238 	for (;;) {
239 		unsigned long old, new;
240 
241 #ifdef CONFIG_DEBUG_MUTEXES
242 		DEBUG_LOCKS_WARN_ON(__owner_task(owner) != current);
243 		DEBUG_LOCKS_WARN_ON(owner & MUTEX_FLAG_PICKUP);
244 #endif
245 
246 		new = (owner & MUTEX_FLAG_WAITERS);
247 		new |= (unsigned long)task;
248 		if (task)
249 			new |= MUTEX_FLAG_PICKUP;
250 
251 		old = atomic_long_cmpxchg_release(&lock->owner, owner, new);
252 		if (old == owner)
253 			break;
254 
255 		owner = old;
256 	}
257 }
258 
259 #ifndef CONFIG_DEBUG_LOCK_ALLOC
260 /*
261  * We split the mutex lock/unlock logic into separate fastpath and
262  * slowpath functions, to reduce the register pressure on the fastpath.
263  * We also put the fastpath first in the kernel image, to make sure the
264  * branch is predicted by the CPU as default-untaken.
265  */
266 static void __sched __mutex_lock_slowpath(struct mutex *lock);
267 
268 /**
269  * mutex_lock - acquire the mutex
270  * @lock: the mutex to be acquired
271  *
272  * Lock the mutex exclusively for this task. If the mutex is not
273  * available right now, it will sleep until it can get it.
274  *
275  * The mutex must later on be released by the same task that
276  * acquired it. Recursive locking is not allowed. The task
277  * may not exit without first unlocking the mutex. Also, kernel
278  * memory where the mutex resides must not be freed with
279  * the mutex still locked. The mutex must first be initialized
280  * (or statically defined) before it can be locked. memset()-ing
281  * the mutex to 0 is not allowed.
282  *
283  * (The CONFIG_DEBUG_MUTEXES .config option turns on debugging
284  * checks that will enforce the restrictions and will also do
285  * deadlock debugging)
286  *
287  * This function is similar to (but not equivalent to) down().
288  */
mutex_lock(struct mutex * lock)289 void __sched mutex_lock(struct mutex *lock)
290 {
291 	might_sleep();
292 
293 	if (!__mutex_trylock_fast(lock))
294 		__mutex_lock_slowpath(lock);
295 }
296 EXPORT_SYMBOL(mutex_lock);
297 #endif
298 
299 /*
300  * Wait-Die:
301  *   The newer transactions are killed when:
302  *     It (the new transaction) makes a request for a lock being held
303  *     by an older transaction.
304  *
305  * Wound-Wait:
306  *   The newer transactions are wounded when:
307  *     An older transaction makes a request for a lock being held by
308  *     the newer transaction.
309  */
310 
311 /*
312  * Associate the ww_mutex @ww with the context @ww_ctx under which we acquired
313  * it.
314  */
315 static __always_inline void
ww_mutex_lock_acquired(struct ww_mutex * ww,struct ww_acquire_ctx * ww_ctx)316 ww_mutex_lock_acquired(struct ww_mutex *ww, struct ww_acquire_ctx *ww_ctx)
317 {
318 #ifdef CONFIG_DEBUG_MUTEXES
319 	/*
320 	 * If this WARN_ON triggers, you used ww_mutex_lock to acquire,
321 	 * but released with a normal mutex_unlock in this call.
322 	 *
323 	 * This should never happen, always use ww_mutex_unlock.
324 	 */
325 	DEBUG_LOCKS_WARN_ON(ww->ctx);
326 
327 	/*
328 	 * Not quite done after calling ww_acquire_done() ?
329 	 */
330 	DEBUG_LOCKS_WARN_ON(ww_ctx->done_acquire);
331 
332 	if (ww_ctx->contending_lock) {
333 		/*
334 		 * After -EDEADLK you tried to
335 		 * acquire a different ww_mutex? Bad!
336 		 */
337 		DEBUG_LOCKS_WARN_ON(ww_ctx->contending_lock != ww);
338 
339 		/*
340 		 * You called ww_mutex_lock after receiving -EDEADLK,
341 		 * but 'forgot' to unlock everything else first?
342 		 */
343 		DEBUG_LOCKS_WARN_ON(ww_ctx->acquired > 0);
344 		ww_ctx->contending_lock = NULL;
345 	}
346 
347 	/*
348 	 * Naughty, using a different class will lead to undefined behavior!
349 	 */
350 	DEBUG_LOCKS_WARN_ON(ww_ctx->ww_class != ww->ww_class);
351 #endif
352 	ww_ctx->acquired++;
353 	ww->ctx = ww_ctx;
354 }
355 
356 /*
357  * Determine if context @a is 'after' context @b. IOW, @a is a younger
358  * transaction than @b and depending on algorithm either needs to wait for
359  * @b or die.
360  */
361 static inline bool __sched
__ww_ctx_stamp_after(struct ww_acquire_ctx * a,struct ww_acquire_ctx * b)362 __ww_ctx_stamp_after(struct ww_acquire_ctx *a, struct ww_acquire_ctx *b)
363 {
364 
365 	return (signed long)(a->stamp - b->stamp) > 0;
366 }
367 
368 /*
369  * Wait-Die; wake a younger waiter context (when locks held) such that it can
370  * die.
371  *
372  * Among waiters with context, only the first one can have other locks acquired
373  * already (ctx->acquired > 0), because __ww_mutex_add_waiter() and
374  * __ww_mutex_check_kill() wake any but the earliest context.
375  */
376 static bool __sched
__ww_mutex_die(struct mutex * lock,struct mutex_waiter * waiter,struct ww_acquire_ctx * ww_ctx)377 __ww_mutex_die(struct mutex *lock, struct mutex_waiter *waiter,
378 	       struct ww_acquire_ctx *ww_ctx)
379 {
380 	if (!ww_ctx->is_wait_die)
381 		return false;
382 
383 	if (waiter->ww_ctx->acquired > 0 &&
384 			__ww_ctx_stamp_after(waiter->ww_ctx, ww_ctx)) {
385 		debug_mutex_wake_waiter(lock, waiter);
386 		wake_up_process(waiter->task);
387 	}
388 
389 	return true;
390 }
391 
392 /*
393  * Wound-Wait; wound a younger @hold_ctx if it holds the lock.
394  *
395  * Wound the lock holder if there are waiters with older transactions than
396  * the lock holders. Even if multiple waiters may wound the lock holder,
397  * it's sufficient that only one does.
398  */
__ww_mutex_wound(struct mutex * lock,struct ww_acquire_ctx * ww_ctx,struct ww_acquire_ctx * hold_ctx)399 static bool __ww_mutex_wound(struct mutex *lock,
400 			     struct ww_acquire_ctx *ww_ctx,
401 			     struct ww_acquire_ctx *hold_ctx)
402 {
403 	struct task_struct *owner = __mutex_owner(lock);
404 
405 	lockdep_assert_held(&lock->wait_lock);
406 
407 	/*
408 	 * Possible through __ww_mutex_add_waiter() when we race with
409 	 * ww_mutex_set_context_fastpath(). In that case we'll get here again
410 	 * through __ww_mutex_check_waiters().
411 	 */
412 	if (!hold_ctx)
413 		return false;
414 
415 	/*
416 	 * Can have !owner because of __mutex_unlock_slowpath(), but if owner,
417 	 * it cannot go away because we'll have FLAG_WAITERS set and hold
418 	 * wait_lock.
419 	 */
420 	if (!owner)
421 		return false;
422 
423 	if (ww_ctx->acquired > 0 && __ww_ctx_stamp_after(hold_ctx, ww_ctx)) {
424 		hold_ctx->wounded = 1;
425 
426 		/*
427 		 * wake_up_process() paired with set_current_state()
428 		 * inserts sufficient barriers to make sure @owner either sees
429 		 * it's wounded in __ww_mutex_check_kill() or has a
430 		 * wakeup pending to re-read the wounded state.
431 		 */
432 		if (owner != current)
433 			wake_up_process(owner);
434 
435 		return true;
436 	}
437 
438 	return false;
439 }
440 
441 /*
442  * We just acquired @lock under @ww_ctx, if there are later contexts waiting
443  * behind us on the wait-list, check if they need to die, or wound us.
444  *
445  * See __ww_mutex_add_waiter() for the list-order construction; basically the
446  * list is ordered by stamp, smallest (oldest) first.
447  *
448  * This relies on never mixing wait-die/wound-wait on the same wait-list;
449  * which is currently ensured by that being a ww_class property.
450  *
451  * The current task must not be on the wait list.
452  */
453 static void __sched
__ww_mutex_check_waiters(struct mutex * lock,struct ww_acquire_ctx * ww_ctx)454 __ww_mutex_check_waiters(struct mutex *lock, struct ww_acquire_ctx *ww_ctx)
455 {
456 	struct mutex_waiter *cur;
457 
458 	lockdep_assert_held(&lock->wait_lock);
459 
460 	list_for_each_entry(cur, &lock->wait_list, list) {
461 		if (!cur->ww_ctx)
462 			continue;
463 
464 		if (__ww_mutex_die(lock, cur, ww_ctx) ||
465 		    __ww_mutex_wound(lock, cur->ww_ctx, ww_ctx))
466 			break;
467 	}
468 }
469 
470 /*
471  * After acquiring lock with fastpath, where we do not hold wait_lock, set ctx
472  * and wake up any waiters so they can recheck.
473  */
474 static __always_inline void
ww_mutex_set_context_fastpath(struct ww_mutex * lock,struct ww_acquire_ctx * ctx)475 ww_mutex_set_context_fastpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
476 {
477 	ww_mutex_lock_acquired(lock, ctx);
478 
479 	/*
480 	 * The lock->ctx update should be visible on all cores before
481 	 * the WAITERS check is done, otherwise contended waiters might be
482 	 * missed. The contended waiters will either see ww_ctx == NULL
483 	 * and keep spinning, or it will acquire wait_lock, add itself
484 	 * to waiter list and sleep.
485 	 */
486 	smp_mb(); /* See comments above and below. */
487 
488 	/*
489 	 * [W] ww->ctx = ctx	    [W] MUTEX_FLAG_WAITERS
490 	 *     MB		        MB
491 	 * [R] MUTEX_FLAG_WAITERS   [R] ww->ctx
492 	 *
493 	 * The memory barrier above pairs with the memory barrier in
494 	 * __ww_mutex_add_waiter() and makes sure we either observe ww->ctx
495 	 * and/or !empty list.
496 	 */
497 	if (likely(!(atomic_long_read(&lock->base.owner) & MUTEX_FLAG_WAITERS)))
498 		return;
499 
500 	/*
501 	 * Uh oh, we raced in fastpath, check if any of the waiters need to
502 	 * die or wound us.
503 	 */
504 	spin_lock(&lock->base.wait_lock);
505 	__ww_mutex_check_waiters(&lock->base, ctx);
506 	spin_unlock(&lock->base.wait_lock);
507 }
508 
509 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
510 
511 static inline
ww_mutex_spin_on_owner(struct mutex * lock,struct ww_acquire_ctx * ww_ctx,struct mutex_waiter * waiter)512 bool ww_mutex_spin_on_owner(struct mutex *lock, struct ww_acquire_ctx *ww_ctx,
513 			    struct mutex_waiter *waiter)
514 {
515 	struct ww_mutex *ww;
516 
517 	ww = container_of(lock, struct ww_mutex, base);
518 
519 	/*
520 	 * If ww->ctx is set the contents are undefined, only
521 	 * by acquiring wait_lock there is a guarantee that
522 	 * they are not invalid when reading.
523 	 *
524 	 * As such, when deadlock detection needs to be
525 	 * performed the optimistic spinning cannot be done.
526 	 *
527 	 * Check this in every inner iteration because we may
528 	 * be racing against another thread's ww_mutex_lock.
529 	 */
530 	if (ww_ctx->acquired > 0 && READ_ONCE(ww->ctx))
531 		return false;
532 
533 	/*
534 	 * If we aren't on the wait list yet, cancel the spin
535 	 * if there are waiters. We want  to avoid stealing the
536 	 * lock from a waiter with an earlier stamp, since the
537 	 * other thread may already own a lock that we also
538 	 * need.
539 	 */
540 	if (!waiter && (atomic_long_read(&lock->owner) & MUTEX_FLAG_WAITERS))
541 		return false;
542 
543 	/*
544 	 * Similarly, stop spinning if we are no longer the
545 	 * first waiter.
546 	 */
547 	if (waiter && !__mutex_waiter_is_first(lock, waiter))
548 		return false;
549 
550 	return true;
551 }
552 
553 /*
554  * Look out! "owner" is an entirely speculative pointer access and not
555  * reliable.
556  *
557  * "noinline" so that this function shows up on perf profiles.
558  */
559 static noinline
mutex_spin_on_owner(struct mutex * lock,struct task_struct * owner,struct ww_acquire_ctx * ww_ctx,struct mutex_waiter * waiter)560 bool mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner,
561 			 struct ww_acquire_ctx *ww_ctx, struct mutex_waiter *waiter)
562 {
563 	bool ret = true;
564 
565 	rcu_read_lock();
566 	while (__mutex_owner(lock) == owner) {
567 		/*
568 		 * Ensure we emit the owner->on_cpu, dereference _after_
569 		 * checking lock->owner still matches owner. If that fails,
570 		 * owner might point to freed memory. If it still matches,
571 		 * the rcu_read_lock() ensures the memory stays valid.
572 		 */
573 		barrier();
574 
575 		/*
576 		 * Use vcpu_is_preempted to detect lock holder preemption issue.
577 		 */
578 		if (!owner->on_cpu || need_resched() ||
579 				vcpu_is_preempted(task_cpu(owner))) {
580 			ret = false;
581 			break;
582 		}
583 
584 		if (ww_ctx && !ww_mutex_spin_on_owner(lock, ww_ctx, waiter)) {
585 			ret = false;
586 			break;
587 		}
588 
589 		cpu_relax();
590 	}
591 	rcu_read_unlock();
592 
593 	return ret;
594 }
595 
596 /*
597  * Initial check for entering the mutex spinning loop
598  */
mutex_can_spin_on_owner(struct mutex * lock)599 static inline int mutex_can_spin_on_owner(struct mutex *lock)
600 {
601 	struct task_struct *owner;
602 	int retval = 1;
603 
604 	if (need_resched())
605 		return 0;
606 
607 	rcu_read_lock();
608 	owner = __mutex_owner(lock);
609 
610 	/*
611 	 * As lock holder preemption issue, we both skip spinning if task is not
612 	 * on cpu or its cpu is preempted
613 	 */
614 	if (owner)
615 		retval = owner->on_cpu && !vcpu_is_preempted(task_cpu(owner));
616 	rcu_read_unlock();
617 
618 	/*
619 	 * If lock->owner is not set, the mutex has been released. Return true
620 	 * such that we'll trylock in the spin path, which is a faster option
621 	 * than the blocking slow path.
622 	 */
623 	return retval;
624 }
625 
626 /*
627  * Optimistic spinning.
628  *
629  * We try to spin for acquisition when we find that the lock owner
630  * is currently running on a (different) CPU and while we don't
631  * need to reschedule. The rationale is that if the lock owner is
632  * running, it is likely to release the lock soon.
633  *
634  * The mutex spinners are queued up using MCS lock so that only one
635  * spinner can compete for the mutex. However, if mutex spinning isn't
636  * going to happen, there is no point in going through the lock/unlock
637  * overhead.
638  *
639  * Returns true when the lock was taken, otherwise false, indicating
640  * that we need to jump to the slowpath and sleep.
641  *
642  * The waiter flag is set to true if the spinner is a waiter in the wait
643  * queue. The waiter-spinner will spin on the lock directly and concurrently
644  * with the spinner at the head of the OSQ, if present, until the owner is
645  * changed to itself.
646  */
647 static __always_inline bool
mutex_optimistic_spin(struct mutex * lock,struct ww_acquire_ctx * ww_ctx,struct mutex_waiter * waiter)648 mutex_optimistic_spin(struct mutex *lock, struct ww_acquire_ctx *ww_ctx,
649 		      struct mutex_waiter *waiter)
650 {
651 	if (!waiter) {
652 		/*
653 		 * The purpose of the mutex_can_spin_on_owner() function is
654 		 * to eliminate the overhead of osq_lock() and osq_unlock()
655 		 * in case spinning isn't possible. As a waiter-spinner
656 		 * is not going to take OSQ lock anyway, there is no need
657 		 * to call mutex_can_spin_on_owner().
658 		 */
659 		if (!mutex_can_spin_on_owner(lock))
660 			goto fail;
661 
662 		/*
663 		 * In order to avoid a stampede of mutex spinners trying to
664 		 * acquire the mutex all at once, the spinners need to take a
665 		 * MCS (queued) lock first before spinning on the owner field.
666 		 */
667 		if (!osq_lock(&lock->osq))
668 			goto fail;
669 	}
670 
671 	for (;;) {
672 		struct task_struct *owner;
673 
674 		/* Try to acquire the mutex... */
675 		owner = __mutex_trylock_or_owner(lock);
676 		if (!owner)
677 			break;
678 
679 		/*
680 		 * There's an owner, wait for it to either
681 		 * release the lock or go to sleep.
682 		 */
683 		if (!mutex_spin_on_owner(lock, owner, ww_ctx, waiter))
684 			goto fail_unlock;
685 
686 		/*
687 		 * The cpu_relax() call is a compiler barrier which forces
688 		 * everything in this loop to be re-loaded. We don't need
689 		 * memory barriers as we'll eventually observe the right
690 		 * values at the cost of a few extra spins.
691 		 */
692 		cpu_relax();
693 	}
694 
695 	if (!waiter)
696 		osq_unlock(&lock->osq);
697 
698 	return true;
699 
700 
701 fail_unlock:
702 	if (!waiter)
703 		osq_unlock(&lock->osq);
704 
705 fail:
706 	/*
707 	 * If we fell out of the spin path because of need_resched(),
708 	 * reschedule now, before we try-lock the mutex. This avoids getting
709 	 * scheduled out right after we obtained the mutex.
710 	 */
711 	if (need_resched()) {
712 		/*
713 		 * We _should_ have TASK_RUNNING here, but just in case
714 		 * we do not, make it so, otherwise we might get stuck.
715 		 */
716 		__set_current_state(TASK_RUNNING);
717 		schedule_preempt_disabled();
718 	}
719 
720 	return false;
721 }
722 #else
723 static __always_inline bool
mutex_optimistic_spin(struct mutex * lock,struct ww_acquire_ctx * ww_ctx,struct mutex_waiter * waiter)724 mutex_optimistic_spin(struct mutex *lock, struct ww_acquire_ctx *ww_ctx,
725 		      struct mutex_waiter *waiter)
726 {
727 	return false;
728 }
729 #endif
730 
731 static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip);
732 
733 /**
734  * mutex_unlock - release the mutex
735  * @lock: the mutex to be released
736  *
737  * Unlock a mutex that has been locked by this task previously.
738  *
739  * This function must not be used in interrupt context. Unlocking
740  * of a not locked mutex is not allowed.
741  *
742  * This function is similar to (but not equivalent to) up().
743  */
mutex_unlock(struct mutex * lock)744 void __sched mutex_unlock(struct mutex *lock)
745 {
746 #ifndef CONFIG_DEBUG_LOCK_ALLOC
747 	if (__mutex_unlock_fast(lock))
748 		return;
749 #endif
750 	__mutex_unlock_slowpath(lock, _RET_IP_);
751 }
752 EXPORT_SYMBOL(mutex_unlock);
753 
754 /**
755  * ww_mutex_unlock - release the w/w mutex
756  * @lock: the mutex to be released
757  *
758  * Unlock a mutex that has been locked by this task previously with any of the
759  * ww_mutex_lock* functions (with or without an acquire context). It is
760  * forbidden to release the locks after releasing the acquire context.
761  *
762  * This function must not be used in interrupt context. Unlocking
763  * of a unlocked mutex is not allowed.
764  */
ww_mutex_unlock(struct ww_mutex * lock)765 void __sched ww_mutex_unlock(struct ww_mutex *lock)
766 {
767 	/*
768 	 * The unlocking fastpath is the 0->1 transition from 'locked'
769 	 * into 'unlocked' state:
770 	 */
771 	if (lock->ctx) {
772 #ifdef CONFIG_DEBUG_MUTEXES
773 		DEBUG_LOCKS_WARN_ON(!lock->ctx->acquired);
774 #endif
775 		if (lock->ctx->acquired > 0)
776 			lock->ctx->acquired--;
777 		lock->ctx = NULL;
778 	}
779 
780 	mutex_unlock(&lock->base);
781 }
782 EXPORT_SYMBOL(ww_mutex_unlock);
783 
784 
785 static __always_inline int __sched
__ww_mutex_kill(struct mutex * lock,struct ww_acquire_ctx * ww_ctx)786 __ww_mutex_kill(struct mutex *lock, struct ww_acquire_ctx *ww_ctx)
787 {
788 	if (ww_ctx->acquired > 0) {
789 #ifdef CONFIG_DEBUG_MUTEXES
790 		struct ww_mutex *ww;
791 
792 		ww = container_of(lock, struct ww_mutex, base);
793 		DEBUG_LOCKS_WARN_ON(ww_ctx->contending_lock);
794 		ww_ctx->contending_lock = ww;
795 #endif
796 		return -EDEADLK;
797 	}
798 
799 	return 0;
800 }
801 
802 
803 /*
804  * Check the wound condition for the current lock acquire.
805  *
806  * Wound-Wait: If we're wounded, kill ourself.
807  *
808  * Wait-Die: If we're trying to acquire a lock already held by an older
809  *           context, kill ourselves.
810  *
811  * Since __ww_mutex_add_waiter() orders the wait-list on stamp, we only have to
812  * look at waiters before us in the wait-list.
813  */
814 static inline int __sched
__ww_mutex_check_kill(struct mutex * lock,struct mutex_waiter * waiter,struct ww_acquire_ctx * ctx)815 __ww_mutex_check_kill(struct mutex *lock, struct mutex_waiter *waiter,
816 		      struct ww_acquire_ctx *ctx)
817 {
818 	struct ww_mutex *ww = container_of(lock, struct ww_mutex, base);
819 	struct ww_acquire_ctx *hold_ctx = READ_ONCE(ww->ctx);
820 	struct mutex_waiter *cur;
821 
822 	if (ctx->acquired == 0)
823 		return 0;
824 
825 	if (!ctx->is_wait_die) {
826 		if (ctx->wounded)
827 			return __ww_mutex_kill(lock, ctx);
828 
829 		return 0;
830 	}
831 
832 	if (hold_ctx && __ww_ctx_stamp_after(ctx, hold_ctx))
833 		return __ww_mutex_kill(lock, ctx);
834 
835 	/*
836 	 * If there is a waiter in front of us that has a context, then its
837 	 * stamp is earlier than ours and we must kill ourself.
838 	 */
839 	cur = waiter;
840 	list_for_each_entry_continue_reverse(cur, &lock->wait_list, list) {
841 		if (!cur->ww_ctx)
842 			continue;
843 
844 		return __ww_mutex_kill(lock, ctx);
845 	}
846 
847 	return 0;
848 }
849 
850 /*
851  * Add @waiter to the wait-list, keep the wait-list ordered by stamp, smallest
852  * first. Such that older contexts are preferred to acquire the lock over
853  * younger contexts.
854  *
855  * Waiters without context are interspersed in FIFO order.
856  *
857  * Furthermore, for Wait-Die kill ourself immediately when possible (there are
858  * older contexts already waiting) to avoid unnecessary waiting and for
859  * Wound-Wait ensure we wound the owning context when it is younger.
860  */
861 static inline int __sched
__ww_mutex_add_waiter(struct mutex_waiter * waiter,struct mutex * lock,struct ww_acquire_ctx * ww_ctx)862 __ww_mutex_add_waiter(struct mutex_waiter *waiter,
863 		      struct mutex *lock,
864 		      struct ww_acquire_ctx *ww_ctx)
865 {
866 	struct mutex_waiter *cur;
867 	struct list_head *pos;
868 	bool is_wait_die;
869 
870 	if (!ww_ctx) {
871 		__mutex_add_waiter(lock, waiter, &lock->wait_list);
872 		return 0;
873 	}
874 
875 	is_wait_die = ww_ctx->is_wait_die;
876 
877 	/*
878 	 * Add the waiter before the first waiter with a higher stamp.
879 	 * Waiters without a context are skipped to avoid starving
880 	 * them. Wait-Die waiters may die here. Wound-Wait waiters
881 	 * never die here, but they are sorted in stamp order and
882 	 * may wound the lock holder.
883 	 */
884 	pos = &lock->wait_list;
885 	list_for_each_entry_reverse(cur, &lock->wait_list, list) {
886 		if (!cur->ww_ctx)
887 			continue;
888 
889 		if (__ww_ctx_stamp_after(ww_ctx, cur->ww_ctx)) {
890 			/*
891 			 * Wait-Die: if we find an older context waiting, there
892 			 * is no point in queueing behind it, as we'd have to
893 			 * die the moment it would acquire the lock.
894 			 */
895 			if (is_wait_die) {
896 				int ret = __ww_mutex_kill(lock, ww_ctx);
897 
898 				if (ret)
899 					return ret;
900 			}
901 
902 			break;
903 		}
904 
905 		pos = &cur->list;
906 
907 		/* Wait-Die: ensure younger waiters die. */
908 		__ww_mutex_die(lock, cur, ww_ctx);
909 	}
910 
911 	__mutex_add_waiter(lock, waiter, pos);
912 
913 	/*
914 	 * Wound-Wait: if we're blocking on a mutex owned by a younger context,
915 	 * wound that such that we might proceed.
916 	 */
917 	if (!is_wait_die) {
918 		struct ww_mutex *ww = container_of(lock, struct ww_mutex, base);
919 
920 		/*
921 		 * See ww_mutex_set_context_fastpath(). Orders setting
922 		 * MUTEX_FLAG_WAITERS vs the ww->ctx load,
923 		 * such that either we or the fastpath will wound @ww->ctx.
924 		 */
925 		smp_mb();
926 		__ww_mutex_wound(lock, ww_ctx, ww->ctx);
927 	}
928 
929 	return 0;
930 }
931 
932 /*
933  * Lock a mutex (possibly interruptible), slowpath:
934  */
935 static __always_inline int __sched
__mutex_lock_common(struct mutex * lock,long state,unsigned int subclass,struct lockdep_map * nest_lock,unsigned long ip,struct ww_acquire_ctx * ww_ctx,const bool use_ww_ctx)936 __mutex_lock_common(struct mutex *lock, long state, unsigned int subclass,
937 		    struct lockdep_map *nest_lock, unsigned long ip,
938 		    struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx)
939 {
940 	struct mutex_waiter waiter;
941 	struct ww_mutex *ww;
942 	int ret;
943 
944 	if (!use_ww_ctx)
945 		ww_ctx = NULL;
946 
947 	might_sleep();
948 
949 #ifdef CONFIG_DEBUG_MUTEXES
950 	DEBUG_LOCKS_WARN_ON(lock->magic != lock);
951 #endif
952 
953 	ww = container_of(lock, struct ww_mutex, base);
954 	if (ww_ctx) {
955 		if (unlikely(ww_ctx == READ_ONCE(ww->ctx)))
956 			return -EALREADY;
957 
958 		/*
959 		 * Reset the wounded flag after a kill. No other process can
960 		 * race and wound us here since they can't have a valid owner
961 		 * pointer if we don't have any locks held.
962 		 */
963 		if (ww_ctx->acquired == 0)
964 			ww_ctx->wounded = 0;
965 	}
966 
967 	preempt_disable();
968 	mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, ip);
969 
970 	if (__mutex_trylock(lock) ||
971 	    mutex_optimistic_spin(lock, ww_ctx, NULL)) {
972 		/* got the lock, yay! */
973 		lock_acquired(&lock->dep_map, ip);
974 		if (ww_ctx)
975 			ww_mutex_set_context_fastpath(ww, ww_ctx);
976 		preempt_enable();
977 		return 0;
978 	}
979 
980 	spin_lock(&lock->wait_lock);
981 	/*
982 	 * After waiting to acquire the wait_lock, try again.
983 	 */
984 	if (__mutex_trylock(lock)) {
985 		if (ww_ctx)
986 			__ww_mutex_check_waiters(lock, ww_ctx);
987 
988 		goto skip_wait;
989 	}
990 
991 	debug_mutex_lock_common(lock, &waiter);
992 
993 	lock_contended(&lock->dep_map, ip);
994 
995 	if (!use_ww_ctx) {
996 		/* add waiting tasks to the end of the waitqueue (FIFO): */
997 		__mutex_add_waiter(lock, &waiter, &lock->wait_list);
998 
999 
1000 #ifdef CONFIG_DEBUG_MUTEXES
1001 		waiter.ww_ctx = MUTEX_POISON_WW_CTX;
1002 #endif
1003 	} else {
1004 		/*
1005 		 * Add in stamp order, waking up waiters that must kill
1006 		 * themselves.
1007 		 */
1008 		ret = __ww_mutex_add_waiter(&waiter, lock, ww_ctx);
1009 		if (ret)
1010 			goto err_early_kill;
1011 
1012 		waiter.ww_ctx = ww_ctx;
1013 	}
1014 
1015 	waiter.task = current;
1016 
1017 	set_current_state(state);
1018 	for (;;) {
1019 		bool first;
1020 
1021 		/*
1022 		 * Once we hold wait_lock, we're serialized against
1023 		 * mutex_unlock() handing the lock off to us, do a trylock
1024 		 * before testing the error conditions to make sure we pick up
1025 		 * the handoff.
1026 		 */
1027 		if (__mutex_trylock(lock))
1028 			goto acquired;
1029 
1030 		/*
1031 		 * Check for signals and kill conditions while holding
1032 		 * wait_lock. This ensures the lock cancellation is ordered
1033 		 * against mutex_unlock() and wake-ups do not go missing.
1034 		 */
1035 		if (signal_pending_state(state, current)) {
1036 			ret = -EINTR;
1037 			goto err;
1038 		}
1039 
1040 		if (ww_ctx) {
1041 			ret = __ww_mutex_check_kill(lock, &waiter, ww_ctx);
1042 			if (ret)
1043 				goto err;
1044 		}
1045 
1046 		spin_unlock(&lock->wait_lock);
1047 		schedule_preempt_disabled();
1048 
1049 		first = __mutex_waiter_is_first(lock, &waiter);
1050 		if (first)
1051 			__mutex_set_flag(lock, MUTEX_FLAG_HANDOFF);
1052 
1053 		set_current_state(state);
1054 		/*
1055 		 * Here we order against unlock; we must either see it change
1056 		 * state back to RUNNING and fall through the next schedule(),
1057 		 * or we must see its unlock and acquire.
1058 		 */
1059 		if (__mutex_trylock(lock) ||
1060 		    (first && mutex_optimistic_spin(lock, ww_ctx, &waiter)))
1061 			break;
1062 
1063 		spin_lock(&lock->wait_lock);
1064 	}
1065 	spin_lock(&lock->wait_lock);
1066 acquired:
1067 	__set_current_state(TASK_RUNNING);
1068 
1069 	if (ww_ctx) {
1070 		/*
1071 		 * Wound-Wait; we stole the lock (!first_waiter), check the
1072 		 * waiters as anyone might want to wound us.
1073 		 */
1074 		if (!ww_ctx->is_wait_die &&
1075 		    !__mutex_waiter_is_first(lock, &waiter))
1076 			__ww_mutex_check_waiters(lock, ww_ctx);
1077 	}
1078 
1079 	__mutex_remove_waiter(lock, &waiter);
1080 
1081 	debug_mutex_free_waiter(&waiter);
1082 
1083 skip_wait:
1084 	/* got the lock - cleanup and rejoice! */
1085 	lock_acquired(&lock->dep_map, ip);
1086 
1087 	if (ww_ctx)
1088 		ww_mutex_lock_acquired(ww, ww_ctx);
1089 
1090 	spin_unlock(&lock->wait_lock);
1091 	preempt_enable();
1092 	return 0;
1093 
1094 err:
1095 	__set_current_state(TASK_RUNNING);
1096 	__mutex_remove_waiter(lock, &waiter);
1097 err_early_kill:
1098 	spin_unlock(&lock->wait_lock);
1099 	debug_mutex_free_waiter(&waiter);
1100 	mutex_release(&lock->dep_map, ip);
1101 	preempt_enable();
1102 	return ret;
1103 }
1104 
1105 static int __sched
__mutex_lock(struct mutex * lock,long state,unsigned int subclass,struct lockdep_map * nest_lock,unsigned long ip)1106 __mutex_lock(struct mutex *lock, long state, unsigned int subclass,
1107 	     struct lockdep_map *nest_lock, unsigned long ip)
1108 {
1109 	return __mutex_lock_common(lock, state, subclass, nest_lock, ip, NULL, false);
1110 }
1111 
1112 static int __sched
__ww_mutex_lock(struct mutex * lock,long state,unsigned int subclass,struct lockdep_map * nest_lock,unsigned long ip,struct ww_acquire_ctx * ww_ctx)1113 __ww_mutex_lock(struct mutex *lock, long state, unsigned int subclass,
1114 		struct lockdep_map *nest_lock, unsigned long ip,
1115 		struct ww_acquire_ctx *ww_ctx)
1116 {
1117 	return __mutex_lock_common(lock, state, subclass, nest_lock, ip, ww_ctx, true);
1118 }
1119 
1120 #ifdef CONFIG_DEBUG_LOCK_ALLOC
1121 void __sched
mutex_lock_nested(struct mutex * lock,unsigned int subclass)1122 mutex_lock_nested(struct mutex *lock, unsigned int subclass)
1123 {
1124 	__mutex_lock(lock, TASK_UNINTERRUPTIBLE, subclass, NULL, _RET_IP_);
1125 }
1126 
1127 EXPORT_SYMBOL_GPL(mutex_lock_nested);
1128 
1129 void __sched
_mutex_lock_nest_lock(struct mutex * lock,struct lockdep_map * nest)1130 _mutex_lock_nest_lock(struct mutex *lock, struct lockdep_map *nest)
1131 {
1132 	__mutex_lock(lock, TASK_UNINTERRUPTIBLE, 0, nest, _RET_IP_);
1133 }
1134 EXPORT_SYMBOL_GPL(_mutex_lock_nest_lock);
1135 
1136 int __sched
mutex_lock_killable_nested(struct mutex * lock,unsigned int subclass)1137 mutex_lock_killable_nested(struct mutex *lock, unsigned int subclass)
1138 {
1139 	return __mutex_lock(lock, TASK_KILLABLE, subclass, NULL, _RET_IP_);
1140 }
1141 EXPORT_SYMBOL_GPL(mutex_lock_killable_nested);
1142 
1143 int __sched
mutex_lock_interruptible_nested(struct mutex * lock,unsigned int subclass)1144 mutex_lock_interruptible_nested(struct mutex *lock, unsigned int subclass)
1145 {
1146 	return __mutex_lock(lock, TASK_INTERRUPTIBLE, subclass, NULL, _RET_IP_);
1147 }
1148 EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested);
1149 
1150 void __sched
mutex_lock_io_nested(struct mutex * lock,unsigned int subclass)1151 mutex_lock_io_nested(struct mutex *lock, unsigned int subclass)
1152 {
1153 	int token;
1154 
1155 	might_sleep();
1156 
1157 	token = io_schedule_prepare();
1158 	__mutex_lock_common(lock, TASK_UNINTERRUPTIBLE,
1159 			    subclass, NULL, _RET_IP_, NULL, 0);
1160 	io_schedule_finish(token);
1161 }
1162 EXPORT_SYMBOL_GPL(mutex_lock_io_nested);
1163 
1164 static inline int
ww_mutex_deadlock_injection(struct ww_mutex * lock,struct ww_acquire_ctx * ctx)1165 ww_mutex_deadlock_injection(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1166 {
1167 #ifdef CONFIG_DEBUG_WW_MUTEX_SLOWPATH
1168 	unsigned tmp;
1169 
1170 	if (ctx->deadlock_inject_countdown-- == 0) {
1171 		tmp = ctx->deadlock_inject_interval;
1172 		if (tmp > UINT_MAX/4)
1173 			tmp = UINT_MAX;
1174 		else
1175 			tmp = tmp*2 + tmp + tmp/2;
1176 
1177 		ctx->deadlock_inject_interval = tmp;
1178 		ctx->deadlock_inject_countdown = tmp;
1179 		ctx->contending_lock = lock;
1180 
1181 		ww_mutex_unlock(lock);
1182 
1183 		return -EDEADLK;
1184 	}
1185 #endif
1186 
1187 	return 0;
1188 }
1189 
1190 int __sched
ww_mutex_lock(struct ww_mutex * lock,struct ww_acquire_ctx * ctx)1191 ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1192 {
1193 	int ret;
1194 
1195 	might_sleep();
1196 	ret =  __ww_mutex_lock(&lock->base, TASK_UNINTERRUPTIBLE,
1197 			       0, ctx ? &ctx->dep_map : NULL, _RET_IP_,
1198 			       ctx);
1199 	if (!ret && ctx && ctx->acquired > 1)
1200 		return ww_mutex_deadlock_injection(lock, ctx);
1201 
1202 	return ret;
1203 }
1204 EXPORT_SYMBOL_GPL(ww_mutex_lock);
1205 
1206 int __sched
ww_mutex_lock_interruptible(struct ww_mutex * lock,struct ww_acquire_ctx * ctx)1207 ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1208 {
1209 	int ret;
1210 
1211 	might_sleep();
1212 	ret = __ww_mutex_lock(&lock->base, TASK_INTERRUPTIBLE,
1213 			      0, ctx ? &ctx->dep_map : NULL, _RET_IP_,
1214 			      ctx);
1215 
1216 	if (!ret && ctx && ctx->acquired > 1)
1217 		return ww_mutex_deadlock_injection(lock, ctx);
1218 
1219 	return ret;
1220 }
1221 EXPORT_SYMBOL_GPL(ww_mutex_lock_interruptible);
1222 
1223 #endif
1224 
1225 /*
1226  * Release the lock, slowpath:
1227  */
__mutex_unlock_slowpath(struct mutex * lock,unsigned long ip)1228 static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip)
1229 {
1230 	struct task_struct *next = NULL;
1231 	DEFINE_WAKE_Q(wake_q);
1232 	unsigned long owner;
1233 
1234 	mutex_release(&lock->dep_map, ip);
1235 
1236 	/*
1237 	 * Release the lock before (potentially) taking the spinlock such that
1238 	 * other contenders can get on with things ASAP.
1239 	 *
1240 	 * Except when HANDOFF, in that case we must not clear the owner field,
1241 	 * but instead set it to the top waiter.
1242 	 */
1243 	owner = atomic_long_read(&lock->owner);
1244 	for (;;) {
1245 		unsigned long old;
1246 
1247 #ifdef CONFIG_DEBUG_MUTEXES
1248 		DEBUG_LOCKS_WARN_ON(__owner_task(owner) != current);
1249 		DEBUG_LOCKS_WARN_ON(owner & MUTEX_FLAG_PICKUP);
1250 #endif
1251 
1252 		if (owner & MUTEX_FLAG_HANDOFF)
1253 			break;
1254 
1255 		old = atomic_long_cmpxchg_release(&lock->owner, owner,
1256 						  __owner_flags(owner));
1257 		if (old == owner) {
1258 			if (owner & MUTEX_FLAG_WAITERS)
1259 				break;
1260 
1261 			return;
1262 		}
1263 
1264 		owner = old;
1265 	}
1266 
1267 	spin_lock(&lock->wait_lock);
1268 	debug_mutex_unlock(lock);
1269 	if (!list_empty(&lock->wait_list)) {
1270 		/* get the first entry from the wait-list: */
1271 		struct mutex_waiter *waiter =
1272 			list_first_entry(&lock->wait_list,
1273 					 struct mutex_waiter, list);
1274 
1275 		next = waiter->task;
1276 
1277 		debug_mutex_wake_waiter(lock, waiter);
1278 		wake_q_add(&wake_q, next);
1279 	}
1280 
1281 	if (owner & MUTEX_FLAG_HANDOFF)
1282 		__mutex_handoff(lock, next);
1283 
1284 	spin_unlock(&lock->wait_lock);
1285 
1286 	wake_up_q(&wake_q);
1287 }
1288 
1289 #ifndef CONFIG_DEBUG_LOCK_ALLOC
1290 /*
1291  * Here come the less common (and hence less performance-critical) APIs:
1292  * mutex_lock_interruptible() and mutex_trylock().
1293  */
1294 static noinline int __sched
1295 __mutex_lock_killable_slowpath(struct mutex *lock);
1296 
1297 static noinline int __sched
1298 __mutex_lock_interruptible_slowpath(struct mutex *lock);
1299 
1300 /**
1301  * mutex_lock_interruptible() - Acquire the mutex, interruptible by signals.
1302  * @lock: The mutex to be acquired.
1303  *
1304  * Lock the mutex like mutex_lock().  If a signal is delivered while the
1305  * process is sleeping, this function will return without acquiring the
1306  * mutex.
1307  *
1308  * Context: Process context.
1309  * Return: 0 if the lock was successfully acquired or %-EINTR if a
1310  * signal arrived.
1311  */
mutex_lock_interruptible(struct mutex * lock)1312 int __sched mutex_lock_interruptible(struct mutex *lock)
1313 {
1314 	might_sleep();
1315 
1316 	if (__mutex_trylock_fast(lock))
1317 		return 0;
1318 
1319 	return __mutex_lock_interruptible_slowpath(lock);
1320 }
1321 
1322 EXPORT_SYMBOL(mutex_lock_interruptible);
1323 
1324 /**
1325  * mutex_lock_killable() - Acquire the mutex, interruptible by fatal signals.
1326  * @lock: The mutex to be acquired.
1327  *
1328  * Lock the mutex like mutex_lock().  If a signal which will be fatal to
1329  * the current process is delivered while the process is sleeping, this
1330  * function will return without acquiring the mutex.
1331  *
1332  * Context: Process context.
1333  * Return: 0 if the lock was successfully acquired or %-EINTR if a
1334  * fatal signal arrived.
1335  */
mutex_lock_killable(struct mutex * lock)1336 int __sched mutex_lock_killable(struct mutex *lock)
1337 {
1338 	might_sleep();
1339 
1340 	if (__mutex_trylock_fast(lock))
1341 		return 0;
1342 
1343 	return __mutex_lock_killable_slowpath(lock);
1344 }
1345 EXPORT_SYMBOL(mutex_lock_killable);
1346 
1347 /**
1348  * mutex_lock_io() - Acquire the mutex and mark the process as waiting for I/O
1349  * @lock: The mutex to be acquired.
1350  *
1351  * Lock the mutex like mutex_lock().  While the task is waiting for this
1352  * mutex, it will be accounted as being in the IO wait state by the
1353  * scheduler.
1354  *
1355  * Context: Process context.
1356  */
mutex_lock_io(struct mutex * lock)1357 void __sched mutex_lock_io(struct mutex *lock)
1358 {
1359 	int token;
1360 
1361 	token = io_schedule_prepare();
1362 	mutex_lock(lock);
1363 	io_schedule_finish(token);
1364 }
1365 EXPORT_SYMBOL_GPL(mutex_lock_io);
1366 
1367 static noinline void __sched
__mutex_lock_slowpath(struct mutex * lock)1368 __mutex_lock_slowpath(struct mutex *lock)
1369 {
1370 	__mutex_lock(lock, TASK_UNINTERRUPTIBLE, 0, NULL, _RET_IP_);
1371 }
1372 
1373 static noinline int __sched
__mutex_lock_killable_slowpath(struct mutex * lock)1374 __mutex_lock_killable_slowpath(struct mutex *lock)
1375 {
1376 	return __mutex_lock(lock, TASK_KILLABLE, 0, NULL, _RET_IP_);
1377 }
1378 
1379 static noinline int __sched
__mutex_lock_interruptible_slowpath(struct mutex * lock)1380 __mutex_lock_interruptible_slowpath(struct mutex *lock)
1381 {
1382 	return __mutex_lock(lock, TASK_INTERRUPTIBLE, 0, NULL, _RET_IP_);
1383 }
1384 
1385 static noinline int __sched
__ww_mutex_lock_slowpath(struct ww_mutex * lock,struct ww_acquire_ctx * ctx)1386 __ww_mutex_lock_slowpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1387 {
1388 	return __ww_mutex_lock(&lock->base, TASK_UNINTERRUPTIBLE, 0, NULL,
1389 			       _RET_IP_, ctx);
1390 }
1391 
1392 static noinline int __sched
__ww_mutex_lock_interruptible_slowpath(struct ww_mutex * lock,struct ww_acquire_ctx * ctx)1393 __ww_mutex_lock_interruptible_slowpath(struct ww_mutex *lock,
1394 					    struct ww_acquire_ctx *ctx)
1395 {
1396 	return __ww_mutex_lock(&lock->base, TASK_INTERRUPTIBLE, 0, NULL,
1397 			       _RET_IP_, ctx);
1398 }
1399 
1400 #endif
1401 
1402 /**
1403  * mutex_trylock - try to acquire the mutex, without waiting
1404  * @lock: the mutex to be acquired
1405  *
1406  * Try to acquire the mutex atomically. Returns 1 if the mutex
1407  * has been acquired successfully, and 0 on contention.
1408  *
1409  * NOTE: this function follows the spin_trylock() convention, so
1410  * it is negated from the down_trylock() return values! Be careful
1411  * about this when converting semaphore users to mutexes.
1412  *
1413  * This function must not be used in interrupt context. The
1414  * mutex must be released by the same task that acquired it.
1415  */
mutex_trylock(struct mutex * lock)1416 int __sched mutex_trylock(struct mutex *lock)
1417 {
1418 	bool locked;
1419 
1420 #ifdef CONFIG_DEBUG_MUTEXES
1421 	DEBUG_LOCKS_WARN_ON(lock->magic != lock);
1422 #endif
1423 
1424 	locked = __mutex_trylock(lock);
1425 	if (locked)
1426 		mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
1427 
1428 	return locked;
1429 }
1430 EXPORT_SYMBOL(mutex_trylock);
1431 
1432 #ifndef CONFIG_DEBUG_LOCK_ALLOC
1433 int __sched
ww_mutex_lock(struct ww_mutex * lock,struct ww_acquire_ctx * ctx)1434 ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1435 {
1436 	might_sleep();
1437 
1438 	if (__mutex_trylock_fast(&lock->base)) {
1439 		if (ctx)
1440 			ww_mutex_set_context_fastpath(lock, ctx);
1441 		return 0;
1442 	}
1443 
1444 	return __ww_mutex_lock_slowpath(lock, ctx);
1445 }
1446 EXPORT_SYMBOL(ww_mutex_lock);
1447 
1448 int __sched
ww_mutex_lock_interruptible(struct ww_mutex * lock,struct ww_acquire_ctx * ctx)1449 ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1450 {
1451 	might_sleep();
1452 
1453 	if (__mutex_trylock_fast(&lock->base)) {
1454 		if (ctx)
1455 			ww_mutex_set_context_fastpath(lock, ctx);
1456 		return 0;
1457 	}
1458 
1459 	return __ww_mutex_lock_interruptible_slowpath(lock, ctx);
1460 }
1461 EXPORT_SYMBOL(ww_mutex_lock_interruptible);
1462 
1463 #endif
1464 
1465 /**
1466  * atomic_dec_and_mutex_lock - return holding mutex if we dec to 0
1467  * @cnt: the atomic which we are to dec
1468  * @lock: the mutex to return holding if we dec to 0
1469  *
1470  * return true and hold lock if we dec to 0, return false otherwise
1471  */
atomic_dec_and_mutex_lock(atomic_t * cnt,struct mutex * lock)1472 int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock)
1473 {
1474 	/* dec if we can't possibly hit 0 */
1475 	if (atomic_add_unless(cnt, -1, 1))
1476 		return 0;
1477 	/* we might hit 0, so take the lock */
1478 	mutex_lock(lock);
1479 	if (!atomic_dec_and_test(cnt)) {
1480 		/* when we actually did the dec, we didn't hit 0 */
1481 		mutex_unlock(lock);
1482 		return 0;
1483 	}
1484 	/* we hit 0, and we hold the lock */
1485 	return 1;
1486 }
1487 EXPORT_SYMBOL(atomic_dec_and_mutex_lock);
1488