• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * chaotic_system.cpp
3  *
4  * This example demonstrates how one can use odeint to determine the Lyapunov
5  * exponents of a chaotic system namely the well known Lorenz system. Furthermore,
6  * it shows how odeint interacts with boost.range.
7  *
8  * Copyright 2011-2012 Karsten Ahnert
9  * Copyright 2011-2013 Mario Mulansky
10  *
11  * Distributed under the Boost Software License, Version 1.0.
12  * (See accompanying file LICENSE_1_0.txt or
13  * copy at http://www.boost.org/LICENSE_1_0.txt)
14  */
15 
16 
17 #include <iostream>
18 #include <boost/array.hpp>
19 
20 #include <boost/numeric/odeint.hpp>
21 
22 #include "gram_schmidt.hpp"
23 
24 using namespace std;
25 using namespace boost::numeric::odeint;
26 
27 
28 const double sigma = 10.0;
29 const double R = 28.0;
30 const double b = 8.0 / 3.0;
31 
32 //[ system_function_without_perturbations
33 struct lorenz
34 {
35     template< class State , class Deriv >
operator ()lorenz36     void operator()( const State &x_ , Deriv &dxdt_ , double t ) const
37     {
38         typename boost::range_iterator< const State >::type x = boost::begin( x_ );
39         typename boost::range_iterator< Deriv >::type dxdt = boost::begin( dxdt_ );
40 
41         dxdt[0] = sigma * ( x[1] - x[0] );
42         dxdt[1] = R * x[0] - x[1] - x[0] * x[2];
43         dxdt[2] = -b * x[2] + x[0] * x[1];
44     }
45 };
46 //]
47 
48 
49 
50 //[ system_function_with_perturbations
51 const size_t n = 3;
52 const size_t num_of_lyap = 3;
53 const size_t N = n + n*num_of_lyap;
54 
55 typedef boost::array< double , N > state_type;
56 typedef boost::array< double , num_of_lyap > lyap_type;
57 
lorenz_with_lyap(const state_type & x,state_type & dxdt,double t)58 void lorenz_with_lyap( const state_type &x , state_type &dxdt , double t )
59 {
60     lorenz()( x , dxdt , t );
61 
62     for( size_t l=0 ; l<num_of_lyap ; ++l )
63     {
64         const double *pert = x.begin() + 3 + l * 3;
65         double *dpert = dxdt.begin() + 3 + l * 3;
66         dpert[0] = - sigma * pert[0] + 10.0 * pert[1];
67         dpert[1] = ( R - x[2] ) * pert[0] - pert[1] - x[0] * pert[2];
68         dpert[2] = x[1] * pert[0] + x[0] * pert[1] - b * pert[2];
69     }
70 }
71 //]
72 
73 
74 
75 
76 
main(int argc,char ** argv)77 int main( int argc , char **argv )
78 {
79     state_type x;
80     lyap_type lyap;
81 
82     fill( x.begin() , x.end() , 0.0 );
83     x[0] = 10.0 ; x[1] = 10.0 ; x[2] = 5.0;
84 
85     const double dt = 0.01;
86 
87     //[ integrate_transients_with_range
88     // explicitly choose range_algebra to override default choice of array_algebra
89     runge_kutta4< state_type , double , state_type , double , range_algebra > rk4;
90 
91     // perform 10000 transient steps
92     integrate_n_steps( rk4 , lorenz() , std::make_pair( x.begin() , x.begin() + n ) , 0.0 , dt , 10000 );
93     //]
94 
95     //[ lyapunov_full_code
96     fill( x.begin()+n , x.end() , 0.0 );
97     for( size_t i=0 ; i<num_of_lyap ; ++i ) x[n+n*i+i] = 1.0;
98     fill( lyap.begin() , lyap.end() , 0.0 );
99 
100     double t = 0.0;
101     size_t count = 0;
102     while( true )
103     {
104 
105         t = integrate_n_steps( rk4 , lorenz_with_lyap , x , t , dt , 100 );
106         gram_schmidt< num_of_lyap >( x , lyap , n );
107         ++count;
108 
109         if( !(count % 100000) )
110         {
111             cout << t;
112             for( size_t i=0 ; i<num_of_lyap ; ++i ) cout << "\t" << lyap[i] / t ;
113             cout << endl;
114         }
115     }
116     //]
117 
118     return 0;
119 }
120