1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/oom_kill.c
4 *
5 * Copyright (C) 1998,2000 Rik van Riel
6 * Thanks go out to Claus Fischer for some serious inspiration and
7 * for goading me into coding this file...
8 * Copyright (C) 2010 Google, Inc.
9 * Rewritten by David Rientjes
10 *
11 * The routines in this file are used to kill a process when
12 * we're seriously out of memory. This gets called from __alloc_pages()
13 * in mm/page_alloc.c when we really run out of memory.
14 *
15 * Since we won't call these routines often (on a well-configured
16 * machine) this file will double as a 'coding guide' and a signpost
17 * for newbie kernel hackers. It features several pointers to major
18 * kernel subsystems and hints as to where to find out what things do.
19 */
20
21 #include <linux/oom.h>
22 #include <linux/mm.h>
23 #include <linux/err.h>
24 #include <linux/gfp.h>
25 #include <linux/sched.h>
26 #include <linux/sched/mm.h>
27 #include <linux/sched/coredump.h>
28 #include <linux/sched/task.h>
29 #include <linux/sched/debug.h>
30 #include <linux/swap.h>
31 #include <linux/timex.h>
32 #include <linux/jiffies.h>
33 #include <linux/cpuset.h>
34 #include <linux/export.h>
35 #include <linux/notifier.h>
36 #include <linux/memcontrol.h>
37 #include <linux/mempolicy.h>
38 #include <linux/security.h>
39 #include <linux/ptrace.h>
40 #include <linux/freezer.h>
41 #include <linux/ftrace.h>
42 #include <linux/ratelimit.h>
43 #include <linux/kthread.h>
44 #include <linux/init.h>
45 #include <linux/mmu_notifier.h>
46
47 #include <asm/tlb.h>
48 #include "internal.h"
49 #include "slab.h"
50
51 #define CREATE_TRACE_POINTS
52 #include <trace/events/oom.h>
53
54 int sysctl_panic_on_oom;
55 int sysctl_oom_kill_allocating_task;
56 int sysctl_oom_dump_tasks = 1;
57
58 /*
59 * Serializes oom killer invocations (out_of_memory()) from all contexts to
60 * prevent from over eager oom killing (e.g. when the oom killer is invoked
61 * from different domains).
62 *
63 * oom_killer_disable() relies on this lock to stabilize oom_killer_disabled
64 * and mark_oom_victim
65 */
66 DEFINE_MUTEX(oom_lock);
67 /* Serializes oom_score_adj and oom_score_adj_min updates */
68 DEFINE_MUTEX(oom_adj_mutex);
69
is_memcg_oom(struct oom_control * oc)70 static inline bool is_memcg_oom(struct oom_control *oc)
71 {
72 return oc->memcg != NULL;
73 }
74
75 #ifdef CONFIG_NUMA
76 /**
77 * oom_cpuset_eligible() - check task eligiblity for kill
78 * @start: task struct of which task to consider
79 * @oc: pointer to struct oom_control
80 *
81 * Task eligibility is determined by whether or not a candidate task, @tsk,
82 * shares the same mempolicy nodes as current if it is bound by such a policy
83 * and whether or not it has the same set of allowed cpuset nodes.
84 *
85 * This function is assuming oom-killer context and 'current' has triggered
86 * the oom-killer.
87 */
oom_cpuset_eligible(struct task_struct * start,struct oom_control * oc)88 static bool oom_cpuset_eligible(struct task_struct *start,
89 struct oom_control *oc)
90 {
91 struct task_struct *tsk;
92 bool ret = false;
93 const nodemask_t *mask = oc->nodemask;
94
95 if (is_memcg_oom(oc))
96 return true;
97
98 rcu_read_lock();
99 for_each_thread(start, tsk) {
100 if (mask) {
101 /*
102 * If this is a mempolicy constrained oom, tsk's
103 * cpuset is irrelevant. Only return true if its
104 * mempolicy intersects current, otherwise it may be
105 * needlessly killed.
106 */
107 ret = mempolicy_nodemask_intersects(tsk, mask);
108 } else {
109 /*
110 * This is not a mempolicy constrained oom, so only
111 * check the mems of tsk's cpuset.
112 */
113 ret = cpuset_mems_allowed_intersects(current, tsk);
114 }
115 if (ret)
116 break;
117 }
118 rcu_read_unlock();
119
120 return ret;
121 }
122 #else
oom_cpuset_eligible(struct task_struct * tsk,struct oom_control * oc)123 static bool oom_cpuset_eligible(struct task_struct *tsk, struct oom_control *oc)
124 {
125 return true;
126 }
127 #endif /* CONFIG_NUMA */
128
129 /*
130 * The process p may have detached its own ->mm while exiting or through
131 * kthread_use_mm(), but one or more of its subthreads may still have a valid
132 * pointer. Return p, or any of its subthreads with a valid ->mm, with
133 * task_lock() held.
134 */
find_lock_task_mm(struct task_struct * p)135 struct task_struct *find_lock_task_mm(struct task_struct *p)
136 {
137 struct task_struct *t;
138
139 rcu_read_lock();
140
141 for_each_thread(p, t) {
142 task_lock(t);
143 if (likely(t->mm))
144 goto found;
145 task_unlock(t);
146 }
147 t = NULL;
148 found:
149 rcu_read_unlock();
150
151 return t;
152 }
153
154 /*
155 * order == -1 means the oom kill is required by sysrq, otherwise only
156 * for display purposes.
157 */
is_sysrq_oom(struct oom_control * oc)158 static inline bool is_sysrq_oom(struct oom_control *oc)
159 {
160 return oc->order == -1;
161 }
162
163 /* return true if the task is not adequate as candidate victim task. */
oom_unkillable_task(struct task_struct * p)164 static bool oom_unkillable_task(struct task_struct *p)
165 {
166 if (is_global_init(p))
167 return true;
168 if (p->flags & PF_KTHREAD)
169 return true;
170 return false;
171 }
172
173 /*
174 * Print out unreclaimble slabs info when unreclaimable slabs amount is greater
175 * than all user memory (LRU pages)
176 */
is_dump_unreclaim_slabs(void)177 static bool is_dump_unreclaim_slabs(void)
178 {
179 unsigned long nr_lru;
180
181 nr_lru = global_node_page_state(NR_ACTIVE_ANON) +
182 global_node_page_state(NR_INACTIVE_ANON) +
183 global_node_page_state(NR_ACTIVE_FILE) +
184 global_node_page_state(NR_INACTIVE_FILE) +
185 global_node_page_state(NR_ISOLATED_ANON) +
186 global_node_page_state(NR_ISOLATED_FILE) +
187 global_node_page_state(NR_UNEVICTABLE);
188
189 return (global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B) > nr_lru);
190 }
191
192 /**
193 * oom_badness - heuristic function to determine which candidate task to kill
194 * @p: task struct of which task we should calculate
195 * @totalpages: total present RAM allowed for page allocation
196 *
197 * The heuristic for determining which task to kill is made to be as simple and
198 * predictable as possible. The goal is to return the highest value for the
199 * task consuming the most memory to avoid subsequent oom failures.
200 */
oom_badness(struct task_struct * p,unsigned long totalpages)201 long oom_badness(struct task_struct *p, unsigned long totalpages)
202 {
203 long points;
204 long adj;
205
206 if (oom_unkillable_task(p))
207 return LONG_MIN;
208
209 p = find_lock_task_mm(p);
210 if (!p)
211 return LONG_MIN;
212
213 /*
214 * Do not even consider tasks which are explicitly marked oom
215 * unkillable or have been already oom reaped or the are in
216 * the middle of vfork
217 */
218 adj = (long)p->signal->oom_score_adj;
219 if (adj == OOM_SCORE_ADJ_MIN ||
220 test_bit(MMF_OOM_SKIP, &p->mm->flags) ||
221 in_vfork(p)) {
222 task_unlock(p);
223 return LONG_MIN;
224 }
225
226 /*
227 * The baseline for the badness score is the proportion of RAM that each
228 * task's rss, pagetable and swap space use.
229 */
230 points = get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS) +
231 mm_pgtables_bytes(p->mm) / PAGE_SIZE;
232 task_unlock(p);
233
234 /* Normalize to oom_score_adj units */
235 adj *= totalpages / 1000;
236 points += adj;
237
238 return points;
239 }
240
241 static const char * const oom_constraint_text[] = {
242 [CONSTRAINT_NONE] = "CONSTRAINT_NONE",
243 [CONSTRAINT_CPUSET] = "CONSTRAINT_CPUSET",
244 [CONSTRAINT_MEMORY_POLICY] = "CONSTRAINT_MEMORY_POLICY",
245 [CONSTRAINT_MEMCG] = "CONSTRAINT_MEMCG",
246 };
247
248 /*
249 * Determine the type of allocation constraint.
250 */
constrained_alloc(struct oom_control * oc)251 static enum oom_constraint constrained_alloc(struct oom_control *oc)
252 {
253 struct zone *zone;
254 struct zoneref *z;
255 enum zone_type highest_zoneidx = gfp_zone(oc->gfp_mask);
256 bool cpuset_limited = false;
257 int nid;
258
259 if (is_memcg_oom(oc)) {
260 oc->totalpages = mem_cgroup_get_max(oc->memcg) ?: 1;
261 return CONSTRAINT_MEMCG;
262 }
263
264 /* Default to all available memory */
265 oc->totalpages = totalram_pages() + total_swap_pages;
266
267 if (!IS_ENABLED(CONFIG_NUMA))
268 return CONSTRAINT_NONE;
269
270 if (!oc->zonelist)
271 return CONSTRAINT_NONE;
272 /*
273 * Reach here only when __GFP_NOFAIL is used. So, we should avoid
274 * to kill current.We have to random task kill in this case.
275 * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now.
276 */
277 if (oc->gfp_mask & __GFP_THISNODE)
278 return CONSTRAINT_NONE;
279
280 /*
281 * This is not a __GFP_THISNODE allocation, so a truncated nodemask in
282 * the page allocator means a mempolicy is in effect. Cpuset policy
283 * is enforced in get_page_from_freelist().
284 */
285 if (oc->nodemask &&
286 !nodes_subset(node_states[N_MEMORY], *oc->nodemask)) {
287 oc->totalpages = total_swap_pages;
288 for_each_node_mask(nid, *oc->nodemask)
289 oc->totalpages += node_present_pages(nid);
290 return CONSTRAINT_MEMORY_POLICY;
291 }
292
293 /* Check this allocation failure is caused by cpuset's wall function */
294 for_each_zone_zonelist_nodemask(zone, z, oc->zonelist,
295 highest_zoneidx, oc->nodemask)
296 if (!cpuset_zone_allowed(zone, oc->gfp_mask))
297 cpuset_limited = true;
298
299 if (cpuset_limited) {
300 oc->totalpages = total_swap_pages;
301 for_each_node_mask(nid, cpuset_current_mems_allowed)
302 oc->totalpages += node_present_pages(nid);
303 return CONSTRAINT_CPUSET;
304 }
305 return CONSTRAINT_NONE;
306 }
307
oom_evaluate_task(struct task_struct * task,void * arg)308 static int oom_evaluate_task(struct task_struct *task, void *arg)
309 {
310 struct oom_control *oc = arg;
311 long points;
312
313 if (oom_unkillable_task(task))
314 goto next;
315
316 /* p may not have freeable memory in nodemask */
317 if (!is_memcg_oom(oc) && !oom_cpuset_eligible(task, oc))
318 goto next;
319
320 /*
321 * This task already has access to memory reserves and is being killed.
322 * Don't allow any other task to have access to the reserves unless
323 * the task has MMF_OOM_SKIP because chances that it would release
324 * any memory is quite low.
325 */
326 if (!is_sysrq_oom(oc) && tsk_is_oom_victim(task)) {
327 if (test_bit(MMF_OOM_SKIP, &task->signal->oom_mm->flags))
328 goto next;
329 goto abort;
330 }
331
332 /*
333 * If task is allocating a lot of memory and has been marked to be
334 * killed first if it triggers an oom, then select it.
335 */
336 if (oom_task_origin(task)) {
337 points = LONG_MAX;
338 goto select;
339 }
340
341 points = oom_badness(task, oc->totalpages);
342 if (points == LONG_MIN || points < oc->chosen_points)
343 goto next;
344
345 select:
346 if (oc->chosen)
347 put_task_struct(oc->chosen);
348 get_task_struct(task);
349 oc->chosen = task;
350 oc->chosen_points = points;
351 next:
352 return 0;
353 abort:
354 if (oc->chosen)
355 put_task_struct(oc->chosen);
356 oc->chosen = (void *)-1UL;
357 return 1;
358 }
359
360 /*
361 * Simple selection loop. We choose the process with the highest number of
362 * 'points'. In case scan was aborted, oc->chosen is set to -1.
363 */
select_bad_process(struct oom_control * oc)364 static void select_bad_process(struct oom_control *oc)
365 {
366 oc->chosen_points = LONG_MIN;
367
368 if (is_memcg_oom(oc))
369 mem_cgroup_scan_tasks(oc->memcg, oom_evaluate_task, oc);
370 else {
371 struct task_struct *p;
372
373 rcu_read_lock();
374 for_each_process(p)
375 if (oom_evaluate_task(p, oc))
376 break;
377 rcu_read_unlock();
378 }
379 }
380
dump_task(struct task_struct * p,void * arg)381 static int dump_task(struct task_struct *p, void *arg)
382 {
383 struct oom_control *oc = arg;
384 struct task_struct *task;
385
386 if (oom_unkillable_task(p))
387 return 0;
388
389 /* p may not have freeable memory in nodemask */
390 if (!is_memcg_oom(oc) && !oom_cpuset_eligible(p, oc))
391 return 0;
392
393 task = find_lock_task_mm(p);
394 if (!task) {
395 /*
396 * This is a kthread or all of p's threads have already
397 * detached their mm's. There's no need to report
398 * them; they can't be oom killed anyway.
399 */
400 return 0;
401 }
402
403 pr_info("[%7d] %5d %5d %8lu %8lu %8ld %8lu %5hd %s\n",
404 task->pid, from_kuid(&init_user_ns, task_uid(task)),
405 task->tgid, task->mm->total_vm, get_mm_rss(task->mm),
406 mm_pgtables_bytes(task->mm),
407 get_mm_counter(task->mm, MM_SWAPENTS),
408 task->signal->oom_score_adj, task->comm);
409 task_unlock(task);
410
411 return 0;
412 }
413
414 /**
415 * dump_tasks - dump current memory state of all system tasks
416 * @oc: pointer to struct oom_control
417 *
418 * Dumps the current memory state of all eligible tasks. Tasks not in the same
419 * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes
420 * are not shown.
421 * State information includes task's pid, uid, tgid, vm size, rss,
422 * pgtables_bytes, swapents, oom_score_adj value, and name.
423 */
dump_tasks(struct oom_control * oc)424 static void dump_tasks(struct oom_control *oc)
425 {
426 pr_info("Tasks state (memory values in pages):\n");
427 pr_info("[ pid ] uid tgid total_vm rss pgtables_bytes swapents oom_score_adj name\n");
428
429 if (is_memcg_oom(oc))
430 mem_cgroup_scan_tasks(oc->memcg, dump_task, oc);
431 else {
432 struct task_struct *p;
433
434 rcu_read_lock();
435 for_each_process(p)
436 dump_task(p, oc);
437 rcu_read_unlock();
438 }
439 }
440
dump_oom_summary(struct oom_control * oc,struct task_struct * victim)441 static void dump_oom_summary(struct oom_control *oc, struct task_struct *victim)
442 {
443 /* one line summary of the oom killer context. */
444 pr_info("oom-kill:constraint=%s,nodemask=%*pbl",
445 oom_constraint_text[oc->constraint],
446 nodemask_pr_args(oc->nodemask));
447 cpuset_print_current_mems_allowed();
448 mem_cgroup_print_oom_context(oc->memcg, victim);
449 pr_cont(",task=%s,pid=%d,uid=%d\n", victim->comm, victim->pid,
450 from_kuid(&init_user_ns, task_uid(victim)));
451 }
452
dump_header(struct oom_control * oc,struct task_struct * p)453 static void dump_header(struct oom_control *oc, struct task_struct *p)
454 {
455 pr_warn("%s invoked oom-killer: gfp_mask=%#x(%pGg), order=%d, oom_score_adj=%hd\n",
456 current->comm, oc->gfp_mask, &oc->gfp_mask, oc->order,
457 current->signal->oom_score_adj);
458 if (!IS_ENABLED(CONFIG_COMPACTION) && oc->order)
459 pr_warn("COMPACTION is disabled!!!\n");
460
461 dump_stack();
462 if (is_memcg_oom(oc))
463 mem_cgroup_print_oom_meminfo(oc->memcg);
464 else {
465 show_mem(SHOW_MEM_FILTER_NODES, oc->nodemask);
466 if (is_dump_unreclaim_slabs())
467 dump_unreclaimable_slab();
468 }
469 if (sysctl_oom_dump_tasks)
470 dump_tasks(oc);
471 if (p)
472 dump_oom_summary(oc, p);
473 }
474
475 /*
476 * Number of OOM victims in flight
477 */
478 static atomic_t oom_victims = ATOMIC_INIT(0);
479 static DECLARE_WAIT_QUEUE_HEAD(oom_victims_wait);
480
481 static bool oom_killer_disabled __read_mostly;
482
483 #define K(x) ((x) << (PAGE_SHIFT-10))
484
485 /*
486 * task->mm can be NULL if the task is the exited group leader. So to
487 * determine whether the task is using a particular mm, we examine all the
488 * task's threads: if one of those is using this mm then this task was also
489 * using it.
490 */
process_shares_mm(struct task_struct * p,struct mm_struct * mm)491 bool process_shares_mm(struct task_struct *p, struct mm_struct *mm)
492 {
493 struct task_struct *t;
494
495 for_each_thread(p, t) {
496 struct mm_struct *t_mm = READ_ONCE(t->mm);
497 if (t_mm)
498 return t_mm == mm;
499 }
500 return false;
501 }
502
503 #ifdef CONFIG_MMU
504 /*
505 * OOM Reaper kernel thread which tries to reap the memory used by the OOM
506 * victim (if that is possible) to help the OOM killer to move on.
507 */
508 static struct task_struct *oom_reaper_th;
509 static DECLARE_WAIT_QUEUE_HEAD(oom_reaper_wait);
510 static struct task_struct *oom_reaper_list;
511 static DEFINE_SPINLOCK(oom_reaper_lock);
512
__oom_reap_task_mm(struct mm_struct * mm)513 bool __oom_reap_task_mm(struct mm_struct *mm)
514 {
515 struct vm_area_struct *vma;
516 bool ret = true;
517
518 /*
519 * Tell all users of get_user/copy_from_user etc... that the content
520 * is no longer stable. No barriers really needed because unmapping
521 * should imply barriers already and the reader would hit a page fault
522 * if it stumbled over a reaped memory.
523 */
524 set_bit(MMF_UNSTABLE, &mm->flags);
525
526 for (vma = mm->mmap ; vma; vma = vma->vm_next) {
527 if (!can_madv_lru_vma(vma))
528 continue;
529
530 /*
531 * Only anonymous pages have a good chance to be dropped
532 * without additional steps which we cannot afford as we
533 * are OOM already.
534 *
535 * We do not even care about fs backed pages because all
536 * which are reclaimable have already been reclaimed and
537 * we do not want to block exit_mmap by keeping mm ref
538 * count elevated without a good reason.
539 */
540 if (vma_is_anonymous(vma) || !(vma->vm_flags & VM_SHARED)) {
541 struct mmu_notifier_range range;
542 struct mmu_gather tlb;
543
544 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0,
545 vma, mm, vma->vm_start,
546 vma->vm_end);
547 tlb_gather_mmu(&tlb, mm, range.start, range.end);
548 if (mmu_notifier_invalidate_range_start_nonblock(&range)) {
549 tlb_finish_mmu(&tlb, range.start, range.end);
550 ret = false;
551 continue;
552 }
553 unmap_page_range(&tlb, vma, range.start, range.end, NULL);
554 mmu_notifier_invalidate_range_end(&range);
555 tlb_finish_mmu(&tlb, range.start, range.end);
556 }
557 }
558
559 return ret;
560 }
561
562 /*
563 * Reaps the address space of the give task.
564 *
565 * Returns true on success and false if none or part of the address space
566 * has been reclaimed and the caller should retry later.
567 */
oom_reap_task_mm(struct task_struct * tsk,struct mm_struct * mm)568 static bool oom_reap_task_mm(struct task_struct *tsk, struct mm_struct *mm)
569 {
570 bool ret = true;
571
572 if (!mmap_read_trylock(mm)) {
573 trace_skip_task_reaping(tsk->pid);
574 return false;
575 }
576
577 /*
578 * MMF_OOM_SKIP is set by exit_mmap when the OOM reaper can't
579 * work on the mm anymore. The check for MMF_OOM_SKIP must run
580 * under mmap_lock for reading because it serializes against the
581 * mmap_write_lock();mmap_write_unlock() cycle in exit_mmap().
582 */
583 if (test_bit(MMF_OOM_SKIP, &mm->flags)) {
584 trace_skip_task_reaping(tsk->pid);
585 goto out_unlock;
586 }
587
588 trace_start_task_reaping(tsk->pid);
589
590 /* failed to reap part of the address space. Try again later */
591 ret = __oom_reap_task_mm(mm);
592 if (!ret)
593 goto out_finish;
594
595 pr_info("oom_reaper: reaped process %d (%s), now anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
596 task_pid_nr(tsk), tsk->comm,
597 K(get_mm_counter(mm, MM_ANONPAGES)),
598 K(get_mm_counter(mm, MM_FILEPAGES)),
599 K(get_mm_counter(mm, MM_SHMEMPAGES)));
600 out_finish:
601 trace_finish_task_reaping(tsk->pid);
602 out_unlock:
603 mmap_read_unlock(mm);
604
605 return ret;
606 }
607
608 #define MAX_OOM_REAP_RETRIES 10
oom_reap_task(struct task_struct * tsk)609 static void oom_reap_task(struct task_struct *tsk)
610 {
611 int attempts = 0;
612 struct mm_struct *mm = tsk->signal->oom_mm;
613
614 /* Retry the mmap_read_trylock(mm) a few times */
615 while (attempts++ < MAX_OOM_REAP_RETRIES && !oom_reap_task_mm(tsk, mm))
616 schedule_timeout_idle(HZ/10);
617
618 if (attempts <= MAX_OOM_REAP_RETRIES ||
619 test_bit(MMF_OOM_SKIP, &mm->flags))
620 goto done;
621
622 pr_info("oom_reaper: unable to reap pid:%d (%s)\n",
623 task_pid_nr(tsk), tsk->comm);
624 sched_show_task(tsk);
625 debug_show_all_locks();
626
627 done:
628 tsk->oom_reaper_list = NULL;
629
630 /*
631 * Hide this mm from OOM killer because it has been either reaped or
632 * somebody can't call mmap_write_unlock(mm).
633 */
634 set_bit(MMF_OOM_SKIP, &mm->flags);
635
636 /* Drop a reference taken by wake_oom_reaper */
637 put_task_struct(tsk);
638 }
639
oom_reaper(void * unused)640 static int oom_reaper(void *unused)
641 {
642 while (true) {
643 struct task_struct *tsk = NULL;
644
645 wait_event_freezable(oom_reaper_wait, oom_reaper_list != NULL);
646 spin_lock(&oom_reaper_lock);
647 if (oom_reaper_list != NULL) {
648 tsk = oom_reaper_list;
649 oom_reaper_list = tsk->oom_reaper_list;
650 }
651 spin_unlock(&oom_reaper_lock);
652
653 if (tsk)
654 oom_reap_task(tsk);
655 }
656
657 return 0;
658 }
659
wake_oom_reaper(struct task_struct * tsk)660 static void wake_oom_reaper(struct task_struct *tsk)
661 {
662 /* mm is already queued? */
663 if (test_and_set_bit(MMF_OOM_REAP_QUEUED, &tsk->signal->oom_mm->flags))
664 return;
665
666 get_task_struct(tsk);
667
668 spin_lock(&oom_reaper_lock);
669 tsk->oom_reaper_list = oom_reaper_list;
670 oom_reaper_list = tsk;
671 spin_unlock(&oom_reaper_lock);
672 trace_wake_reaper(tsk->pid);
673 wake_up(&oom_reaper_wait);
674 }
675
oom_init(void)676 static int __init oom_init(void)
677 {
678 oom_reaper_th = kthread_run(oom_reaper, NULL, "oom_reaper");
679 return 0;
680 }
subsys_initcall(oom_init)681 subsys_initcall(oom_init)
682 #else
683 static inline void wake_oom_reaper(struct task_struct *tsk)
684 {
685 }
686 #endif /* CONFIG_MMU */
687
688 /**
689 * mark_oom_victim - mark the given task as OOM victim
690 * @tsk: task to mark
691 *
692 * Has to be called with oom_lock held and never after
693 * oom has been disabled already.
694 *
695 * tsk->mm has to be non NULL and caller has to guarantee it is stable (either
696 * under task_lock or operate on the current).
697 */
698 static void mark_oom_victim(struct task_struct *tsk)
699 {
700 struct mm_struct *mm = tsk->mm;
701
702 WARN_ON(oom_killer_disabled);
703 /* OOM killer might race with memcg OOM */
704 if (test_and_set_tsk_thread_flag(tsk, TIF_MEMDIE))
705 return;
706
707 /* oom_mm is bound to the signal struct life time. */
708 if (!cmpxchg(&tsk->signal->oom_mm, NULL, mm)) {
709 mmgrab(tsk->signal->oom_mm);
710 set_bit(MMF_OOM_VICTIM, &mm->flags);
711 }
712
713 /*
714 * Make sure that the task is woken up from uninterruptible sleep
715 * if it is frozen because OOM killer wouldn't be able to free
716 * any memory and livelock. freezing_slow_path will tell the freezer
717 * that TIF_MEMDIE tasks should be ignored.
718 */
719 __thaw_task(tsk);
720 atomic_inc(&oom_victims);
721 trace_mark_victim(tsk->pid);
722 }
723
724 /**
725 * exit_oom_victim - note the exit of an OOM victim
726 */
exit_oom_victim(void)727 void exit_oom_victim(void)
728 {
729 clear_thread_flag(TIF_MEMDIE);
730
731 if (!atomic_dec_return(&oom_victims))
732 wake_up_all(&oom_victims_wait);
733 }
734
735 /**
736 * oom_killer_enable - enable OOM killer
737 */
oom_killer_enable(void)738 void oom_killer_enable(void)
739 {
740 oom_killer_disabled = false;
741 pr_info("OOM killer enabled.\n");
742 }
743
744 /**
745 * oom_killer_disable - disable OOM killer
746 * @timeout: maximum timeout to wait for oom victims in jiffies
747 *
748 * Forces all page allocations to fail rather than trigger OOM killer.
749 * Will block and wait until all OOM victims are killed or the given
750 * timeout expires.
751 *
752 * The function cannot be called when there are runnable user tasks because
753 * the userspace would see unexpected allocation failures as a result. Any
754 * new usage of this function should be consulted with MM people.
755 *
756 * Returns true if successful and false if the OOM killer cannot be
757 * disabled.
758 */
oom_killer_disable(signed long timeout)759 bool oom_killer_disable(signed long timeout)
760 {
761 signed long ret;
762
763 /*
764 * Make sure to not race with an ongoing OOM killer. Check that the
765 * current is not killed (possibly due to sharing the victim's memory).
766 */
767 if (mutex_lock_killable(&oom_lock))
768 return false;
769 oom_killer_disabled = true;
770 mutex_unlock(&oom_lock);
771
772 ret = wait_event_interruptible_timeout(oom_victims_wait,
773 !atomic_read(&oom_victims), timeout);
774 if (ret <= 0) {
775 oom_killer_enable();
776 return false;
777 }
778 pr_info("OOM killer disabled.\n");
779
780 return true;
781 }
782
__task_will_free_mem(struct task_struct * task)783 static inline bool __task_will_free_mem(struct task_struct *task)
784 {
785 struct signal_struct *sig = task->signal;
786
787 /*
788 * A coredumping process may sleep for an extended period in exit_mm(),
789 * so the oom killer cannot assume that the process will promptly exit
790 * and release memory.
791 */
792 if (sig->flags & SIGNAL_GROUP_COREDUMP)
793 return false;
794
795 if (sig->flags & SIGNAL_GROUP_EXIT)
796 return true;
797
798 if (thread_group_empty(task) && (task->flags & PF_EXITING))
799 return true;
800
801 return false;
802 }
803
804 /*
805 * Checks whether the given task is dying or exiting and likely to
806 * release its address space. This means that all threads and processes
807 * sharing the same mm have to be killed or exiting.
808 * Caller has to make sure that task->mm is stable (hold task_lock or
809 * it operates on the current).
810 */
task_will_free_mem(struct task_struct * task)811 static bool task_will_free_mem(struct task_struct *task)
812 {
813 struct mm_struct *mm = task->mm;
814 struct task_struct *p;
815 bool ret = true;
816
817 /*
818 * Skip tasks without mm because it might have passed its exit_mm and
819 * exit_oom_victim. oom_reaper could have rescued that but do not rely
820 * on that for now. We can consider find_lock_task_mm in future.
821 */
822 if (!mm)
823 return false;
824
825 if (!__task_will_free_mem(task))
826 return false;
827
828 /*
829 * This task has already been drained by the oom reaper so there are
830 * only small chances it will free some more
831 */
832 if (test_bit(MMF_OOM_SKIP, &mm->flags))
833 return false;
834
835 if (atomic_read(&mm->mm_users) <= 1)
836 return true;
837
838 /*
839 * Make sure that all tasks which share the mm with the given tasks
840 * are dying as well to make sure that a) nobody pins its mm and
841 * b) the task is also reapable by the oom reaper.
842 */
843 rcu_read_lock();
844 for_each_process(p) {
845 if (!process_shares_mm(p, mm))
846 continue;
847 if (same_thread_group(task, p))
848 continue;
849 ret = __task_will_free_mem(p);
850 if (!ret)
851 break;
852 }
853 rcu_read_unlock();
854
855 return ret;
856 }
857
__oom_kill_process(struct task_struct * victim,const char * message)858 static void __oom_kill_process(struct task_struct *victim, const char *message)
859 {
860 struct task_struct *p;
861 struct mm_struct *mm;
862 bool can_oom_reap = true;
863
864 p = find_lock_task_mm(victim);
865 if (!p) {
866 pr_info("%s: OOM victim %d (%s) is already exiting. Skip killing the task\n",
867 message, task_pid_nr(victim), victim->comm);
868 put_task_struct(victim);
869 return;
870 } else if (victim != p) {
871 get_task_struct(p);
872 put_task_struct(victim);
873 victim = p;
874 }
875
876 /* Get a reference to safely compare mm after task_unlock(victim) */
877 mm = victim->mm;
878 mmgrab(mm);
879
880 /* Raise event before sending signal: task reaper must see this */
881 count_vm_event(OOM_KILL);
882 memcg_memory_event_mm(mm, MEMCG_OOM_KILL);
883
884 /*
885 * We should send SIGKILL before granting access to memory reserves
886 * in order to prevent the OOM victim from depleting the memory
887 * reserves from the user space under its control.
888 */
889 do_send_sig_info(SIGKILL, SEND_SIG_PRIV, victim, PIDTYPE_TGID);
890 mark_oom_victim(victim);
891 pr_err("%s: Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB, UID:%u pgtables:%lukB oom_score_adj:%hd\n",
892 message, task_pid_nr(victim), victim->comm, K(mm->total_vm),
893 K(get_mm_counter(mm, MM_ANONPAGES)),
894 K(get_mm_counter(mm, MM_FILEPAGES)),
895 K(get_mm_counter(mm, MM_SHMEMPAGES)),
896 from_kuid(&init_user_ns, task_uid(victim)),
897 mm_pgtables_bytes(mm) >> 10, victim->signal->oom_score_adj);
898 task_unlock(victim);
899
900 /*
901 * Kill all user processes sharing victim->mm in other thread groups, if
902 * any. They don't get access to memory reserves, though, to avoid
903 * depletion of all memory. This prevents mm->mmap_lock livelock when an
904 * oom killed thread cannot exit because it requires the semaphore and
905 * its contended by another thread trying to allocate memory itself.
906 * That thread will now get access to memory reserves since it has a
907 * pending fatal signal.
908 */
909 rcu_read_lock();
910 for_each_process(p) {
911 if (!process_shares_mm(p, mm))
912 continue;
913 if (same_thread_group(p, victim))
914 continue;
915 if (is_global_init(p)) {
916 can_oom_reap = false;
917 set_bit(MMF_OOM_SKIP, &mm->flags);
918 pr_info("oom killer %d (%s) has mm pinned by %d (%s)\n",
919 task_pid_nr(victim), victim->comm,
920 task_pid_nr(p), p->comm);
921 continue;
922 }
923 /*
924 * No kthead_use_mm() user needs to read from the userspace so
925 * we are ok to reap it.
926 */
927 if (unlikely(p->flags & PF_KTHREAD))
928 continue;
929 do_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_TGID);
930 }
931 rcu_read_unlock();
932
933 if (can_oom_reap)
934 wake_oom_reaper(victim);
935
936 mmdrop(mm);
937 put_task_struct(victim);
938 }
939 #undef K
940
941 /*
942 * Kill provided task unless it's secured by setting
943 * oom_score_adj to OOM_SCORE_ADJ_MIN.
944 */
oom_kill_memcg_member(struct task_struct * task,void * message)945 static int oom_kill_memcg_member(struct task_struct *task, void *message)
946 {
947 if (task->signal->oom_score_adj != OOM_SCORE_ADJ_MIN &&
948 !is_global_init(task)) {
949 get_task_struct(task);
950 __oom_kill_process(task, message);
951 }
952 return 0;
953 }
954
oom_kill_process(struct oom_control * oc,const char * message)955 static void oom_kill_process(struct oom_control *oc, const char *message)
956 {
957 struct task_struct *victim = oc->chosen;
958 struct mem_cgroup *oom_group;
959 static DEFINE_RATELIMIT_STATE(oom_rs, DEFAULT_RATELIMIT_INTERVAL,
960 DEFAULT_RATELIMIT_BURST);
961
962 /*
963 * If the task is already exiting, don't alarm the sysadmin or kill
964 * its children or threads, just give it access to memory reserves
965 * so it can die quickly
966 */
967 task_lock(victim);
968 if (task_will_free_mem(victim)) {
969 mark_oom_victim(victim);
970 wake_oom_reaper(victim);
971 task_unlock(victim);
972 put_task_struct(victim);
973 return;
974 }
975 task_unlock(victim);
976
977 if (__ratelimit(&oom_rs))
978 dump_header(oc, victim);
979
980 /*
981 * Do we need to kill the entire memory cgroup?
982 * Or even one of the ancestor memory cgroups?
983 * Check this out before killing the victim task.
984 */
985 oom_group = mem_cgroup_get_oom_group(victim, oc->memcg);
986
987 __oom_kill_process(victim, message);
988
989 /*
990 * If necessary, kill all tasks in the selected memory cgroup.
991 */
992 if (oom_group) {
993 mem_cgroup_print_oom_group(oom_group);
994 mem_cgroup_scan_tasks(oom_group, oom_kill_memcg_member,
995 (void*)message);
996 mem_cgroup_put(oom_group);
997 }
998 }
999
1000 /*
1001 * Determines whether the kernel must panic because of the panic_on_oom sysctl.
1002 */
check_panic_on_oom(struct oom_control * oc)1003 static void check_panic_on_oom(struct oom_control *oc)
1004 {
1005 if (likely(!sysctl_panic_on_oom))
1006 return;
1007 if (sysctl_panic_on_oom != 2) {
1008 /*
1009 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel
1010 * does not panic for cpuset, mempolicy, or memcg allocation
1011 * failures.
1012 */
1013 if (oc->constraint != CONSTRAINT_NONE)
1014 return;
1015 }
1016 /* Do not panic for oom kills triggered by sysrq */
1017 if (is_sysrq_oom(oc))
1018 return;
1019 dump_header(oc, NULL);
1020 panic("Out of memory: %s panic_on_oom is enabled\n",
1021 sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide");
1022 }
1023
1024 static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
1025
register_oom_notifier(struct notifier_block * nb)1026 int register_oom_notifier(struct notifier_block *nb)
1027 {
1028 return blocking_notifier_chain_register(&oom_notify_list, nb);
1029 }
1030 EXPORT_SYMBOL_GPL(register_oom_notifier);
1031
unregister_oom_notifier(struct notifier_block * nb)1032 int unregister_oom_notifier(struct notifier_block *nb)
1033 {
1034 return blocking_notifier_chain_unregister(&oom_notify_list, nb);
1035 }
1036 EXPORT_SYMBOL_GPL(unregister_oom_notifier);
1037
1038 /**
1039 * out_of_memory - kill the "best" process when we run out of memory
1040 * @oc: pointer to struct oom_control
1041 *
1042 * If we run out of memory, we have the choice between either
1043 * killing a random task (bad), letting the system crash (worse)
1044 * OR try to be smart about which process to kill. Note that we
1045 * don't have to be perfect here, we just have to be good.
1046 */
out_of_memory(struct oom_control * oc)1047 bool out_of_memory(struct oom_control *oc)
1048 {
1049 unsigned long freed = 0;
1050
1051 if (oom_killer_disabled)
1052 return false;
1053
1054 if (!is_memcg_oom(oc)) {
1055 blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
1056 if (freed > 0)
1057 /* Got some memory back in the last second. */
1058 return true;
1059 }
1060
1061 /*
1062 * If current has a pending SIGKILL or is exiting, then automatically
1063 * select it. The goal is to allow it to allocate so that it may
1064 * quickly exit and free its memory.
1065 */
1066 if (task_will_free_mem(current)) {
1067 mark_oom_victim(current);
1068 wake_oom_reaper(current);
1069 return true;
1070 }
1071
1072 /*
1073 * The OOM killer does not compensate for IO-less reclaim.
1074 * pagefault_out_of_memory lost its gfp context so we have to
1075 * make sure exclude 0 mask - all other users should have at least
1076 * ___GFP_DIRECT_RECLAIM to get here. But mem_cgroup_oom() has to
1077 * invoke the OOM killer even if it is a GFP_NOFS allocation.
1078 */
1079 if (oc->gfp_mask && !(oc->gfp_mask & __GFP_FS) && !is_memcg_oom(oc))
1080 return true;
1081
1082 /*
1083 * Check if there were limitations on the allocation (only relevant for
1084 * NUMA and memcg) that may require different handling.
1085 */
1086 oc->constraint = constrained_alloc(oc);
1087 if (oc->constraint != CONSTRAINT_MEMORY_POLICY)
1088 oc->nodemask = NULL;
1089 check_panic_on_oom(oc);
1090
1091 if (!is_memcg_oom(oc) && sysctl_oom_kill_allocating_task &&
1092 current->mm && !oom_unkillable_task(current) &&
1093 oom_cpuset_eligible(current, oc) &&
1094 current->signal->oom_score_adj != OOM_SCORE_ADJ_MIN) {
1095 get_task_struct(current);
1096 oc->chosen = current;
1097 oom_kill_process(oc, "Out of memory (oom_kill_allocating_task)");
1098 return true;
1099 }
1100
1101 select_bad_process(oc);
1102 /* Found nothing?!?! */
1103 if (!oc->chosen) {
1104 dump_header(oc, NULL);
1105 pr_warn("Out of memory and no killable processes...\n");
1106 /*
1107 * If we got here due to an actual allocation at the
1108 * system level, we cannot survive this and will enter
1109 * an endless loop in the allocator. Bail out now.
1110 */
1111 if (!is_sysrq_oom(oc) && !is_memcg_oom(oc))
1112 panic("System is deadlocked on memory\n");
1113 }
1114 if (oc->chosen && oc->chosen != (void *)-1UL)
1115 oom_kill_process(oc, !is_memcg_oom(oc) ? "Out of memory" :
1116 "Memory cgroup out of memory");
1117 return !!oc->chosen;
1118 }
1119
1120 /*
1121 * The pagefault handler calls here because some allocation has failed. We have
1122 * to take care of the memcg OOM here because this is the only safe context without
1123 * any locks held but let the oom killer triggered from the allocation context care
1124 * about the global OOM.
1125 */
pagefault_out_of_memory(void)1126 void pagefault_out_of_memory(void)
1127 {
1128 static DEFINE_RATELIMIT_STATE(pfoom_rs, DEFAULT_RATELIMIT_INTERVAL,
1129 DEFAULT_RATELIMIT_BURST);
1130
1131 if (mem_cgroup_oom_synchronize(true))
1132 return;
1133
1134 if (fatal_signal_pending(current))
1135 return;
1136
1137 if (__ratelimit(&pfoom_rs))
1138 pr_warn("Huh VM_FAULT_OOM leaked out to the #PF handler. Retrying PF\n");
1139 }
1140