• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2012 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  */
23 
24 /** @file brw_fs_copy_propagation.cpp
25  *
26  * Support for global copy propagation in two passes: A local pass that does
27  * intra-block copy (and constant) propagation, and a global pass that uses
28  * dataflow analysis on the copies available at the end of each block to re-do
29  * local copy propagation with more copies available.
30  *
31  * See Muchnick's Advanced Compiler Design and Implementation, section
32  * 12.5 (p356).
33  */
34 
35 #define ACP_HASH_SIZE 64
36 
37 #include "util/bitset.h"
38 #include "util/u_math.h"
39 #include "brw_fs.h"
40 #include "brw_fs_live_variables.h"
41 #include "brw_cfg.h"
42 #include "brw_eu.h"
43 
44 using namespace brw;
45 
46 namespace { /* avoid conflict with opt_copy_propagation_elements */
47 struct acp_entry : public exec_node {
48    fs_reg dst;
49    fs_reg src;
50    unsigned global_idx;
51    unsigned size_written;
52    unsigned size_read;
53    enum opcode opcode;
54    bool saturate;
55    bool is_partial_write;
56 };
57 
58 struct block_data {
59    /**
60     * Which entries in the fs_copy_prop_dataflow acp table are live at the
61     * start of this block.  This is the useful output of the analysis, since
62     * it lets us plug those into the local copy propagation on the second
63     * pass.
64     */
65    BITSET_WORD *livein;
66 
67    /**
68     * Which entries in the fs_copy_prop_dataflow acp table are live at the end
69     * of this block.  This is done in initial setup from the per-block acps
70     * returned by the first local copy prop pass.
71     */
72    BITSET_WORD *liveout;
73 
74    /**
75     * Which entries in the fs_copy_prop_dataflow acp table are generated by
76     * instructions in this block which reach the end of the block without
77     * being killed.
78     */
79    BITSET_WORD *copy;
80 
81    /**
82     * Which entries in the fs_copy_prop_dataflow acp table are killed over the
83     * course of this block.
84     */
85    BITSET_WORD *kill;
86 
87    /**
88     * Which entries in the fs_copy_prop_dataflow acp table are guaranteed to
89     * have a fully uninitialized destination at the end of this block.
90     */
91    BITSET_WORD *undef;
92 };
93 
94 class fs_copy_prop_dataflow
95 {
96 public:
97    fs_copy_prop_dataflow(void *mem_ctx, cfg_t *cfg,
98                          const fs_live_variables &live,
99                          exec_list *out_acp[ACP_HASH_SIZE]);
100 
101    void setup_initial_values();
102    void run();
103 
104    void dump_block_data() const UNUSED;
105 
106    void *mem_ctx;
107    cfg_t *cfg;
108    const fs_live_variables &live;
109 
110    acp_entry **acp;
111    int num_acp;
112    int bitset_words;
113 
114   struct block_data *bd;
115 };
116 } /* anonymous namespace */
117 
fs_copy_prop_dataflow(void * mem_ctx,cfg_t * cfg,const fs_live_variables & live,exec_list * out_acp[ACP_HASH_SIZE])118 fs_copy_prop_dataflow::fs_copy_prop_dataflow(void *mem_ctx, cfg_t *cfg,
119                                              const fs_live_variables &live,
120                                              exec_list *out_acp[ACP_HASH_SIZE])
121    : mem_ctx(mem_ctx), cfg(cfg), live(live)
122 {
123    bd = rzalloc_array(mem_ctx, struct block_data, cfg->num_blocks);
124 
125    num_acp = 0;
126    foreach_block (block, cfg) {
127       for (int i = 0; i < ACP_HASH_SIZE; i++) {
128          num_acp += out_acp[block->num][i].length();
129       }
130    }
131 
132    acp = rzalloc_array(mem_ctx, struct acp_entry *, num_acp);
133 
134    bitset_words = BITSET_WORDS(num_acp);
135 
136    int next_acp = 0;
137    foreach_block (block, cfg) {
138       bd[block->num].livein = rzalloc_array(bd, BITSET_WORD, bitset_words);
139       bd[block->num].liveout = rzalloc_array(bd, BITSET_WORD, bitset_words);
140       bd[block->num].copy = rzalloc_array(bd, BITSET_WORD, bitset_words);
141       bd[block->num].kill = rzalloc_array(bd, BITSET_WORD, bitset_words);
142       bd[block->num].undef = rzalloc_array(bd, BITSET_WORD, bitset_words);
143 
144       for (int i = 0; i < ACP_HASH_SIZE; i++) {
145          foreach_in_list(acp_entry, entry, &out_acp[block->num][i]) {
146             acp[next_acp] = entry;
147 
148             entry->global_idx = next_acp;
149 
150             /* opt_copy_propagation_local populates out_acp with copies created
151              * in a block which are still live at the end of the block.  This
152              * is exactly what we want in the COPY set.
153              */
154             BITSET_SET(bd[block->num].copy, next_acp);
155 
156             next_acp++;
157          }
158       }
159    }
160 
161    assert(next_acp == num_acp);
162 
163    setup_initial_values();
164    run();
165 }
166 
167 /**
168  * Set up initial values for each of the data flow sets, prior to running
169  * the fixed-point algorithm.
170  */
171 void
setup_initial_values()172 fs_copy_prop_dataflow::setup_initial_values()
173 {
174    /* Initialize the COPY and KILL sets. */
175    {
176       /* Create a temporary table of ACP entries which we'll use for efficient
177        * look-up.  Unfortunately, we have to do this in two steps because we
178        * have to match both sources and destinations and an ACP entry can only
179        * be in one list at a time.
180        *
181        * We choose to make the table size between num_acp/2 and num_acp/4 to
182        * try and trade off between the time it takes to initialize the table
183        * via exec_list constructors or make_empty() and the cost of
184        * collisions.  In practice, it doesn't appear to matter too much what
185        * size we make the table as long as it's roughly the same order of
186        * magnitude as num_acp.  We get most of the benefit of the table
187        * approach even if we use a table of size ACP_HASH_SIZE though a
188        * full-sized table is 1-2% faster in practice.
189        */
190       unsigned acp_table_size = util_next_power_of_two(num_acp) / 4;
191       acp_table_size = MAX2(acp_table_size, ACP_HASH_SIZE);
192       exec_list *acp_table = new exec_list[acp_table_size];
193 
194       /* First, get all the KILLs for instructions which overwrite ACP
195        * destinations.
196        */
197       for (int i = 0; i < num_acp; i++) {
198          unsigned idx = reg_space(acp[i]->dst) & (acp_table_size - 1);
199          acp_table[idx].push_tail(acp[i]);
200       }
201 
202       foreach_block (block, cfg) {
203          foreach_inst_in_block(fs_inst, inst, block) {
204             if (inst->dst.file != VGRF)
205                continue;
206 
207             unsigned idx = reg_space(inst->dst) & (acp_table_size - 1);
208             foreach_in_list(acp_entry, entry, &acp_table[idx]) {
209                if (regions_overlap(inst->dst, inst->size_written,
210                                    entry->dst, entry->size_written))
211                   BITSET_SET(bd[block->num].kill, entry->global_idx);
212             }
213          }
214       }
215 
216       /* Clear the table for the second pass */
217       for (unsigned i = 0; i < acp_table_size; i++)
218          acp_table[i].make_empty();
219 
220       /* Next, get all the KILLs for instructions which overwrite ACP
221        * sources.
222        */
223       for (int i = 0; i < num_acp; i++) {
224          unsigned idx = reg_space(acp[i]->src) & (acp_table_size - 1);
225          acp_table[idx].push_tail(acp[i]);
226       }
227 
228       foreach_block (block, cfg) {
229          foreach_inst_in_block(fs_inst, inst, block) {
230             if (inst->dst.file != VGRF &&
231                 inst->dst.file != FIXED_GRF)
232                continue;
233 
234             unsigned idx = reg_space(inst->dst) & (acp_table_size - 1);
235             foreach_in_list(acp_entry, entry, &acp_table[idx]) {
236                if (regions_overlap(inst->dst, inst->size_written,
237                                    entry->src, entry->size_read))
238                   BITSET_SET(bd[block->num].kill, entry->global_idx);
239             }
240          }
241       }
242 
243       delete [] acp_table;
244    }
245 
246    /* Populate the initial values for the livein and liveout sets.  For the
247     * block at the start of the program, livein = 0 and liveout = copy.
248     * For the others, set liveout and livein to ~0 (the universal set).
249     */
250    foreach_block (block, cfg) {
251       if (block->parents.is_empty()) {
252          for (int i = 0; i < bitset_words; i++) {
253             bd[block->num].livein[i] = 0u;
254             bd[block->num].liveout[i] = bd[block->num].copy[i];
255          }
256       } else {
257          for (int i = 0; i < bitset_words; i++) {
258             bd[block->num].liveout[i] = ~0u;
259             bd[block->num].livein[i] = ~0u;
260          }
261       }
262    }
263 
264    /* Initialize the undef set. */
265    foreach_block (block, cfg) {
266       for (int i = 0; i < num_acp; i++) {
267          BITSET_SET(bd[block->num].undef, i);
268          for (unsigned off = 0; off < acp[i]->size_written; off += REG_SIZE) {
269             if (BITSET_TEST(live.block_data[block->num].defout,
270                             live.var_from_reg(byte_offset(acp[i]->dst, off))))
271                BITSET_CLEAR(bd[block->num].undef, i);
272          }
273       }
274    }
275 }
276 
277 /**
278  * Walk the set of instructions in the block, marking which entries in the acp
279  * are killed by the block.
280  */
281 void
run()282 fs_copy_prop_dataflow::run()
283 {
284    bool progress;
285 
286    do {
287       progress = false;
288 
289       foreach_block (block, cfg) {
290          if (block->parents.is_empty())
291             continue;
292 
293          for (int i = 0; i < bitset_words; i++) {
294             const BITSET_WORD old_liveout = bd[block->num].liveout[i];
295             BITSET_WORD livein_from_any_block = 0;
296 
297             /* Update livein for this block.  If a copy is live out of all
298              * parent blocks, it's live coming in to this block.
299              */
300             bd[block->num].livein[i] = ~0u;
301             foreach_list_typed(bblock_link, parent_link, link, &block->parents) {
302                bblock_t *parent = parent_link->block;
303                /* Consider ACP entries with a known-undefined destination to
304                 * be available from the parent.  This is valid because we're
305                 * free to set the undefined variable equal to the source of
306                 * the ACP entry without breaking the application's
307                 * expectations, since the variable is undefined.
308                 */
309                bd[block->num].livein[i] &= (bd[parent->num].liveout[i] |
310                                             bd[parent->num].undef[i]);
311                livein_from_any_block |= bd[parent->num].liveout[i];
312             }
313 
314             /* Limit to the set of ACP entries that can possibly be available
315              * at the start of the block, since propagating from a variable
316              * which is guaranteed to be undefined (rather than potentially
317              * undefined for some dynamic control-flow paths) doesn't seem
318              * particularly useful.
319              */
320             bd[block->num].livein[i] &= livein_from_any_block;
321 
322             /* Update liveout for this block. */
323             bd[block->num].liveout[i] =
324                bd[block->num].copy[i] | (bd[block->num].livein[i] &
325                                          ~bd[block->num].kill[i]);
326 
327             if (old_liveout != bd[block->num].liveout[i])
328                progress = true;
329          }
330       }
331    } while (progress);
332 }
333 
334 void
dump_block_data() const335 fs_copy_prop_dataflow::dump_block_data() const
336 {
337    foreach_block (block, cfg) {
338       fprintf(stderr, "Block %d [%d, %d] (parents ", block->num,
339              block->start_ip, block->end_ip);
340       foreach_list_typed(bblock_link, link, link, &block->parents) {
341          bblock_t *parent = link->block;
342          fprintf(stderr, "%d ", parent->num);
343       }
344       fprintf(stderr, "):\n");
345       fprintf(stderr, "       livein = 0x");
346       for (int i = 0; i < bitset_words; i++)
347          fprintf(stderr, "%08x", bd[block->num].livein[i]);
348       fprintf(stderr, ", liveout = 0x");
349       for (int i = 0; i < bitset_words; i++)
350          fprintf(stderr, "%08x", bd[block->num].liveout[i]);
351       fprintf(stderr, ",\n       copy   = 0x");
352       for (int i = 0; i < bitset_words; i++)
353          fprintf(stderr, "%08x", bd[block->num].copy[i]);
354       fprintf(stderr, ", kill    = 0x");
355       for (int i = 0; i < bitset_words; i++)
356          fprintf(stderr, "%08x", bd[block->num].kill[i]);
357       fprintf(stderr, "\n");
358    }
359 }
360 
361 static bool
is_logic_op(enum opcode opcode)362 is_logic_op(enum opcode opcode)
363 {
364    return (opcode == BRW_OPCODE_AND ||
365            opcode == BRW_OPCODE_OR  ||
366            opcode == BRW_OPCODE_XOR ||
367            opcode == BRW_OPCODE_NOT);
368 }
369 
370 static bool
can_take_stride(fs_inst * inst,brw_reg_type dst_type,unsigned arg,unsigned stride,const intel_device_info * devinfo)371 can_take_stride(fs_inst *inst, brw_reg_type dst_type,
372                 unsigned arg, unsigned stride,
373                 const intel_device_info *devinfo)
374 {
375    if (stride > 4)
376       return false;
377 
378    /* Bail if the channels of the source need to be aligned to the byte offset
379     * of the corresponding channel of the destination, and the provided stride
380     * would break this restriction.
381     */
382    if (has_dst_aligned_region_restriction(devinfo, inst, dst_type) &&
383        !(type_sz(inst->src[arg].type) * stride ==
384            type_sz(dst_type) * inst->dst.stride ||
385          stride == 0))
386       return false;
387 
388    /* 3-source instructions can only be Align16, which restricts what strides
389     * they can take. They can only take a stride of 1 (the usual case), or 0
390     * with a special "repctrl" bit. But the repctrl bit doesn't work for
391     * 64-bit datatypes, so if the source type is 64-bit then only a stride of
392     * 1 is allowed. From the Broadwell PRM, Volume 7 "3D Media GPGPU", page
393     * 944:
394     *
395     *    This is applicable to 32b datatypes and 16b datatype. 64b datatypes
396     *    cannot use the replicate control.
397     */
398    if (inst->is_3src(devinfo)) {
399       if (type_sz(inst->src[arg].type) > 4)
400          return stride == 1;
401       else
402          return stride == 1 || stride == 0;
403    }
404 
405    /* From the Broadwell PRM, Volume 2a "Command Reference - Instructions",
406     * page 391 ("Extended Math Function"):
407     *
408     *     The following restrictions apply for align1 mode: Scalar source is
409     *     supported. Source and destination horizontal stride must be the
410     *     same.
411     *
412     * From the Haswell PRM Volume 2b "Command Reference - Instructions", page
413     * 134 ("Extended Math Function"):
414     *
415     *    Scalar source is supported. Source and destination horizontal stride
416     *    must be 1.
417     *
418     * and similar language exists for IVB and SNB. Pre-SNB, math instructions
419     * are sends, so the sources are moved to MRF's and there are no
420     * restrictions.
421     */
422    if (inst->is_math()) {
423       if (devinfo->ver == 6 || devinfo->ver == 7) {
424          assert(inst->dst.stride == 1);
425          return stride == 1 || stride == 0;
426       } else if (devinfo->ver >= 8) {
427          return stride == inst->dst.stride || stride == 0;
428       }
429    }
430 
431    return true;
432 }
433 
434 static bool
instruction_requires_packed_data(fs_inst * inst)435 instruction_requires_packed_data(fs_inst *inst)
436 {
437    switch (inst->opcode) {
438    case FS_OPCODE_DDX_FINE:
439    case FS_OPCODE_DDX_COARSE:
440    case FS_OPCODE_DDY_FINE:
441    case FS_OPCODE_DDY_COARSE:
442    case SHADER_OPCODE_QUAD_SWIZZLE:
443       return true;
444    default:
445       return false;
446    }
447 }
448 
449 bool
try_copy_propagate(fs_inst * inst,int arg,acp_entry * entry)450 fs_visitor::try_copy_propagate(fs_inst *inst, int arg, acp_entry *entry)
451 {
452    if (inst->src[arg].file != VGRF)
453       return false;
454 
455    if (entry->src.file == IMM)
456       return false;
457    assert(entry->src.file == VGRF || entry->src.file == UNIFORM ||
458           entry->src.file == ATTR || entry->src.file == FIXED_GRF);
459 
460    /* Avoid propagating a LOAD_PAYLOAD instruction into another if there is a
461     * good chance that we'll be able to eliminate the latter through register
462     * coalescing.  If only part of the sources of the second LOAD_PAYLOAD can
463     * be simplified through copy propagation we would be making register
464     * coalescing impossible, ending up with unnecessary copies in the program.
465     * This is also the case for is_multi_copy_payload() copies that can only
466     * be coalesced when the instruction is lowered into a sequence of MOVs.
467     *
468     * Worse -- In cases where the ACP entry was the result of CSE combining
469     * multiple LOAD_PAYLOAD subexpressions, propagating the first LOAD_PAYLOAD
470     * into the second would undo the work of CSE, leading to an infinite
471     * optimization loop.  Avoid this by detecting LOAD_PAYLOAD copies from CSE
472     * temporaries which should match is_coalescing_payload().
473     */
474    if (entry->opcode == SHADER_OPCODE_LOAD_PAYLOAD &&
475        (is_coalescing_payload(alloc, inst) || is_multi_copy_payload(inst)))
476       return false;
477 
478    assert(entry->dst.file == VGRF);
479    if (inst->src[arg].nr != entry->dst.nr)
480       return false;
481 
482    /* Bail if inst is reading a range that isn't contained in the range
483     * that entry is writing.
484     */
485    if (!region_contained_in(inst->src[arg], inst->size_read(arg),
486                             entry->dst, entry->size_written))
487       return false;
488 
489    /* Avoid propagating a FIXED_GRF register into an EOT instruction in order
490     * for any register allocation restrictions to be applied.
491     */
492    if (entry->src.file == FIXED_GRF && inst->eot)
493       return false;
494 
495    /* Avoid propagating odd-numbered FIXED_GRF registers into the first source
496     * of a LINTERP instruction on platforms where the PLN instruction has
497     * register alignment restrictions.
498     */
499    if (devinfo->has_pln && devinfo->ver <= 6 &&
500        entry->src.file == FIXED_GRF && (entry->src.nr & 1) &&
501        inst->opcode == FS_OPCODE_LINTERP && arg == 0)
502       return false;
503 
504    /* we can't generally copy-propagate UD negations because we
505     * can end up accessing the resulting values as signed integers
506     * instead. See also resolve_ud_negate() and comment in
507     * fs_generator::generate_code.
508     */
509    if (entry->src.type == BRW_REGISTER_TYPE_UD &&
510        entry->src.negate)
511       return false;
512 
513    bool has_source_modifiers = entry->src.abs || entry->src.negate;
514 
515    if (has_source_modifiers && !inst->can_do_source_mods(devinfo))
516       return false;
517 
518    /* Reject cases that would violate register regioning restrictions. */
519    if ((entry->src.file == UNIFORM || !entry->src.is_contiguous()) &&
520        ((devinfo->ver == 6 && inst->is_math()) ||
521         inst->is_send_from_grf() ||
522         inst->uses_indirect_addressing())) {
523       return false;
524    }
525 
526    if (has_source_modifiers &&
527        inst->opcode == SHADER_OPCODE_GFX4_SCRATCH_WRITE)
528       return false;
529 
530    /* Some instructions implemented in the generator backend, such as
531     * derivatives, assume that their operands are packed so we can't
532     * generally propagate strided regions to them.
533     */
534    const unsigned entry_stride = (entry->src.file == FIXED_GRF ? 1 :
535                                   entry->src.stride);
536    if (instruction_requires_packed_data(inst) && entry_stride != 1)
537       return false;
538 
539    const brw_reg_type dst_type = (has_source_modifiers &&
540                                   entry->dst.type != inst->src[arg].type) ?
541       entry->dst.type : inst->dst.type;
542 
543    /* Bail if the result of composing both strides would exceed the
544     * hardware limit.
545     */
546    if (!can_take_stride(inst, dst_type, arg,
547                         entry_stride * inst->src[arg].stride,
548                         devinfo))
549       return false;
550 
551    /* From the Cherry Trail/Braswell PRMs, Volume 7: 3D Media GPGPU:
552     *    EU Overview
553     *       Register Region Restrictions
554     *          Special Requirements for Handling Double Precision Data Types :
555     *
556     *   "When source or destination datatype is 64b or operation is integer
557     *    DWord multiply, regioning in Align1 must follow these rules:
558     *
559     *      1. Source and Destination horizontal stride must be aligned to the
560     *         same qword.
561     *      2. Regioning must ensure Src.Vstride = Src.Width * Src.Hstride.
562     *      3. Source and Destination offset must be the same, except the case
563     *         of scalar source."
564     *
565     * Most of this is already checked in can_take_stride(), we're only left
566     * with checking 3.
567     */
568    if (has_dst_aligned_region_restriction(devinfo, inst, dst_type) &&
569        entry_stride != 0 &&
570        (reg_offset(inst->dst) % REG_SIZE) != (reg_offset(entry->src) % REG_SIZE))
571       return false;
572 
573    /* Bail if the source FIXED_GRF region of the copy cannot be trivially
574     * composed with the source region of the instruction -- E.g. because the
575     * copy uses some extended stride greater than 4 not supported natively by
576     * the hardware as a horizontal stride, or because instruction compression
577     * could require us to use a vertical stride shorter than a GRF.
578     */
579    if (entry->src.file == FIXED_GRF &&
580        (inst->src[arg].stride > 4 ||
581         inst->dst.component_size(inst->exec_size) >
582         inst->src[arg].component_size(inst->exec_size)))
583       return false;
584 
585    /* Bail if the instruction type is larger than the execution type of the
586     * copy, what implies that each channel is reading multiple channels of the
587     * destination of the copy, and simply replacing the sources would give a
588     * program with different semantics.
589     */
590    if ((type_sz(entry->dst.type) < type_sz(inst->src[arg].type) ||
591         entry->is_partial_write) &&
592        inst->opcode != BRW_OPCODE_MOV) {
593       return false;
594    }
595 
596    /* Bail if the result of composing both strides cannot be expressed
597     * as another stride. This avoids, for example, trying to transform
598     * this:
599     *
600     *     MOV (8) rX<1>UD rY<0;1,0>UD
601     *     FOO (8) ...     rX<8;8,1>UW
602     *
603     * into this:
604     *
605     *     FOO (8) ...     rY<0;1,0>UW
606     *
607     * Which would have different semantics.
608     */
609    if (entry_stride != 1 &&
610        (inst->src[arg].stride *
611         type_sz(inst->src[arg].type)) % type_sz(entry->src.type) != 0)
612       return false;
613 
614    /* Since semantics of source modifiers are type-dependent we need to
615     * ensure that the meaning of the instruction remains the same if we
616     * change the type. If the sizes of the types are different the new
617     * instruction will read a different amount of data than the original
618     * and the semantics will always be different.
619     */
620    if (has_source_modifiers &&
621        entry->dst.type != inst->src[arg].type &&
622        (!inst->can_change_types() ||
623         type_sz(entry->dst.type) != type_sz(inst->src[arg].type)))
624       return false;
625 
626    if (devinfo->ver >= 8 && (entry->src.negate || entry->src.abs) &&
627        is_logic_op(inst->opcode)) {
628       return false;
629    }
630 
631    if (entry->saturate) {
632       switch(inst->opcode) {
633       case BRW_OPCODE_SEL:
634          if ((inst->conditional_mod != BRW_CONDITIONAL_GE &&
635               inst->conditional_mod != BRW_CONDITIONAL_L) ||
636              inst->src[1].file != IMM ||
637              inst->src[1].f < 0.0 ||
638              inst->src[1].f > 1.0) {
639             return false;
640          }
641          break;
642       default:
643          return false;
644       }
645    }
646 
647    /* Save the offset of inst->src[arg] relative to entry->dst for it to be
648     * applied later.
649     */
650    const unsigned rel_offset = inst->src[arg].offset - entry->dst.offset;
651 
652    /* Fold the copy into the instruction consuming it. */
653    inst->src[arg].file = entry->src.file;
654    inst->src[arg].nr = entry->src.nr;
655    inst->src[arg].subnr = entry->src.subnr;
656    inst->src[arg].offset = entry->src.offset;
657 
658    /* Compose the strides of both regions. */
659    if (entry->src.file == FIXED_GRF) {
660       if (inst->src[arg].stride) {
661          const unsigned orig_width = 1 << entry->src.width;
662          const unsigned reg_width = REG_SIZE / (type_sz(inst->src[arg].type) *
663                                                 inst->src[arg].stride);
664          inst->src[arg].width = cvt(MIN2(orig_width, reg_width)) - 1;
665          inst->src[arg].hstride = cvt(inst->src[arg].stride);
666          inst->src[arg].vstride = inst->src[arg].hstride + inst->src[arg].width;
667       } else {
668          inst->src[arg].vstride = inst->src[arg].hstride =
669             inst->src[arg].width = 0;
670       }
671 
672       inst->src[arg].stride = 1;
673 
674       /* Hopefully no Align16 around here... */
675       assert(entry->src.swizzle == BRW_SWIZZLE_XYZW);
676       inst->src[arg].swizzle = entry->src.swizzle;
677    } else {
678       inst->src[arg].stride *= entry->src.stride;
679    }
680 
681    /* Compose any saturate modifiers. */
682    inst->saturate = inst->saturate || entry->saturate;
683 
684    /* Compute the first component of the copy that the instruction is
685     * reading, and the base byte offset within that component.
686     */
687    assert((entry->dst.offset % REG_SIZE == 0 || inst->opcode == BRW_OPCODE_MOV) &&
688            entry->dst.stride == 1);
689    const unsigned component = rel_offset / type_sz(entry->dst.type);
690    const unsigned suboffset = rel_offset % type_sz(entry->dst.type);
691 
692    /* Calculate the byte offset at the origin of the copy of the given
693     * component and suboffset.
694     */
695    inst->src[arg] = byte_offset(inst->src[arg],
696       component * entry_stride * type_sz(entry->src.type) + suboffset);
697 
698    if (has_source_modifiers) {
699       if (entry->dst.type != inst->src[arg].type) {
700          /* We are propagating source modifiers from a MOV with a different
701           * type.  If we got here, then we can just change the source and
702           * destination types of the instruction and keep going.
703           */
704          assert(inst->can_change_types());
705          for (int i = 0; i < inst->sources; i++) {
706             inst->src[i].type = entry->dst.type;
707          }
708          inst->dst.type = entry->dst.type;
709       }
710 
711       if (!inst->src[arg].abs) {
712          inst->src[arg].abs = entry->src.abs;
713          inst->src[arg].negate ^= entry->src.negate;
714       }
715    }
716 
717    return true;
718 }
719 
720 
721 bool
try_constant_propagate(fs_inst * inst,acp_entry * entry)722 fs_visitor::try_constant_propagate(fs_inst *inst, acp_entry *entry)
723 {
724    bool progress = false;
725 
726    if (entry->src.file != IMM)
727       return false;
728    if (type_sz(entry->src.type) > 4)
729       return false;
730    if (entry->saturate)
731       return false;
732 
733    for (int i = inst->sources - 1; i >= 0; i--) {
734       if (inst->src[i].file != VGRF)
735          continue;
736 
737       assert(entry->dst.file == VGRF);
738       if (inst->src[i].nr != entry->dst.nr)
739          continue;
740 
741       /* Bail if inst is reading a range that isn't contained in the range
742        * that entry is writing.
743        */
744       if (!region_contained_in(inst->src[i], inst->size_read(i),
745                                entry->dst, entry->size_written))
746          continue;
747 
748       /* If the type sizes don't match each channel of the instruction is
749        * either extracting a portion of the constant (which could be handled
750        * with some effort but the code below doesn't) or reading multiple
751        * channels of the source at once.
752        */
753       if (type_sz(inst->src[i].type) != type_sz(entry->dst.type))
754          continue;
755 
756       fs_reg val = entry->src;
757       val.type = inst->src[i].type;
758 
759       if (inst->src[i].abs) {
760          if ((devinfo->ver >= 8 && is_logic_op(inst->opcode)) ||
761              !brw_abs_immediate(val.type, &val.as_brw_reg())) {
762             continue;
763          }
764       }
765 
766       if (inst->src[i].negate) {
767          if ((devinfo->ver >= 8 && is_logic_op(inst->opcode)) ||
768              !brw_negate_immediate(val.type, &val.as_brw_reg())) {
769             continue;
770          }
771       }
772 
773       switch (inst->opcode) {
774       case BRW_OPCODE_MOV:
775       case SHADER_OPCODE_LOAD_PAYLOAD:
776       case FS_OPCODE_PACK:
777          inst->src[i] = val;
778          progress = true;
779          break;
780 
781       case SHADER_OPCODE_INT_QUOTIENT:
782       case SHADER_OPCODE_INT_REMAINDER:
783          /* FINISHME: Promote non-float constants and remove this. */
784          if (devinfo->ver < 8)
785             break;
786          FALLTHROUGH;
787       case SHADER_OPCODE_POW:
788          /* Allow constant propagation into src1 (except on Gen 6 which
789           * doesn't support scalar source math), and let constant combining
790           * promote the constant on Gen < 8.
791           */
792          if (devinfo->ver == 6)
793             break;
794          FALLTHROUGH;
795       case BRW_OPCODE_BFI1:
796       case BRW_OPCODE_ASR:
797       case BRW_OPCODE_SHL:
798       case BRW_OPCODE_SHR:
799       case BRW_OPCODE_SUBB:
800          if (i == 1) {
801             inst->src[i] = val;
802             progress = true;
803          }
804          break;
805 
806       case BRW_OPCODE_MACH:
807       case BRW_OPCODE_MUL:
808       case SHADER_OPCODE_MULH:
809       case BRW_OPCODE_ADD:
810       case BRW_OPCODE_OR:
811       case BRW_OPCODE_AND:
812       case BRW_OPCODE_XOR:
813       case BRW_OPCODE_ADDC:
814          if (i == 1) {
815             inst->src[i] = val;
816             progress = true;
817          } else if (i == 0 && inst->src[1].file != IMM) {
818             /* Fit this constant in by commuting the operands.
819              * Exception: we can't do this for 32-bit integer MUL/MACH
820              * because it's asymmetric.
821              *
822              * The BSpec says for Broadwell that
823              *
824              *    "When multiplying DW x DW, the dst cannot be accumulator."
825              *
826              * Integer MUL with a non-accumulator destination will be lowered
827              * by lower_integer_multiplication(), so don't restrict it.
828              */
829             if (((inst->opcode == BRW_OPCODE_MUL &&
830                   inst->dst.is_accumulator()) ||
831                  inst->opcode == BRW_OPCODE_MACH) &&
832                 (inst->src[1].type == BRW_REGISTER_TYPE_D ||
833                  inst->src[1].type == BRW_REGISTER_TYPE_UD))
834                break;
835             inst->src[0] = inst->src[1];
836             inst->src[1] = val;
837             progress = true;
838          }
839          break;
840 
841       case BRW_OPCODE_CMP:
842       case BRW_OPCODE_IF:
843          if (i == 1) {
844             inst->src[i] = val;
845             progress = true;
846          } else if (i == 0 && inst->src[1].file != IMM) {
847             enum brw_conditional_mod new_cmod;
848 
849             new_cmod = brw_swap_cmod(inst->conditional_mod);
850             if (new_cmod != BRW_CONDITIONAL_NONE) {
851                /* Fit this constant in by swapping the operands and
852                 * flipping the test
853                 */
854                inst->src[0] = inst->src[1];
855                inst->src[1] = val;
856                inst->conditional_mod = new_cmod;
857                progress = true;
858             }
859          }
860          break;
861 
862       case BRW_OPCODE_SEL:
863          if (i == 1) {
864             inst->src[i] = val;
865             progress = true;
866          } else if (i == 0 && inst->src[1].file != IMM &&
867                     (inst->conditional_mod == BRW_CONDITIONAL_NONE ||
868                      /* Only GE and L are commutative. */
869                      inst->conditional_mod == BRW_CONDITIONAL_GE ||
870                      inst->conditional_mod == BRW_CONDITIONAL_L)) {
871             inst->src[0] = inst->src[1];
872             inst->src[1] = val;
873 
874             /* If this was predicated, flipping operands means
875              * we also need to flip the predicate.
876              */
877             if (inst->conditional_mod == BRW_CONDITIONAL_NONE) {
878                inst->predicate_inverse =
879                   !inst->predicate_inverse;
880             }
881             progress = true;
882          }
883          break;
884 
885       case FS_OPCODE_FB_WRITE_LOGICAL:
886          /* The stencil and omask sources of FS_OPCODE_FB_WRITE_LOGICAL are
887           * bit-cast using a strided region so they cannot be immediates.
888           */
889          if (i != FB_WRITE_LOGICAL_SRC_SRC_STENCIL &&
890              i != FB_WRITE_LOGICAL_SRC_OMASK) {
891             inst->src[i] = val;
892             progress = true;
893          }
894          break;
895 
896       case SHADER_OPCODE_TEX_LOGICAL:
897       case SHADER_OPCODE_TXD_LOGICAL:
898       case SHADER_OPCODE_TXF_LOGICAL:
899       case SHADER_OPCODE_TXL_LOGICAL:
900       case SHADER_OPCODE_TXS_LOGICAL:
901       case FS_OPCODE_TXB_LOGICAL:
902       case SHADER_OPCODE_TXF_CMS_LOGICAL:
903       case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
904       case SHADER_OPCODE_TXF_UMS_LOGICAL:
905       case SHADER_OPCODE_TXF_MCS_LOGICAL:
906       case SHADER_OPCODE_LOD_LOGICAL:
907       case SHADER_OPCODE_TG4_LOGICAL:
908       case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
909       case SHADER_OPCODE_SAMPLEINFO_LOGICAL:
910       case SHADER_OPCODE_IMAGE_SIZE_LOGICAL:
911       case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
912       case SHADER_OPCODE_UNTYPED_ATOMIC_FLOAT_LOGICAL:
913       case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
914       case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
915       case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
916       case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
917       case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
918       case SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL:
919       case SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL:
920          inst->src[i] = val;
921          progress = true;
922          break;
923 
924       case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
925       case SHADER_OPCODE_BROADCAST:
926          inst->src[i] = val;
927          progress = true;
928          break;
929 
930       case BRW_OPCODE_MAD:
931       case BRW_OPCODE_LRP:
932          inst->src[i] = val;
933          progress = true;
934          break;
935 
936       default:
937          break;
938       }
939    }
940 
941    return progress;
942 }
943 
944 static bool
can_propagate_from(fs_inst * inst)945 can_propagate_from(fs_inst *inst)
946 {
947    return (inst->opcode == BRW_OPCODE_MOV &&
948            inst->dst.file == VGRF &&
949            ((inst->src[0].file == VGRF &&
950              !regions_overlap(inst->dst, inst->size_written,
951                               inst->src[0], inst->size_read(0))) ||
952             inst->src[0].file == ATTR ||
953             inst->src[0].file == UNIFORM ||
954             inst->src[0].file == IMM ||
955             (inst->src[0].file == FIXED_GRF &&
956              inst->src[0].is_contiguous())) &&
957            inst->src[0].type == inst->dst.type &&
958            /* Subset of !is_partial_write() conditions. */
959            !((inst->predicate && inst->opcode != BRW_OPCODE_SEL) ||
960              !inst->dst.is_contiguous())) ||
961           is_identity_payload(FIXED_GRF, inst);
962 }
963 
964 /* Walks a basic block and does copy propagation on it using the acp
965  * list.
966  */
967 bool
opt_copy_propagation_local(void * copy_prop_ctx,bblock_t * block,exec_list * acp)968 fs_visitor::opt_copy_propagation_local(void *copy_prop_ctx, bblock_t *block,
969                                        exec_list *acp)
970 {
971    bool progress = false;
972 
973    foreach_inst_in_block(fs_inst, inst, block) {
974       /* Try propagating into this instruction. */
975       for (int i = 0; i < inst->sources; i++) {
976          if (inst->src[i].file != VGRF)
977             continue;
978 
979          foreach_in_list(acp_entry, entry, &acp[inst->src[i].nr % ACP_HASH_SIZE]) {
980             if (try_constant_propagate(inst, entry))
981                progress = true;
982             else if (try_copy_propagate(inst, i, entry))
983                progress = true;
984          }
985       }
986 
987       /* kill the destination from the ACP */
988       if (inst->dst.file == VGRF || inst->dst.file == FIXED_GRF) {
989          foreach_in_list_safe(acp_entry, entry, &acp[inst->dst.nr % ACP_HASH_SIZE]) {
990             if (regions_overlap(entry->dst, entry->size_written,
991                                 inst->dst, inst->size_written))
992                entry->remove();
993          }
994 
995          /* Oops, we only have the chaining hash based on the destination, not
996           * the source, so walk across the entire table.
997           */
998          for (int i = 0; i < ACP_HASH_SIZE; i++) {
999             foreach_in_list_safe(acp_entry, entry, &acp[i]) {
1000                /* Make sure we kill the entry if this instruction overwrites
1001                 * _any_ of the registers that it reads
1002                 */
1003                if (regions_overlap(entry->src, entry->size_read,
1004                                    inst->dst, inst->size_written))
1005                   entry->remove();
1006             }
1007 	 }
1008       }
1009 
1010       /* If this instruction's source could potentially be folded into the
1011        * operand of another instruction, add it to the ACP.
1012        */
1013       if (can_propagate_from(inst)) {
1014          acp_entry *entry = rzalloc(copy_prop_ctx, acp_entry);
1015          entry->dst = inst->dst;
1016          entry->src = inst->src[0];
1017          entry->size_written = inst->size_written;
1018          for (unsigned i = 0; i < inst->sources; i++)
1019             entry->size_read += inst->size_read(i);
1020          entry->opcode = inst->opcode;
1021          entry->saturate = inst->saturate;
1022          entry->is_partial_write = inst->is_partial_write();
1023          acp[entry->dst.nr % ACP_HASH_SIZE].push_tail(entry);
1024       } else if (inst->opcode == SHADER_OPCODE_LOAD_PAYLOAD &&
1025                  inst->dst.file == VGRF) {
1026          int offset = 0;
1027          for (int i = 0; i < inst->sources; i++) {
1028             int effective_width = i < inst->header_size ? 8 : inst->exec_size;
1029             assert(effective_width * type_sz(inst->src[i].type) % REG_SIZE == 0);
1030             const unsigned size_written = effective_width *
1031                                           type_sz(inst->src[i].type);
1032             if (inst->src[i].file == VGRF ||
1033                 (inst->src[i].file == FIXED_GRF &&
1034                  inst->src[i].is_contiguous())) {
1035                acp_entry *entry = rzalloc(copy_prop_ctx, acp_entry);
1036                entry->dst = byte_offset(inst->dst, offset);
1037                entry->src = inst->src[i];
1038                entry->size_written = size_written;
1039                entry->size_read = inst->size_read(i);
1040                entry->opcode = inst->opcode;
1041                if (!entry->dst.equals(inst->src[i])) {
1042                   acp[entry->dst.nr % ACP_HASH_SIZE].push_tail(entry);
1043                } else {
1044                   ralloc_free(entry);
1045                }
1046             }
1047             offset += size_written;
1048          }
1049       }
1050    }
1051 
1052    return progress;
1053 }
1054 
1055 bool
opt_copy_propagation()1056 fs_visitor::opt_copy_propagation()
1057 {
1058    bool progress = false;
1059    void *copy_prop_ctx = ralloc_context(NULL);
1060    exec_list *out_acp[cfg->num_blocks];
1061 
1062    for (int i = 0; i < cfg->num_blocks; i++)
1063       out_acp[i] = new exec_list [ACP_HASH_SIZE];
1064 
1065    const fs_live_variables &live = live_analysis.require();
1066 
1067    /* First, walk through each block doing local copy propagation and getting
1068     * the set of copies available at the end of the block.
1069     */
1070    foreach_block (block, cfg) {
1071       progress = opt_copy_propagation_local(copy_prop_ctx, block,
1072                                             out_acp[block->num]) || progress;
1073 
1074       /* If the destination of an ACP entry exists only within this block,
1075        * then there's no need to keep it for dataflow analysis.  We can delete
1076        * it from the out_acp table and avoid growing the bitsets any bigger
1077        * than we absolutely have to.
1078        *
1079        * Because nothing in opt_copy_propagation_local touches the block
1080        * start/end IPs and opt_copy_propagation_local is incapable of
1081        * extending the live range of an ACP destination beyond the block,
1082        * it's safe to use the liveness information in this way.
1083        */
1084       for (unsigned a = 0; a < ACP_HASH_SIZE; a++) {
1085          foreach_in_list_safe(acp_entry, entry, &out_acp[block->num][a]) {
1086             assert(entry->dst.file == VGRF);
1087             if (block->start_ip <= live.vgrf_start[entry->dst.nr] &&
1088                 live.vgrf_end[entry->dst.nr] <= block->end_ip)
1089                entry->remove();
1090          }
1091       }
1092    }
1093 
1094    /* Do dataflow analysis for those available copies. */
1095    fs_copy_prop_dataflow dataflow(copy_prop_ctx, cfg, live, out_acp);
1096 
1097    /* Next, re-run local copy propagation, this time with the set of copies
1098     * provided by the dataflow analysis available at the start of a block.
1099     */
1100    foreach_block (block, cfg) {
1101       exec_list in_acp[ACP_HASH_SIZE];
1102 
1103       for (int i = 0; i < dataflow.num_acp; i++) {
1104          if (BITSET_TEST(dataflow.bd[block->num].livein, i)) {
1105             struct acp_entry *entry = dataflow.acp[i];
1106             in_acp[entry->dst.nr % ACP_HASH_SIZE].push_tail(entry);
1107          }
1108       }
1109 
1110       progress = opt_copy_propagation_local(copy_prop_ctx, block, in_acp) ||
1111                  progress;
1112    }
1113 
1114    for (int i = 0; i < cfg->num_blocks; i++)
1115       delete [] out_acp[i];
1116    ralloc_free(copy_prop_ctx);
1117 
1118    if (progress)
1119       invalidate_analysis(DEPENDENCY_INSTRUCTION_DATA_FLOW |
1120                           DEPENDENCY_INSTRUCTION_DETAIL);
1121 
1122    return progress;
1123 }
1124