• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //  Copyright (c) 2006 Xiaogang Zhang
2 //  Use, modification and distribution are subject to the
3 //  Boost Software License, Version 1.0. (See accompanying file
4 //  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
5 
6 #ifndef BOOST_MATH_BESSEL_JY_HPP
7 #define BOOST_MATH_BESSEL_JY_HPP
8 
9 #ifdef _MSC_VER
10 #pragma once
11 #endif
12 
13 #include <boost/math/tools/config.hpp>
14 #include <boost/math/special_functions/gamma.hpp>
15 #include <boost/math/special_functions/sign.hpp>
16 #include <boost/math/special_functions/hypot.hpp>
17 #include <boost/math/special_functions/sin_pi.hpp>
18 #include <boost/math/special_functions/cos_pi.hpp>
19 #include <boost/math/special_functions/detail/bessel_jy_asym.hpp>
20 #include <boost/math/special_functions/detail/bessel_jy_series.hpp>
21 #include <boost/math/constants/constants.hpp>
22 #include <boost/math/policies/error_handling.hpp>
23 #include <boost/mpl/if.hpp>
24 #include <boost/type_traits/is_floating_point.hpp>
25 #include <complex>
26 
27 // Bessel functions of the first and second kind of fractional order
28 
29 namespace boost { namespace math {
30 
31    namespace detail {
32 
33       //
34       // Simultaneous calculation of A&S 9.2.9 and 9.2.10
35       // for use in A&S 9.2.5 and 9.2.6.
36       // This series is quick to evaluate, but divergent unless
37       // x is very large, in fact it's pretty hard to figure out
38       // with any degree of precision when this series actually
39       // *will* converge!!  Consequently, we may just have to
40       // try it and see...
41       //
42       template <class T, class Policy>
hankel_PQ(T v,T x,T * p,T * q,const Policy &)43       bool hankel_PQ(T v, T x, T* p, T* q, const Policy& )
44       {
45          BOOST_MATH_STD_USING
46             T tolerance = 2 * policies::get_epsilon<T, Policy>();
47          *p = 1;
48          *q = 0;
49          T k = 1;
50          T z8 = 8 * x;
51          T sq = 1;
52          T mu = 4 * v * v;
53          T term = 1;
54          bool ok = true;
55          do
56          {
57             term *= (mu - sq * sq) / (k * z8);
58             *q += term;
59             k += 1;
60             sq += 2;
61             T mult = (sq * sq - mu) / (k * z8);
62             ok = fabs(mult) < 0.5f;
63             term *= mult;
64             *p += term;
65             k += 1;
66             sq += 2;
67          }
68          while((fabs(term) > tolerance * *p) && ok);
69          return ok;
70       }
71 
72       // Calculate Y(v, x) and Y(v+1, x) by Temme's method, see
73       // Temme, Journal of Computational Physics, vol 21, 343 (1976)
74       template <typename T, typename Policy>
temme_jy(T v,T x,T * Y,T * Y1,const Policy & pol)75       int temme_jy(T v, T x, T* Y, T* Y1, const Policy& pol)
76       {
77          T g, h, p, q, f, coef, sum, sum1, tolerance;
78          T a, d, e, sigma;
79          unsigned long k;
80 
81          BOOST_MATH_STD_USING
82             using namespace boost::math::tools;
83          using namespace boost::math::constants;
84 
85          BOOST_ASSERT(fabs(v) <= 0.5f);  // precondition for using this routine
86 
87          T gp = boost::math::tgamma1pm1(v, pol);
88          T gm = boost::math::tgamma1pm1(-v, pol);
89          T spv = boost::math::sin_pi(v, pol);
90          T spv2 = boost::math::sin_pi(v/2, pol);
91          T xp = pow(x/2, v);
92 
93          a = log(x / 2);
94          sigma = -a * v;
95          d = abs(sigma) < tools::epsilon<T>() ?
96             T(1) : sinh(sigma) / sigma;
97          e = abs(v) < tools::epsilon<T>() ? T(v*pi<T>()*pi<T>() / 2)
98             : T(2 * spv2 * spv2 / v);
99 
100          T g1 = (v == 0) ? T(-euler<T>()) : T((gp - gm) / ((1 + gp) * (1 + gm) * 2 * v));
101          T g2 = (2 + gp + gm) / ((1 + gp) * (1 + gm) * 2);
102          T vspv = (fabs(v) < tools::epsilon<T>()) ? T(1/constants::pi<T>()) : T(v / spv);
103          f = (g1 * cosh(sigma) - g2 * a * d) * 2 * vspv;
104 
105          p = vspv / (xp * (1 + gm));
106          q = vspv * xp / (1 + gp);
107 
108          g = f + e * q;
109          h = p;
110          coef = 1;
111          sum = coef * g;
112          sum1 = coef * h;
113 
114          T v2 = v * v;
115          T coef_mult = -x * x / 4;
116 
117          // series summation
118          tolerance = policies::get_epsilon<T, Policy>();
119          for (k = 1; k < policies::get_max_series_iterations<Policy>(); k++)
120          {
121             f = (k * f + p + q) / (k*k - v2);
122             p /= k - v;
123             q /= k + v;
124             g = f + e * q;
125             h = p - k * g;
126             coef *= coef_mult / k;
127             sum += coef * g;
128             sum1 += coef * h;
129             if (abs(coef * g) < abs(sum) * tolerance)
130             {
131                break;
132             }
133          }
134          policies::check_series_iterations<T>("boost::math::bessel_jy<%1%>(%1%,%1%) in temme_jy", k, pol);
135          *Y = -sum;
136          *Y1 = -2 * sum1 / x;
137 
138          return 0;
139       }
140 
141       // Evaluate continued fraction fv = J_(v+1) / J_v, see
142       // Abramowitz and Stegun, Handbook of Mathematical Functions, 1972, 9.1.73
143       template <typename T, typename Policy>
CF1_jy(T v,T x,T * fv,int * sign,const Policy & pol)144       int CF1_jy(T v, T x, T* fv, int* sign, const Policy& pol)
145       {
146          T C, D, f, a, b, delta, tiny, tolerance;
147          unsigned long k;
148          int s = 1;
149 
150          BOOST_MATH_STD_USING
151 
152             // |x| <= |v|, CF1_jy converges rapidly
153             // |x| > |v|, CF1_jy needs O(|x|) iterations to converge
154 
155             // modified Lentz's method, see
156             // Lentz, Applied Optics, vol 15, 668 (1976)
157             tolerance = 2 * policies::get_epsilon<T, Policy>();;
158          tiny = sqrt(tools::min_value<T>());
159          C = f = tiny;                           // b0 = 0, replace with tiny
160          D = 0;
161          for (k = 1; k < policies::get_max_series_iterations<Policy>() * 100; k++)
162          {
163             a = -1;
164             b = 2 * (v + k) / x;
165             C = b + a / C;
166             D = b + a * D;
167             if (C == 0) { C = tiny; }
168             if (D == 0) { D = tiny; }
169             D = 1 / D;
170             delta = C * D;
171             f *= delta;
172             if (D < 0) { s = -s; }
173             if (abs(delta - 1) < tolerance)
174             { break; }
175          }
176          policies::check_series_iterations<T>("boost::math::bessel_jy<%1%>(%1%,%1%) in CF1_jy", k / 100, pol);
177          *fv = -f;
178          *sign = s;                              // sign of denominator
179 
180          return 0;
181       }
182       //
183       // This algorithm was originally written by Xiaogang Zhang
184       // using std::complex to perform the complex arithmetic.
185       // However, that turns out to 10x or more slower than using
186       // all real-valued arithmetic, so it's been rewritten using
187       // real values only.
188       //
189       template <typename T, typename Policy>
CF2_jy(T v,T x,T * p,T * q,const Policy & pol)190       int CF2_jy(T v, T x, T* p, T* q, const Policy& pol)
191       {
192          BOOST_MATH_STD_USING
193 
194             T Cr, Ci, Dr, Di, fr, fi, a, br, bi, delta_r, delta_i, temp;
195          T tiny;
196          unsigned long k;
197 
198          // |x| >= |v|, CF2_jy converges rapidly
199          // |x| -> 0, CF2_jy fails to converge
200          BOOST_ASSERT(fabs(x) > 1);
201 
202          // modified Lentz's method, complex numbers involved, see
203          // Lentz, Applied Optics, vol 15, 668 (1976)
204          T tolerance = 2 * policies::get_epsilon<T, Policy>();
205          tiny = sqrt(tools::min_value<T>());
206          Cr = fr = -0.5f / x;
207          Ci = fi = 1;
208          //Dr = Di = 0;
209          T v2 = v * v;
210          a = (0.25f - v2) / x; // Note complex this one time only!
211          br = 2 * x;
212          bi = 2;
213          temp = Cr * Cr + 1;
214          Ci = bi + a * Cr / temp;
215          Cr = br + a / temp;
216          Dr = br;
217          Di = bi;
218          if (fabs(Cr) + fabs(Ci) < tiny) { Cr = tiny; }
219          if (fabs(Dr) + fabs(Di) < tiny) { Dr = tiny; }
220          temp = Dr * Dr + Di * Di;
221          Dr = Dr / temp;
222          Di = -Di / temp;
223          delta_r = Cr * Dr - Ci * Di;
224          delta_i = Ci * Dr + Cr * Di;
225          temp = fr;
226          fr = temp * delta_r - fi * delta_i;
227          fi = temp * delta_i + fi * delta_r;
228          for (k = 2; k < policies::get_max_series_iterations<Policy>(); k++)
229          {
230             a = k - 0.5f;
231             a *= a;
232             a -= v2;
233             bi += 2;
234             temp = Cr * Cr + Ci * Ci;
235             Cr = br + a * Cr / temp;
236             Ci = bi - a * Ci / temp;
237             Dr = br + a * Dr;
238             Di = bi + a * Di;
239             if (fabs(Cr) + fabs(Ci) < tiny) { Cr = tiny; }
240             if (fabs(Dr) + fabs(Di) < tiny) { Dr = tiny; }
241             temp = Dr * Dr + Di * Di;
242             Dr = Dr / temp;
243             Di = -Di / temp;
244             delta_r = Cr * Dr - Ci * Di;
245             delta_i = Ci * Dr + Cr * Di;
246             temp = fr;
247             fr = temp * delta_r - fi * delta_i;
248             fi = temp * delta_i + fi * delta_r;
249             if (fabs(delta_r - 1) + fabs(delta_i) < tolerance)
250                break;
251          }
252          policies::check_series_iterations<T>("boost::math::bessel_jy<%1%>(%1%,%1%) in CF2_jy", k, pol);
253          *p = fr;
254          *q = fi;
255 
256          return 0;
257       }
258 
259       static const int need_j = 1;
260       static const int need_y = 2;
261 
262       // Compute J(v, x) and Y(v, x) simultaneously by Steed's method, see
263       // Barnett et al, Computer Physics Communications, vol 8, 377 (1974)
264       template <typename T, typename Policy>
bessel_jy(T v,T x,T * J,T * Y,int kind,const Policy & pol)265       int bessel_jy(T v, T x, T* J, T* Y, int kind, const Policy& pol)
266       {
267          BOOST_ASSERT(x >= 0);
268 
269          T u, Jv, Ju, Yv, Yv1, Yu, Yu1(0), fv, fu;
270          T W, p, q, gamma, current, prev, next;
271          bool reflect = false;
272          unsigned n, k;
273          int s;
274          int org_kind = kind;
275          T cp = 0;
276          T sp = 0;
277 
278          static const char* function = "boost::math::bessel_jy<%1%>(%1%,%1%)";
279 
280          BOOST_MATH_STD_USING
281             using namespace boost::math::tools;
282          using namespace boost::math::constants;
283 
284          if (v < 0)
285          {
286             reflect = true;
287             v = -v;                             // v is non-negative from here
288          }
289          if (v > static_cast<T>((std::numeric_limits<int>::max)()))
290          {
291             *J = *Y = policies::raise_evaluation_error<T>(function, "Order of Bessel function is too large to evaluate: got %1%", v, pol);
292             return 1;
293          }
294          n = iround(v, pol);
295          u = v - n;                              // -1/2 <= u < 1/2
296 
297          if(reflect)
298          {
299             T z = (u + n % 2);
300             cp = boost::math::cos_pi(z, pol);
301             sp = boost::math::sin_pi(z, pol);
302             if(u != 0)
303                kind = need_j|need_y;               // need both for reflection formula
304          }
305 
306          if(x == 0)
307          {
308             if(v == 0)
309                *J = 1;
310             else if((u == 0) || !reflect)
311                *J = 0;
312             else if(kind & need_j)
313                *J = policies::raise_domain_error<T>(function, "Value of Bessel J_v(x) is complex-infinity at %1%", x, pol); // complex infinity
314             else
315                *J = std::numeric_limits<T>::quiet_NaN();  // any value will do, not using J.
316 
317             if((kind & need_y) == 0)
318                *Y = std::numeric_limits<T>::quiet_NaN();  // any value will do, not using Y.
319             else if(v == 0)
320                *Y = -policies::raise_overflow_error<T>(function, 0, pol);
321             else
322                *Y = policies::raise_domain_error<T>(function, "Value of Bessel Y_v(x) is complex-infinity at %1%", x, pol); // complex infinity
323             return 1;
324          }
325 
326          // x is positive until reflection
327          W = T(2) / (x * pi<T>());               // Wronskian
328          T Yv_scale = 1;
329          if(((kind & need_y) == 0) && ((x < 1) || (v > x * x / 4) || (x < 5)))
330          {
331             //
332             // This series will actually converge rapidly for all small
333             // x - say up to x < 20 - but the first few terms are large
334             // and divergent which leads to large errors :-(
335             //
336             Jv = bessel_j_small_z_series(v, x, pol);
337             Yv = std::numeric_limits<T>::quiet_NaN();
338          }
339          else if((x < 1) && (u != 0) && (log(policies::get_epsilon<T, Policy>() / 2) > v * log((x/2) * (x/2) / v)))
340          {
341             // Evaluate using series representations.
342             // This is particularly important for x << v as in this
343             // area temme_jy may be slow to converge, if it converges at all.
344             // Requires x is not an integer.
345             if(kind&need_j)
346                Jv = bessel_j_small_z_series(v, x, pol);
347             else
348                Jv = std::numeric_limits<T>::quiet_NaN();
349             if((org_kind&need_y && (!reflect || (cp != 0)))
350                || (org_kind & need_j && (reflect && (sp != 0))))
351             {
352                // Only calculate if we need it, and if the reflection formula will actually use it:
353                Yv = bessel_y_small_z_series(v, x, &Yv_scale, pol);
354             }
355             else
356                Yv = std::numeric_limits<T>::quiet_NaN();
357          }
358          else if((u == 0) && (x < policies::get_epsilon<T, Policy>()))
359          {
360             // Truncated series evaluation for small x and v an integer,
361             // much quicker in this area than temme_jy below.
362             if(kind&need_j)
363                Jv = bessel_j_small_z_series(v, x, pol);
364             else
365                Jv = std::numeric_limits<T>::quiet_NaN();
366             if((org_kind&need_y && (!reflect || (cp != 0)))
367                || (org_kind & need_j && (reflect && (sp != 0))))
368             {
369                // Only calculate if we need it, and if the reflection formula will actually use it:
370                Yv = bessel_yn_small_z(n, x, &Yv_scale, pol);
371             }
372             else
373                Yv = std::numeric_limits<T>::quiet_NaN();
374          }
375          else if(asymptotic_bessel_large_x_limit(v, x))
376          {
377             if(kind&need_y)
378             {
379                Yv = asymptotic_bessel_y_large_x_2(v, x);
380             }
381             else
382                Yv = std::numeric_limits<T>::quiet_NaN(); // any value will do, we're not using it.
383             if(kind&need_j)
384             {
385                Jv = asymptotic_bessel_j_large_x_2(v, x);
386             }
387             else
388                Jv = std::numeric_limits<T>::quiet_NaN(); // any value will do, we're not using it.
389          }
390          else if((x > 8) && hankel_PQ(v, x, &p, &q, pol))
391          {
392             //
393             // Hankel approximation: note that this method works best when x
394             // is large, but in that case we end up calculating sines and cosines
395             // of large values, with horrendous resulting accuracy.  It is fast though
396             // when it works....
397             //
398             // Normally we calculate sin/cos(chi) where:
399             //
400             // chi = x - fmod(T(v / 2 + 0.25f), T(2)) * boost::math::constants::pi<T>();
401             //
402             // But this introduces large errors, so use sin/cos addition formulae to
403             // improve accuracy:
404             //
405             T mod_v = fmod(T(v / 2 + 0.25f), T(2));
406             T sx = sin(x);
407             T cx = cos(x);
408             T sv = sin_pi(mod_v);
409             T cv = cos_pi(mod_v);
410 
411             T sc = sx * cv - sv * cx; // == sin(chi);
412             T cc = cx * cv + sx * sv; // == cos(chi);
413             T chi = boost::math::constants::root_two<T>() / (boost::math::constants::root_pi<T>() * sqrt(x)); //sqrt(2 / (boost::math::constants::pi<T>() * x));
414             Yv = chi * (p * sc + q * cc);
415             Jv = chi * (p * cc - q * sc);
416          }
417          else if (x <= 2)                           // x in (0, 2]
418          {
419             if(temme_jy(u, x, &Yu, &Yu1, pol))             // Temme series
420             {
421                // domain error:
422                *J = *Y = Yu;
423                return 1;
424             }
425             prev = Yu;
426             current = Yu1;
427             T scale = 1;
428             policies::check_series_iterations<T>(function, n, pol);
429             for (k = 1; k <= n; k++)            // forward recurrence for Y
430             {
431                T fact = 2 * (u + k) / x;
432                if((tools::max_value<T>() - fabs(prev)) / fact < fabs(current))
433                {
434                   scale /= current;
435                   prev /= current;
436                   current = 1;
437                }
438                next = fact * current - prev;
439                prev = current;
440                current = next;
441             }
442             Yv = prev;
443             Yv1 = current;
444             if(kind&need_j)
445             {
446                CF1_jy(v, x, &fv, &s, pol);                 // continued fraction CF1_jy
447                Jv = scale * W / (Yv * fv - Yv1);           // Wronskian relation
448             }
449             else
450                Jv = std::numeric_limits<T>::quiet_NaN(); // any value will do, we're not using it.
451             Yv_scale = scale;
452          }
453          else                                    // x in (2, \infty)
454          {
455             // Get Y(u, x):
456 
457             T ratio;
458             CF1_jy(v, x, &fv, &s, pol);
459             // tiny initial value to prevent overflow
460             T init = sqrt(tools::min_value<T>());
461             BOOST_MATH_INSTRUMENT_VARIABLE(init);
462             prev = fv * s * init;
463             current = s * init;
464             if(v < max_factorial<T>::value)
465             {
466                policies::check_series_iterations<T>(function, n, pol);
467                for (k = n; k > 0; k--)             // backward recurrence for J
468                {
469                   next = 2 * (u + k) * current / x - prev;
470                   prev = current;
471                   current = next;
472                }
473                ratio = (s * init) / current;     // scaling ratio
474                // can also call CF1_jy() to get fu, not much difference in precision
475                fu = prev / current;
476             }
477             else
478             {
479                //
480                // When v is large we may get overflow in this calculation
481                // leading to NaN's and other nasty surprises:
482                //
483                policies::check_series_iterations<T>(function, n, pol);
484                bool over = false;
485                for (k = n; k > 0; k--)             // backward recurrence for J
486                {
487                   T t = 2 * (u + k) / x;
488                   if((t > 1) && (tools::max_value<T>() / t < current))
489                   {
490                      over = true;
491                      break;
492                   }
493                   next = t * current - prev;
494                   prev = current;
495                   current = next;
496                }
497                if(!over)
498                {
499                   ratio = (s * init) / current;     // scaling ratio
500                   // can also call CF1_jy() to get fu, not much difference in precision
501                   fu = prev / current;
502                }
503                else
504                {
505                   ratio = 0;
506                   fu = 1;
507                }
508             }
509             CF2_jy(u, x, &p, &q, pol);                  // continued fraction CF2_jy
510             T t = u / x - fu;                   // t = J'/J
511             gamma = (p - t) / q;
512             //
513             // We can't allow gamma to cancel out to zero completely as it messes up
514             // the subsequent logic.  So pretend that one bit didn't cancel out
515             // and set to a suitably small value.  The only test case we've been able to
516             // find for this, is when v = 8.5 and x = 4*PI.
517             //
518             if(gamma == 0)
519             {
520                gamma = u * tools::epsilon<T>() / x;
521             }
522             BOOST_MATH_INSTRUMENT_VARIABLE(current);
523             BOOST_MATH_INSTRUMENT_VARIABLE(W);
524             BOOST_MATH_INSTRUMENT_VARIABLE(q);
525             BOOST_MATH_INSTRUMENT_VARIABLE(gamma);
526             BOOST_MATH_INSTRUMENT_VARIABLE(p);
527             BOOST_MATH_INSTRUMENT_VARIABLE(t);
528             Ju = sign(current) * sqrt(W / (q + gamma * (p - t)));
529             BOOST_MATH_INSTRUMENT_VARIABLE(Ju);
530 
531             Jv = Ju * ratio;                    // normalization
532 
533             Yu = gamma * Ju;
534             Yu1 = Yu * (u/x - p - q/gamma);
535 
536             if(kind&need_y)
537             {
538                // compute Y:
539                prev = Yu;
540                current = Yu1;
541                policies::check_series_iterations<T>(function, n, pol);
542                for (k = 1; k <= n; k++)            // forward recurrence for Y
543                {
544                   T fact = 2 * (u + k) / x;
545                   if((tools::max_value<T>() - fabs(prev)) / fact < fabs(current))
546                   {
547                      prev /= current;
548                      Yv_scale /= current;
549                      current = 1;
550                   }
551                   next = fact * current - prev;
552                   prev = current;
553                   current = next;
554                }
555                Yv = prev;
556             }
557             else
558                Yv = std::numeric_limits<T>::quiet_NaN(); // any value will do, we're not using it.
559          }
560 
561          if (reflect)
562          {
563             if((sp != 0) && (tools::max_value<T>() * fabs(Yv_scale) < fabs(sp * Yv)))
564                *J = org_kind & need_j ? T(-sign(sp) * sign(Yv) * (Yv_scale != 0 ? sign(Yv_scale) : 1) * policies::raise_overflow_error<T>(function, 0, pol)) : T(0);
565             else
566                *J = cp * Jv - (sp == 0 ? T(0) : T((sp * Yv) / Yv_scale));     // reflection formula
567             if((cp != 0) && (tools::max_value<T>() * fabs(Yv_scale) < fabs(cp * Yv)))
568                *Y = org_kind & need_y ? T(-sign(cp) * sign(Yv) * (Yv_scale != 0 ? sign(Yv_scale) : 1) * policies::raise_overflow_error<T>(function, 0, pol)) : T(0);
569             else
570                *Y = (sp != 0 ? sp * Jv : T(0)) + (cp == 0 ? T(0) : T((cp * Yv) / Yv_scale));
571          }
572          else
573          {
574             *J = Jv;
575             if(tools::max_value<T>() * fabs(Yv_scale) < fabs(Yv))
576                *Y = org_kind & need_y ? T(sign(Yv) * sign(Yv_scale) * policies::raise_overflow_error<T>(function, 0, pol)) : T(0);
577             else
578                *Y = Yv / Yv_scale;
579          }
580 
581          return 0;
582       }
583 
584    } // namespace detail
585 
586 }} // namespaces
587 
588 #endif // BOOST_MATH_BESSEL_JY_HPP
589 
590