• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright Benjamin Sobotta 2012
2 
3 //  Use, modification and distribution are subject to the
4 //  Boost Software License, Version 1.0. (See accompanying file
5 //  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
6 
7 #ifndef BOOST_OWENS_T_HPP
8 #define BOOST_OWENS_T_HPP
9 
10 // Reference:
11 // Mike Patefield, David Tandy
12 // FAST AND ACCURATE CALCULATION OF OWEN'S T-FUNCTION
13 // Journal of Statistical Software, 5 (5), 1-25
14 
15 #ifdef _MSC_VER
16 #  pragma once
17 #endif
18 
19 #include <boost/math/special_functions/math_fwd.hpp>
20 #include <boost/config/no_tr1/cmath.hpp>
21 #include <boost/math/special_functions/erf.hpp>
22 #include <boost/math/special_functions/expm1.hpp>
23 #include <boost/throw_exception.hpp>
24 #include <boost/assert.hpp>
25 #include <boost/math/constants/constants.hpp>
26 #include <boost/math/tools/big_constant.hpp>
27 
28 #include <stdexcept>
29 
30 #ifdef BOOST_MSVC
31 #pragma warning(push)
32 #pragma warning(disable:4127)
33 #endif
34 
35 #if defined(__GNUC__) && defined(BOOST_MATH_USE_FLOAT128)
36 //
37 // This is the only way we can avoid
38 // warning: non-standard suffix on floating constant [-Wpedantic]
39 // when building with -Wall -pedantic.  Neither __extension__
40 // nor #pragma diagnostic ignored work :(
41 //
42 #pragma GCC system_header
43 #endif
44 
45 namespace boost
46 {
47    namespace math
48    {
49       namespace detail
50       {
51          // owens_t_znorm1(x) = P(-oo<Z<=x)-0.5 with Z being normally distributed.
52          template<typename RealType>
owens_t_znorm1(const RealType x)53          inline RealType owens_t_znorm1(const RealType x)
54          {
55             using namespace boost::math::constants;
56             return boost::math::erf(x*one_div_root_two<RealType>())*half<RealType>();
57          } // RealType owens_t_znorm1(const RealType x)
58 
59          // owens_t_znorm2(x) = P(x<=Z<oo) with Z being normally distributed.
60          template<typename RealType>
owens_t_znorm2(const RealType x)61          inline RealType owens_t_znorm2(const RealType x)
62          {
63             using namespace boost::math::constants;
64             return boost::math::erfc(x*one_div_root_two<RealType>())*half<RealType>();
65          } // RealType owens_t_znorm2(const RealType x)
66 
67          // Auxiliary function, it computes an array key that is used to determine
68          // the specific computation method for Owen's T and the order thereof
69          // used in owens_t_dispatch.
70          template<typename RealType>
owens_t_compute_code(const RealType h,const RealType a)71          inline unsigned short owens_t_compute_code(const RealType h, const RealType a)
72          {
73             static const RealType hrange[] =
74             { 0.02f, 0.06f, 0.09f, 0.125f, 0.26f, 0.4f,  0.6f,  1.6f,  1.7f,  2.33f,  2.4f,  3.36f, 3.4f,  4.8f };
75 
76             static const RealType arange[] = { 0.025f, 0.09f, 0.15f, 0.36f, 0.5f, 0.9f, 0.99999f };
77             /*
78             original select array from paper:
79             1, 1, 2,13,13,13,13,13,13,13,13,16,16,16, 9
80             1, 2, 2, 3, 3, 5, 5,14,14,15,15,16,16,16, 9
81             2, 2, 3, 3, 3, 5, 5,15,15,15,15,16,16,16,10
82             2, 2, 3, 5, 5, 5, 5, 7, 7,16,16,16,16,16,10
83             2, 3, 3, 5, 5, 6, 6, 8, 8,17,17,17,12,12,11
84             2, 3, 5, 5, 5, 6, 6, 8, 8,17,17,17,12,12,12
85             2, 3, 4, 4, 6, 6, 8, 8,17,17,17,17,17,12,12
86             2, 3, 4, 4, 6, 6,18,18,18,18,17,17,17,12,12
87             */
88             // subtract one because the array is written in FORTRAN in mind - in C arrays start @ zero
89             static const unsigned short select[] =
90             {
91                0,    0 ,   1  , 12   ,12 ,  12  , 12  , 12 ,  12  , 12  , 12  , 15  , 15 ,  15  ,  8,
92                0  ,  1  ,  1   , 2 ,   2   , 4  ,  4  , 13 ,  13  , 14  , 14 ,  15  , 15  , 15  ,  8,
93                1  ,  1   , 2 ,   2  ,  2  ,  4   , 4  , 14  , 14 ,  14  , 14 ,  15  , 15 ,  15  ,  9,
94                1  ,  1   , 2 ,   4  ,  4  ,  4   , 4  ,  6  ,  6 ,  15  , 15 ,  15 ,  15 ,  15  ,  9,
95                1  ,  2   , 2  ,  4  ,  4  ,  5   , 5  ,  7  ,  7  , 16   ,16 ,  16 ,  11 ,  11 ,  10,
96                1  ,  2   , 4  ,  4   , 4  ,  5   , 5  ,  7  ,  7  , 16  , 16 ,  16 ,  11  , 11 ,  11,
97                1  ,  2   , 3  ,  3  ,  5  ,  5   , 7  ,  7  , 16 ,  16  , 16 ,  16 ,  16  , 11 ,  11,
98                1  ,  2   , 3   , 3   , 5  ,  5 ,  17  , 17  , 17 ,  17  , 16 ,  16 ,  16 ,  11 ,  11
99             };
100 
101             unsigned short ihint = 14, iaint = 7;
102             for(unsigned short i = 0; i != 14; i++)
103             {
104                if( h <= hrange[i] )
105                {
106                   ihint = i;
107                   break;
108                }
109             } // for(unsigned short i = 0; i != 14; i++)
110 
111             for(unsigned short i = 0; i != 7; i++)
112             {
113                if( a <= arange[i] )
114                {
115                   iaint = i;
116                   break;
117                }
118             } // for(unsigned short i = 0; i != 7; i++)
119 
120             // interpret select array as 8x15 matrix
121             return select[iaint*15 + ihint];
122 
123          } // unsigned short owens_t_compute_code(const RealType h, const RealType a)
124 
125          template<typename RealType>
owens_t_get_order_imp(const unsigned short icode,RealType,const boost::integral_constant<int,53> &)126          inline unsigned short owens_t_get_order_imp(const unsigned short icode, RealType, const boost::integral_constant<int, 53>&)
127          {
128             static const unsigned short ord[] = {2, 3, 4, 5, 7, 10, 12, 18, 10, 20, 30, 0, 4, 7, 8, 20, 0, 0}; // 18 entries
129 
130             BOOST_ASSERT(icode<18);
131 
132             return ord[icode];
133          } // unsigned short owens_t_get_order(const unsigned short icode, RealType, boost::integral_constant<int, 53> const&)
134 
135          template<typename RealType>
owens_t_get_order_imp(const unsigned short icode,RealType,const boost::integral_constant<int,64> &)136          inline unsigned short owens_t_get_order_imp(const unsigned short icode, RealType, const boost::integral_constant<int, 64>&)
137         {
138            // method ================>>>       {1, 1, 1, 1, 1,  1,  1,  1,  2,  2,  2,  3, 4,  4,  4,  4,  5, 6}
139            static const unsigned short ord[] = {3, 4, 5, 6, 8, 11, 13, 19, 10, 20, 30,  0, 7, 10, 11, 23,  0, 0}; // 18 entries
140 
141           BOOST_ASSERT(icode<18);
142 
143           return ord[icode];
144         } // unsigned short owens_t_get_order(const unsigned short icode, RealType, boost::integral_constant<int, 64> const&)
145 
146          template<typename RealType, typename Policy>
owens_t_get_order(const unsigned short icode,RealType r,const Policy &)147          inline unsigned short owens_t_get_order(const unsigned short icode, RealType r, const Policy&)
148          {
149             typedef typename policies::precision<RealType, Policy>::type precision_type;
150             typedef boost::integral_constant<int,
151                precision_type::value <= 0 ? 64 :
152                precision_type::value <= 53 ? 53 : 64
153             > tag_type;
154 
155             return owens_t_get_order_imp(icode, r, tag_type());
156          }
157 
158          // compute the value of Owen's T function with method T1 from the reference paper
159          template<typename RealType, typename Policy>
owens_t_T1(const RealType h,const RealType a,const unsigned short m,const Policy & pol)160          inline RealType owens_t_T1(const RealType h, const RealType a, const unsigned short m, const Policy& pol)
161          {
162             BOOST_MATH_STD_USING
163             using namespace boost::math::constants;
164 
165             const RealType hs = -h*h*half<RealType>();
166             const RealType dhs = exp( hs );
167             const RealType as = a*a;
168 
169             unsigned short j=1;
170             RealType jj = 1;
171             RealType aj = a * one_div_two_pi<RealType>();
172             RealType dj = boost::math::expm1( hs, pol);
173             RealType gj = hs*dhs;
174 
175             RealType val = atan( a ) * one_div_two_pi<RealType>();
176 
177             while( true )
178             {
179                val += dj*aj/jj;
180 
181                if( m <= j )
182                   break;
183 
184                j++;
185                jj += static_cast<RealType>(2);
186                aj *= as;
187                dj = gj - dj;
188                gj *= hs / static_cast<RealType>(j);
189             } // while( true )
190 
191             return val;
192          } // RealType owens_t_T1(const RealType h, const RealType a, const unsigned short m)
193 
194          // compute the value of Owen's T function with method T2 from the reference paper
195          template<typename RealType, class Policy>
owens_t_T2(const RealType h,const RealType a,const unsigned short m,const RealType ah,const Policy &,const boost::false_type &)196          inline RealType owens_t_T2(const RealType h, const RealType a, const unsigned short m, const RealType ah, const Policy&, const boost::false_type&)
197          {
198             BOOST_MATH_STD_USING
199             using namespace boost::math::constants;
200 
201             const unsigned short maxii = m+m+1;
202             const RealType hs = h*h;
203             const RealType as = -a*a;
204             const RealType y = static_cast<RealType>(1) / hs;
205 
206             unsigned short ii = 1;
207             RealType val = 0;
208             RealType vi = a * exp( -ah*ah*half<RealType>() ) * one_div_root_two_pi<RealType>();
209             RealType z = owens_t_znorm1(ah)/h;
210 
211             while( true )
212             {
213                val += z;
214                if( maxii <= ii )
215                {
216                   val *= exp( -hs*half<RealType>() ) * one_div_root_two_pi<RealType>();
217                   break;
218                } // if( maxii <= ii )
219                z = y * ( vi - static_cast<RealType>(ii) * z );
220                vi *= as;
221                ii += 2;
222             } // while( true )
223 
224             return val;
225          } // RealType owens_t_T2(const RealType h, const RealType a, const unsigned short m, const RealType ah)
226 
227          // compute the value of Owen's T function with method T3 from the reference paper
228          template<typename RealType>
owens_t_T3_imp(const RealType h,const RealType a,const RealType ah,const boost::integral_constant<int,53> &)229          inline RealType owens_t_T3_imp(const RealType h, const RealType a, const RealType ah, const boost::integral_constant<int, 53>&)
230          {
231             BOOST_MATH_STD_USING
232             using namespace boost::math::constants;
233 
234       const unsigned short m = 20;
235 
236             static const RealType c2[] =
237             {
238                static_cast<RealType>(0.99999999999999987510),
239                static_cast<RealType>(-0.99999999999988796462),      static_cast<RealType>(0.99999999998290743652),
240                static_cast<RealType>(-0.99999999896282500134),      static_cast<RealType>(0.99999996660459362918),
241                static_cast<RealType>(-0.99999933986272476760),      static_cast<RealType>(0.99999125611136965852),
242                static_cast<RealType>(-0.99991777624463387686),      static_cast<RealType>(0.99942835555870132569),
243                static_cast<RealType>(-0.99697311720723000295),      static_cast<RealType>(0.98751448037275303682),
244                static_cast<RealType>(-0.95915857980572882813),      static_cast<RealType>(0.89246305511006708555),
245                static_cast<RealType>(-0.76893425990463999675),      static_cast<RealType>(0.58893528468484693250),
246                static_cast<RealType>(-0.38380345160440256652),      static_cast<RealType>(0.20317601701045299653),
247                static_cast<RealType>(-0.82813631607004984866E-01),  static_cast<RealType>(0.24167984735759576523E-01),
248                static_cast<RealType>(-0.44676566663971825242E-02),  static_cast<RealType>(0.39141169402373836468E-03)
249             };
250 
251             const RealType as = a*a;
252             const RealType hs = h*h;
253             const RealType y = static_cast<RealType>(1)/hs;
254 
255             RealType ii = 1;
256             unsigned short i = 0;
257             RealType vi = a * exp( -ah*ah*half<RealType>() ) * one_div_root_two_pi<RealType>();
258             RealType zi = owens_t_znorm1(ah)/h;
259             RealType val = 0;
260 
261             while( true )
262             {
263                BOOST_ASSERT(i < 21);
264                val += zi*c2[i];
265                if( m <= i ) // if( m < i+1 )
266                {
267                   val *= exp( -hs*half<RealType>() ) * one_div_root_two_pi<RealType>();
268                   break;
269                } // if( m < i )
270                zi = y * (ii*zi - vi);
271                vi *= as;
272                ii += 2;
273                i++;
274             } // while( true )
275 
276             return val;
277          } // RealType owens_t_T3(const RealType h, const RealType a, const RealType ah)
278 
279         // compute the value of Owen's T function with method T3 from the reference paper
280         template<class RealType>
owens_t_T3_imp(const RealType h,const RealType a,const RealType ah,const boost::integral_constant<int,64> &)281         inline RealType owens_t_T3_imp(const RealType h, const RealType a, const RealType ah, const boost::integral_constant<int, 64>&)
282         {
283           BOOST_MATH_STD_USING
284           using namespace boost::math::constants;
285 
286           const unsigned short m = 30;
287 
288           static const RealType c2[] =
289           {
290              BOOST_MATH_BIG_CONSTANT(RealType, 260, 0.99999999999999999999999729978162447266851932041876728736094298092917625009873),
291              BOOST_MATH_BIG_CONSTANT(RealType, 260, -0.99999999999999999999467056379678391810626533251885323416799874878563998732905968),
292              BOOST_MATH_BIG_CONSTANT(RealType, 260, 0.99999999999999999824849349313270659391127814689133077036298754586814091034842536),
293              BOOST_MATH_BIG_CONSTANT(RealType, 260, -0.9999999999999997703859616213643405880166422891953033591551179153879839440241685),
294              BOOST_MATH_BIG_CONSTANT(RealType, 260, 0.99999999999998394883415238173334565554173013941245103172035286759201504179038147),
295              BOOST_MATH_BIG_CONSTANT(RealType, 260, -0.9999999999993063616095509371081203145247992197457263066869044528823599399470977),
296              BOOST_MATH_BIG_CONSTANT(RealType, 260, 0.9999999999797336340409464429599229870590160411238245275855903767652432017766116267),
297              BOOST_MATH_BIG_CONSTANT(RealType, 260, -0.999999999574958412069046680119051639753412378037565521359444170241346845522403274),
298              BOOST_MATH_BIG_CONSTANT(RealType, 260, 0.9999999933226234193375324943920160947158239076786103108097456617750134812033362048),
299              BOOST_MATH_BIG_CONSTANT(RealType, 260, -0.9999999188923242461073033481053037468263536806742737922476636768006622772762168467),
300              BOOST_MATH_BIG_CONSTANT(RealType, 260, 0.9999992195143483674402853783549420883055129680082932629160081128947764415749728967),
301              BOOST_MATH_BIG_CONSTANT(RealType, 260, -0.999993935137206712830997921913316971472227199741857386575097250553105958772041501),
302              BOOST_MATH_BIG_CONSTANT(RealType, 260, 0.99996135597690552745362392866517133091672395614263398912807169603795088421057688716),
303              BOOST_MATH_BIG_CONSTANT(RealType, 260, -0.99979556366513946026406788969630293820987757758641211293079784585126692672425362469),
304              BOOST_MATH_BIG_CONSTANT(RealType, 260, 0.999092789629617100153486251423850590051366661947344315423226082520411961968929483),
305              BOOST_MATH_BIG_CONSTANT(RealType, 260, -0.996593837411918202119308620432614600338157335862888580671450938858935084316004769854),
306              BOOST_MATH_BIG_CONSTANT(RealType, 260, 0.98910017138386127038463510314625339359073956513420458166238478926511821146316469589567),
307              BOOST_MATH_BIG_CONSTANT(RealType, 260, -0.970078558040693314521331982203762771512160168582494513347846407314584943870399016019),
308              BOOST_MATH_BIG_CONSTANT(RealType, 260, 0.92911438683263187495758525500033707204091967947532160289872782771388170647150321633673),
309              BOOST_MATH_BIG_CONSTANT(RealType, 260, -0.8542058695956156057286980736842905011429254735181323743367879525470479126968822863),
310              BOOST_MATH_BIG_CONSTANT(RealType, 260, 0.73796526033030091233118357742803709382964420335559408722681794195743240930748630755),
311              BOOST_MATH_BIG_CONSTANT(RealType, 260, -0.58523469882837394570128599003785154144164680587615878645171632791404210655891158),
312              BOOST_MATH_BIG_CONSTANT(RealType, 260, 0.415997776145676306165661663581868460503874205343014196580122174949645271353372263),
313              BOOST_MATH_BIG_CONSTANT(RealType, 260, -0.2588210875241943574388730510317252236407805082485246378222935376279663808416534365),
314              BOOST_MATH_BIG_CONSTANT(RealType, 260, 0.1375535825163892648504646951500265585055789019410617565727090346559210218472356689),
315              BOOST_MATH_BIG_CONSTANT(RealType, 260, -0.0607952766325955730493900985022020434830339794955745989150270485056436844239206648),
316              BOOST_MATH_BIG_CONSTANT(RealType, 260, 0.0216337683299871528059836483840390514275488679530797294557060229266785853764115),
317              BOOST_MATH_BIG_CONSTANT(RealType, 260, -0.00593405693455186729876995814181203900550014220428843483927218267309209471516256),
318              BOOST_MATH_BIG_CONSTANT(RealType, 260, 0.0011743414818332946510474576182739210553333860106811865963485870668929503649964142),
319              BOOST_MATH_BIG_CONSTANT(RealType, 260, -1.489155613350368934073453260689881330166342484405529981510694514036264969925132e-4),
320              BOOST_MATH_BIG_CONSTANT(RealType, 260, 9.072354320794357587710929507988814669454281514268844884841547607134260303118208e-6)
321           };
322 
323           const RealType as = a*a;
324           const RealType hs = h*h;
325           const RealType y = 1 / hs;
326 
327           RealType ii = 1;
328           unsigned short i = 0;
329           RealType vi = a * exp( -ah*ah*half<RealType>() ) * one_div_root_two_pi<RealType>();
330           RealType zi = owens_t_znorm1(ah)/h;
331           RealType val = 0;
332 
333           while( true )
334           {
335               BOOST_ASSERT(i < 31);
336               val += zi*c2[i];
337               if( m <= i ) // if( m < i+1 )
338               {
339                 val *= exp( -hs*half<RealType>() ) * one_div_root_two_pi<RealType>();
340                 break;
341               } // if( m < i )
342               zi = y * (ii*zi - vi);
343               vi *= as;
344               ii += 2;
345               i++;
346           } // while( true )
347 
348           return val;
349         } // RealType owens_t_T3(const RealType h, const RealType a, const RealType ah)
350 
351         template<class RealType, class Policy>
owens_t_T3(const RealType h,const RealType a,const RealType ah,const Policy &)352         inline RealType owens_t_T3(const RealType h, const RealType a, const RealType ah, const Policy&)
353         {
354             typedef typename policies::precision<RealType, Policy>::type precision_type;
355             typedef boost::integral_constant<int,
356                precision_type::value <= 0 ? 64 :
357                precision_type::value <= 53 ? 53 : 64
358             > tag_type;
359 
360             return owens_t_T3_imp(h, a, ah, tag_type());
361         }
362 
363          // compute the value of Owen's T function with method T4 from the reference paper
364          template<typename RealType>
owens_t_T4(const RealType h,const RealType a,const unsigned short m)365          inline RealType owens_t_T4(const RealType h, const RealType a, const unsigned short m)
366          {
367             BOOST_MATH_STD_USING
368             using namespace boost::math::constants;
369 
370             const unsigned short maxii = m+m+1;
371             const RealType hs = h*h;
372             const RealType as = -a*a;
373 
374             unsigned short ii = 1;
375             RealType ai = a * exp( -hs*(static_cast<RealType>(1)-as)*half<RealType>() ) * one_div_two_pi<RealType>();
376             RealType yi = 1;
377             RealType val = 0;
378 
379             while( true )
380             {
381                val += ai*yi;
382                if( maxii <= ii )
383                   break;
384                ii += 2;
385                yi = (static_cast<RealType>(1)-hs*yi) / static_cast<RealType>(ii);
386                ai *= as;
387             } // while( true )
388 
389             return val;
390          } // RealType owens_t_T4(const RealType h, const RealType a, const unsigned short m)
391 
392          // compute the value of Owen's T function with method T5 from the reference paper
393          template<typename RealType>
owens_t_T5_imp(const RealType h,const RealType a,const boost::integral_constant<int,53> &)394          inline RealType owens_t_T5_imp(const RealType h, const RealType a, const boost::integral_constant<int, 53>&)
395          {
396             BOOST_MATH_STD_USING
397             /*
398                NOTICE:
399                - The pts[] array contains the squares (!) of the abscissas, i.e. the roots of the Legendre
400                  polynomial P_n(x), instead of the plain roots as required in Gauss-Legendre
401                  quadrature, because T5(h,a,m) contains only x^2 terms.
402                - The wts[] array contains the weights for Gauss-Legendre quadrature scaled with a factor
403                  of 1/(2*pi) according to T5(h,a,m).
404              */
405 
406             const unsigned short m = 13;
407             static const RealType pts[] = {
408                static_cast<RealType>(0.35082039676451715489E-02),
409                static_cast<RealType>(0.31279042338030753740E-01),  static_cast<RealType>(0.85266826283219451090E-01),
410                static_cast<RealType>(0.16245071730812277011),      static_cast<RealType>(0.25851196049125434828),
411                static_cast<RealType>(0.36807553840697533536),      static_cast<RealType>(0.48501092905604697475),
412                static_cast<RealType>(0.60277514152618576821),      static_cast<RealType>(0.71477884217753226516),
413                static_cast<RealType>(0.81475510988760098605),      static_cast<RealType>(0.89711029755948965867),
414                static_cast<RealType>(0.95723808085944261843),      static_cast<RealType>(0.99178832974629703586) };
415             static const RealType wts[] = {
416                static_cast<RealType>(0.18831438115323502887E-01),
417                static_cast<RealType>(0.18567086243977649478E-01),  static_cast<RealType>(0.18042093461223385584E-01),
418                static_cast<RealType>(0.17263829606398753364E-01),  static_cast<RealType>(0.16243219975989856730E-01),
419                static_cast<RealType>(0.14994592034116704829E-01),  static_cast<RealType>(0.13535474469662088392E-01),
420                static_cast<RealType>(0.11886351605820165233E-01),  static_cast<RealType>(0.10070377242777431897E-01),
421                static_cast<RealType>(0.81130545742299586629E-02),  static_cast<RealType>(0.60419009528470238773E-02),
422                static_cast<RealType>(0.38862217010742057883E-02),  static_cast<RealType>(0.16793031084546090448E-02) };
423 
424             const RealType as = a*a;
425             const RealType hs = -h*h*boost::math::constants::half<RealType>();
426 
427             RealType val = 0;
428             for(unsigned short i = 0; i < m; ++i)
429             {
430                BOOST_ASSERT(i < 13);
431                const RealType r = static_cast<RealType>(1) + as*pts[i];
432                val += wts[i] * exp( hs*r ) / r;
433             } // for(unsigned short i = 0; i < m; ++i)
434 
435             return val*a;
436          } // RealType owens_t_T5(const RealType h, const RealType a)
437 
438         // compute the value of Owen's T function with method T5 from the reference paper
439         template<typename RealType>
owens_t_T5_imp(const RealType h,const RealType a,const boost::integral_constant<int,64> &)440         inline RealType owens_t_T5_imp(const RealType h, const RealType a, const boost::integral_constant<int, 64>&)
441         {
442           BOOST_MATH_STD_USING
443             /*
444               NOTICE:
445               - The pts[] array contains the squares (!) of the abscissas, i.e. the roots of the Legendre
446               polynomial P_n(x), instead of the plain roots as required in Gauss-Legendre
447               quadrature, because T5(h,a,m) contains only x^2 terms.
448               - The wts[] array contains the weights for Gauss-Legendre quadrature scaled with a factor
449               of 1/(2*pi) according to T5(h,a,m).
450             */
451 
452           const unsigned short m = 19;
453           static const RealType pts[] = {
454                BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.0016634282895983227941),
455                BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.014904509242697054183),
456                BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.04103478879005817919),
457                BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.079359853513391511008),
458                BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.1288612130237615133),
459                BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.18822336642448518856),
460                BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.25586876186122962384),
461                BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.32999972011807857222),
462                BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.40864620815774761438),
463                BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.48971819306044782365),
464                BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.57106118513245543894),
465                BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.6505134942981533829),
466                BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.72596367859928091618),
467                BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.79540665919549865924),
468                BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.85699701386308739244),
469                BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.90909804422384697594),
470                BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.95032536436570154409),
471                BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.97958418733152273717),
472                BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.99610366384229088321)
473           };
474           static const RealType wts[] = {
475                BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.012975111395684900835),
476                BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.012888764187499150078),
477                BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.012716644398857307844),
478                BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.012459897461364705691),
479                BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.012120231988292330388),
480                BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.011699908404856841158),
481                BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.011201723906897224448),
482                BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.010628993848522759853),
483                BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.0099855296835573320047),
484                BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.0092756136096132857933),
485                BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.0085039700881139589055),
486                BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.0076757344408814561254),
487                BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.0067964187616556459109),
488                BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.005871875456524750363),
489                BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.0049082589542498110071),
490                BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.0039119870792519721409),
491                BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.0028897090921170700834),
492                BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.0018483371329504443947),
493                BOOST_MATH_BIG_CONSTANT(RealType, 64, 0.00079623320100438873578)
494           };
495 
496           const RealType as = a*a;
497           const RealType hs = -h*h*boost::math::constants::half<RealType>();
498 
499           RealType val = 0;
500           for(unsigned short i = 0; i < m; ++i)
501             {
502               BOOST_ASSERT(i < 19);
503               const RealType r = 1 + as*pts[i];
504               val += wts[i] * exp( hs*r ) / r;
505             } // for(unsigned short i = 0; i < m; ++i)
506 
507           return val*a;
508         } // RealType owens_t_T5(const RealType h, const RealType a)
509 
510         template<class RealType, class Policy>
owens_t_T5(const RealType h,const RealType a,const Policy &)511         inline RealType owens_t_T5(const RealType h, const RealType a, const Policy&)
512         {
513             typedef typename policies::precision<RealType, Policy>::type precision_type;
514             typedef boost::integral_constant<int,
515                precision_type::value <= 0 ? 64 :
516                precision_type::value <= 53 ? 53 : 64
517             > tag_type;
518 
519             return owens_t_T5_imp(h, a, tag_type());
520         }
521 
522 
523          // compute the value of Owen's T function with method T6 from the reference paper
524          template<typename RealType>
owens_t_T6(const RealType h,const RealType a)525          inline RealType owens_t_T6(const RealType h, const RealType a)
526          {
527             BOOST_MATH_STD_USING
528             using namespace boost::math::constants;
529 
530             const RealType normh = owens_t_znorm2( h );
531             const RealType y = static_cast<RealType>(1) - a;
532             const RealType r = atan2(y, static_cast<RealType>(1 + a) );
533 
534             RealType val = normh * ( static_cast<RealType>(1) - normh ) * half<RealType>();
535 
536             if( r != 0 )
537                val -= r * exp( -y*h*h*half<RealType>()/r ) * one_div_two_pi<RealType>();
538 
539             return val;
540          } // RealType owens_t_T6(const RealType h, const RealType a, const unsigned short m)
541 
542          template <class T, class Policy>
owens_t_T1_accelerated(T h,T a,const Policy & pol)543          std::pair<T, T> owens_t_T1_accelerated(T h, T a, const Policy& pol)
544          {
545             //
546             // This is the same series as T1, but:
547             // * The Taylor series for atan has been combined with that for T1,
548             //   reducing but not eliminating cancellation error.
549             // * The resulting alternating series is then accelerated using method 1
550             //   from H. Cohen, F. Rodriguez Villegas, D. Zagier,
551             //   "Convergence acceleration of alternating series", Bonn, (1991).
552             //
553             BOOST_MATH_STD_USING
554             static const char* function = "boost::math::owens_t<%1%>(%1%, %1%)";
555             T half_h_h = h * h / 2;
556             T a_pow = a;
557             T aa = a * a;
558             T exp_term = exp(-h * h / 2);
559             T one_minus_dj_sum = exp_term;
560             T sum = a_pow * exp_term;
561             T dj_pow = exp_term;
562             T term = sum;
563             T abs_err;
564             int j = 1;
565 
566             //
567             // Normally with this form of series acceleration we can calculate
568             // up front how many terms will be required - based on the assumption
569             // that each term decreases in size by a factor of 3.  However,
570             // that assumption does not apply here, as the underlying T1 series can
571             // go quite strongly divergent in the early terms, before strongly
572             // converging later.  Various "guesstimates" have been tried to take account
573             // of this, but they don't always work.... so instead set "n" to the
574             // largest value that won't cause overflow later, and abort iteration
575             // when the last accelerated term was small enough...
576             //
577             int n;
578 #ifndef BOOST_NO_EXCEPTIONS
579             try
580             {
581 #endif
582                n = itrunc(T(tools::log_max_value<T>() / 6));
583 #ifndef BOOST_NO_EXCEPTIONS
584             }
585             catch(...)
586             {
587                n = (std::numeric_limits<int>::max)();
588             }
589 #endif
590             n = (std::min)(n, 1500);
591             T d = pow(3 + sqrt(T(8)), n);
592             d = (d + 1 / d) / 2;
593             T b = -1;
594             T c = -d;
595             c = b - c;
596             sum *= c;
597             b = -n * n * b * 2;
598             abs_err = ldexp(fabs(sum), -tools::digits<T>());
599 
600             while(j < n)
601             {
602                a_pow *= aa;
603                dj_pow *= half_h_h / j;
604                one_minus_dj_sum += dj_pow;
605                term = one_minus_dj_sum * a_pow / (2 * j + 1);
606                c = b - c;
607                sum += c * term;
608                abs_err += ldexp((std::max)(T(fabs(sum)), T(fabs(c*term))), -tools::digits<T>());
609                b = (j + n) * (j - n) * b / ((j + T(0.5)) * (j + 1));
610                ++j;
611                //
612                // Include an escape route to prevent calculating too many terms:
613                //
614                if((j > 10) && (fabs(sum * tools::epsilon<T>()) > fabs(c * term)))
615                   break;
616             }
617             abs_err += fabs(c * term);
618             if(sum < 0)  // sum must always be positive, if it's negative something really bad has happened:
619                policies::raise_evaluation_error(function, 0, T(0), pol);
620             return std::pair<T, T>((sum / d) / boost::math::constants::two_pi<T>(), abs_err / sum);
621          }
622 
623          template<typename RealType, class Policy>
owens_t_T2(const RealType h,const RealType a,const unsigned short m,const RealType ah,const Policy &,const boost::true_type &)624          inline RealType owens_t_T2(const RealType h, const RealType a, const unsigned short m, const RealType ah, const Policy&, const boost::true_type&)
625          {
626             BOOST_MATH_STD_USING
627             using namespace boost::math::constants;
628 
629             const unsigned short maxii = m+m+1;
630             const RealType hs = h*h;
631             const RealType as = -a*a;
632             const RealType y = static_cast<RealType>(1) / hs;
633 
634             unsigned short ii = 1;
635             RealType val = 0;
636             RealType vi = a * exp( -ah*ah*half<RealType>() ) / root_two_pi<RealType>();
637             RealType z = owens_t_znorm1(ah)/h;
638             RealType last_z = fabs(z);
639             RealType lim = policies::get_epsilon<RealType, Policy>();
640 
641             while( true )
642             {
643                val += z;
644                //
645                // This series stops converging after a while, so put a limit
646                // on how far we go before returning our best guess:
647                //
648                if((fabs(lim * val) > fabs(z)) || ((ii > maxii) && (fabs(z) > last_z)) || (z == 0))
649                {
650                   val *= exp( -hs*half<RealType>() ) / root_two_pi<RealType>();
651                   break;
652                } // if( maxii <= ii )
653                last_z = fabs(z);
654                z = y * ( vi - static_cast<RealType>(ii) * z );
655                vi *= as;
656                ii += 2;
657             } // while( true )
658 
659             return val;
660          } // RealType owens_t_T2(const RealType h, const RealType a, const unsigned short m, const RealType ah)
661 
662          template<typename RealType, class Policy>
owens_t_T2_accelerated(const RealType h,const RealType a,const RealType ah,const Policy &)663          inline std::pair<RealType, RealType> owens_t_T2_accelerated(const RealType h, const RealType a, const RealType ah, const Policy&)
664          {
665             //
666             // This is the same series as T2, but with acceleration applied.
667             // Note that we have to be *very* careful to check that nothing bad
668             // has happened during evaluation - this series will go divergent
669             // and/or fail to alternate at a drop of a hat! :-(
670             //
671             BOOST_MATH_STD_USING
672             using namespace boost::math::constants;
673 
674             const RealType hs = h*h;
675             const RealType as = -a*a;
676             const RealType y = static_cast<RealType>(1) / hs;
677 
678             unsigned short ii = 1;
679             RealType val = 0;
680             RealType vi = a * exp( -ah*ah*half<RealType>() ) / root_two_pi<RealType>();
681             RealType z = boost::math::detail::owens_t_znorm1(ah)/h;
682             RealType last_z = fabs(z);
683 
684             //
685             // Normally with this form of series acceleration we can calculate
686             // up front how many terms will be required - based on the assumption
687             // that each term decreases in size by a factor of 3.  However,
688             // that assumption does not apply here, as the underlying T1 series can
689             // go quite strongly divergent in the early terms, before strongly
690             // converging later.  Various "guesstimates" have been tried to take account
691             // of this, but they don't always work.... so instead set "n" to the
692             // largest value that won't cause overflow later, and abort iteration
693             // when the last accelerated term was small enough...
694             //
695             int n;
696 #ifndef BOOST_NO_EXCEPTIONS
697             try
698             {
699 #endif
700                n = itrunc(RealType(tools::log_max_value<RealType>() / 6));
701 #ifndef BOOST_NO_EXCEPTIONS
702             }
703             catch(...)
704             {
705                n = (std::numeric_limits<int>::max)();
706             }
707 #endif
708             n = (std::min)(n, 1500);
709             RealType d = pow(3 + sqrt(RealType(8)), n);
710             d = (d + 1 / d) / 2;
711             RealType b = -1;
712             RealType c = -d;
713             int s = 1;
714 
715             for(int k = 0; k < n; ++k)
716             {
717                //
718                // Check for both convergence and whether the series has gone bad:
719                //
720                if(
721                   (fabs(z) > last_z)     // Series has gone divergent, abort
722                   || (fabs(val) * tools::epsilon<RealType>() > fabs(c * s * z))  // Convergence!
723                   || (z * s < 0)         // Series has stopped alternating - all bets are off - abort.
724                   )
725                {
726                   break;
727                }
728                c = b - c;
729                val += c * s * z;
730                b = (k + n) * (k - n) * b / ((k + RealType(0.5)) * (k + 1));
731                last_z = fabs(z);
732                s = -s;
733                z = y * ( vi - static_cast<RealType>(ii) * z );
734                vi *= as;
735                ii += 2;
736             } // while( true )
737             RealType err = fabs(c * z) / val;
738             return std::pair<RealType, RealType>(val * exp( -hs*half<RealType>() ) / (d * root_two_pi<RealType>()), err);
739          } // RealType owens_t_T2_accelerated(const RealType h, const RealType a, const RealType ah, const Policy&)
740 
741          template<typename RealType, typename Policy>
T4_mp(const RealType h,const RealType a,const Policy & pol)742          inline RealType T4_mp(const RealType h, const RealType a, const Policy& pol)
743          {
744             BOOST_MATH_STD_USING
745 
746             const RealType hs = h*h;
747             const RealType as = -a*a;
748 
749             unsigned short ii = 1;
750             RealType ai = constants::one_div_two_pi<RealType>() * a * exp( -0.5*hs*(1.0-as) );
751             RealType yi = 1.0;
752             RealType val = 0.0;
753 
754             RealType lim = boost::math::policies::get_epsilon<RealType, Policy>();
755 
756             while( true )
757             {
758                RealType term = ai*yi;
759                val += term;
760                if((yi != 0) && (fabs(val * lim) > fabs(term)))
761                   break;
762                ii += 2;
763                yi = (1.0-hs*yi) / static_cast<RealType>(ii);
764                ai *= as;
765                if(ii > (std::min)(1500, (int)policies::get_max_series_iterations<Policy>()))
766                   policies::raise_evaluation_error("boost::math::owens_t<%1%>", 0, val, pol);
767             } // while( true )
768 
769             return val;
770          } // arg_type owens_t_T4(const arg_type h, const arg_type a, const unsigned short m)
771 
772 
773          // This routine dispatches the call to one of six subroutines, depending on the values
774          // of h and a.
775          // preconditions: h >= 0, 0<=a<=1, ah=a*h
776          //
777          // Note there are different versions for different precisions....
778          template<typename RealType, typename Policy>
owens_t_dispatch(const RealType h,const RealType a,const RealType ah,const Policy & pol,boost::integral_constant<int,64> const &)779          inline RealType owens_t_dispatch(const RealType h, const RealType a, const RealType ah, const Policy& pol, boost::integral_constant<int, 64> const&)
780          {
781             // Simple main case for 64-bit precision or less, this is as per the Patefield-Tandy paper:
782             BOOST_MATH_STD_USING
783             //
784             // Handle some special cases first, these are from
785             // page 1077 of Owen's original paper:
786             //
787             if(h == 0)
788             {
789                return atan(a) * constants::one_div_two_pi<RealType>();
790             }
791             if(a == 0)
792             {
793                return 0;
794             }
795             if(a == 1)
796             {
797                return owens_t_znorm2(RealType(-h)) * owens_t_znorm2(h) / 2;
798             }
799             if(a >= tools::max_value<RealType>())
800             {
801                return owens_t_znorm2(RealType(fabs(h)));
802             }
803             RealType val = 0; // avoid compiler warnings, 0 will be overwritten in any case
804             const unsigned short icode = owens_t_compute_code(h, a);
805             const unsigned short m = owens_t_get_order(icode, val /* just a dummy for the type */, pol);
806             static const unsigned short meth[] = {1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 4, 4, 4, 4, 5, 6}; // 18 entries
807 
808             // determine the appropriate method, T1 ... T6
809             switch( meth[icode] )
810             {
811             case 1: // T1
812                val = owens_t_T1(h,a,m,pol);
813                break;
814             case 2: // T2
815                typedef typename policies::precision<RealType, Policy>::type precision_type;
816                typedef boost::integral_constant<bool, (precision_type::value == 0) || (precision_type::value > 64)> tag_type;
817                val = owens_t_T2(h, a, m, ah, pol, tag_type());
818                break;
819             case 3: // T3
820                val = owens_t_T3(h,a,ah, pol);
821                break;
822             case 4: // T4
823                val = owens_t_T4(h,a,m);
824                break;
825             case 5: // T5
826                val = owens_t_T5(h,a, pol);
827                break;
828             case 6: // T6
829                val = owens_t_T6(h,a);
830                break;
831             default:
832                BOOST_THROW_EXCEPTION(std::logic_error("selection routine in Owen's T function failed"));
833             }
834             return val;
835          }
836 
837          template<typename RealType, typename Policy>
owens_t_dispatch(const RealType h,const RealType a,const RealType ah,const Policy & pol,const boost::integral_constant<int,65> &)838          inline RealType owens_t_dispatch(const RealType h, const RealType a, const RealType ah, const Policy& pol, const boost::integral_constant<int, 65>&)
839          {
840             // Arbitrary precision version:
841             BOOST_MATH_STD_USING
842             //
843             // Handle some special cases first, these are from
844             // page 1077 of Owen's original paper:
845             //
846             if(h == 0)
847             {
848                return atan(a) * constants::one_div_two_pi<RealType>();
849             }
850             if(a == 0)
851             {
852                return 0;
853             }
854             if(a == 1)
855             {
856                return owens_t_znorm2(RealType(-h)) * owens_t_znorm2(h) / 2;
857             }
858             if(a >= tools::max_value<RealType>())
859             {
860                return owens_t_znorm2(RealType(fabs(h)));
861             }
862             // Attempt arbitrary precision code, this will throw if it goes wrong:
863             typedef typename boost::math::policies::normalise<Policy, boost::math::policies::evaluation_error<> >::type forwarding_policy;
864             std::pair<RealType, RealType> p1(0, tools::max_value<RealType>()), p2(0, tools::max_value<RealType>());
865             RealType target_precision = policies::get_epsilon<RealType, Policy>() * 1000;
866             bool have_t1(false), have_t2(false);
867             if(ah < 3)
868             {
869 #ifndef BOOST_NO_EXCEPTIONS
870                try
871                {
872 #endif
873                   have_t1 = true;
874                   p1 = owens_t_T1_accelerated(h, a, forwarding_policy());
875                   if(p1.second < target_precision)
876                      return p1.first;
877 #ifndef BOOST_NO_EXCEPTIONS
878                }
879                catch(const boost::math::evaluation_error&){}  // T1 may fail and throw, that's OK
880 #endif
881             }
882             if(ah > 1)
883             {
884 #ifndef BOOST_NO_EXCEPTIONS
885                try
886                {
887 #endif
888                   have_t2 = true;
889                   p2 = owens_t_T2_accelerated(h, a, ah, forwarding_policy());
890                   if(p2.second < target_precision)
891                      return p2.first;
892 #ifndef BOOST_NO_EXCEPTIONS
893                }
894                catch(const boost::math::evaluation_error&){}  // T2 may fail and throw, that's OK
895 #endif
896             }
897             //
898             // If we haven't tried T1 yet, do it now - sometimes it succeeds and the number of iterations
899             // is fairly low compared to T4.
900             //
901             if(!have_t1)
902             {
903 #ifndef BOOST_NO_EXCEPTIONS
904                try
905                {
906 #endif
907                   have_t1 = true;
908                   p1 = owens_t_T1_accelerated(h, a, forwarding_policy());
909                   if(p1.second < target_precision)
910                      return p1.first;
911 #ifndef BOOST_NO_EXCEPTIONS
912                }
913                catch(const boost::math::evaluation_error&){}  // T1 may fail and throw, that's OK
914 #endif
915             }
916             //
917             // If we haven't tried T2 yet, do it now - sometimes it succeeds and the number of iterations
918             // is fairly low compared to T4.
919             //
920             if(!have_t2)
921             {
922 #ifndef BOOST_NO_EXCEPTIONS
923                try
924                {
925 #endif
926                   have_t2 = true;
927                   p2 = owens_t_T2_accelerated(h, a, ah, forwarding_policy());
928                   if(p2.second < target_precision)
929                      return p2.first;
930 #ifndef BOOST_NO_EXCEPTIONS
931                }
932                catch(const boost::math::evaluation_error&){}  // T2 may fail and throw, that's OK
933 #endif
934             }
935             //
936             // OK, nothing left to do but try the most expensive option which is T4,
937             // this is often slow to converge, but when it does converge it tends to
938             // be accurate:
939 #ifndef BOOST_NO_EXCEPTIONS
940             try
941             {
942 #endif
943                return T4_mp(h, a, pol);
944 #ifndef BOOST_NO_EXCEPTIONS
945             }
946             catch(const boost::math::evaluation_error&){}  // T4 may fail and throw, that's OK
947 #endif
948             //
949             // Now look back at the results from T1 and T2 and see if either gave better
950             // results than we could get from the 64-bit precision versions.
951             //
952             if((std::min)(p1.second, p2.second) < 1e-20)
953             {
954                return p1.second < p2.second ? p1.first : p2.first;
955             }
956             //
957             // We give up - no arbitrary precision versions succeeded!
958             //
959             return owens_t_dispatch(h, a, ah, pol, boost::integral_constant<int, 64>());
960          } // RealType owens_t_dispatch(RealType h, RealType a, RealType ah)
961          template<typename RealType, typename Policy>
owens_t_dispatch(const RealType h,const RealType a,const RealType ah,const Policy & pol,const boost::integral_constant<int,0> &)962          inline RealType owens_t_dispatch(const RealType h, const RealType a, const RealType ah, const Policy& pol, const boost::integral_constant<int, 0>&)
963          {
964             // We don't know what the precision is until runtime:
965             if(tools::digits<RealType>() <= 64)
966                return owens_t_dispatch(h, a, ah, pol, boost::integral_constant<int, 64>());
967             return owens_t_dispatch(h, a, ah, pol, boost::integral_constant<int, 65>());
968          }
969          template<typename RealType, typename Policy>
owens_t_dispatch(const RealType h,const RealType a,const RealType ah,const Policy & pol)970          inline RealType owens_t_dispatch(const RealType h, const RealType a, const RealType ah, const Policy& pol)
971          {
972             // Figure out the precision and forward to the correct version:
973             typedef typename policies::precision<RealType, Policy>::type precision_type;
974             typedef boost::integral_constant<int,
975                precision_type::value <= 0 ? 0 :
976                precision_type::value <= 64 ? 64 : 65
977             > tag_type;
978 
979             return owens_t_dispatch(h, a, ah, pol, tag_type());
980          }
981          // compute Owen's T function, T(h,a), for arbitrary values of h and a
982          template<typename RealType, class Policy>
owens_t(RealType h,RealType a,const Policy & pol)983          inline RealType owens_t(RealType h, RealType a, const Policy& pol)
984          {
985             BOOST_MATH_STD_USING
986             // exploit that T(-h,a) == T(h,a)
987             h = fabs(h);
988 
989             // Use equation (2) in the paper to remap the arguments
990             // such that h>=0 and 0<=a<=1 for the call of the actual
991             // computation routine.
992 
993             const RealType fabs_a = fabs(a);
994             const RealType fabs_ah = fabs_a*h;
995 
996             RealType val = 0.0; // avoid compiler warnings, 0.0 will be overwritten in any case
997 
998             if(fabs_a <= 1)
999             {
1000                val = owens_t_dispatch(h, fabs_a, fabs_ah, pol);
1001             } // if(fabs_a <= 1.0)
1002             else
1003             {
1004                if( h <= 0.67 )
1005                {
1006                   const RealType normh = owens_t_znorm1(h);
1007                   const RealType normah = owens_t_znorm1(fabs_ah);
1008                   val = static_cast<RealType>(1)/static_cast<RealType>(4) - normh*normah -
1009                      owens_t_dispatch(fabs_ah, static_cast<RealType>(1 / fabs_a), h, pol);
1010                } // if( h <= 0.67 )
1011                else
1012                {
1013                   const RealType normh = detail::owens_t_znorm2(h);
1014                   const RealType normah = detail::owens_t_znorm2(fabs_ah);
1015                   val = constants::half<RealType>()*(normh+normah) - normh*normah -
1016                      owens_t_dispatch(fabs_ah, static_cast<RealType>(1 / fabs_a), h, pol);
1017                } // else [if( h <= 0.67 )]
1018             } // else [if(fabs_a <= 1)]
1019 
1020             // exploit that T(h,-a) == -T(h,a)
1021             if(a < 0)
1022             {
1023                return -val;
1024             } // if(a < 0)
1025 
1026             return val;
1027          } // RealType owens_t(RealType h, RealType a)
1028 
1029          template <class T, class Policy, class tag>
1030          struct owens_t_initializer
1031          {
1032             struct init
1033             {
initboost::math::detail::owens_t_initializer::init1034                init()
1035                {
1036                   do_init(tag());
1037                }
1038                template <int N>
do_initboost::math::detail::owens_t_initializer::init1039                static void do_init(const boost::integral_constant<int, N>&){}
do_initboost::math::detail::owens_t_initializer::init1040                static void do_init(const boost::integral_constant<int, 64>&)
1041                {
1042                   boost::math::owens_t(static_cast<T>(7), static_cast<T>(0.96875), Policy());
1043                   boost::math::owens_t(static_cast<T>(2), static_cast<T>(0.5), Policy());
1044                }
force_instantiateboost::math::detail::owens_t_initializer::init1045                void force_instantiate()const{}
1046             };
1047             static const init initializer;
force_instantiateboost::math::detail::owens_t_initializer1048             static void force_instantiate()
1049             {
1050                initializer.force_instantiate();
1051             }
1052          };
1053 
1054          template <class T, class Policy, class tag>
1055          const typename owens_t_initializer<T, Policy, tag>::init owens_t_initializer<T, Policy, tag>::initializer;
1056 
1057       } // namespace detail
1058 
1059       template <class T1, class T2, class Policy>
owens_t(T1 h,T2 a,const Policy & pol)1060       inline typename tools::promote_args<T1, T2>::type owens_t(T1 h, T2 a, const Policy& pol)
1061       {
1062          typedef typename tools::promote_args<T1, T2>::type result_type;
1063          typedef typename policies::evaluation<result_type, Policy>::type value_type;
1064          typedef typename policies::precision<value_type, Policy>::type precision_type;
1065          typedef boost::integral_constant<int,
1066             precision_type::value <= 0 ? 0 :
1067             precision_type::value <= 64 ? 64 : 65
1068          > tag_type;
1069 
1070          detail::owens_t_initializer<result_type, Policy, tag_type>::force_instantiate();
1071 
1072          return policies::checked_narrowing_cast<result_type, Policy>(detail::owens_t(static_cast<value_type>(h), static_cast<value_type>(a), pol), "boost::math::owens_t<%1%>(%1%,%1%)");
1073       }
1074 
1075       template <class T1, class T2>
owens_t(T1 h,T2 a)1076       inline typename tools::promote_args<T1, T2>::type owens_t(T1 h, T2 a)
1077       {
1078          return owens_t(h, a, policies::policy<>());
1079       }
1080 
1081 
1082    } // namespace math
1083 } // namespace boost
1084 
1085 #ifdef BOOST_MSVC
1086 #pragma warning(pop)
1087 #endif
1088 
1089 #endif
1090 // EOF
1091