• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance events core code:
4  *
5  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9  */
10 
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/hugetlb.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53 #include <linux/min_heap.h>
54 
55 #include "internal.h"
56 
57 #include <asm/irq_regs.h>
58 
59 typedef int (*remote_function_f)(void *);
60 
61 struct remote_function_call {
62 	struct task_struct	*p;
63 	remote_function_f	func;
64 	void			*info;
65 	int			ret;
66 };
67 
remote_function(void * data)68 static void remote_function(void *data)
69 {
70 	struct remote_function_call *tfc = data;
71 	struct task_struct *p = tfc->p;
72 
73 	if (p) {
74 		/* -EAGAIN */
75 		if (task_cpu(p) != smp_processor_id())
76 			return;
77 
78 		/*
79 		 * Now that we're on right CPU with IRQs disabled, we can test
80 		 * if we hit the right task without races.
81 		 */
82 
83 		tfc->ret = -ESRCH; /* No such (running) process */
84 		if (p != current)
85 			return;
86 	}
87 
88 	tfc->ret = tfc->func(tfc->info);
89 }
90 
91 /**
92  * task_function_call - call a function on the cpu on which a task runs
93  * @p:		the task to evaluate
94  * @func:	the function to be called
95  * @info:	the function call argument
96  *
97  * Calls the function @func when the task is currently running. This might
98  * be on the current CPU, which just calls the function directly.  This will
99  * retry due to any failures in smp_call_function_single(), such as if the
100  * task_cpu() goes offline concurrently.
101  *
102  * returns @func return value or -ESRCH or -ENXIO when the process isn't running
103  */
104 static int
task_function_call(struct task_struct * p,remote_function_f func,void * info)105 task_function_call(struct task_struct *p, remote_function_f func, void *info)
106 {
107 	struct remote_function_call data = {
108 		.p	= p,
109 		.func	= func,
110 		.info	= info,
111 		.ret	= -EAGAIN,
112 	};
113 	int ret;
114 
115 	for (;;) {
116 		ret = smp_call_function_single(task_cpu(p), remote_function,
117 					       &data, 1);
118 		if (!ret)
119 			ret = data.ret;
120 
121 		if (ret != -EAGAIN)
122 			break;
123 
124 		cond_resched();
125 	}
126 
127 	return ret;
128 }
129 
130 /**
131  * cpu_function_call - call a function on the cpu
132  * @func:	the function to be called
133  * @info:	the function call argument
134  *
135  * Calls the function @func on the remote cpu.
136  *
137  * returns: @func return value or -ENXIO when the cpu is offline
138  */
cpu_function_call(int cpu,remote_function_f func,void * info)139 static int cpu_function_call(int cpu, remote_function_f func, void *info)
140 {
141 	struct remote_function_call data = {
142 		.p	= NULL,
143 		.func	= func,
144 		.info	= info,
145 		.ret	= -ENXIO, /* No such CPU */
146 	};
147 
148 	smp_call_function_single(cpu, remote_function, &data, 1);
149 
150 	return data.ret;
151 }
152 
153 static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context * ctx)154 __get_cpu_context(struct perf_event_context *ctx)
155 {
156 	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
157 }
158 
perf_ctx_lock(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)159 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
160 			  struct perf_event_context *ctx)
161 {
162 	raw_spin_lock(&cpuctx->ctx.lock);
163 	if (ctx)
164 		raw_spin_lock(&ctx->lock);
165 }
166 
perf_ctx_unlock(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)167 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
168 			    struct perf_event_context *ctx)
169 {
170 	if (ctx)
171 		raw_spin_unlock(&ctx->lock);
172 	raw_spin_unlock(&cpuctx->ctx.lock);
173 }
174 
175 #define TASK_TOMBSTONE ((void *)-1L)
176 
is_kernel_event(struct perf_event * event)177 static bool is_kernel_event(struct perf_event *event)
178 {
179 	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
180 }
181 
182 /*
183  * On task ctx scheduling...
184  *
185  * When !ctx->nr_events a task context will not be scheduled. This means
186  * we can disable the scheduler hooks (for performance) without leaving
187  * pending task ctx state.
188  *
189  * This however results in two special cases:
190  *
191  *  - removing the last event from a task ctx; this is relatively straight
192  *    forward and is done in __perf_remove_from_context.
193  *
194  *  - adding the first event to a task ctx; this is tricky because we cannot
195  *    rely on ctx->is_active and therefore cannot use event_function_call().
196  *    See perf_install_in_context().
197  *
198  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
199  */
200 
201 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
202 			struct perf_event_context *, void *);
203 
204 struct event_function_struct {
205 	struct perf_event *event;
206 	event_f func;
207 	void *data;
208 };
209 
event_function(void * info)210 static int event_function(void *info)
211 {
212 	struct event_function_struct *efs = info;
213 	struct perf_event *event = efs->event;
214 	struct perf_event_context *ctx = event->ctx;
215 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
216 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
217 	int ret = 0;
218 
219 	lockdep_assert_irqs_disabled();
220 
221 	perf_ctx_lock(cpuctx, task_ctx);
222 	/*
223 	 * Since we do the IPI call without holding ctx->lock things can have
224 	 * changed, double check we hit the task we set out to hit.
225 	 */
226 	if (ctx->task) {
227 		if (ctx->task != current) {
228 			ret = -ESRCH;
229 			goto unlock;
230 		}
231 
232 		/*
233 		 * We only use event_function_call() on established contexts,
234 		 * and event_function() is only ever called when active (or
235 		 * rather, we'll have bailed in task_function_call() or the
236 		 * above ctx->task != current test), therefore we must have
237 		 * ctx->is_active here.
238 		 */
239 		WARN_ON_ONCE(!ctx->is_active);
240 		/*
241 		 * And since we have ctx->is_active, cpuctx->task_ctx must
242 		 * match.
243 		 */
244 		WARN_ON_ONCE(task_ctx != ctx);
245 	} else {
246 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
247 	}
248 
249 	efs->func(event, cpuctx, ctx, efs->data);
250 unlock:
251 	perf_ctx_unlock(cpuctx, task_ctx);
252 
253 	return ret;
254 }
255 
event_function_call(struct perf_event * event,event_f func,void * data)256 static void event_function_call(struct perf_event *event, event_f func, void *data)
257 {
258 	struct perf_event_context *ctx = event->ctx;
259 	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
260 	struct event_function_struct efs = {
261 		.event = event,
262 		.func = func,
263 		.data = data,
264 	};
265 
266 	if (!event->parent) {
267 		/*
268 		 * If this is a !child event, we must hold ctx::mutex to
269 		 * stabilize the event->ctx relation. See
270 		 * perf_event_ctx_lock().
271 		 */
272 		lockdep_assert_held(&ctx->mutex);
273 	}
274 
275 	if (!task) {
276 		cpu_function_call(event->cpu, event_function, &efs);
277 		return;
278 	}
279 
280 	if (task == TASK_TOMBSTONE)
281 		return;
282 
283 again:
284 	if (!task_function_call(task, event_function, &efs))
285 		return;
286 
287 	raw_spin_lock_irq(&ctx->lock);
288 	/*
289 	 * Reload the task pointer, it might have been changed by
290 	 * a concurrent perf_event_context_sched_out().
291 	 */
292 	task = ctx->task;
293 	if (task == TASK_TOMBSTONE) {
294 		raw_spin_unlock_irq(&ctx->lock);
295 		return;
296 	}
297 	if (ctx->is_active) {
298 		raw_spin_unlock_irq(&ctx->lock);
299 		goto again;
300 	}
301 	func(event, NULL, ctx, data);
302 	raw_spin_unlock_irq(&ctx->lock);
303 }
304 
305 /*
306  * Similar to event_function_call() + event_function(), but hard assumes IRQs
307  * are already disabled and we're on the right CPU.
308  */
event_function_local(struct perf_event * event,event_f func,void * data)309 static void event_function_local(struct perf_event *event, event_f func, void *data)
310 {
311 	struct perf_event_context *ctx = event->ctx;
312 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
313 	struct task_struct *task = READ_ONCE(ctx->task);
314 	struct perf_event_context *task_ctx = NULL;
315 
316 	lockdep_assert_irqs_disabled();
317 
318 	if (task) {
319 		if (task == TASK_TOMBSTONE)
320 			return;
321 
322 		task_ctx = ctx;
323 	}
324 
325 	perf_ctx_lock(cpuctx, task_ctx);
326 
327 	task = ctx->task;
328 	if (task == TASK_TOMBSTONE)
329 		goto unlock;
330 
331 	if (task) {
332 		/*
333 		 * We must be either inactive or active and the right task,
334 		 * otherwise we're screwed, since we cannot IPI to somewhere
335 		 * else.
336 		 */
337 		if (ctx->is_active) {
338 			if (WARN_ON_ONCE(task != current))
339 				goto unlock;
340 
341 			if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
342 				goto unlock;
343 		}
344 	} else {
345 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
346 	}
347 
348 	func(event, cpuctx, ctx, data);
349 unlock:
350 	perf_ctx_unlock(cpuctx, task_ctx);
351 }
352 
353 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
354 		       PERF_FLAG_FD_OUTPUT  |\
355 		       PERF_FLAG_PID_CGROUP |\
356 		       PERF_FLAG_FD_CLOEXEC)
357 
358 /*
359  * branch priv levels that need permission checks
360  */
361 #define PERF_SAMPLE_BRANCH_PERM_PLM \
362 	(PERF_SAMPLE_BRANCH_KERNEL |\
363 	 PERF_SAMPLE_BRANCH_HV)
364 
365 enum event_type_t {
366 	EVENT_FLEXIBLE = 0x1,
367 	EVENT_PINNED = 0x2,
368 	EVENT_TIME = 0x4,
369 	/* see ctx_resched() for details */
370 	EVENT_CPU = 0x8,
371 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
372 };
373 
374 /*
375  * perf_sched_events : >0 events exist
376  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
377  */
378 
379 static void perf_sched_delayed(struct work_struct *work);
380 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
381 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
382 static DEFINE_MUTEX(perf_sched_mutex);
383 static atomic_t perf_sched_count;
384 
385 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
386 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
387 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
388 
389 static atomic_t nr_mmap_events __read_mostly;
390 static atomic_t nr_comm_events __read_mostly;
391 static atomic_t nr_namespaces_events __read_mostly;
392 static atomic_t nr_task_events __read_mostly;
393 static atomic_t nr_freq_events __read_mostly;
394 static atomic_t nr_switch_events __read_mostly;
395 static atomic_t nr_ksymbol_events __read_mostly;
396 static atomic_t nr_bpf_events __read_mostly;
397 static atomic_t nr_cgroup_events __read_mostly;
398 static atomic_t nr_text_poke_events __read_mostly;
399 
400 static LIST_HEAD(pmus);
401 static DEFINE_MUTEX(pmus_lock);
402 static struct srcu_struct pmus_srcu;
403 static cpumask_var_t perf_online_mask;
404 
405 /*
406  * perf event paranoia level:
407  *  -1 - not paranoid at all
408  *   0 - disallow raw tracepoint access for unpriv
409  *   1 - disallow cpu events for unpriv
410  *   2 - disallow kernel profiling for unpriv
411  */
412 int sysctl_perf_event_paranoid __read_mostly = 2;
413 
414 /* Minimum for 512 kiB + 1 user control page */
415 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
416 
417 /*
418  * max perf event sample rate
419  */
420 #define DEFAULT_MAX_SAMPLE_RATE		100000
421 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
422 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
423 
424 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
425 
426 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
427 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
428 
429 static int perf_sample_allowed_ns __read_mostly =
430 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
431 
update_perf_cpu_limits(void)432 static void update_perf_cpu_limits(void)
433 {
434 	u64 tmp = perf_sample_period_ns;
435 
436 	tmp *= sysctl_perf_cpu_time_max_percent;
437 	tmp = div_u64(tmp, 100);
438 	if (!tmp)
439 		tmp = 1;
440 
441 	WRITE_ONCE(perf_sample_allowed_ns, tmp);
442 }
443 
444 static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
445 
perf_proc_update_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)446 int perf_proc_update_handler(struct ctl_table *table, int write,
447 		void *buffer, size_t *lenp, loff_t *ppos)
448 {
449 	int ret;
450 	int perf_cpu = sysctl_perf_cpu_time_max_percent;
451 	/*
452 	 * If throttling is disabled don't allow the write:
453 	 */
454 	if (write && (perf_cpu == 100 || perf_cpu == 0))
455 		return -EINVAL;
456 
457 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
458 	if (ret || !write)
459 		return ret;
460 
461 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
462 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
463 	update_perf_cpu_limits();
464 
465 	return 0;
466 }
467 
468 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
469 
perf_cpu_time_max_percent_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)470 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
471 		void *buffer, size_t *lenp, loff_t *ppos)
472 {
473 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
474 
475 	if (ret || !write)
476 		return ret;
477 
478 	if (sysctl_perf_cpu_time_max_percent == 100 ||
479 	    sysctl_perf_cpu_time_max_percent == 0) {
480 		printk(KERN_WARNING
481 		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
482 		WRITE_ONCE(perf_sample_allowed_ns, 0);
483 	} else {
484 		update_perf_cpu_limits();
485 	}
486 
487 	return 0;
488 }
489 
490 /*
491  * perf samples are done in some very critical code paths (NMIs).
492  * If they take too much CPU time, the system can lock up and not
493  * get any real work done.  This will drop the sample rate when
494  * we detect that events are taking too long.
495  */
496 #define NR_ACCUMULATED_SAMPLES 128
497 static DEFINE_PER_CPU(u64, running_sample_length);
498 
499 static u64 __report_avg;
500 static u64 __report_allowed;
501 
perf_duration_warn(struct irq_work * w)502 static void perf_duration_warn(struct irq_work *w)
503 {
504 	printk_ratelimited(KERN_INFO
505 		"perf: interrupt took too long (%lld > %lld), lowering "
506 		"kernel.perf_event_max_sample_rate to %d\n",
507 		__report_avg, __report_allowed,
508 		sysctl_perf_event_sample_rate);
509 }
510 
511 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
512 
perf_sample_event_took(u64 sample_len_ns)513 void perf_sample_event_took(u64 sample_len_ns)
514 {
515 	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
516 	u64 running_len;
517 	u64 avg_len;
518 	u32 max;
519 
520 	if (max_len == 0)
521 		return;
522 
523 	/* Decay the counter by 1 average sample. */
524 	running_len = __this_cpu_read(running_sample_length);
525 	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
526 	running_len += sample_len_ns;
527 	__this_cpu_write(running_sample_length, running_len);
528 
529 	/*
530 	 * Note: this will be biased artifically low until we have
531 	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
532 	 * from having to maintain a count.
533 	 */
534 	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
535 	if (avg_len <= max_len)
536 		return;
537 
538 	__report_avg = avg_len;
539 	__report_allowed = max_len;
540 
541 	/*
542 	 * Compute a throttle threshold 25% below the current duration.
543 	 */
544 	avg_len += avg_len / 4;
545 	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
546 	if (avg_len < max)
547 		max /= (u32)avg_len;
548 	else
549 		max = 1;
550 
551 	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
552 	WRITE_ONCE(max_samples_per_tick, max);
553 
554 	sysctl_perf_event_sample_rate = max * HZ;
555 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
556 
557 	if (!irq_work_queue(&perf_duration_work)) {
558 		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
559 			     "kernel.perf_event_max_sample_rate to %d\n",
560 			     __report_avg, __report_allowed,
561 			     sysctl_perf_event_sample_rate);
562 	}
563 }
564 
565 static atomic64_t perf_event_id;
566 
567 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
568 			      enum event_type_t event_type);
569 
570 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
571 			     enum event_type_t event_type,
572 			     struct task_struct *task);
573 
574 static void update_context_time(struct perf_event_context *ctx);
575 static u64 perf_event_time(struct perf_event *event);
576 
perf_event_print_debug(void)577 void __weak perf_event_print_debug(void)	{ }
578 
perf_pmu_name(void)579 extern __weak const char *perf_pmu_name(void)
580 {
581 	return "pmu";
582 }
583 
perf_clock(void)584 static inline u64 perf_clock(void)
585 {
586 	return local_clock();
587 }
588 
perf_event_clock(struct perf_event * event)589 static inline u64 perf_event_clock(struct perf_event *event)
590 {
591 	return event->clock();
592 }
593 
594 /*
595  * State based event timekeeping...
596  *
597  * The basic idea is to use event->state to determine which (if any) time
598  * fields to increment with the current delta. This means we only need to
599  * update timestamps when we change state or when they are explicitly requested
600  * (read).
601  *
602  * Event groups make things a little more complicated, but not terribly so. The
603  * rules for a group are that if the group leader is OFF the entire group is
604  * OFF, irrespecive of what the group member states are. This results in
605  * __perf_effective_state().
606  *
607  * A futher ramification is that when a group leader flips between OFF and
608  * !OFF, we need to update all group member times.
609  *
610  *
611  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
612  * need to make sure the relevant context time is updated before we try and
613  * update our timestamps.
614  */
615 
616 static __always_inline enum perf_event_state
__perf_effective_state(struct perf_event * event)617 __perf_effective_state(struct perf_event *event)
618 {
619 	struct perf_event *leader = event->group_leader;
620 
621 	if (leader->state <= PERF_EVENT_STATE_OFF)
622 		return leader->state;
623 
624 	return event->state;
625 }
626 
627 static __always_inline void
__perf_update_times(struct perf_event * event,u64 now,u64 * enabled,u64 * running)628 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
629 {
630 	enum perf_event_state state = __perf_effective_state(event);
631 	u64 delta = now - event->tstamp;
632 
633 	*enabled = event->total_time_enabled;
634 	if (state >= PERF_EVENT_STATE_INACTIVE)
635 		*enabled += delta;
636 
637 	*running = event->total_time_running;
638 	if (state >= PERF_EVENT_STATE_ACTIVE)
639 		*running += delta;
640 }
641 
perf_event_update_time(struct perf_event * event)642 static void perf_event_update_time(struct perf_event *event)
643 {
644 	u64 now = perf_event_time(event);
645 
646 	__perf_update_times(event, now, &event->total_time_enabled,
647 					&event->total_time_running);
648 	event->tstamp = now;
649 }
650 
perf_event_update_sibling_time(struct perf_event * leader)651 static void perf_event_update_sibling_time(struct perf_event *leader)
652 {
653 	struct perf_event *sibling;
654 
655 	for_each_sibling_event(sibling, leader)
656 		perf_event_update_time(sibling);
657 }
658 
659 static void
perf_event_set_state(struct perf_event * event,enum perf_event_state state)660 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
661 {
662 	if (event->state == state)
663 		return;
664 
665 	perf_event_update_time(event);
666 	/*
667 	 * If a group leader gets enabled/disabled all its siblings
668 	 * are affected too.
669 	 */
670 	if ((event->state < 0) ^ (state < 0))
671 		perf_event_update_sibling_time(event);
672 
673 	WRITE_ONCE(event->state, state);
674 }
675 
676 /*
677  * UP store-release, load-acquire
678  */
679 
680 #define __store_release(ptr, val)					\
681 do {									\
682 	barrier();							\
683 	WRITE_ONCE(*(ptr), (val));					\
684 } while (0)
685 
686 #define __load_acquire(ptr)						\
687 ({									\
688 	__unqual_scalar_typeof(*(ptr)) ___p = READ_ONCE(*(ptr));	\
689 	barrier();							\
690 	___p;								\
691 })
692 
693 #ifdef CONFIG_CGROUP_PERF
694 
695 static inline bool
perf_cgroup_match(struct perf_event * event)696 perf_cgroup_match(struct perf_event *event)
697 {
698 	struct perf_event_context *ctx = event->ctx;
699 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
700 
701 	/* @event doesn't care about cgroup */
702 	if (!event->cgrp)
703 		return true;
704 
705 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
706 	if (!cpuctx->cgrp)
707 		return false;
708 
709 	/*
710 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
711 	 * also enabled for all its descendant cgroups.  If @cpuctx's
712 	 * cgroup is a descendant of @event's (the test covers identity
713 	 * case), it's a match.
714 	 */
715 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
716 				    event->cgrp->css.cgroup);
717 }
718 
perf_detach_cgroup(struct perf_event * event)719 static inline void perf_detach_cgroup(struct perf_event *event)
720 {
721 	css_put(&event->cgrp->css);
722 	event->cgrp = NULL;
723 }
724 
is_cgroup_event(struct perf_event * event)725 static inline int is_cgroup_event(struct perf_event *event)
726 {
727 	return event->cgrp != NULL;
728 }
729 
perf_cgroup_event_time(struct perf_event * event)730 static inline u64 perf_cgroup_event_time(struct perf_event *event)
731 {
732 	struct perf_cgroup_info *t;
733 
734 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
735 	return t->time;
736 }
737 
perf_cgroup_event_time_now(struct perf_event * event,u64 now)738 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
739 {
740 	struct perf_cgroup_info *t;
741 
742 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
743 	if (!__load_acquire(&t->active))
744 		return t->time;
745 	now += READ_ONCE(t->timeoffset);
746 	return now;
747 }
748 
__update_cgrp_time(struct perf_cgroup_info * info,u64 now,bool adv)749 static inline void __update_cgrp_time(struct perf_cgroup_info *info, u64 now, bool adv)
750 {
751 	if (adv)
752 		info->time += now - info->timestamp;
753 	info->timestamp = now;
754 	/*
755 	 * see update_context_time()
756 	 */
757 	WRITE_ONCE(info->timeoffset, info->time - info->timestamp);
758 }
759 
update_cgrp_time_from_cpuctx(struct perf_cpu_context * cpuctx,bool final)760 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, bool final)
761 {
762 	struct perf_cgroup *cgrp = cpuctx->cgrp;
763 	struct cgroup_subsys_state *css;
764 	struct perf_cgroup_info *info;
765 
766 	if (cgrp) {
767 		u64 now = perf_clock();
768 
769 		for (css = &cgrp->css; css; css = css->parent) {
770 			cgrp = container_of(css, struct perf_cgroup, css);
771 			info = this_cpu_ptr(cgrp->info);
772 
773 			__update_cgrp_time(info, now, true);
774 			if (final)
775 				__store_release(&info->active, 0);
776 		}
777 	}
778 }
779 
update_cgrp_time_from_event(struct perf_event * event)780 static inline void update_cgrp_time_from_event(struct perf_event *event)
781 {
782 	struct perf_cgroup_info *info;
783 	struct perf_cgroup *cgrp;
784 
785 	/*
786 	 * ensure we access cgroup data only when needed and
787 	 * when we know the cgroup is pinned (css_get)
788 	 */
789 	if (!is_cgroup_event(event))
790 		return;
791 
792 	cgrp = perf_cgroup_from_task(current, event->ctx);
793 	/*
794 	 * Do not update time when cgroup is not active
795 	 */
796 	if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup)) {
797 		info = this_cpu_ptr(event->cgrp->info);
798 		__update_cgrp_time(info, perf_clock(), true);
799 	}
800 }
801 
802 static inline void
perf_cgroup_set_timestamp(struct task_struct * task,struct perf_event_context * ctx)803 perf_cgroup_set_timestamp(struct task_struct *task,
804 			  struct perf_event_context *ctx)
805 {
806 	struct perf_cgroup *cgrp;
807 	struct perf_cgroup_info *info;
808 	struct cgroup_subsys_state *css;
809 
810 	/*
811 	 * ctx->lock held by caller
812 	 * ensure we do not access cgroup data
813 	 * unless we have the cgroup pinned (css_get)
814 	 */
815 	if (!task || !ctx->nr_cgroups)
816 		return;
817 
818 	cgrp = perf_cgroup_from_task(task, ctx);
819 
820 	for (css = &cgrp->css; css; css = css->parent) {
821 		cgrp = container_of(css, struct perf_cgroup, css);
822 		info = this_cpu_ptr(cgrp->info);
823 		__update_cgrp_time(info, ctx->timestamp, false);
824 		__store_release(&info->active, 1);
825 	}
826 }
827 
828 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
829 
830 #define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
831 #define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
832 
833 /*
834  * reschedule events based on the cgroup constraint of task.
835  *
836  * mode SWOUT : schedule out everything
837  * mode SWIN : schedule in based on cgroup for next
838  */
perf_cgroup_switch(struct task_struct * task,int mode)839 static void perf_cgroup_switch(struct task_struct *task, int mode)
840 {
841 	struct perf_cpu_context *cpuctx, *tmp;
842 	struct list_head *list;
843 	unsigned long flags;
844 
845 	/*
846 	 * Disable interrupts and preemption to avoid this CPU's
847 	 * cgrp_cpuctx_entry to change under us.
848 	 */
849 	local_irq_save(flags);
850 
851 	list = this_cpu_ptr(&cgrp_cpuctx_list);
852 	list_for_each_entry_safe(cpuctx, tmp, list, cgrp_cpuctx_entry) {
853 		WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
854 
855 		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
856 		perf_pmu_disable(cpuctx->ctx.pmu);
857 
858 		if (mode & PERF_CGROUP_SWOUT) {
859 			cpu_ctx_sched_out(cpuctx, EVENT_ALL);
860 			/*
861 			 * must not be done before ctxswout due
862 			 * to event_filter_match() in event_sched_out()
863 			 */
864 			cpuctx->cgrp = NULL;
865 		}
866 
867 		if (mode & PERF_CGROUP_SWIN) {
868 			WARN_ON_ONCE(cpuctx->cgrp);
869 			/*
870 			 * set cgrp before ctxsw in to allow
871 			 * event_filter_match() to not have to pass
872 			 * task around
873 			 * we pass the cpuctx->ctx to perf_cgroup_from_task()
874 			 * because cgorup events are only per-cpu
875 			 */
876 			cpuctx->cgrp = perf_cgroup_from_task(task,
877 							     &cpuctx->ctx);
878 			cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
879 		}
880 		perf_pmu_enable(cpuctx->ctx.pmu);
881 		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
882 	}
883 
884 	local_irq_restore(flags);
885 }
886 
perf_cgroup_sched_out(struct task_struct * task,struct task_struct * next)887 static inline void perf_cgroup_sched_out(struct task_struct *task,
888 					 struct task_struct *next)
889 {
890 	struct perf_cgroup *cgrp1;
891 	struct perf_cgroup *cgrp2 = NULL;
892 
893 	rcu_read_lock();
894 	/*
895 	 * we come here when we know perf_cgroup_events > 0
896 	 * we do not need to pass the ctx here because we know
897 	 * we are holding the rcu lock
898 	 */
899 	cgrp1 = perf_cgroup_from_task(task, NULL);
900 	cgrp2 = perf_cgroup_from_task(next, NULL);
901 
902 	/*
903 	 * only schedule out current cgroup events if we know
904 	 * that we are switching to a different cgroup. Otherwise,
905 	 * do no touch the cgroup events.
906 	 */
907 	if (cgrp1 != cgrp2)
908 		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
909 
910 	rcu_read_unlock();
911 }
912 
perf_cgroup_sched_in(struct task_struct * prev,struct task_struct * task)913 static inline void perf_cgroup_sched_in(struct task_struct *prev,
914 					struct task_struct *task)
915 {
916 	struct perf_cgroup *cgrp1;
917 	struct perf_cgroup *cgrp2 = NULL;
918 
919 	rcu_read_lock();
920 	/*
921 	 * we come here when we know perf_cgroup_events > 0
922 	 * we do not need to pass the ctx here because we know
923 	 * we are holding the rcu lock
924 	 */
925 	cgrp1 = perf_cgroup_from_task(task, NULL);
926 	cgrp2 = perf_cgroup_from_task(prev, NULL);
927 
928 	/*
929 	 * only need to schedule in cgroup events if we are changing
930 	 * cgroup during ctxsw. Cgroup events were not scheduled
931 	 * out of ctxsw out if that was not the case.
932 	 */
933 	if (cgrp1 != cgrp2)
934 		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
935 
936 	rcu_read_unlock();
937 }
938 
perf_cgroup_ensure_storage(struct perf_event * event,struct cgroup_subsys_state * css)939 static int perf_cgroup_ensure_storage(struct perf_event *event,
940 				struct cgroup_subsys_state *css)
941 {
942 	struct perf_cpu_context *cpuctx;
943 	struct perf_event **storage;
944 	int cpu, heap_size, ret = 0;
945 
946 	/*
947 	 * Allow storage to have sufficent space for an iterator for each
948 	 * possibly nested cgroup plus an iterator for events with no cgroup.
949 	 */
950 	for (heap_size = 1; css; css = css->parent)
951 		heap_size++;
952 
953 	for_each_possible_cpu(cpu) {
954 		cpuctx = per_cpu_ptr(event->pmu->pmu_cpu_context, cpu);
955 		if (heap_size <= cpuctx->heap_size)
956 			continue;
957 
958 		storage = kmalloc_node(heap_size * sizeof(struct perf_event *),
959 				       GFP_KERNEL, cpu_to_node(cpu));
960 		if (!storage) {
961 			ret = -ENOMEM;
962 			break;
963 		}
964 
965 		raw_spin_lock_irq(&cpuctx->ctx.lock);
966 		if (cpuctx->heap_size < heap_size) {
967 			swap(cpuctx->heap, storage);
968 			if (storage == cpuctx->heap_default)
969 				storage = NULL;
970 			cpuctx->heap_size = heap_size;
971 		}
972 		raw_spin_unlock_irq(&cpuctx->ctx.lock);
973 
974 		kfree(storage);
975 	}
976 
977 	return ret;
978 }
979 
perf_cgroup_connect(int fd,struct perf_event * event,struct perf_event_attr * attr,struct perf_event * group_leader)980 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
981 				      struct perf_event_attr *attr,
982 				      struct perf_event *group_leader)
983 {
984 	struct perf_cgroup *cgrp;
985 	struct cgroup_subsys_state *css;
986 	struct fd f = fdget(fd);
987 	int ret = 0;
988 
989 	if (!f.file)
990 		return -EBADF;
991 
992 	css = css_tryget_online_from_dir(f.file->f_path.dentry,
993 					 &perf_event_cgrp_subsys);
994 	if (IS_ERR(css)) {
995 		ret = PTR_ERR(css);
996 		goto out;
997 	}
998 
999 	ret = perf_cgroup_ensure_storage(event, css);
1000 	if (ret)
1001 		goto out;
1002 
1003 	cgrp = container_of(css, struct perf_cgroup, css);
1004 	event->cgrp = cgrp;
1005 
1006 	/*
1007 	 * all events in a group must monitor
1008 	 * the same cgroup because a task belongs
1009 	 * to only one perf cgroup at a time
1010 	 */
1011 	if (group_leader && group_leader->cgrp != cgrp) {
1012 		perf_detach_cgroup(event);
1013 		ret = -EINVAL;
1014 	}
1015 out:
1016 	fdput(f);
1017 	return ret;
1018 }
1019 
1020 static inline void
perf_cgroup_event_enable(struct perf_event * event,struct perf_event_context * ctx)1021 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1022 {
1023 	struct perf_cpu_context *cpuctx;
1024 
1025 	if (!is_cgroup_event(event))
1026 		return;
1027 
1028 	/*
1029 	 * Because cgroup events are always per-cpu events,
1030 	 * @ctx == &cpuctx->ctx.
1031 	 */
1032 	cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1033 
1034 	/*
1035 	 * Since setting cpuctx->cgrp is conditional on the current @cgrp
1036 	 * matching the event's cgroup, we must do this for every new event,
1037 	 * because if the first would mismatch, the second would not try again
1038 	 * and we would leave cpuctx->cgrp unset.
1039 	 */
1040 	if (ctx->is_active && !cpuctx->cgrp) {
1041 		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
1042 
1043 		if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
1044 			cpuctx->cgrp = cgrp;
1045 	}
1046 
1047 	if (ctx->nr_cgroups++)
1048 		return;
1049 
1050 	list_add(&cpuctx->cgrp_cpuctx_entry,
1051 			per_cpu_ptr(&cgrp_cpuctx_list, event->cpu));
1052 }
1053 
1054 static inline void
perf_cgroup_event_disable(struct perf_event * event,struct perf_event_context * ctx)1055 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1056 {
1057 	struct perf_cpu_context *cpuctx;
1058 
1059 	if (!is_cgroup_event(event))
1060 		return;
1061 
1062 	/*
1063 	 * Because cgroup events are always per-cpu events,
1064 	 * @ctx == &cpuctx->ctx.
1065 	 */
1066 	cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1067 
1068 	if (--ctx->nr_cgroups)
1069 		return;
1070 
1071 	if (ctx->is_active && cpuctx->cgrp)
1072 		cpuctx->cgrp = NULL;
1073 
1074 	list_del(&cpuctx->cgrp_cpuctx_entry);
1075 }
1076 
1077 #else /* !CONFIG_CGROUP_PERF */
1078 
1079 static inline bool
perf_cgroup_match(struct perf_event * event)1080 perf_cgroup_match(struct perf_event *event)
1081 {
1082 	return true;
1083 }
1084 
perf_detach_cgroup(struct perf_event * event)1085 static inline void perf_detach_cgroup(struct perf_event *event)
1086 {}
1087 
is_cgroup_event(struct perf_event * event)1088 static inline int is_cgroup_event(struct perf_event *event)
1089 {
1090 	return 0;
1091 }
1092 
update_cgrp_time_from_event(struct perf_event * event)1093 static inline void update_cgrp_time_from_event(struct perf_event *event)
1094 {
1095 }
1096 
update_cgrp_time_from_cpuctx(struct perf_cpu_context * cpuctx,bool final)1097 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx,
1098 						bool final)
1099 {
1100 }
1101 
perf_cgroup_sched_out(struct task_struct * task,struct task_struct * next)1102 static inline void perf_cgroup_sched_out(struct task_struct *task,
1103 					 struct task_struct *next)
1104 {
1105 }
1106 
perf_cgroup_sched_in(struct task_struct * prev,struct task_struct * task)1107 static inline void perf_cgroup_sched_in(struct task_struct *prev,
1108 					struct task_struct *task)
1109 {
1110 }
1111 
perf_cgroup_connect(pid_t pid,struct perf_event * event,struct perf_event_attr * attr,struct perf_event * group_leader)1112 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1113 				      struct perf_event_attr *attr,
1114 				      struct perf_event *group_leader)
1115 {
1116 	return -EINVAL;
1117 }
1118 
1119 static inline void
perf_cgroup_set_timestamp(struct task_struct * task,struct perf_event_context * ctx)1120 perf_cgroup_set_timestamp(struct task_struct *task,
1121 			  struct perf_event_context *ctx)
1122 {
1123 }
1124 
1125 static inline void
perf_cgroup_switch(struct task_struct * task,struct task_struct * next)1126 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1127 {
1128 }
1129 
perf_cgroup_event_time(struct perf_event * event)1130 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1131 {
1132 	return 0;
1133 }
1134 
perf_cgroup_event_time_now(struct perf_event * event,u64 now)1135 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
1136 {
1137 	return 0;
1138 }
1139 
1140 static inline void
perf_cgroup_event_enable(struct perf_event * event,struct perf_event_context * ctx)1141 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1142 {
1143 }
1144 
1145 static inline void
perf_cgroup_event_disable(struct perf_event * event,struct perf_event_context * ctx)1146 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1147 {
1148 }
1149 #endif
1150 
1151 /*
1152  * set default to be dependent on timer tick just
1153  * like original code
1154  */
1155 #define PERF_CPU_HRTIMER (1000 / HZ)
1156 /*
1157  * function must be called with interrupts disabled
1158  */
perf_mux_hrtimer_handler(struct hrtimer * hr)1159 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1160 {
1161 	struct perf_cpu_context *cpuctx;
1162 	bool rotations;
1163 
1164 	lockdep_assert_irqs_disabled();
1165 
1166 	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1167 	rotations = perf_rotate_context(cpuctx);
1168 
1169 	raw_spin_lock(&cpuctx->hrtimer_lock);
1170 	if (rotations)
1171 		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1172 	else
1173 		cpuctx->hrtimer_active = 0;
1174 	raw_spin_unlock(&cpuctx->hrtimer_lock);
1175 
1176 	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1177 }
1178 
__perf_mux_hrtimer_init(struct perf_cpu_context * cpuctx,int cpu)1179 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1180 {
1181 	struct hrtimer *timer = &cpuctx->hrtimer;
1182 	struct pmu *pmu = cpuctx->ctx.pmu;
1183 	u64 interval;
1184 
1185 	/* no multiplexing needed for SW PMU */
1186 	if (pmu->task_ctx_nr == perf_sw_context)
1187 		return;
1188 
1189 	/*
1190 	 * check default is sane, if not set then force to
1191 	 * default interval (1/tick)
1192 	 */
1193 	interval = pmu->hrtimer_interval_ms;
1194 	if (interval < 1)
1195 		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1196 
1197 	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1198 
1199 	raw_spin_lock_init(&cpuctx->hrtimer_lock);
1200 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
1201 	timer->function = perf_mux_hrtimer_handler;
1202 }
1203 
perf_mux_hrtimer_restart(struct perf_cpu_context * cpuctx)1204 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1205 {
1206 	struct hrtimer *timer = &cpuctx->hrtimer;
1207 	struct pmu *pmu = cpuctx->ctx.pmu;
1208 	unsigned long flags;
1209 
1210 	/* not for SW PMU */
1211 	if (pmu->task_ctx_nr == perf_sw_context)
1212 		return 0;
1213 
1214 	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1215 	if (!cpuctx->hrtimer_active) {
1216 		cpuctx->hrtimer_active = 1;
1217 		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1218 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1219 	}
1220 	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1221 
1222 	return 0;
1223 }
1224 
perf_pmu_disable(struct pmu * pmu)1225 void perf_pmu_disable(struct pmu *pmu)
1226 {
1227 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1228 	if (!(*count)++)
1229 		pmu->pmu_disable(pmu);
1230 }
1231 
perf_pmu_enable(struct pmu * pmu)1232 void perf_pmu_enable(struct pmu *pmu)
1233 {
1234 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1235 	if (!--(*count))
1236 		pmu->pmu_enable(pmu);
1237 }
1238 
1239 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1240 
1241 /*
1242  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1243  * perf_event_task_tick() are fully serialized because they're strictly cpu
1244  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1245  * disabled, while perf_event_task_tick is called from IRQ context.
1246  */
perf_event_ctx_activate(struct perf_event_context * ctx)1247 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1248 {
1249 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
1250 
1251 	lockdep_assert_irqs_disabled();
1252 
1253 	WARN_ON(!list_empty(&ctx->active_ctx_list));
1254 
1255 	list_add(&ctx->active_ctx_list, head);
1256 }
1257 
perf_event_ctx_deactivate(struct perf_event_context * ctx)1258 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1259 {
1260 	lockdep_assert_irqs_disabled();
1261 
1262 	WARN_ON(list_empty(&ctx->active_ctx_list));
1263 
1264 	list_del_init(&ctx->active_ctx_list);
1265 }
1266 
get_ctx(struct perf_event_context * ctx)1267 static void get_ctx(struct perf_event_context *ctx)
1268 {
1269 	refcount_inc(&ctx->refcount);
1270 }
1271 
alloc_task_ctx_data(struct pmu * pmu)1272 static void *alloc_task_ctx_data(struct pmu *pmu)
1273 {
1274 	if (pmu->task_ctx_cache)
1275 		return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL);
1276 
1277 	return NULL;
1278 }
1279 
free_task_ctx_data(struct pmu * pmu,void * task_ctx_data)1280 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data)
1281 {
1282 	if (pmu->task_ctx_cache && task_ctx_data)
1283 		kmem_cache_free(pmu->task_ctx_cache, task_ctx_data);
1284 }
1285 
free_ctx(struct rcu_head * head)1286 static void free_ctx(struct rcu_head *head)
1287 {
1288 	struct perf_event_context *ctx;
1289 
1290 	ctx = container_of(head, struct perf_event_context, rcu_head);
1291 	free_task_ctx_data(ctx->pmu, ctx->task_ctx_data);
1292 	kfree(ctx);
1293 }
1294 
put_ctx(struct perf_event_context * ctx)1295 static void put_ctx(struct perf_event_context *ctx)
1296 {
1297 	if (refcount_dec_and_test(&ctx->refcount)) {
1298 		if (ctx->parent_ctx)
1299 			put_ctx(ctx->parent_ctx);
1300 		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1301 			put_task_struct(ctx->task);
1302 		call_rcu(&ctx->rcu_head, free_ctx);
1303 	}
1304 }
1305 
1306 /*
1307  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1308  * perf_pmu_migrate_context() we need some magic.
1309  *
1310  * Those places that change perf_event::ctx will hold both
1311  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1312  *
1313  * Lock ordering is by mutex address. There are two other sites where
1314  * perf_event_context::mutex nests and those are:
1315  *
1316  *  - perf_event_exit_task_context()	[ child , 0 ]
1317  *      perf_event_exit_event()
1318  *        put_event()			[ parent, 1 ]
1319  *
1320  *  - perf_event_init_context()		[ parent, 0 ]
1321  *      inherit_task_group()
1322  *        inherit_group()
1323  *          inherit_event()
1324  *            perf_event_alloc()
1325  *              perf_init_event()
1326  *                perf_try_init_event()	[ child , 1 ]
1327  *
1328  * While it appears there is an obvious deadlock here -- the parent and child
1329  * nesting levels are inverted between the two. This is in fact safe because
1330  * life-time rules separate them. That is an exiting task cannot fork, and a
1331  * spawning task cannot (yet) exit.
1332  *
1333  * But remember that these are parent<->child context relations, and
1334  * migration does not affect children, therefore these two orderings should not
1335  * interact.
1336  *
1337  * The change in perf_event::ctx does not affect children (as claimed above)
1338  * because the sys_perf_event_open() case will install a new event and break
1339  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1340  * concerned with cpuctx and that doesn't have children.
1341  *
1342  * The places that change perf_event::ctx will issue:
1343  *
1344  *   perf_remove_from_context();
1345  *   synchronize_rcu();
1346  *   perf_install_in_context();
1347  *
1348  * to affect the change. The remove_from_context() + synchronize_rcu() should
1349  * quiesce the event, after which we can install it in the new location. This
1350  * means that only external vectors (perf_fops, prctl) can perturb the event
1351  * while in transit. Therefore all such accessors should also acquire
1352  * perf_event_context::mutex to serialize against this.
1353  *
1354  * However; because event->ctx can change while we're waiting to acquire
1355  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1356  * function.
1357  *
1358  * Lock order:
1359  *    exec_update_lock
1360  *	task_struct::perf_event_mutex
1361  *	  perf_event_context::mutex
1362  *	    perf_event::child_mutex;
1363  *	      perf_event_context::lock
1364  *	    perf_event::mmap_mutex
1365  *	    mmap_lock
1366  *	      perf_addr_filters_head::lock
1367  *
1368  *    cpu_hotplug_lock
1369  *      pmus_lock
1370  *	  cpuctx->mutex / perf_event_context::mutex
1371  */
1372 static struct perf_event_context *
perf_event_ctx_lock_nested(struct perf_event * event,int nesting)1373 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1374 {
1375 	struct perf_event_context *ctx;
1376 
1377 again:
1378 	rcu_read_lock();
1379 	ctx = READ_ONCE(event->ctx);
1380 	if (!refcount_inc_not_zero(&ctx->refcount)) {
1381 		rcu_read_unlock();
1382 		goto again;
1383 	}
1384 	rcu_read_unlock();
1385 
1386 	mutex_lock_nested(&ctx->mutex, nesting);
1387 	if (event->ctx != ctx) {
1388 		mutex_unlock(&ctx->mutex);
1389 		put_ctx(ctx);
1390 		goto again;
1391 	}
1392 
1393 	return ctx;
1394 }
1395 
1396 static inline struct perf_event_context *
perf_event_ctx_lock(struct perf_event * event)1397 perf_event_ctx_lock(struct perf_event *event)
1398 {
1399 	return perf_event_ctx_lock_nested(event, 0);
1400 }
1401 
perf_event_ctx_unlock(struct perf_event * event,struct perf_event_context * ctx)1402 static void perf_event_ctx_unlock(struct perf_event *event,
1403 				  struct perf_event_context *ctx)
1404 {
1405 	mutex_unlock(&ctx->mutex);
1406 	put_ctx(ctx);
1407 }
1408 
1409 /*
1410  * This must be done under the ctx->lock, such as to serialize against
1411  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1412  * calling scheduler related locks and ctx->lock nests inside those.
1413  */
1414 static __must_check struct perf_event_context *
unclone_ctx(struct perf_event_context * ctx)1415 unclone_ctx(struct perf_event_context *ctx)
1416 {
1417 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
1418 
1419 	lockdep_assert_held(&ctx->lock);
1420 
1421 	if (parent_ctx)
1422 		ctx->parent_ctx = NULL;
1423 	ctx->generation++;
1424 
1425 	return parent_ctx;
1426 }
1427 
perf_event_pid_type(struct perf_event * event,struct task_struct * p,enum pid_type type)1428 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1429 				enum pid_type type)
1430 {
1431 	u32 nr;
1432 	/*
1433 	 * only top level events have the pid namespace they were created in
1434 	 */
1435 	if (event->parent)
1436 		event = event->parent;
1437 
1438 	nr = __task_pid_nr_ns(p, type, event->ns);
1439 	/* avoid -1 if it is idle thread or runs in another ns */
1440 	if (!nr && !pid_alive(p))
1441 		nr = -1;
1442 	return nr;
1443 }
1444 
perf_event_pid(struct perf_event * event,struct task_struct * p)1445 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1446 {
1447 	return perf_event_pid_type(event, p, PIDTYPE_TGID);
1448 }
1449 
perf_event_tid(struct perf_event * event,struct task_struct * p)1450 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1451 {
1452 	return perf_event_pid_type(event, p, PIDTYPE_PID);
1453 }
1454 
1455 /*
1456  * If we inherit events we want to return the parent event id
1457  * to userspace.
1458  */
primary_event_id(struct perf_event * event)1459 static u64 primary_event_id(struct perf_event *event)
1460 {
1461 	u64 id = event->id;
1462 
1463 	if (event->parent)
1464 		id = event->parent->id;
1465 
1466 	return id;
1467 }
1468 
1469 /*
1470  * Get the perf_event_context for a task and lock it.
1471  *
1472  * This has to cope with the fact that until it is locked,
1473  * the context could get moved to another task.
1474  */
1475 static struct perf_event_context *
perf_lock_task_context(struct task_struct * task,int ctxn,unsigned long * flags)1476 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1477 {
1478 	struct perf_event_context *ctx;
1479 
1480 retry:
1481 	/*
1482 	 * One of the few rules of preemptible RCU is that one cannot do
1483 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1484 	 * part of the read side critical section was irqs-enabled -- see
1485 	 * rcu_read_unlock_special().
1486 	 *
1487 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1488 	 * side critical section has interrupts disabled.
1489 	 */
1490 	local_irq_save(*flags);
1491 	rcu_read_lock();
1492 	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1493 	if (ctx) {
1494 		/*
1495 		 * If this context is a clone of another, it might
1496 		 * get swapped for another underneath us by
1497 		 * perf_event_task_sched_out, though the
1498 		 * rcu_read_lock() protects us from any context
1499 		 * getting freed.  Lock the context and check if it
1500 		 * got swapped before we could get the lock, and retry
1501 		 * if so.  If we locked the right context, then it
1502 		 * can't get swapped on us any more.
1503 		 */
1504 		raw_spin_lock(&ctx->lock);
1505 		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1506 			raw_spin_unlock(&ctx->lock);
1507 			rcu_read_unlock();
1508 			local_irq_restore(*flags);
1509 			goto retry;
1510 		}
1511 
1512 		if (ctx->task == TASK_TOMBSTONE ||
1513 		    !refcount_inc_not_zero(&ctx->refcount)) {
1514 			raw_spin_unlock(&ctx->lock);
1515 			ctx = NULL;
1516 		} else {
1517 			WARN_ON_ONCE(ctx->task != task);
1518 		}
1519 	}
1520 	rcu_read_unlock();
1521 	if (!ctx)
1522 		local_irq_restore(*flags);
1523 	return ctx;
1524 }
1525 
1526 /*
1527  * Get the context for a task and increment its pin_count so it
1528  * can't get swapped to another task.  This also increments its
1529  * reference count so that the context can't get freed.
1530  */
1531 static struct perf_event_context *
perf_pin_task_context(struct task_struct * task,int ctxn)1532 perf_pin_task_context(struct task_struct *task, int ctxn)
1533 {
1534 	struct perf_event_context *ctx;
1535 	unsigned long flags;
1536 
1537 	ctx = perf_lock_task_context(task, ctxn, &flags);
1538 	if (ctx) {
1539 		++ctx->pin_count;
1540 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1541 	}
1542 	return ctx;
1543 }
1544 
perf_unpin_context(struct perf_event_context * ctx)1545 static void perf_unpin_context(struct perf_event_context *ctx)
1546 {
1547 	unsigned long flags;
1548 
1549 	raw_spin_lock_irqsave(&ctx->lock, flags);
1550 	--ctx->pin_count;
1551 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1552 }
1553 
1554 /*
1555  * Update the record of the current time in a context.
1556  */
__update_context_time(struct perf_event_context * ctx,bool adv)1557 static void __update_context_time(struct perf_event_context *ctx, bool adv)
1558 {
1559 	u64 now = perf_clock();
1560 
1561 	if (adv)
1562 		ctx->time += now - ctx->timestamp;
1563 	ctx->timestamp = now;
1564 
1565 	/*
1566 	 * The above: time' = time + (now - timestamp), can be re-arranged
1567 	 * into: time` = now + (time - timestamp), which gives a single value
1568 	 * offset to compute future time without locks on.
1569 	 *
1570 	 * See perf_event_time_now(), which can be used from NMI context where
1571 	 * it's (obviously) not possible to acquire ctx->lock in order to read
1572 	 * both the above values in a consistent manner.
1573 	 */
1574 	WRITE_ONCE(ctx->timeoffset, ctx->time - ctx->timestamp);
1575 }
1576 
update_context_time(struct perf_event_context * ctx)1577 static void update_context_time(struct perf_event_context *ctx)
1578 {
1579 	__update_context_time(ctx, true);
1580 }
1581 
perf_event_time(struct perf_event * event)1582 static u64 perf_event_time(struct perf_event *event)
1583 {
1584 	struct perf_event_context *ctx = event->ctx;
1585 
1586 	if (unlikely(!ctx))
1587 		return 0;
1588 
1589 	if (is_cgroup_event(event))
1590 		return perf_cgroup_event_time(event);
1591 
1592 	return ctx->time;
1593 }
1594 
perf_event_time_now(struct perf_event * event,u64 now)1595 static u64 perf_event_time_now(struct perf_event *event, u64 now)
1596 {
1597 	struct perf_event_context *ctx = event->ctx;
1598 
1599 	if (unlikely(!ctx))
1600 		return 0;
1601 
1602 	if (is_cgroup_event(event))
1603 		return perf_cgroup_event_time_now(event, now);
1604 
1605 	if (!(__load_acquire(&ctx->is_active) & EVENT_TIME))
1606 		return ctx->time;
1607 
1608 	now += READ_ONCE(ctx->timeoffset);
1609 	return now;
1610 }
1611 
get_event_type(struct perf_event * event)1612 static enum event_type_t get_event_type(struct perf_event *event)
1613 {
1614 	struct perf_event_context *ctx = event->ctx;
1615 	enum event_type_t event_type;
1616 
1617 	lockdep_assert_held(&ctx->lock);
1618 
1619 	/*
1620 	 * It's 'group type', really, because if our group leader is
1621 	 * pinned, so are we.
1622 	 */
1623 	if (event->group_leader != event)
1624 		event = event->group_leader;
1625 
1626 	event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1627 	if (!ctx->task)
1628 		event_type |= EVENT_CPU;
1629 
1630 	return event_type;
1631 }
1632 
1633 /*
1634  * Helper function to initialize event group nodes.
1635  */
init_event_group(struct perf_event * event)1636 static void init_event_group(struct perf_event *event)
1637 {
1638 	RB_CLEAR_NODE(&event->group_node);
1639 	event->group_index = 0;
1640 }
1641 
1642 /*
1643  * Extract pinned or flexible groups from the context
1644  * based on event attrs bits.
1645  */
1646 static struct perf_event_groups *
get_event_groups(struct perf_event * event,struct perf_event_context * ctx)1647 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1648 {
1649 	if (event->attr.pinned)
1650 		return &ctx->pinned_groups;
1651 	else
1652 		return &ctx->flexible_groups;
1653 }
1654 
1655 /*
1656  * Helper function to initializes perf_event_group trees.
1657  */
perf_event_groups_init(struct perf_event_groups * groups)1658 static void perf_event_groups_init(struct perf_event_groups *groups)
1659 {
1660 	groups->tree = RB_ROOT;
1661 	groups->index = 0;
1662 }
1663 
1664 /*
1665  * Compare function for event groups;
1666  *
1667  * Implements complex key that first sorts by CPU and then by virtual index
1668  * which provides ordering when rotating groups for the same CPU.
1669  */
1670 static bool
perf_event_groups_less(struct perf_event * left,struct perf_event * right)1671 perf_event_groups_less(struct perf_event *left, struct perf_event *right)
1672 {
1673 	if (left->cpu < right->cpu)
1674 		return true;
1675 	if (left->cpu > right->cpu)
1676 		return false;
1677 
1678 #ifdef CONFIG_CGROUP_PERF
1679 	if (left->cgrp != right->cgrp) {
1680 		if (!left->cgrp || !left->cgrp->css.cgroup) {
1681 			/*
1682 			 * Left has no cgroup but right does, no cgroups come
1683 			 * first.
1684 			 */
1685 			return true;
1686 		}
1687 		if (!right->cgrp || !right->cgrp->css.cgroup) {
1688 			/*
1689 			 * Right has no cgroup but left does, no cgroups come
1690 			 * first.
1691 			 */
1692 			return false;
1693 		}
1694 		/* Two dissimilar cgroups, order by id. */
1695 		if (left->cgrp->css.cgroup->kn->id < right->cgrp->css.cgroup->kn->id)
1696 			return true;
1697 
1698 		return false;
1699 	}
1700 #endif
1701 
1702 	if (left->group_index < right->group_index)
1703 		return true;
1704 	if (left->group_index > right->group_index)
1705 		return false;
1706 
1707 	return false;
1708 }
1709 
1710 /*
1711  * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1712  * key (see perf_event_groups_less). This places it last inside the CPU
1713  * subtree.
1714  */
1715 static void
perf_event_groups_insert(struct perf_event_groups * groups,struct perf_event * event)1716 perf_event_groups_insert(struct perf_event_groups *groups,
1717 			 struct perf_event *event)
1718 {
1719 	struct perf_event *node_event;
1720 	struct rb_node *parent;
1721 	struct rb_node **node;
1722 
1723 	event->group_index = ++groups->index;
1724 
1725 	node = &groups->tree.rb_node;
1726 	parent = *node;
1727 
1728 	while (*node) {
1729 		parent = *node;
1730 		node_event = container_of(*node, struct perf_event, group_node);
1731 
1732 		if (perf_event_groups_less(event, node_event))
1733 			node = &parent->rb_left;
1734 		else
1735 			node = &parent->rb_right;
1736 	}
1737 
1738 	rb_link_node(&event->group_node, parent, node);
1739 	rb_insert_color(&event->group_node, &groups->tree);
1740 }
1741 
1742 /*
1743  * Helper function to insert event into the pinned or flexible groups.
1744  */
1745 static void
add_event_to_groups(struct perf_event * event,struct perf_event_context * ctx)1746 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1747 {
1748 	struct perf_event_groups *groups;
1749 
1750 	groups = get_event_groups(event, ctx);
1751 	perf_event_groups_insert(groups, event);
1752 }
1753 
1754 /*
1755  * Delete a group from a tree.
1756  */
1757 static void
perf_event_groups_delete(struct perf_event_groups * groups,struct perf_event * event)1758 perf_event_groups_delete(struct perf_event_groups *groups,
1759 			 struct perf_event *event)
1760 {
1761 	WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1762 		     RB_EMPTY_ROOT(&groups->tree));
1763 
1764 	rb_erase(&event->group_node, &groups->tree);
1765 	init_event_group(event);
1766 }
1767 
1768 /*
1769  * Helper function to delete event from its groups.
1770  */
1771 static void
del_event_from_groups(struct perf_event * event,struct perf_event_context * ctx)1772 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1773 {
1774 	struct perf_event_groups *groups;
1775 
1776 	groups = get_event_groups(event, ctx);
1777 	perf_event_groups_delete(groups, event);
1778 }
1779 
1780 /*
1781  * Get the leftmost event in the cpu/cgroup subtree.
1782  */
1783 static struct perf_event *
perf_event_groups_first(struct perf_event_groups * groups,int cpu,struct cgroup * cgrp)1784 perf_event_groups_first(struct perf_event_groups *groups, int cpu,
1785 			struct cgroup *cgrp)
1786 {
1787 	struct perf_event *node_event = NULL, *match = NULL;
1788 	struct rb_node *node = groups->tree.rb_node;
1789 #ifdef CONFIG_CGROUP_PERF
1790 	u64 node_cgrp_id, cgrp_id = 0;
1791 
1792 	if (cgrp)
1793 		cgrp_id = cgrp->kn->id;
1794 #endif
1795 
1796 	while (node) {
1797 		node_event = container_of(node, struct perf_event, group_node);
1798 
1799 		if (cpu < node_event->cpu) {
1800 			node = node->rb_left;
1801 			continue;
1802 		}
1803 		if (cpu > node_event->cpu) {
1804 			node = node->rb_right;
1805 			continue;
1806 		}
1807 #ifdef CONFIG_CGROUP_PERF
1808 		node_cgrp_id = 0;
1809 		if (node_event->cgrp && node_event->cgrp->css.cgroup)
1810 			node_cgrp_id = node_event->cgrp->css.cgroup->kn->id;
1811 
1812 		if (cgrp_id < node_cgrp_id) {
1813 			node = node->rb_left;
1814 			continue;
1815 		}
1816 		if (cgrp_id > node_cgrp_id) {
1817 			node = node->rb_right;
1818 			continue;
1819 		}
1820 #endif
1821 		match = node_event;
1822 		node = node->rb_left;
1823 	}
1824 
1825 	return match;
1826 }
1827 
1828 /*
1829  * Like rb_entry_next_safe() for the @cpu subtree.
1830  */
1831 static struct perf_event *
perf_event_groups_next(struct perf_event * event)1832 perf_event_groups_next(struct perf_event *event)
1833 {
1834 	struct perf_event *next;
1835 #ifdef CONFIG_CGROUP_PERF
1836 	u64 curr_cgrp_id = 0;
1837 	u64 next_cgrp_id = 0;
1838 #endif
1839 
1840 	next = rb_entry_safe(rb_next(&event->group_node), typeof(*event), group_node);
1841 	if (next == NULL || next->cpu != event->cpu)
1842 		return NULL;
1843 
1844 #ifdef CONFIG_CGROUP_PERF
1845 	if (event->cgrp && event->cgrp->css.cgroup)
1846 		curr_cgrp_id = event->cgrp->css.cgroup->kn->id;
1847 
1848 	if (next->cgrp && next->cgrp->css.cgroup)
1849 		next_cgrp_id = next->cgrp->css.cgroup->kn->id;
1850 
1851 	if (curr_cgrp_id != next_cgrp_id)
1852 		return NULL;
1853 #endif
1854 	return next;
1855 }
1856 
1857 /*
1858  * Iterate through the whole groups tree.
1859  */
1860 #define perf_event_groups_for_each(event, groups)			\
1861 	for (event = rb_entry_safe(rb_first(&((groups)->tree)),		\
1862 				typeof(*event), group_node); event;	\
1863 		event = rb_entry_safe(rb_next(&event->group_node),	\
1864 				typeof(*event), group_node))
1865 
1866 /*
1867  * Add an event from the lists for its context.
1868  * Must be called with ctx->mutex and ctx->lock held.
1869  */
1870 static void
list_add_event(struct perf_event * event,struct perf_event_context * ctx)1871 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1872 {
1873 	lockdep_assert_held(&ctx->lock);
1874 
1875 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1876 	event->attach_state |= PERF_ATTACH_CONTEXT;
1877 
1878 	event->tstamp = perf_event_time(event);
1879 
1880 	/*
1881 	 * If we're a stand alone event or group leader, we go to the context
1882 	 * list, group events are kept attached to the group so that
1883 	 * perf_group_detach can, at all times, locate all siblings.
1884 	 */
1885 	if (event->group_leader == event) {
1886 		event->group_caps = event->event_caps;
1887 		add_event_to_groups(event, ctx);
1888 	}
1889 
1890 	list_add_rcu(&event->event_entry, &ctx->event_list);
1891 	ctx->nr_events++;
1892 	if (event->attr.inherit_stat)
1893 		ctx->nr_stat++;
1894 
1895 	if (event->state > PERF_EVENT_STATE_OFF)
1896 		perf_cgroup_event_enable(event, ctx);
1897 
1898 	ctx->generation++;
1899 }
1900 
1901 /*
1902  * Initialize event state based on the perf_event_attr::disabled.
1903  */
perf_event__state_init(struct perf_event * event)1904 static inline void perf_event__state_init(struct perf_event *event)
1905 {
1906 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1907 					      PERF_EVENT_STATE_INACTIVE;
1908 }
1909 
__perf_event_read_size(struct perf_event * event,int nr_siblings)1910 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1911 {
1912 	int entry = sizeof(u64); /* value */
1913 	int size = 0;
1914 	int nr = 1;
1915 
1916 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1917 		size += sizeof(u64);
1918 
1919 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1920 		size += sizeof(u64);
1921 
1922 	if (event->attr.read_format & PERF_FORMAT_ID)
1923 		entry += sizeof(u64);
1924 
1925 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
1926 		nr += nr_siblings;
1927 		size += sizeof(u64);
1928 	}
1929 
1930 	size += entry * nr;
1931 	event->read_size = size;
1932 }
1933 
__perf_event_header_size(struct perf_event * event,u64 sample_type)1934 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1935 {
1936 	struct perf_sample_data *data;
1937 	u16 size = 0;
1938 
1939 	if (sample_type & PERF_SAMPLE_IP)
1940 		size += sizeof(data->ip);
1941 
1942 	if (sample_type & PERF_SAMPLE_ADDR)
1943 		size += sizeof(data->addr);
1944 
1945 	if (sample_type & PERF_SAMPLE_PERIOD)
1946 		size += sizeof(data->period);
1947 
1948 	if (sample_type & PERF_SAMPLE_WEIGHT)
1949 		size += sizeof(data->weight);
1950 
1951 	if (sample_type & PERF_SAMPLE_READ)
1952 		size += event->read_size;
1953 
1954 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1955 		size += sizeof(data->data_src.val);
1956 
1957 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1958 		size += sizeof(data->txn);
1959 
1960 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1961 		size += sizeof(data->phys_addr);
1962 
1963 	if (sample_type & PERF_SAMPLE_CGROUP)
1964 		size += sizeof(data->cgroup);
1965 
1966 	event->header_size = size;
1967 }
1968 
1969 /*
1970  * Called at perf_event creation and when events are attached/detached from a
1971  * group.
1972  */
perf_event__header_size(struct perf_event * event)1973 static void perf_event__header_size(struct perf_event *event)
1974 {
1975 	__perf_event_read_size(event,
1976 			       event->group_leader->nr_siblings);
1977 	__perf_event_header_size(event, event->attr.sample_type);
1978 }
1979 
perf_event__id_header_size(struct perf_event * event)1980 static void perf_event__id_header_size(struct perf_event *event)
1981 {
1982 	struct perf_sample_data *data;
1983 	u64 sample_type = event->attr.sample_type;
1984 	u16 size = 0;
1985 
1986 	if (sample_type & PERF_SAMPLE_TID)
1987 		size += sizeof(data->tid_entry);
1988 
1989 	if (sample_type & PERF_SAMPLE_TIME)
1990 		size += sizeof(data->time);
1991 
1992 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1993 		size += sizeof(data->id);
1994 
1995 	if (sample_type & PERF_SAMPLE_ID)
1996 		size += sizeof(data->id);
1997 
1998 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1999 		size += sizeof(data->stream_id);
2000 
2001 	if (sample_type & PERF_SAMPLE_CPU)
2002 		size += sizeof(data->cpu_entry);
2003 
2004 	event->id_header_size = size;
2005 }
2006 
perf_event_validate_size(struct perf_event * event)2007 static bool perf_event_validate_size(struct perf_event *event)
2008 {
2009 	/*
2010 	 * The values computed here will be over-written when we actually
2011 	 * attach the event.
2012 	 */
2013 	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
2014 	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
2015 	perf_event__id_header_size(event);
2016 
2017 	/*
2018 	 * Sum the lot; should not exceed the 64k limit we have on records.
2019 	 * Conservative limit to allow for callchains and other variable fields.
2020 	 */
2021 	if (event->read_size + event->header_size +
2022 	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
2023 		return false;
2024 
2025 	return true;
2026 }
2027 
perf_group_attach(struct perf_event * event)2028 static void perf_group_attach(struct perf_event *event)
2029 {
2030 	struct perf_event *group_leader = event->group_leader, *pos;
2031 
2032 	lockdep_assert_held(&event->ctx->lock);
2033 
2034 	/*
2035 	 * We can have double attach due to group movement in perf_event_open.
2036 	 */
2037 	if (event->attach_state & PERF_ATTACH_GROUP)
2038 		return;
2039 
2040 	event->attach_state |= PERF_ATTACH_GROUP;
2041 
2042 	if (group_leader == event)
2043 		return;
2044 
2045 	WARN_ON_ONCE(group_leader->ctx != event->ctx);
2046 
2047 	group_leader->group_caps &= event->event_caps;
2048 
2049 	list_add_tail(&event->sibling_list, &group_leader->sibling_list);
2050 	group_leader->nr_siblings++;
2051 
2052 	perf_event__header_size(group_leader);
2053 
2054 	for_each_sibling_event(pos, group_leader)
2055 		perf_event__header_size(pos);
2056 }
2057 
2058 /*
2059  * Remove an event from the lists for its context.
2060  * Must be called with ctx->mutex and ctx->lock held.
2061  */
2062 static void
list_del_event(struct perf_event * event,struct perf_event_context * ctx)2063 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
2064 {
2065 	WARN_ON_ONCE(event->ctx != ctx);
2066 	lockdep_assert_held(&ctx->lock);
2067 
2068 	/*
2069 	 * We can have double detach due to exit/hot-unplug + close.
2070 	 */
2071 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
2072 		return;
2073 
2074 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
2075 
2076 	ctx->nr_events--;
2077 	if (event->attr.inherit_stat)
2078 		ctx->nr_stat--;
2079 
2080 	list_del_rcu(&event->event_entry);
2081 
2082 	if (event->group_leader == event)
2083 		del_event_from_groups(event, ctx);
2084 
2085 	/*
2086 	 * If event was in error state, then keep it
2087 	 * that way, otherwise bogus counts will be
2088 	 * returned on read(). The only way to get out
2089 	 * of error state is by explicit re-enabling
2090 	 * of the event
2091 	 */
2092 	if (event->state > PERF_EVENT_STATE_OFF) {
2093 		perf_cgroup_event_disable(event, ctx);
2094 		perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2095 	}
2096 
2097 	ctx->generation++;
2098 }
2099 
2100 static int
perf_aux_output_match(struct perf_event * event,struct perf_event * aux_event)2101 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
2102 {
2103 	if (!has_aux(aux_event))
2104 		return 0;
2105 
2106 	if (!event->pmu->aux_output_match)
2107 		return 0;
2108 
2109 	return event->pmu->aux_output_match(aux_event);
2110 }
2111 
2112 static void put_event(struct perf_event *event);
2113 static void event_sched_out(struct perf_event *event,
2114 			    struct perf_cpu_context *cpuctx,
2115 			    struct perf_event_context *ctx);
2116 
perf_put_aux_event(struct perf_event * event)2117 static void perf_put_aux_event(struct perf_event *event)
2118 {
2119 	struct perf_event_context *ctx = event->ctx;
2120 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2121 	struct perf_event *iter;
2122 
2123 	/*
2124 	 * If event uses aux_event tear down the link
2125 	 */
2126 	if (event->aux_event) {
2127 		iter = event->aux_event;
2128 		event->aux_event = NULL;
2129 		put_event(iter);
2130 		return;
2131 	}
2132 
2133 	/*
2134 	 * If the event is an aux_event, tear down all links to
2135 	 * it from other events.
2136 	 */
2137 	for_each_sibling_event(iter, event->group_leader) {
2138 		if (iter->aux_event != event)
2139 			continue;
2140 
2141 		iter->aux_event = NULL;
2142 		put_event(event);
2143 
2144 		/*
2145 		 * If it's ACTIVE, schedule it out and put it into ERROR
2146 		 * state so that we don't try to schedule it again. Note
2147 		 * that perf_event_enable() will clear the ERROR status.
2148 		 */
2149 		event_sched_out(iter, cpuctx, ctx);
2150 		perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2151 	}
2152 }
2153 
perf_need_aux_event(struct perf_event * event)2154 static bool perf_need_aux_event(struct perf_event *event)
2155 {
2156 	return !!event->attr.aux_output || !!event->attr.aux_sample_size;
2157 }
2158 
perf_get_aux_event(struct perf_event * event,struct perf_event * group_leader)2159 static int perf_get_aux_event(struct perf_event *event,
2160 			      struct perf_event *group_leader)
2161 {
2162 	/*
2163 	 * Our group leader must be an aux event if we want to be
2164 	 * an aux_output. This way, the aux event will precede its
2165 	 * aux_output events in the group, and therefore will always
2166 	 * schedule first.
2167 	 */
2168 	if (!group_leader)
2169 		return 0;
2170 
2171 	/*
2172 	 * aux_output and aux_sample_size are mutually exclusive.
2173 	 */
2174 	if (event->attr.aux_output && event->attr.aux_sample_size)
2175 		return 0;
2176 
2177 	if (event->attr.aux_output &&
2178 	    !perf_aux_output_match(event, group_leader))
2179 		return 0;
2180 
2181 	if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
2182 		return 0;
2183 
2184 	if (!atomic_long_inc_not_zero(&group_leader->refcount))
2185 		return 0;
2186 
2187 	/*
2188 	 * Link aux_outputs to their aux event; this is undone in
2189 	 * perf_group_detach() by perf_put_aux_event(). When the
2190 	 * group in torn down, the aux_output events loose their
2191 	 * link to the aux_event and can't schedule any more.
2192 	 */
2193 	event->aux_event = group_leader;
2194 
2195 	return 1;
2196 }
2197 
get_event_list(struct perf_event * event)2198 static inline struct list_head *get_event_list(struct perf_event *event)
2199 {
2200 	struct perf_event_context *ctx = event->ctx;
2201 	return event->attr.pinned ? &ctx->pinned_active : &ctx->flexible_active;
2202 }
2203 
2204 /*
2205  * Events that have PERF_EV_CAP_SIBLING require being part of a group and
2206  * cannot exist on their own, schedule them out and move them into the ERROR
2207  * state. Also see _perf_event_enable(), it will not be able to recover
2208  * this ERROR state.
2209  */
perf_remove_sibling_event(struct perf_event * event)2210 static inline void perf_remove_sibling_event(struct perf_event *event)
2211 {
2212 	struct perf_event_context *ctx = event->ctx;
2213 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2214 
2215 	event_sched_out(event, cpuctx, ctx);
2216 	perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2217 }
2218 
perf_group_detach(struct perf_event * event)2219 static void perf_group_detach(struct perf_event *event)
2220 {
2221 	struct perf_event *leader = event->group_leader;
2222 	struct perf_event *sibling, *tmp;
2223 	struct perf_event_context *ctx = event->ctx;
2224 
2225 	lockdep_assert_held(&ctx->lock);
2226 
2227 	/*
2228 	 * We can have double detach due to exit/hot-unplug + close.
2229 	 */
2230 	if (!(event->attach_state & PERF_ATTACH_GROUP))
2231 		return;
2232 
2233 	event->attach_state &= ~PERF_ATTACH_GROUP;
2234 
2235 	perf_put_aux_event(event);
2236 
2237 	/*
2238 	 * If this is a sibling, remove it from its group.
2239 	 */
2240 	if (leader != event) {
2241 		list_del_init(&event->sibling_list);
2242 		event->group_leader->nr_siblings--;
2243 		goto out;
2244 	}
2245 
2246 	/*
2247 	 * If this was a group event with sibling events then
2248 	 * upgrade the siblings to singleton events by adding them
2249 	 * to whatever list we are on.
2250 	 */
2251 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2252 
2253 		if (sibling->event_caps & PERF_EV_CAP_SIBLING)
2254 			perf_remove_sibling_event(sibling);
2255 
2256 		sibling->group_leader = sibling;
2257 		list_del_init(&sibling->sibling_list);
2258 
2259 		/* Inherit group flags from the previous leader */
2260 		sibling->group_caps = event->group_caps;
2261 
2262 		if (!RB_EMPTY_NODE(&event->group_node)) {
2263 			add_event_to_groups(sibling, event->ctx);
2264 
2265 			if (sibling->state == PERF_EVENT_STATE_ACTIVE)
2266 				list_add_tail(&sibling->active_list, get_event_list(sibling));
2267 		}
2268 
2269 		WARN_ON_ONCE(sibling->ctx != event->ctx);
2270 	}
2271 
2272 out:
2273 	for_each_sibling_event(tmp, leader)
2274 		perf_event__header_size(tmp);
2275 
2276 	perf_event__header_size(leader);
2277 }
2278 
is_orphaned_event(struct perf_event * event)2279 static bool is_orphaned_event(struct perf_event *event)
2280 {
2281 	return event->state == PERF_EVENT_STATE_DEAD;
2282 }
2283 
__pmu_filter_match(struct perf_event * event)2284 static inline int __pmu_filter_match(struct perf_event *event)
2285 {
2286 	struct pmu *pmu = event->pmu;
2287 	return pmu->filter_match ? pmu->filter_match(event) : 1;
2288 }
2289 
2290 /*
2291  * Check whether we should attempt to schedule an event group based on
2292  * PMU-specific filtering. An event group can consist of HW and SW events,
2293  * potentially with a SW leader, so we must check all the filters, to
2294  * determine whether a group is schedulable:
2295  */
pmu_filter_match(struct perf_event * event)2296 static inline int pmu_filter_match(struct perf_event *event)
2297 {
2298 	struct perf_event *sibling;
2299 
2300 	if (!__pmu_filter_match(event))
2301 		return 0;
2302 
2303 	for_each_sibling_event(sibling, event) {
2304 		if (!__pmu_filter_match(sibling))
2305 			return 0;
2306 	}
2307 
2308 	return 1;
2309 }
2310 
2311 static inline int
event_filter_match(struct perf_event * event)2312 event_filter_match(struct perf_event *event)
2313 {
2314 	return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2315 	       perf_cgroup_match(event) && pmu_filter_match(event);
2316 }
2317 
2318 static void
event_sched_out(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)2319 event_sched_out(struct perf_event *event,
2320 		  struct perf_cpu_context *cpuctx,
2321 		  struct perf_event_context *ctx)
2322 {
2323 	enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2324 
2325 	WARN_ON_ONCE(event->ctx != ctx);
2326 	lockdep_assert_held(&ctx->lock);
2327 
2328 	if (event->state != PERF_EVENT_STATE_ACTIVE)
2329 		return;
2330 
2331 	/*
2332 	 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2333 	 * we can schedule events _OUT_ individually through things like
2334 	 * __perf_remove_from_context().
2335 	 */
2336 	list_del_init(&event->active_list);
2337 
2338 	perf_pmu_disable(event->pmu);
2339 
2340 	event->pmu->del(event, 0);
2341 	event->oncpu = -1;
2342 
2343 	if (READ_ONCE(event->pending_disable) >= 0) {
2344 		WRITE_ONCE(event->pending_disable, -1);
2345 		perf_cgroup_event_disable(event, ctx);
2346 		state = PERF_EVENT_STATE_OFF;
2347 	}
2348 	perf_event_set_state(event, state);
2349 
2350 	if (!is_software_event(event))
2351 		cpuctx->active_oncpu--;
2352 	if (!--ctx->nr_active)
2353 		perf_event_ctx_deactivate(ctx);
2354 	if (event->attr.freq && event->attr.sample_freq)
2355 		ctx->nr_freq--;
2356 	if (event->attr.exclusive || !cpuctx->active_oncpu)
2357 		cpuctx->exclusive = 0;
2358 
2359 	perf_pmu_enable(event->pmu);
2360 }
2361 
2362 static void
group_sched_out(struct perf_event * group_event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)2363 group_sched_out(struct perf_event *group_event,
2364 		struct perf_cpu_context *cpuctx,
2365 		struct perf_event_context *ctx)
2366 {
2367 	struct perf_event *event;
2368 
2369 	if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2370 		return;
2371 
2372 	perf_pmu_disable(ctx->pmu);
2373 
2374 	event_sched_out(group_event, cpuctx, ctx);
2375 
2376 	/*
2377 	 * Schedule out siblings (if any):
2378 	 */
2379 	for_each_sibling_event(event, group_event)
2380 		event_sched_out(event, cpuctx, ctx);
2381 
2382 	perf_pmu_enable(ctx->pmu);
2383 }
2384 
2385 #define DETACH_GROUP	0x01UL
2386 
2387 /*
2388  * Cross CPU call to remove a performance event
2389  *
2390  * We disable the event on the hardware level first. After that we
2391  * remove it from the context list.
2392  */
2393 static void
__perf_remove_from_context(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,void * info)2394 __perf_remove_from_context(struct perf_event *event,
2395 			   struct perf_cpu_context *cpuctx,
2396 			   struct perf_event_context *ctx,
2397 			   void *info)
2398 {
2399 	unsigned long flags = (unsigned long)info;
2400 
2401 	if (ctx->is_active & EVENT_TIME) {
2402 		update_context_time(ctx);
2403 		update_cgrp_time_from_cpuctx(cpuctx, false);
2404 	}
2405 
2406 	event_sched_out(event, cpuctx, ctx);
2407 	if (flags & DETACH_GROUP)
2408 		perf_group_detach(event);
2409 	list_del_event(event, ctx);
2410 
2411 	if (!ctx->nr_events && ctx->is_active) {
2412 		if (ctx == &cpuctx->ctx)
2413 			update_cgrp_time_from_cpuctx(cpuctx, true);
2414 
2415 		ctx->is_active = 0;
2416 		ctx->rotate_necessary = 0;
2417 		if (ctx->task) {
2418 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2419 			cpuctx->task_ctx = NULL;
2420 		}
2421 	}
2422 }
2423 
2424 /*
2425  * Remove the event from a task's (or a CPU's) list of events.
2426  *
2427  * If event->ctx is a cloned context, callers must make sure that
2428  * every task struct that event->ctx->task could possibly point to
2429  * remains valid.  This is OK when called from perf_release since
2430  * that only calls us on the top-level context, which can't be a clone.
2431  * When called from perf_event_exit_task, it's OK because the
2432  * context has been detached from its task.
2433  */
perf_remove_from_context(struct perf_event * event,unsigned long flags)2434 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2435 {
2436 	struct perf_event_context *ctx = event->ctx;
2437 
2438 	lockdep_assert_held(&ctx->mutex);
2439 
2440 	event_function_call(event, __perf_remove_from_context, (void *)flags);
2441 
2442 	/*
2443 	 * The above event_function_call() can NO-OP when it hits
2444 	 * TASK_TOMBSTONE. In that case we must already have been detached
2445 	 * from the context (by perf_event_exit_event()) but the grouping
2446 	 * might still be in-tact.
2447 	 */
2448 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
2449 	if ((flags & DETACH_GROUP) &&
2450 	    (event->attach_state & PERF_ATTACH_GROUP)) {
2451 		/*
2452 		 * Since in that case we cannot possibly be scheduled, simply
2453 		 * detach now.
2454 		 */
2455 		raw_spin_lock_irq(&ctx->lock);
2456 		perf_group_detach(event);
2457 		raw_spin_unlock_irq(&ctx->lock);
2458 	}
2459 }
2460 
2461 /*
2462  * Cross CPU call to disable a performance event
2463  */
__perf_event_disable(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,void * info)2464 static void __perf_event_disable(struct perf_event *event,
2465 				 struct perf_cpu_context *cpuctx,
2466 				 struct perf_event_context *ctx,
2467 				 void *info)
2468 {
2469 	if (event->state < PERF_EVENT_STATE_INACTIVE)
2470 		return;
2471 
2472 	if (ctx->is_active & EVENT_TIME) {
2473 		update_context_time(ctx);
2474 		update_cgrp_time_from_event(event);
2475 	}
2476 
2477 	if (event == event->group_leader)
2478 		group_sched_out(event, cpuctx, ctx);
2479 	else
2480 		event_sched_out(event, cpuctx, ctx);
2481 
2482 	perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2483 	perf_cgroup_event_disable(event, ctx);
2484 }
2485 
2486 /*
2487  * Disable an event.
2488  *
2489  * If event->ctx is a cloned context, callers must make sure that
2490  * every task struct that event->ctx->task could possibly point to
2491  * remains valid.  This condition is satisfied when called through
2492  * perf_event_for_each_child or perf_event_for_each because they
2493  * hold the top-level event's child_mutex, so any descendant that
2494  * goes to exit will block in perf_event_exit_event().
2495  *
2496  * When called from perf_pending_event it's OK because event->ctx
2497  * is the current context on this CPU and preemption is disabled,
2498  * hence we can't get into perf_event_task_sched_out for this context.
2499  */
_perf_event_disable(struct perf_event * event)2500 static void _perf_event_disable(struct perf_event *event)
2501 {
2502 	struct perf_event_context *ctx = event->ctx;
2503 
2504 	raw_spin_lock_irq(&ctx->lock);
2505 	if (event->state <= PERF_EVENT_STATE_OFF) {
2506 		raw_spin_unlock_irq(&ctx->lock);
2507 		return;
2508 	}
2509 	raw_spin_unlock_irq(&ctx->lock);
2510 
2511 	event_function_call(event, __perf_event_disable, NULL);
2512 }
2513 
perf_event_disable_local(struct perf_event * event)2514 void perf_event_disable_local(struct perf_event *event)
2515 {
2516 	event_function_local(event, __perf_event_disable, NULL);
2517 }
2518 
2519 /*
2520  * Strictly speaking kernel users cannot create groups and therefore this
2521  * interface does not need the perf_event_ctx_lock() magic.
2522  */
perf_event_disable(struct perf_event * event)2523 void perf_event_disable(struct perf_event *event)
2524 {
2525 	struct perf_event_context *ctx;
2526 
2527 	ctx = perf_event_ctx_lock(event);
2528 	_perf_event_disable(event);
2529 	perf_event_ctx_unlock(event, ctx);
2530 }
2531 EXPORT_SYMBOL_GPL(perf_event_disable);
2532 
perf_event_disable_inatomic(struct perf_event * event)2533 void perf_event_disable_inatomic(struct perf_event *event)
2534 {
2535 	WRITE_ONCE(event->pending_disable, smp_processor_id());
2536 	/* can fail, see perf_pending_event_disable() */
2537 	irq_work_queue(&event->pending);
2538 }
2539 
2540 #define MAX_INTERRUPTS (~0ULL)
2541 
2542 static void perf_log_throttle(struct perf_event *event, int enable);
2543 static void perf_log_itrace_start(struct perf_event *event);
2544 
2545 static int
event_sched_in(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)2546 event_sched_in(struct perf_event *event,
2547 		 struct perf_cpu_context *cpuctx,
2548 		 struct perf_event_context *ctx)
2549 {
2550 	int ret = 0;
2551 
2552 	WARN_ON_ONCE(event->ctx != ctx);
2553 
2554 	lockdep_assert_held(&ctx->lock);
2555 
2556 	if (event->state <= PERF_EVENT_STATE_OFF)
2557 		return 0;
2558 
2559 	WRITE_ONCE(event->oncpu, smp_processor_id());
2560 	/*
2561 	 * Order event::oncpu write to happen before the ACTIVE state is
2562 	 * visible. This allows perf_event_{stop,read}() to observe the correct
2563 	 * ->oncpu if it sees ACTIVE.
2564 	 */
2565 	smp_wmb();
2566 	perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2567 
2568 	/*
2569 	 * Unthrottle events, since we scheduled we might have missed several
2570 	 * ticks already, also for a heavily scheduling task there is little
2571 	 * guarantee it'll get a tick in a timely manner.
2572 	 */
2573 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2574 		perf_log_throttle(event, 1);
2575 		event->hw.interrupts = 0;
2576 	}
2577 
2578 	perf_pmu_disable(event->pmu);
2579 
2580 	perf_log_itrace_start(event);
2581 
2582 	if (event->pmu->add(event, PERF_EF_START)) {
2583 		perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2584 		event->oncpu = -1;
2585 		ret = -EAGAIN;
2586 		goto out;
2587 	}
2588 
2589 	if (!is_software_event(event))
2590 		cpuctx->active_oncpu++;
2591 	if (!ctx->nr_active++)
2592 		perf_event_ctx_activate(ctx);
2593 	if (event->attr.freq && event->attr.sample_freq)
2594 		ctx->nr_freq++;
2595 
2596 	if (event->attr.exclusive)
2597 		cpuctx->exclusive = 1;
2598 
2599 out:
2600 	perf_pmu_enable(event->pmu);
2601 
2602 	return ret;
2603 }
2604 
2605 static int
group_sched_in(struct perf_event * group_event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)2606 group_sched_in(struct perf_event *group_event,
2607 	       struct perf_cpu_context *cpuctx,
2608 	       struct perf_event_context *ctx)
2609 {
2610 	struct perf_event *event, *partial_group = NULL;
2611 	struct pmu *pmu = ctx->pmu;
2612 
2613 	if (group_event->state == PERF_EVENT_STATE_OFF)
2614 		return 0;
2615 
2616 	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2617 
2618 	if (event_sched_in(group_event, cpuctx, ctx))
2619 		goto error;
2620 
2621 	/*
2622 	 * Schedule in siblings as one group (if any):
2623 	 */
2624 	for_each_sibling_event(event, group_event) {
2625 		if (event_sched_in(event, cpuctx, ctx)) {
2626 			partial_group = event;
2627 			goto group_error;
2628 		}
2629 	}
2630 
2631 	if (!pmu->commit_txn(pmu))
2632 		return 0;
2633 
2634 group_error:
2635 	/*
2636 	 * Groups can be scheduled in as one unit only, so undo any
2637 	 * partial group before returning:
2638 	 * The events up to the failed event are scheduled out normally.
2639 	 */
2640 	for_each_sibling_event(event, group_event) {
2641 		if (event == partial_group)
2642 			break;
2643 
2644 		event_sched_out(event, cpuctx, ctx);
2645 	}
2646 	event_sched_out(group_event, cpuctx, ctx);
2647 
2648 error:
2649 	pmu->cancel_txn(pmu);
2650 	return -EAGAIN;
2651 }
2652 
2653 /*
2654  * Work out whether we can put this event group on the CPU now.
2655  */
group_can_go_on(struct perf_event * event,struct perf_cpu_context * cpuctx,int can_add_hw)2656 static int group_can_go_on(struct perf_event *event,
2657 			   struct perf_cpu_context *cpuctx,
2658 			   int can_add_hw)
2659 {
2660 	/*
2661 	 * Groups consisting entirely of software events can always go on.
2662 	 */
2663 	if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2664 		return 1;
2665 	/*
2666 	 * If an exclusive group is already on, no other hardware
2667 	 * events can go on.
2668 	 */
2669 	if (cpuctx->exclusive)
2670 		return 0;
2671 	/*
2672 	 * If this group is exclusive and there are already
2673 	 * events on the CPU, it can't go on.
2674 	 */
2675 	if (event->attr.exclusive && !list_empty(get_event_list(event)))
2676 		return 0;
2677 	/*
2678 	 * Otherwise, try to add it if all previous groups were able
2679 	 * to go on.
2680 	 */
2681 	return can_add_hw;
2682 }
2683 
add_event_to_ctx(struct perf_event * event,struct perf_event_context * ctx)2684 static void add_event_to_ctx(struct perf_event *event,
2685 			       struct perf_event_context *ctx)
2686 {
2687 	list_add_event(event, ctx);
2688 	perf_group_attach(event);
2689 }
2690 
2691 static void ctx_sched_out(struct perf_event_context *ctx,
2692 			  struct perf_cpu_context *cpuctx,
2693 			  enum event_type_t event_type);
2694 static void
2695 ctx_sched_in(struct perf_event_context *ctx,
2696 	     struct perf_cpu_context *cpuctx,
2697 	     enum event_type_t event_type,
2698 	     struct task_struct *task);
2699 
task_ctx_sched_out(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,enum event_type_t event_type)2700 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2701 			       struct perf_event_context *ctx,
2702 			       enum event_type_t event_type)
2703 {
2704 	if (!cpuctx->task_ctx)
2705 		return;
2706 
2707 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2708 		return;
2709 
2710 	ctx_sched_out(ctx, cpuctx, event_type);
2711 }
2712 
perf_event_sched_in(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,struct task_struct * task)2713 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2714 				struct perf_event_context *ctx,
2715 				struct task_struct *task)
2716 {
2717 	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2718 	if (ctx)
2719 		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2720 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2721 	if (ctx)
2722 		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2723 }
2724 
2725 /*
2726  * We want to maintain the following priority of scheduling:
2727  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2728  *  - task pinned (EVENT_PINNED)
2729  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2730  *  - task flexible (EVENT_FLEXIBLE).
2731  *
2732  * In order to avoid unscheduling and scheduling back in everything every
2733  * time an event is added, only do it for the groups of equal priority and
2734  * below.
2735  *
2736  * This can be called after a batch operation on task events, in which case
2737  * event_type is a bit mask of the types of events involved. For CPU events,
2738  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2739  */
ctx_resched(struct perf_cpu_context * cpuctx,struct perf_event_context * task_ctx,enum event_type_t event_type)2740 static void ctx_resched(struct perf_cpu_context *cpuctx,
2741 			struct perf_event_context *task_ctx,
2742 			enum event_type_t event_type)
2743 {
2744 	enum event_type_t ctx_event_type;
2745 	bool cpu_event = !!(event_type & EVENT_CPU);
2746 
2747 	/*
2748 	 * If pinned groups are involved, flexible groups also need to be
2749 	 * scheduled out.
2750 	 */
2751 	if (event_type & EVENT_PINNED)
2752 		event_type |= EVENT_FLEXIBLE;
2753 
2754 	ctx_event_type = event_type & EVENT_ALL;
2755 
2756 	perf_pmu_disable(cpuctx->ctx.pmu);
2757 	if (task_ctx)
2758 		task_ctx_sched_out(cpuctx, task_ctx, event_type);
2759 
2760 	/*
2761 	 * Decide which cpu ctx groups to schedule out based on the types
2762 	 * of events that caused rescheduling:
2763 	 *  - EVENT_CPU: schedule out corresponding groups;
2764 	 *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2765 	 *  - otherwise, do nothing more.
2766 	 */
2767 	if (cpu_event)
2768 		cpu_ctx_sched_out(cpuctx, ctx_event_type);
2769 	else if (ctx_event_type & EVENT_PINNED)
2770 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2771 
2772 	perf_event_sched_in(cpuctx, task_ctx, current);
2773 	perf_pmu_enable(cpuctx->ctx.pmu);
2774 }
2775 
perf_pmu_resched(struct pmu * pmu)2776 void perf_pmu_resched(struct pmu *pmu)
2777 {
2778 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2779 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2780 
2781 	perf_ctx_lock(cpuctx, task_ctx);
2782 	ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2783 	perf_ctx_unlock(cpuctx, task_ctx);
2784 }
2785 
2786 /*
2787  * Cross CPU call to install and enable a performance event
2788  *
2789  * Very similar to remote_function() + event_function() but cannot assume that
2790  * things like ctx->is_active and cpuctx->task_ctx are set.
2791  */
__perf_install_in_context(void * info)2792 static int  __perf_install_in_context(void *info)
2793 {
2794 	struct perf_event *event = info;
2795 	struct perf_event_context *ctx = event->ctx;
2796 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2797 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2798 	bool reprogram = true;
2799 	int ret = 0;
2800 
2801 	raw_spin_lock(&cpuctx->ctx.lock);
2802 	if (ctx->task) {
2803 		raw_spin_lock(&ctx->lock);
2804 		task_ctx = ctx;
2805 
2806 		reprogram = (ctx->task == current);
2807 
2808 		/*
2809 		 * If the task is running, it must be running on this CPU,
2810 		 * otherwise we cannot reprogram things.
2811 		 *
2812 		 * If its not running, we don't care, ctx->lock will
2813 		 * serialize against it becoming runnable.
2814 		 */
2815 		if (task_curr(ctx->task) && !reprogram) {
2816 			ret = -ESRCH;
2817 			goto unlock;
2818 		}
2819 
2820 		WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2821 	} else if (task_ctx) {
2822 		raw_spin_lock(&task_ctx->lock);
2823 	}
2824 
2825 #ifdef CONFIG_CGROUP_PERF
2826 	if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) {
2827 		/*
2828 		 * If the current cgroup doesn't match the event's
2829 		 * cgroup, we should not try to schedule it.
2830 		 */
2831 		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2832 		reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2833 					event->cgrp->css.cgroup);
2834 	}
2835 #endif
2836 
2837 	if (reprogram) {
2838 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2839 		add_event_to_ctx(event, ctx);
2840 		ctx_resched(cpuctx, task_ctx, get_event_type(event));
2841 	} else {
2842 		add_event_to_ctx(event, ctx);
2843 	}
2844 
2845 unlock:
2846 	perf_ctx_unlock(cpuctx, task_ctx);
2847 
2848 	return ret;
2849 }
2850 
2851 static bool exclusive_event_installable(struct perf_event *event,
2852 					struct perf_event_context *ctx);
2853 
2854 /*
2855  * Attach a performance event to a context.
2856  *
2857  * Very similar to event_function_call, see comment there.
2858  */
2859 static void
perf_install_in_context(struct perf_event_context * ctx,struct perf_event * event,int cpu)2860 perf_install_in_context(struct perf_event_context *ctx,
2861 			struct perf_event *event,
2862 			int cpu)
2863 {
2864 	struct task_struct *task = READ_ONCE(ctx->task);
2865 
2866 	lockdep_assert_held(&ctx->mutex);
2867 
2868 	WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2869 
2870 	if (event->cpu != -1)
2871 		event->cpu = cpu;
2872 
2873 	/*
2874 	 * Ensures that if we can observe event->ctx, both the event and ctx
2875 	 * will be 'complete'. See perf_iterate_sb_cpu().
2876 	 */
2877 	smp_store_release(&event->ctx, ctx);
2878 
2879 	/*
2880 	 * perf_event_attr::disabled events will not run and can be initialized
2881 	 * without IPI. Except when this is the first event for the context, in
2882 	 * that case we need the magic of the IPI to set ctx->is_active.
2883 	 *
2884 	 * The IOC_ENABLE that is sure to follow the creation of a disabled
2885 	 * event will issue the IPI and reprogram the hardware.
2886 	 */
2887 	if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF && ctx->nr_events) {
2888 		raw_spin_lock_irq(&ctx->lock);
2889 		if (ctx->task == TASK_TOMBSTONE) {
2890 			raw_spin_unlock_irq(&ctx->lock);
2891 			return;
2892 		}
2893 		add_event_to_ctx(event, ctx);
2894 		raw_spin_unlock_irq(&ctx->lock);
2895 		return;
2896 	}
2897 
2898 	if (!task) {
2899 		cpu_function_call(cpu, __perf_install_in_context, event);
2900 		return;
2901 	}
2902 
2903 	/*
2904 	 * Should not happen, we validate the ctx is still alive before calling.
2905 	 */
2906 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2907 		return;
2908 
2909 	/*
2910 	 * Installing events is tricky because we cannot rely on ctx->is_active
2911 	 * to be set in case this is the nr_events 0 -> 1 transition.
2912 	 *
2913 	 * Instead we use task_curr(), which tells us if the task is running.
2914 	 * However, since we use task_curr() outside of rq::lock, we can race
2915 	 * against the actual state. This means the result can be wrong.
2916 	 *
2917 	 * If we get a false positive, we retry, this is harmless.
2918 	 *
2919 	 * If we get a false negative, things are complicated. If we are after
2920 	 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2921 	 * value must be correct. If we're before, it doesn't matter since
2922 	 * perf_event_context_sched_in() will program the counter.
2923 	 *
2924 	 * However, this hinges on the remote context switch having observed
2925 	 * our task->perf_event_ctxp[] store, such that it will in fact take
2926 	 * ctx::lock in perf_event_context_sched_in().
2927 	 *
2928 	 * We do this by task_function_call(), if the IPI fails to hit the task
2929 	 * we know any future context switch of task must see the
2930 	 * perf_event_ctpx[] store.
2931 	 */
2932 
2933 	/*
2934 	 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2935 	 * task_cpu() load, such that if the IPI then does not find the task
2936 	 * running, a future context switch of that task must observe the
2937 	 * store.
2938 	 */
2939 	smp_mb();
2940 again:
2941 	if (!task_function_call(task, __perf_install_in_context, event))
2942 		return;
2943 
2944 	raw_spin_lock_irq(&ctx->lock);
2945 	task = ctx->task;
2946 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2947 		/*
2948 		 * Cannot happen because we already checked above (which also
2949 		 * cannot happen), and we hold ctx->mutex, which serializes us
2950 		 * against perf_event_exit_task_context().
2951 		 */
2952 		raw_spin_unlock_irq(&ctx->lock);
2953 		return;
2954 	}
2955 	/*
2956 	 * If the task is not running, ctx->lock will avoid it becoming so,
2957 	 * thus we can safely install the event.
2958 	 */
2959 	if (task_curr(task)) {
2960 		raw_spin_unlock_irq(&ctx->lock);
2961 		goto again;
2962 	}
2963 	add_event_to_ctx(event, ctx);
2964 	raw_spin_unlock_irq(&ctx->lock);
2965 }
2966 
2967 /*
2968  * Cross CPU call to enable a performance event
2969  */
__perf_event_enable(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,void * info)2970 static void __perf_event_enable(struct perf_event *event,
2971 				struct perf_cpu_context *cpuctx,
2972 				struct perf_event_context *ctx,
2973 				void *info)
2974 {
2975 	struct perf_event *leader = event->group_leader;
2976 	struct perf_event_context *task_ctx;
2977 
2978 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2979 	    event->state <= PERF_EVENT_STATE_ERROR)
2980 		return;
2981 
2982 	if (ctx->is_active)
2983 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2984 
2985 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2986 	perf_cgroup_event_enable(event, ctx);
2987 
2988 	if (!ctx->is_active)
2989 		return;
2990 
2991 	if (!event_filter_match(event)) {
2992 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2993 		return;
2994 	}
2995 
2996 	/*
2997 	 * If the event is in a group and isn't the group leader,
2998 	 * then don't put it on unless the group is on.
2999 	 */
3000 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
3001 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3002 		return;
3003 	}
3004 
3005 	task_ctx = cpuctx->task_ctx;
3006 	if (ctx->task)
3007 		WARN_ON_ONCE(task_ctx != ctx);
3008 
3009 	ctx_resched(cpuctx, task_ctx, get_event_type(event));
3010 }
3011 
3012 /*
3013  * Enable an event.
3014  *
3015  * If event->ctx is a cloned context, callers must make sure that
3016  * every task struct that event->ctx->task could possibly point to
3017  * remains valid.  This condition is satisfied when called through
3018  * perf_event_for_each_child or perf_event_for_each as described
3019  * for perf_event_disable.
3020  */
_perf_event_enable(struct perf_event * event)3021 static void _perf_event_enable(struct perf_event *event)
3022 {
3023 	struct perf_event_context *ctx = event->ctx;
3024 
3025 	raw_spin_lock_irq(&ctx->lock);
3026 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
3027 	    event->state <  PERF_EVENT_STATE_ERROR) {
3028 out:
3029 		raw_spin_unlock_irq(&ctx->lock);
3030 		return;
3031 	}
3032 
3033 	/*
3034 	 * If the event is in error state, clear that first.
3035 	 *
3036 	 * That way, if we see the event in error state below, we know that it
3037 	 * has gone back into error state, as distinct from the task having
3038 	 * been scheduled away before the cross-call arrived.
3039 	 */
3040 	if (event->state == PERF_EVENT_STATE_ERROR) {
3041 		/*
3042 		 * Detached SIBLING events cannot leave ERROR state.
3043 		 */
3044 		if (event->event_caps & PERF_EV_CAP_SIBLING &&
3045 		    event->group_leader == event)
3046 			goto out;
3047 
3048 		event->state = PERF_EVENT_STATE_OFF;
3049 	}
3050 	raw_spin_unlock_irq(&ctx->lock);
3051 
3052 	event_function_call(event, __perf_event_enable, NULL);
3053 }
3054 
3055 /*
3056  * See perf_event_disable();
3057  */
perf_event_enable(struct perf_event * event)3058 void perf_event_enable(struct perf_event *event)
3059 {
3060 	struct perf_event_context *ctx;
3061 
3062 	ctx = perf_event_ctx_lock(event);
3063 	_perf_event_enable(event);
3064 	perf_event_ctx_unlock(event, ctx);
3065 }
3066 EXPORT_SYMBOL_GPL(perf_event_enable);
3067 
3068 struct stop_event_data {
3069 	struct perf_event	*event;
3070 	unsigned int		restart;
3071 };
3072 
__perf_event_stop(void * info)3073 static int __perf_event_stop(void *info)
3074 {
3075 	struct stop_event_data *sd = info;
3076 	struct perf_event *event = sd->event;
3077 
3078 	/* if it's already INACTIVE, do nothing */
3079 	if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3080 		return 0;
3081 
3082 	/* matches smp_wmb() in event_sched_in() */
3083 	smp_rmb();
3084 
3085 	/*
3086 	 * There is a window with interrupts enabled before we get here,
3087 	 * so we need to check again lest we try to stop another CPU's event.
3088 	 */
3089 	if (READ_ONCE(event->oncpu) != smp_processor_id())
3090 		return -EAGAIN;
3091 
3092 	event->pmu->stop(event, PERF_EF_UPDATE);
3093 
3094 	/*
3095 	 * May race with the actual stop (through perf_pmu_output_stop()),
3096 	 * but it is only used for events with AUX ring buffer, and such
3097 	 * events will refuse to restart because of rb::aux_mmap_count==0,
3098 	 * see comments in perf_aux_output_begin().
3099 	 *
3100 	 * Since this is happening on an event-local CPU, no trace is lost
3101 	 * while restarting.
3102 	 */
3103 	if (sd->restart)
3104 		event->pmu->start(event, 0);
3105 
3106 	return 0;
3107 }
3108 
perf_event_stop(struct perf_event * event,int restart)3109 static int perf_event_stop(struct perf_event *event, int restart)
3110 {
3111 	struct stop_event_data sd = {
3112 		.event		= event,
3113 		.restart	= restart,
3114 	};
3115 	int ret = 0;
3116 
3117 	do {
3118 		if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3119 			return 0;
3120 
3121 		/* matches smp_wmb() in event_sched_in() */
3122 		smp_rmb();
3123 
3124 		/*
3125 		 * We only want to restart ACTIVE events, so if the event goes
3126 		 * inactive here (event->oncpu==-1), there's nothing more to do;
3127 		 * fall through with ret==-ENXIO.
3128 		 */
3129 		ret = cpu_function_call(READ_ONCE(event->oncpu),
3130 					__perf_event_stop, &sd);
3131 	} while (ret == -EAGAIN);
3132 
3133 	return ret;
3134 }
3135 
3136 /*
3137  * In order to contain the amount of racy and tricky in the address filter
3138  * configuration management, it is a two part process:
3139  *
3140  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
3141  *      we update the addresses of corresponding vmas in
3142  *	event::addr_filter_ranges array and bump the event::addr_filters_gen;
3143  * (p2) when an event is scheduled in (pmu::add), it calls
3144  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
3145  *      if the generation has changed since the previous call.
3146  *
3147  * If (p1) happens while the event is active, we restart it to force (p2).
3148  *
3149  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
3150  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
3151  *     ioctl;
3152  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
3153  *     registered mapping, called for every new mmap(), with mm::mmap_lock down
3154  *     for reading;
3155  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
3156  *     of exec.
3157  */
perf_event_addr_filters_sync(struct perf_event * event)3158 void perf_event_addr_filters_sync(struct perf_event *event)
3159 {
3160 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
3161 
3162 	if (!has_addr_filter(event))
3163 		return;
3164 
3165 	raw_spin_lock(&ifh->lock);
3166 	if (event->addr_filters_gen != event->hw.addr_filters_gen) {
3167 		event->pmu->addr_filters_sync(event);
3168 		event->hw.addr_filters_gen = event->addr_filters_gen;
3169 	}
3170 	raw_spin_unlock(&ifh->lock);
3171 }
3172 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
3173 
_perf_event_refresh(struct perf_event * event,int refresh)3174 static int _perf_event_refresh(struct perf_event *event, int refresh)
3175 {
3176 	/*
3177 	 * not supported on inherited events
3178 	 */
3179 	if (event->attr.inherit || !is_sampling_event(event))
3180 		return -EINVAL;
3181 
3182 	atomic_add(refresh, &event->event_limit);
3183 	_perf_event_enable(event);
3184 
3185 	return 0;
3186 }
3187 
3188 /*
3189  * See perf_event_disable()
3190  */
perf_event_refresh(struct perf_event * event,int refresh)3191 int perf_event_refresh(struct perf_event *event, int refresh)
3192 {
3193 	struct perf_event_context *ctx;
3194 	int ret;
3195 
3196 	ctx = perf_event_ctx_lock(event);
3197 	ret = _perf_event_refresh(event, refresh);
3198 	perf_event_ctx_unlock(event, ctx);
3199 
3200 	return ret;
3201 }
3202 EXPORT_SYMBOL_GPL(perf_event_refresh);
3203 
perf_event_modify_breakpoint(struct perf_event * bp,struct perf_event_attr * attr)3204 static int perf_event_modify_breakpoint(struct perf_event *bp,
3205 					 struct perf_event_attr *attr)
3206 {
3207 	int err;
3208 
3209 	_perf_event_disable(bp);
3210 
3211 	err = modify_user_hw_breakpoint_check(bp, attr, true);
3212 
3213 	if (!bp->attr.disabled)
3214 		_perf_event_enable(bp);
3215 
3216 	return err;
3217 }
3218 
perf_event_modify_attr(struct perf_event * event,struct perf_event_attr * attr)3219 static int perf_event_modify_attr(struct perf_event *event,
3220 				  struct perf_event_attr *attr)
3221 {
3222 	if (event->attr.type != attr->type)
3223 		return -EINVAL;
3224 
3225 	switch (event->attr.type) {
3226 	case PERF_TYPE_BREAKPOINT:
3227 		return perf_event_modify_breakpoint(event, attr);
3228 	default:
3229 		/* Place holder for future additions. */
3230 		return -EOPNOTSUPP;
3231 	}
3232 }
3233 
ctx_sched_out(struct perf_event_context * ctx,struct perf_cpu_context * cpuctx,enum event_type_t event_type)3234 static void ctx_sched_out(struct perf_event_context *ctx,
3235 			  struct perf_cpu_context *cpuctx,
3236 			  enum event_type_t event_type)
3237 {
3238 	struct perf_event *event, *tmp;
3239 	int is_active = ctx->is_active;
3240 
3241 	lockdep_assert_held(&ctx->lock);
3242 
3243 	if (likely(!ctx->nr_events)) {
3244 		/*
3245 		 * See __perf_remove_from_context().
3246 		 */
3247 		WARN_ON_ONCE(ctx->is_active);
3248 		if (ctx->task)
3249 			WARN_ON_ONCE(cpuctx->task_ctx);
3250 		return;
3251 	}
3252 
3253 	/*
3254 	 * Always update time if it was set; not only when it changes.
3255 	 * Otherwise we can 'forget' to update time for any but the last
3256 	 * context we sched out. For example:
3257 	 *
3258 	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3259 	 *   ctx_sched_out(.event_type = EVENT_PINNED)
3260 	 *
3261 	 * would only update time for the pinned events.
3262 	 */
3263 	if (is_active & EVENT_TIME) {
3264 		/* update (and stop) ctx time */
3265 		update_context_time(ctx);
3266 		update_cgrp_time_from_cpuctx(cpuctx, ctx == &cpuctx->ctx);
3267 		/*
3268 		 * CPU-release for the below ->is_active store,
3269 		 * see __load_acquire() in perf_event_time_now()
3270 		 */
3271 		barrier();
3272 	}
3273 
3274 	ctx->is_active &= ~event_type;
3275 	if (!(ctx->is_active & EVENT_ALL))
3276 		ctx->is_active = 0;
3277 
3278 	if (ctx->task) {
3279 		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3280 		if (!ctx->is_active)
3281 			cpuctx->task_ctx = NULL;
3282 	}
3283 
3284 	is_active ^= ctx->is_active; /* changed bits */
3285 
3286 	if (!ctx->nr_active || !(is_active & EVENT_ALL))
3287 		return;
3288 
3289 	perf_pmu_disable(ctx->pmu);
3290 	if (is_active & EVENT_PINNED) {
3291 		list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
3292 			group_sched_out(event, cpuctx, ctx);
3293 	}
3294 
3295 	if (is_active & EVENT_FLEXIBLE) {
3296 		list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
3297 			group_sched_out(event, cpuctx, ctx);
3298 
3299 		/*
3300 		 * Since we cleared EVENT_FLEXIBLE, also clear
3301 		 * rotate_necessary, is will be reset by
3302 		 * ctx_flexible_sched_in() when needed.
3303 		 */
3304 		ctx->rotate_necessary = 0;
3305 	}
3306 	perf_pmu_enable(ctx->pmu);
3307 }
3308 
3309 /*
3310  * Test whether two contexts are equivalent, i.e. whether they have both been
3311  * cloned from the same version of the same context.
3312  *
3313  * Equivalence is measured using a generation number in the context that is
3314  * incremented on each modification to it; see unclone_ctx(), list_add_event()
3315  * and list_del_event().
3316  */
context_equiv(struct perf_event_context * ctx1,struct perf_event_context * ctx2)3317 static int context_equiv(struct perf_event_context *ctx1,
3318 			 struct perf_event_context *ctx2)
3319 {
3320 	lockdep_assert_held(&ctx1->lock);
3321 	lockdep_assert_held(&ctx2->lock);
3322 
3323 	/* Pinning disables the swap optimization */
3324 	if (ctx1->pin_count || ctx2->pin_count)
3325 		return 0;
3326 
3327 	/* If ctx1 is the parent of ctx2 */
3328 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3329 		return 1;
3330 
3331 	/* If ctx2 is the parent of ctx1 */
3332 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3333 		return 1;
3334 
3335 	/*
3336 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
3337 	 * hierarchy, see perf_event_init_context().
3338 	 */
3339 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3340 			ctx1->parent_gen == ctx2->parent_gen)
3341 		return 1;
3342 
3343 	/* Unmatched */
3344 	return 0;
3345 }
3346 
__perf_event_sync_stat(struct perf_event * event,struct perf_event * next_event)3347 static void __perf_event_sync_stat(struct perf_event *event,
3348 				     struct perf_event *next_event)
3349 {
3350 	u64 value;
3351 
3352 	if (!event->attr.inherit_stat)
3353 		return;
3354 
3355 	/*
3356 	 * Update the event value, we cannot use perf_event_read()
3357 	 * because we're in the middle of a context switch and have IRQs
3358 	 * disabled, which upsets smp_call_function_single(), however
3359 	 * we know the event must be on the current CPU, therefore we
3360 	 * don't need to use it.
3361 	 */
3362 	if (event->state == PERF_EVENT_STATE_ACTIVE)
3363 		event->pmu->read(event);
3364 
3365 	perf_event_update_time(event);
3366 
3367 	/*
3368 	 * In order to keep per-task stats reliable we need to flip the event
3369 	 * values when we flip the contexts.
3370 	 */
3371 	value = local64_read(&next_event->count);
3372 	value = local64_xchg(&event->count, value);
3373 	local64_set(&next_event->count, value);
3374 
3375 	swap(event->total_time_enabled, next_event->total_time_enabled);
3376 	swap(event->total_time_running, next_event->total_time_running);
3377 
3378 	/*
3379 	 * Since we swizzled the values, update the user visible data too.
3380 	 */
3381 	perf_event_update_userpage(event);
3382 	perf_event_update_userpage(next_event);
3383 }
3384 
perf_event_sync_stat(struct perf_event_context * ctx,struct perf_event_context * next_ctx)3385 static void perf_event_sync_stat(struct perf_event_context *ctx,
3386 				   struct perf_event_context *next_ctx)
3387 {
3388 	struct perf_event *event, *next_event;
3389 
3390 	if (!ctx->nr_stat)
3391 		return;
3392 
3393 	update_context_time(ctx);
3394 
3395 	event = list_first_entry(&ctx->event_list,
3396 				   struct perf_event, event_entry);
3397 
3398 	next_event = list_first_entry(&next_ctx->event_list,
3399 					struct perf_event, event_entry);
3400 
3401 	while (&event->event_entry != &ctx->event_list &&
3402 	       &next_event->event_entry != &next_ctx->event_list) {
3403 
3404 		__perf_event_sync_stat(event, next_event);
3405 
3406 		event = list_next_entry(event, event_entry);
3407 		next_event = list_next_entry(next_event, event_entry);
3408 	}
3409 }
3410 
perf_event_context_sched_out(struct task_struct * task,int ctxn,struct task_struct * next)3411 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3412 					 struct task_struct *next)
3413 {
3414 	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
3415 	struct perf_event_context *next_ctx;
3416 	struct perf_event_context *parent, *next_parent;
3417 	struct perf_cpu_context *cpuctx;
3418 	int do_switch = 1;
3419 	struct pmu *pmu;
3420 
3421 	if (likely(!ctx))
3422 		return;
3423 
3424 	pmu = ctx->pmu;
3425 	cpuctx = __get_cpu_context(ctx);
3426 	if (!cpuctx->task_ctx)
3427 		return;
3428 
3429 	rcu_read_lock();
3430 	next_ctx = next->perf_event_ctxp[ctxn];
3431 	if (!next_ctx)
3432 		goto unlock;
3433 
3434 	parent = rcu_dereference(ctx->parent_ctx);
3435 	next_parent = rcu_dereference(next_ctx->parent_ctx);
3436 
3437 	/* If neither context have a parent context; they cannot be clones. */
3438 	if (!parent && !next_parent)
3439 		goto unlock;
3440 
3441 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3442 		/*
3443 		 * Looks like the two contexts are clones, so we might be
3444 		 * able to optimize the context switch.  We lock both
3445 		 * contexts and check that they are clones under the
3446 		 * lock (including re-checking that neither has been
3447 		 * uncloned in the meantime).  It doesn't matter which
3448 		 * order we take the locks because no other cpu could
3449 		 * be trying to lock both of these tasks.
3450 		 */
3451 		raw_spin_lock(&ctx->lock);
3452 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3453 		if (context_equiv(ctx, next_ctx)) {
3454 
3455 			WRITE_ONCE(ctx->task, next);
3456 			WRITE_ONCE(next_ctx->task, task);
3457 
3458 			perf_pmu_disable(pmu);
3459 
3460 			if (cpuctx->sched_cb_usage && pmu->sched_task)
3461 				pmu->sched_task(ctx, false);
3462 
3463 			/*
3464 			 * PMU specific parts of task perf context can require
3465 			 * additional synchronization. As an example of such
3466 			 * synchronization see implementation details of Intel
3467 			 * LBR call stack data profiling;
3468 			 */
3469 			if (pmu->swap_task_ctx)
3470 				pmu->swap_task_ctx(ctx, next_ctx);
3471 			else
3472 				swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3473 
3474 			perf_pmu_enable(pmu);
3475 
3476 			/*
3477 			 * RCU_INIT_POINTER here is safe because we've not
3478 			 * modified the ctx and the above modification of
3479 			 * ctx->task and ctx->task_ctx_data are immaterial
3480 			 * since those values are always verified under
3481 			 * ctx->lock which we're now holding.
3482 			 */
3483 			RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3484 			RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3485 
3486 			do_switch = 0;
3487 
3488 			perf_event_sync_stat(ctx, next_ctx);
3489 		}
3490 		raw_spin_unlock(&next_ctx->lock);
3491 		raw_spin_unlock(&ctx->lock);
3492 	}
3493 unlock:
3494 	rcu_read_unlock();
3495 
3496 	if (do_switch) {
3497 		raw_spin_lock(&ctx->lock);
3498 		perf_pmu_disable(pmu);
3499 
3500 		if (cpuctx->sched_cb_usage && pmu->sched_task)
3501 			pmu->sched_task(ctx, false);
3502 		task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
3503 
3504 		perf_pmu_enable(pmu);
3505 		raw_spin_unlock(&ctx->lock);
3506 	}
3507 }
3508 
3509 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3510 
perf_sched_cb_dec(struct pmu * pmu)3511 void perf_sched_cb_dec(struct pmu *pmu)
3512 {
3513 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3514 
3515 	this_cpu_dec(perf_sched_cb_usages);
3516 
3517 	if (!--cpuctx->sched_cb_usage)
3518 		list_del(&cpuctx->sched_cb_entry);
3519 }
3520 
3521 
perf_sched_cb_inc(struct pmu * pmu)3522 void perf_sched_cb_inc(struct pmu *pmu)
3523 {
3524 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3525 
3526 	if (!cpuctx->sched_cb_usage++)
3527 		list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3528 
3529 	this_cpu_inc(perf_sched_cb_usages);
3530 }
3531 
3532 /*
3533  * This function provides the context switch callback to the lower code
3534  * layer. It is invoked ONLY when the context switch callback is enabled.
3535  *
3536  * This callback is relevant even to per-cpu events; for example multi event
3537  * PEBS requires this to provide PID/TID information. This requires we flush
3538  * all queued PEBS records before we context switch to a new task.
3539  */
__perf_pmu_sched_task(struct perf_cpu_context * cpuctx,bool sched_in)3540 static void __perf_pmu_sched_task(struct perf_cpu_context *cpuctx, bool sched_in)
3541 {
3542 	struct pmu *pmu;
3543 
3544 	pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3545 
3546 	if (WARN_ON_ONCE(!pmu->sched_task))
3547 		return;
3548 
3549 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3550 	perf_pmu_disable(pmu);
3551 
3552 	pmu->sched_task(cpuctx->task_ctx, sched_in);
3553 
3554 	perf_pmu_enable(pmu);
3555 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3556 }
3557 
perf_pmu_sched_task(struct task_struct * prev,struct task_struct * next,bool sched_in)3558 static void perf_pmu_sched_task(struct task_struct *prev,
3559 				struct task_struct *next,
3560 				bool sched_in)
3561 {
3562 	struct perf_cpu_context *cpuctx;
3563 
3564 	if (prev == next)
3565 		return;
3566 
3567 	list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3568 		/* will be handled in perf_event_context_sched_in/out */
3569 		if (cpuctx->task_ctx)
3570 			continue;
3571 
3572 		__perf_pmu_sched_task(cpuctx, sched_in);
3573 	}
3574 }
3575 
3576 static void perf_event_switch(struct task_struct *task,
3577 			      struct task_struct *next_prev, bool sched_in);
3578 
3579 #define for_each_task_context_nr(ctxn)					\
3580 	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3581 
3582 /*
3583  * Called from scheduler to remove the events of the current task,
3584  * with interrupts disabled.
3585  *
3586  * We stop each event and update the event value in event->count.
3587  *
3588  * This does not protect us against NMI, but disable()
3589  * sets the disabled bit in the control field of event _before_
3590  * accessing the event control register. If a NMI hits, then it will
3591  * not restart the event.
3592  */
__perf_event_task_sched_out(struct task_struct * task,struct task_struct * next)3593 void __perf_event_task_sched_out(struct task_struct *task,
3594 				 struct task_struct *next)
3595 {
3596 	int ctxn;
3597 
3598 	if (__this_cpu_read(perf_sched_cb_usages))
3599 		perf_pmu_sched_task(task, next, false);
3600 
3601 	if (atomic_read(&nr_switch_events))
3602 		perf_event_switch(task, next, false);
3603 
3604 	for_each_task_context_nr(ctxn)
3605 		perf_event_context_sched_out(task, ctxn, next);
3606 
3607 	/*
3608 	 * if cgroup events exist on this CPU, then we need
3609 	 * to check if we have to switch out PMU state.
3610 	 * cgroup event are system-wide mode only
3611 	 */
3612 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3613 		perf_cgroup_sched_out(task, next);
3614 }
3615 
3616 /*
3617  * Called with IRQs disabled
3618  */
cpu_ctx_sched_out(struct perf_cpu_context * cpuctx,enum event_type_t event_type)3619 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3620 			      enum event_type_t event_type)
3621 {
3622 	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3623 }
3624 
perf_less_group_idx(const void * l,const void * r)3625 static bool perf_less_group_idx(const void *l, const void *r)
3626 {
3627 	const struct perf_event *le = *(const struct perf_event **)l;
3628 	const struct perf_event *re = *(const struct perf_event **)r;
3629 
3630 	return le->group_index < re->group_index;
3631 }
3632 
swap_ptr(void * l,void * r)3633 static void swap_ptr(void *l, void *r)
3634 {
3635 	void **lp = l, **rp = r;
3636 
3637 	swap(*lp, *rp);
3638 }
3639 
3640 static const struct min_heap_callbacks perf_min_heap = {
3641 	.elem_size = sizeof(struct perf_event *),
3642 	.less = perf_less_group_idx,
3643 	.swp = swap_ptr,
3644 };
3645 
__heap_add(struct min_heap * heap,struct perf_event * event)3646 static void __heap_add(struct min_heap *heap, struct perf_event *event)
3647 {
3648 	struct perf_event **itrs = heap->data;
3649 
3650 	if (event) {
3651 		itrs[heap->nr] = event;
3652 		heap->nr++;
3653 	}
3654 }
3655 
visit_groups_merge(struct perf_cpu_context * cpuctx,struct perf_event_groups * groups,int cpu,int (* func)(struct perf_event *,void *),void * data)3656 static noinline int visit_groups_merge(struct perf_cpu_context *cpuctx,
3657 				struct perf_event_groups *groups, int cpu,
3658 				int (*func)(struct perf_event *, void *),
3659 				void *data)
3660 {
3661 #ifdef CONFIG_CGROUP_PERF
3662 	struct cgroup_subsys_state *css = NULL;
3663 #endif
3664 	/* Space for per CPU and/or any CPU event iterators. */
3665 	struct perf_event *itrs[2];
3666 	struct min_heap event_heap;
3667 	struct perf_event **evt;
3668 	int ret;
3669 
3670 	if (cpuctx) {
3671 		event_heap = (struct min_heap){
3672 			.data = cpuctx->heap,
3673 			.nr = 0,
3674 			.size = cpuctx->heap_size,
3675 		};
3676 
3677 		lockdep_assert_held(&cpuctx->ctx.lock);
3678 
3679 #ifdef CONFIG_CGROUP_PERF
3680 		if (cpuctx->cgrp)
3681 			css = &cpuctx->cgrp->css;
3682 #endif
3683 	} else {
3684 		event_heap = (struct min_heap){
3685 			.data = itrs,
3686 			.nr = 0,
3687 			.size = ARRAY_SIZE(itrs),
3688 		};
3689 		/* Events not within a CPU context may be on any CPU. */
3690 		__heap_add(&event_heap, perf_event_groups_first(groups, -1, NULL));
3691 	}
3692 	evt = event_heap.data;
3693 
3694 	__heap_add(&event_heap, perf_event_groups_first(groups, cpu, NULL));
3695 
3696 #ifdef CONFIG_CGROUP_PERF
3697 	for (; css; css = css->parent)
3698 		__heap_add(&event_heap, perf_event_groups_first(groups, cpu, css->cgroup));
3699 #endif
3700 
3701 	min_heapify_all(&event_heap, &perf_min_heap);
3702 
3703 	while (event_heap.nr) {
3704 		ret = func(*evt, data);
3705 		if (ret)
3706 			return ret;
3707 
3708 		*evt = perf_event_groups_next(*evt);
3709 		if (*evt)
3710 			min_heapify(&event_heap, 0, &perf_min_heap);
3711 		else
3712 			min_heap_pop(&event_heap, &perf_min_heap);
3713 	}
3714 
3715 	return 0;
3716 }
3717 
3718 /*
3719  * Because the userpage is strictly per-event (there is no concept of context,
3720  * so there cannot be a context indirection), every userpage must be updated
3721  * when context time starts :-(
3722  *
3723  * IOW, we must not miss EVENT_TIME edges.
3724  */
event_update_userpage(struct perf_event * event)3725 static inline bool event_update_userpage(struct perf_event *event)
3726 {
3727 	if (likely(!atomic_read(&event->mmap_count)))
3728 		return false;
3729 
3730 	perf_event_update_time(event);
3731 	perf_event_update_userpage(event);
3732 
3733 	return true;
3734 }
3735 
group_update_userpage(struct perf_event * group_event)3736 static inline void group_update_userpage(struct perf_event *group_event)
3737 {
3738 	struct perf_event *event;
3739 
3740 	if (!event_update_userpage(group_event))
3741 		return;
3742 
3743 	for_each_sibling_event(event, group_event)
3744 		event_update_userpage(event);
3745 }
3746 
merge_sched_in(struct perf_event * event,void * data)3747 static int merge_sched_in(struct perf_event *event, void *data)
3748 {
3749 	struct perf_event_context *ctx = event->ctx;
3750 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3751 	int *can_add_hw = data;
3752 
3753 	if (event->state <= PERF_EVENT_STATE_OFF)
3754 		return 0;
3755 
3756 	if (!event_filter_match(event))
3757 		return 0;
3758 
3759 	if (group_can_go_on(event, cpuctx, *can_add_hw)) {
3760 		if (!group_sched_in(event, cpuctx, ctx))
3761 			list_add_tail(&event->active_list, get_event_list(event));
3762 	}
3763 
3764 	if (event->state == PERF_EVENT_STATE_INACTIVE) {
3765 		*can_add_hw = 0;
3766 		if (event->attr.pinned) {
3767 			perf_cgroup_event_disable(event, ctx);
3768 			perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3769 		} else {
3770 			ctx->rotate_necessary = 1;
3771 			perf_mux_hrtimer_restart(cpuctx);
3772 			group_update_userpage(event);
3773 		}
3774 	}
3775 
3776 	return 0;
3777 }
3778 
3779 static void
ctx_pinned_sched_in(struct perf_event_context * ctx,struct perf_cpu_context * cpuctx)3780 ctx_pinned_sched_in(struct perf_event_context *ctx,
3781 		    struct perf_cpu_context *cpuctx)
3782 {
3783 	int can_add_hw = 1;
3784 
3785 	if (ctx != &cpuctx->ctx)
3786 		cpuctx = NULL;
3787 
3788 	visit_groups_merge(cpuctx, &ctx->pinned_groups,
3789 			   smp_processor_id(),
3790 			   merge_sched_in, &can_add_hw);
3791 }
3792 
3793 static void
ctx_flexible_sched_in(struct perf_event_context * ctx,struct perf_cpu_context * cpuctx)3794 ctx_flexible_sched_in(struct perf_event_context *ctx,
3795 		      struct perf_cpu_context *cpuctx)
3796 {
3797 	int can_add_hw = 1;
3798 
3799 	if (ctx != &cpuctx->ctx)
3800 		cpuctx = NULL;
3801 
3802 	visit_groups_merge(cpuctx, &ctx->flexible_groups,
3803 			   smp_processor_id(),
3804 			   merge_sched_in, &can_add_hw);
3805 }
3806 
3807 static void
ctx_sched_in(struct perf_event_context * ctx,struct perf_cpu_context * cpuctx,enum event_type_t event_type,struct task_struct * task)3808 ctx_sched_in(struct perf_event_context *ctx,
3809 	     struct perf_cpu_context *cpuctx,
3810 	     enum event_type_t event_type,
3811 	     struct task_struct *task)
3812 {
3813 	int is_active = ctx->is_active;
3814 
3815 	lockdep_assert_held(&ctx->lock);
3816 
3817 	if (likely(!ctx->nr_events))
3818 		return;
3819 
3820 	if (is_active ^ EVENT_TIME) {
3821 		/* start ctx time */
3822 		__update_context_time(ctx, false);
3823 		perf_cgroup_set_timestamp(task, ctx);
3824 		/*
3825 		 * CPU-release for the below ->is_active store,
3826 		 * see __load_acquire() in perf_event_time_now()
3827 		 */
3828 		barrier();
3829 	}
3830 
3831 	ctx->is_active |= (event_type | EVENT_TIME);
3832 	if (ctx->task) {
3833 		if (!is_active)
3834 			cpuctx->task_ctx = ctx;
3835 		else
3836 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3837 	}
3838 
3839 	is_active ^= ctx->is_active; /* changed bits */
3840 
3841 	/*
3842 	 * First go through the list and put on any pinned groups
3843 	 * in order to give them the best chance of going on.
3844 	 */
3845 	if (is_active & EVENT_PINNED)
3846 		ctx_pinned_sched_in(ctx, cpuctx);
3847 
3848 	/* Then walk through the lower prio flexible groups */
3849 	if (is_active & EVENT_FLEXIBLE)
3850 		ctx_flexible_sched_in(ctx, cpuctx);
3851 }
3852 
cpu_ctx_sched_in(struct perf_cpu_context * cpuctx,enum event_type_t event_type,struct task_struct * task)3853 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3854 			     enum event_type_t event_type,
3855 			     struct task_struct *task)
3856 {
3857 	struct perf_event_context *ctx = &cpuctx->ctx;
3858 
3859 	ctx_sched_in(ctx, cpuctx, event_type, task);
3860 }
3861 
perf_event_context_sched_in(struct perf_event_context * ctx,struct task_struct * task)3862 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3863 					struct task_struct *task)
3864 {
3865 	struct perf_cpu_context *cpuctx;
3866 	struct pmu *pmu = ctx->pmu;
3867 
3868 	cpuctx = __get_cpu_context(ctx);
3869 	if (cpuctx->task_ctx == ctx) {
3870 		if (cpuctx->sched_cb_usage)
3871 			__perf_pmu_sched_task(cpuctx, true);
3872 		return;
3873 	}
3874 
3875 	perf_ctx_lock(cpuctx, ctx);
3876 	/*
3877 	 * We must check ctx->nr_events while holding ctx->lock, such
3878 	 * that we serialize against perf_install_in_context().
3879 	 */
3880 	if (!ctx->nr_events)
3881 		goto unlock;
3882 
3883 	perf_pmu_disable(pmu);
3884 	/*
3885 	 * We want to keep the following priority order:
3886 	 * cpu pinned (that don't need to move), task pinned,
3887 	 * cpu flexible, task flexible.
3888 	 *
3889 	 * However, if task's ctx is not carrying any pinned
3890 	 * events, no need to flip the cpuctx's events around.
3891 	 */
3892 	if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3893 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3894 	perf_event_sched_in(cpuctx, ctx, task);
3895 
3896 	if (cpuctx->sched_cb_usage && pmu->sched_task)
3897 		pmu->sched_task(cpuctx->task_ctx, true);
3898 
3899 	perf_pmu_enable(pmu);
3900 
3901 unlock:
3902 	perf_ctx_unlock(cpuctx, ctx);
3903 }
3904 
3905 /*
3906  * Called from scheduler to add the events of the current task
3907  * with interrupts disabled.
3908  *
3909  * We restore the event value and then enable it.
3910  *
3911  * This does not protect us against NMI, but enable()
3912  * sets the enabled bit in the control field of event _before_
3913  * accessing the event control register. If a NMI hits, then it will
3914  * keep the event running.
3915  */
__perf_event_task_sched_in(struct task_struct * prev,struct task_struct * task)3916 void __perf_event_task_sched_in(struct task_struct *prev,
3917 				struct task_struct *task)
3918 {
3919 	struct perf_event_context *ctx;
3920 	int ctxn;
3921 
3922 	/*
3923 	 * If cgroup events exist on this CPU, then we need to check if we have
3924 	 * to switch in PMU state; cgroup event are system-wide mode only.
3925 	 *
3926 	 * Since cgroup events are CPU events, we must schedule these in before
3927 	 * we schedule in the task events.
3928 	 */
3929 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3930 		perf_cgroup_sched_in(prev, task);
3931 
3932 	for_each_task_context_nr(ctxn) {
3933 		ctx = task->perf_event_ctxp[ctxn];
3934 		if (likely(!ctx))
3935 			continue;
3936 
3937 		perf_event_context_sched_in(ctx, task);
3938 	}
3939 
3940 	if (atomic_read(&nr_switch_events))
3941 		perf_event_switch(task, prev, true);
3942 
3943 	if (__this_cpu_read(perf_sched_cb_usages))
3944 		perf_pmu_sched_task(prev, task, true);
3945 }
3946 
perf_calculate_period(struct perf_event * event,u64 nsec,u64 count)3947 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3948 {
3949 	u64 frequency = event->attr.sample_freq;
3950 	u64 sec = NSEC_PER_SEC;
3951 	u64 divisor, dividend;
3952 
3953 	int count_fls, nsec_fls, frequency_fls, sec_fls;
3954 
3955 	count_fls = fls64(count);
3956 	nsec_fls = fls64(nsec);
3957 	frequency_fls = fls64(frequency);
3958 	sec_fls = 30;
3959 
3960 	/*
3961 	 * We got @count in @nsec, with a target of sample_freq HZ
3962 	 * the target period becomes:
3963 	 *
3964 	 *             @count * 10^9
3965 	 * period = -------------------
3966 	 *          @nsec * sample_freq
3967 	 *
3968 	 */
3969 
3970 	/*
3971 	 * Reduce accuracy by one bit such that @a and @b converge
3972 	 * to a similar magnitude.
3973 	 */
3974 #define REDUCE_FLS(a, b)		\
3975 do {					\
3976 	if (a##_fls > b##_fls) {	\
3977 		a >>= 1;		\
3978 		a##_fls--;		\
3979 	} else {			\
3980 		b >>= 1;		\
3981 		b##_fls--;		\
3982 	}				\
3983 } while (0)
3984 
3985 	/*
3986 	 * Reduce accuracy until either term fits in a u64, then proceed with
3987 	 * the other, so that finally we can do a u64/u64 division.
3988 	 */
3989 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3990 		REDUCE_FLS(nsec, frequency);
3991 		REDUCE_FLS(sec, count);
3992 	}
3993 
3994 	if (count_fls + sec_fls > 64) {
3995 		divisor = nsec * frequency;
3996 
3997 		while (count_fls + sec_fls > 64) {
3998 			REDUCE_FLS(count, sec);
3999 			divisor >>= 1;
4000 		}
4001 
4002 		dividend = count * sec;
4003 	} else {
4004 		dividend = count * sec;
4005 
4006 		while (nsec_fls + frequency_fls > 64) {
4007 			REDUCE_FLS(nsec, frequency);
4008 			dividend >>= 1;
4009 		}
4010 
4011 		divisor = nsec * frequency;
4012 	}
4013 
4014 	if (!divisor)
4015 		return dividend;
4016 
4017 	return div64_u64(dividend, divisor);
4018 }
4019 
4020 static DEFINE_PER_CPU(int, perf_throttled_count);
4021 static DEFINE_PER_CPU(u64, perf_throttled_seq);
4022 
perf_adjust_period(struct perf_event * event,u64 nsec,u64 count,bool disable)4023 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
4024 {
4025 	struct hw_perf_event *hwc = &event->hw;
4026 	s64 period, sample_period;
4027 	s64 delta;
4028 
4029 	period = perf_calculate_period(event, nsec, count);
4030 
4031 	delta = (s64)(period - hwc->sample_period);
4032 	delta = (delta + 7) / 8; /* low pass filter */
4033 
4034 	sample_period = hwc->sample_period + delta;
4035 
4036 	if (!sample_period)
4037 		sample_period = 1;
4038 
4039 	hwc->sample_period = sample_period;
4040 
4041 	if (local64_read(&hwc->period_left) > 8*sample_period) {
4042 		if (disable)
4043 			event->pmu->stop(event, PERF_EF_UPDATE);
4044 
4045 		local64_set(&hwc->period_left, 0);
4046 
4047 		if (disable)
4048 			event->pmu->start(event, PERF_EF_RELOAD);
4049 	}
4050 }
4051 
4052 /*
4053  * combine freq adjustment with unthrottling to avoid two passes over the
4054  * events. At the same time, make sure, having freq events does not change
4055  * the rate of unthrottling as that would introduce bias.
4056  */
perf_adjust_freq_unthr_context(struct perf_event_context * ctx,int needs_unthr)4057 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
4058 					   int needs_unthr)
4059 {
4060 	struct perf_event *event;
4061 	struct hw_perf_event *hwc;
4062 	u64 now, period = TICK_NSEC;
4063 	s64 delta;
4064 
4065 	/*
4066 	 * only need to iterate over all events iff:
4067 	 * - context have events in frequency mode (needs freq adjust)
4068 	 * - there are events to unthrottle on this cpu
4069 	 */
4070 	if (!(ctx->nr_freq || needs_unthr))
4071 		return;
4072 
4073 	raw_spin_lock(&ctx->lock);
4074 	perf_pmu_disable(ctx->pmu);
4075 
4076 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4077 		if (event->state != PERF_EVENT_STATE_ACTIVE)
4078 			continue;
4079 
4080 		if (!event_filter_match(event))
4081 			continue;
4082 
4083 		perf_pmu_disable(event->pmu);
4084 
4085 		hwc = &event->hw;
4086 
4087 		if (hwc->interrupts == MAX_INTERRUPTS) {
4088 			hwc->interrupts = 0;
4089 			perf_log_throttle(event, 1);
4090 			event->pmu->start(event, 0);
4091 		}
4092 
4093 		if (!event->attr.freq || !event->attr.sample_freq)
4094 			goto next;
4095 
4096 		/*
4097 		 * stop the event and update event->count
4098 		 */
4099 		event->pmu->stop(event, PERF_EF_UPDATE);
4100 
4101 		now = local64_read(&event->count);
4102 		delta = now - hwc->freq_count_stamp;
4103 		hwc->freq_count_stamp = now;
4104 
4105 		/*
4106 		 * restart the event
4107 		 * reload only if value has changed
4108 		 * we have stopped the event so tell that
4109 		 * to perf_adjust_period() to avoid stopping it
4110 		 * twice.
4111 		 */
4112 		if (delta > 0)
4113 			perf_adjust_period(event, period, delta, false);
4114 
4115 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
4116 	next:
4117 		perf_pmu_enable(event->pmu);
4118 	}
4119 
4120 	perf_pmu_enable(ctx->pmu);
4121 	raw_spin_unlock(&ctx->lock);
4122 }
4123 
4124 /*
4125  * Move @event to the tail of the @ctx's elegible events.
4126  */
rotate_ctx(struct perf_event_context * ctx,struct perf_event * event)4127 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
4128 {
4129 	/*
4130 	 * Rotate the first entry last of non-pinned groups. Rotation might be
4131 	 * disabled by the inheritance code.
4132 	 */
4133 	if (ctx->rotate_disable)
4134 		return;
4135 
4136 	perf_event_groups_delete(&ctx->flexible_groups, event);
4137 	perf_event_groups_insert(&ctx->flexible_groups, event);
4138 }
4139 
4140 /* pick an event from the flexible_groups to rotate */
4141 static inline struct perf_event *
ctx_event_to_rotate(struct perf_event_context * ctx)4142 ctx_event_to_rotate(struct perf_event_context *ctx)
4143 {
4144 	struct perf_event *event;
4145 
4146 	/* pick the first active flexible event */
4147 	event = list_first_entry_or_null(&ctx->flexible_active,
4148 					 struct perf_event, active_list);
4149 
4150 	/* if no active flexible event, pick the first event */
4151 	if (!event) {
4152 		event = rb_entry_safe(rb_first(&ctx->flexible_groups.tree),
4153 				      typeof(*event), group_node);
4154 	}
4155 
4156 	/*
4157 	 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
4158 	 * finds there are unschedulable events, it will set it again.
4159 	 */
4160 	ctx->rotate_necessary = 0;
4161 
4162 	return event;
4163 }
4164 
perf_rotate_context(struct perf_cpu_context * cpuctx)4165 static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
4166 {
4167 	struct perf_event *cpu_event = NULL, *task_event = NULL;
4168 	struct perf_event_context *task_ctx = NULL;
4169 	int cpu_rotate, task_rotate;
4170 
4171 	/*
4172 	 * Since we run this from IRQ context, nobody can install new
4173 	 * events, thus the event count values are stable.
4174 	 */
4175 
4176 	cpu_rotate = cpuctx->ctx.rotate_necessary;
4177 	task_ctx = cpuctx->task_ctx;
4178 	task_rotate = task_ctx ? task_ctx->rotate_necessary : 0;
4179 
4180 	if (!(cpu_rotate || task_rotate))
4181 		return false;
4182 
4183 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
4184 	perf_pmu_disable(cpuctx->ctx.pmu);
4185 
4186 	if (task_rotate)
4187 		task_event = ctx_event_to_rotate(task_ctx);
4188 	if (cpu_rotate)
4189 		cpu_event = ctx_event_to_rotate(&cpuctx->ctx);
4190 
4191 	/*
4192 	 * As per the order given at ctx_resched() first 'pop' task flexible
4193 	 * and then, if needed CPU flexible.
4194 	 */
4195 	if (task_event || (task_ctx && cpu_event))
4196 		ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE);
4197 	if (cpu_event)
4198 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
4199 
4200 	if (task_event)
4201 		rotate_ctx(task_ctx, task_event);
4202 	if (cpu_event)
4203 		rotate_ctx(&cpuctx->ctx, cpu_event);
4204 
4205 	perf_event_sched_in(cpuctx, task_ctx, current);
4206 
4207 	perf_pmu_enable(cpuctx->ctx.pmu);
4208 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
4209 
4210 	return true;
4211 }
4212 
perf_event_task_tick(void)4213 void perf_event_task_tick(void)
4214 {
4215 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
4216 	struct perf_event_context *ctx, *tmp;
4217 	int throttled;
4218 
4219 	lockdep_assert_irqs_disabled();
4220 
4221 	__this_cpu_inc(perf_throttled_seq);
4222 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
4223 	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
4224 
4225 	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
4226 		perf_adjust_freq_unthr_context(ctx, throttled);
4227 }
4228 
event_enable_on_exec(struct perf_event * event,struct perf_event_context * ctx)4229 static int event_enable_on_exec(struct perf_event *event,
4230 				struct perf_event_context *ctx)
4231 {
4232 	if (!event->attr.enable_on_exec)
4233 		return 0;
4234 
4235 	event->attr.enable_on_exec = 0;
4236 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
4237 		return 0;
4238 
4239 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
4240 
4241 	return 1;
4242 }
4243 
4244 /*
4245  * Enable all of a task's events that have been marked enable-on-exec.
4246  * This expects task == current.
4247  */
perf_event_enable_on_exec(int ctxn)4248 static void perf_event_enable_on_exec(int ctxn)
4249 {
4250 	struct perf_event_context *ctx, *clone_ctx = NULL;
4251 	enum event_type_t event_type = 0;
4252 	struct perf_cpu_context *cpuctx;
4253 	struct perf_event *event;
4254 	unsigned long flags;
4255 	int enabled = 0;
4256 
4257 	local_irq_save(flags);
4258 	ctx = current->perf_event_ctxp[ctxn];
4259 	if (!ctx || !ctx->nr_events)
4260 		goto out;
4261 
4262 	cpuctx = __get_cpu_context(ctx);
4263 	perf_ctx_lock(cpuctx, ctx);
4264 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
4265 	list_for_each_entry(event, &ctx->event_list, event_entry) {
4266 		enabled |= event_enable_on_exec(event, ctx);
4267 		event_type |= get_event_type(event);
4268 	}
4269 
4270 	/*
4271 	 * Unclone and reschedule this context if we enabled any event.
4272 	 */
4273 	if (enabled) {
4274 		clone_ctx = unclone_ctx(ctx);
4275 		ctx_resched(cpuctx, ctx, event_type);
4276 	} else {
4277 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
4278 	}
4279 	perf_ctx_unlock(cpuctx, ctx);
4280 
4281 out:
4282 	local_irq_restore(flags);
4283 
4284 	if (clone_ctx)
4285 		put_ctx(clone_ctx);
4286 }
4287 
4288 struct perf_read_data {
4289 	struct perf_event *event;
4290 	bool group;
4291 	int ret;
4292 };
4293 
__perf_event_read_cpu(struct perf_event * event,int event_cpu)4294 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
4295 {
4296 	u16 local_pkg, event_pkg;
4297 
4298 	if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
4299 		int local_cpu = smp_processor_id();
4300 
4301 		event_pkg = topology_physical_package_id(event_cpu);
4302 		local_pkg = topology_physical_package_id(local_cpu);
4303 
4304 		if (event_pkg == local_pkg)
4305 			return local_cpu;
4306 	}
4307 
4308 	return event_cpu;
4309 }
4310 
4311 /*
4312  * Cross CPU call to read the hardware event
4313  */
__perf_event_read(void * info)4314 static void __perf_event_read(void *info)
4315 {
4316 	struct perf_read_data *data = info;
4317 	struct perf_event *sub, *event = data->event;
4318 	struct perf_event_context *ctx = event->ctx;
4319 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4320 	struct pmu *pmu = event->pmu;
4321 
4322 	/*
4323 	 * If this is a task context, we need to check whether it is
4324 	 * the current task context of this cpu.  If not it has been
4325 	 * scheduled out before the smp call arrived.  In that case
4326 	 * event->count would have been updated to a recent sample
4327 	 * when the event was scheduled out.
4328 	 */
4329 	if (ctx->task && cpuctx->task_ctx != ctx)
4330 		return;
4331 
4332 	raw_spin_lock(&ctx->lock);
4333 	if (ctx->is_active & EVENT_TIME) {
4334 		update_context_time(ctx);
4335 		update_cgrp_time_from_event(event);
4336 	}
4337 
4338 	perf_event_update_time(event);
4339 	if (data->group)
4340 		perf_event_update_sibling_time(event);
4341 
4342 	if (event->state != PERF_EVENT_STATE_ACTIVE)
4343 		goto unlock;
4344 
4345 	if (!data->group) {
4346 		pmu->read(event);
4347 		data->ret = 0;
4348 		goto unlock;
4349 	}
4350 
4351 	pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4352 
4353 	pmu->read(event);
4354 
4355 	for_each_sibling_event(sub, event) {
4356 		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
4357 			/*
4358 			 * Use sibling's PMU rather than @event's since
4359 			 * sibling could be on different (eg: software) PMU.
4360 			 */
4361 			sub->pmu->read(sub);
4362 		}
4363 	}
4364 
4365 	data->ret = pmu->commit_txn(pmu);
4366 
4367 unlock:
4368 	raw_spin_unlock(&ctx->lock);
4369 }
4370 
perf_event_count(struct perf_event * event)4371 static inline u64 perf_event_count(struct perf_event *event)
4372 {
4373 	return local64_read(&event->count) + atomic64_read(&event->child_count);
4374 }
4375 
calc_timer_values(struct perf_event * event,u64 * now,u64 * enabled,u64 * running)4376 static void calc_timer_values(struct perf_event *event,
4377 				u64 *now,
4378 				u64 *enabled,
4379 				u64 *running)
4380 {
4381 	u64 ctx_time;
4382 
4383 	*now = perf_clock();
4384 	ctx_time = perf_event_time_now(event, *now);
4385 	__perf_update_times(event, ctx_time, enabled, running);
4386 }
4387 
4388 /*
4389  * NMI-safe method to read a local event, that is an event that
4390  * is:
4391  *   - either for the current task, or for this CPU
4392  *   - does not have inherit set, for inherited task events
4393  *     will not be local and we cannot read them atomically
4394  *   - must not have a pmu::count method
4395  */
perf_event_read_local(struct perf_event * event,u64 * value,u64 * enabled,u64 * running)4396 int perf_event_read_local(struct perf_event *event, u64 *value,
4397 			  u64 *enabled, u64 *running)
4398 {
4399 	unsigned long flags;
4400 	int ret = 0;
4401 
4402 	/*
4403 	 * Disabling interrupts avoids all counter scheduling (context
4404 	 * switches, timer based rotation and IPIs).
4405 	 */
4406 	local_irq_save(flags);
4407 
4408 	/*
4409 	 * It must not be an event with inherit set, we cannot read
4410 	 * all child counters from atomic context.
4411 	 */
4412 	if (event->attr.inherit) {
4413 		ret = -EOPNOTSUPP;
4414 		goto out;
4415 	}
4416 
4417 	/* If this is a per-task event, it must be for current */
4418 	if ((event->attach_state & PERF_ATTACH_TASK) &&
4419 	    event->hw.target != current) {
4420 		ret = -EINVAL;
4421 		goto out;
4422 	}
4423 
4424 	/* If this is a per-CPU event, it must be for this CPU */
4425 	if (!(event->attach_state & PERF_ATTACH_TASK) &&
4426 	    event->cpu != smp_processor_id()) {
4427 		ret = -EINVAL;
4428 		goto out;
4429 	}
4430 
4431 	/* If this is a pinned event it must be running on this CPU */
4432 	if (event->attr.pinned && event->oncpu != smp_processor_id()) {
4433 		ret = -EBUSY;
4434 		goto out;
4435 	}
4436 
4437 	/*
4438 	 * If the event is currently on this CPU, its either a per-task event,
4439 	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4440 	 * oncpu == -1).
4441 	 */
4442 	if (event->oncpu == smp_processor_id())
4443 		event->pmu->read(event);
4444 
4445 	*value = local64_read(&event->count);
4446 	if (enabled || running) {
4447 		u64 __enabled, __running, __now;;
4448 
4449 		calc_timer_values(event, &__now, &__enabled, &__running);
4450 		if (enabled)
4451 			*enabled = __enabled;
4452 		if (running)
4453 			*running = __running;
4454 	}
4455 out:
4456 	local_irq_restore(flags);
4457 
4458 	return ret;
4459 }
4460 
perf_event_read(struct perf_event * event,bool group)4461 static int perf_event_read(struct perf_event *event, bool group)
4462 {
4463 	enum perf_event_state state = READ_ONCE(event->state);
4464 	int event_cpu, ret = 0;
4465 
4466 	/*
4467 	 * If event is enabled and currently active on a CPU, update the
4468 	 * value in the event structure:
4469 	 */
4470 again:
4471 	if (state == PERF_EVENT_STATE_ACTIVE) {
4472 		struct perf_read_data data;
4473 
4474 		/*
4475 		 * Orders the ->state and ->oncpu loads such that if we see
4476 		 * ACTIVE we must also see the right ->oncpu.
4477 		 *
4478 		 * Matches the smp_wmb() from event_sched_in().
4479 		 */
4480 		smp_rmb();
4481 
4482 		event_cpu = READ_ONCE(event->oncpu);
4483 		if ((unsigned)event_cpu >= nr_cpu_ids)
4484 			return 0;
4485 
4486 		data = (struct perf_read_data){
4487 			.event = event,
4488 			.group = group,
4489 			.ret = 0,
4490 		};
4491 
4492 		preempt_disable();
4493 		event_cpu = __perf_event_read_cpu(event, event_cpu);
4494 
4495 		/*
4496 		 * Purposely ignore the smp_call_function_single() return
4497 		 * value.
4498 		 *
4499 		 * If event_cpu isn't a valid CPU it means the event got
4500 		 * scheduled out and that will have updated the event count.
4501 		 *
4502 		 * Therefore, either way, we'll have an up-to-date event count
4503 		 * after this.
4504 		 */
4505 		(void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4506 		preempt_enable();
4507 		ret = data.ret;
4508 
4509 	} else if (state == PERF_EVENT_STATE_INACTIVE) {
4510 		struct perf_event_context *ctx = event->ctx;
4511 		unsigned long flags;
4512 
4513 		raw_spin_lock_irqsave(&ctx->lock, flags);
4514 		state = event->state;
4515 		if (state != PERF_EVENT_STATE_INACTIVE) {
4516 			raw_spin_unlock_irqrestore(&ctx->lock, flags);
4517 			goto again;
4518 		}
4519 
4520 		/*
4521 		 * May read while context is not active (e.g., thread is
4522 		 * blocked), in that case we cannot update context time
4523 		 */
4524 		if (ctx->is_active & EVENT_TIME) {
4525 			update_context_time(ctx);
4526 			update_cgrp_time_from_event(event);
4527 		}
4528 
4529 		perf_event_update_time(event);
4530 		if (group)
4531 			perf_event_update_sibling_time(event);
4532 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4533 	}
4534 
4535 	return ret;
4536 }
4537 
4538 /*
4539  * Initialize the perf_event context in a task_struct:
4540  */
__perf_event_init_context(struct perf_event_context * ctx)4541 static void __perf_event_init_context(struct perf_event_context *ctx)
4542 {
4543 	raw_spin_lock_init(&ctx->lock);
4544 	mutex_init(&ctx->mutex);
4545 	INIT_LIST_HEAD(&ctx->active_ctx_list);
4546 	perf_event_groups_init(&ctx->pinned_groups);
4547 	perf_event_groups_init(&ctx->flexible_groups);
4548 	INIT_LIST_HEAD(&ctx->event_list);
4549 	INIT_LIST_HEAD(&ctx->pinned_active);
4550 	INIT_LIST_HEAD(&ctx->flexible_active);
4551 	refcount_set(&ctx->refcount, 1);
4552 }
4553 
4554 static struct perf_event_context *
alloc_perf_context(struct pmu * pmu,struct task_struct * task)4555 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4556 {
4557 	struct perf_event_context *ctx;
4558 
4559 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4560 	if (!ctx)
4561 		return NULL;
4562 
4563 	__perf_event_init_context(ctx);
4564 	if (task)
4565 		ctx->task = get_task_struct(task);
4566 	ctx->pmu = pmu;
4567 
4568 	return ctx;
4569 }
4570 
4571 static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)4572 find_lively_task_by_vpid(pid_t vpid)
4573 {
4574 	struct task_struct *task;
4575 
4576 	rcu_read_lock();
4577 	if (!vpid)
4578 		task = current;
4579 	else
4580 		task = find_task_by_vpid(vpid);
4581 	if (task)
4582 		get_task_struct(task);
4583 	rcu_read_unlock();
4584 
4585 	if (!task)
4586 		return ERR_PTR(-ESRCH);
4587 
4588 	return task;
4589 }
4590 
4591 /*
4592  * Returns a matching context with refcount and pincount.
4593  */
4594 static struct perf_event_context *
find_get_context(struct pmu * pmu,struct task_struct * task,struct perf_event * event)4595 find_get_context(struct pmu *pmu, struct task_struct *task,
4596 		struct perf_event *event)
4597 {
4598 	struct perf_event_context *ctx, *clone_ctx = NULL;
4599 	struct perf_cpu_context *cpuctx;
4600 	void *task_ctx_data = NULL;
4601 	unsigned long flags;
4602 	int ctxn, err;
4603 	int cpu = event->cpu;
4604 
4605 	if (!task) {
4606 		/* Must be root to operate on a CPU event: */
4607 		err = perf_allow_cpu(&event->attr);
4608 		if (err)
4609 			return ERR_PTR(err);
4610 
4611 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
4612 		ctx = &cpuctx->ctx;
4613 		get_ctx(ctx);
4614 		raw_spin_lock_irqsave(&ctx->lock, flags);
4615 		++ctx->pin_count;
4616 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4617 
4618 		return ctx;
4619 	}
4620 
4621 	err = -EINVAL;
4622 	ctxn = pmu->task_ctx_nr;
4623 	if (ctxn < 0)
4624 		goto errout;
4625 
4626 	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4627 		task_ctx_data = alloc_task_ctx_data(pmu);
4628 		if (!task_ctx_data) {
4629 			err = -ENOMEM;
4630 			goto errout;
4631 		}
4632 	}
4633 
4634 retry:
4635 	ctx = perf_lock_task_context(task, ctxn, &flags);
4636 	if (ctx) {
4637 		clone_ctx = unclone_ctx(ctx);
4638 		++ctx->pin_count;
4639 
4640 		if (task_ctx_data && !ctx->task_ctx_data) {
4641 			ctx->task_ctx_data = task_ctx_data;
4642 			task_ctx_data = NULL;
4643 		}
4644 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4645 
4646 		if (clone_ctx)
4647 			put_ctx(clone_ctx);
4648 	} else {
4649 		ctx = alloc_perf_context(pmu, task);
4650 		err = -ENOMEM;
4651 		if (!ctx)
4652 			goto errout;
4653 
4654 		if (task_ctx_data) {
4655 			ctx->task_ctx_data = task_ctx_data;
4656 			task_ctx_data = NULL;
4657 		}
4658 
4659 		err = 0;
4660 		mutex_lock(&task->perf_event_mutex);
4661 		/*
4662 		 * If it has already passed perf_event_exit_task().
4663 		 * we must see PF_EXITING, it takes this mutex too.
4664 		 */
4665 		if (task->flags & PF_EXITING)
4666 			err = -ESRCH;
4667 		else if (task->perf_event_ctxp[ctxn])
4668 			err = -EAGAIN;
4669 		else {
4670 			get_ctx(ctx);
4671 			++ctx->pin_count;
4672 			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
4673 		}
4674 		mutex_unlock(&task->perf_event_mutex);
4675 
4676 		if (unlikely(err)) {
4677 			put_ctx(ctx);
4678 
4679 			if (err == -EAGAIN)
4680 				goto retry;
4681 			goto errout;
4682 		}
4683 	}
4684 
4685 	free_task_ctx_data(pmu, task_ctx_data);
4686 	return ctx;
4687 
4688 errout:
4689 	free_task_ctx_data(pmu, task_ctx_data);
4690 	return ERR_PTR(err);
4691 }
4692 
4693 static void perf_event_free_filter(struct perf_event *event);
4694 static void perf_event_free_bpf_prog(struct perf_event *event);
4695 
free_event_rcu(struct rcu_head * head)4696 static void free_event_rcu(struct rcu_head *head)
4697 {
4698 	struct perf_event *event;
4699 
4700 	event = container_of(head, struct perf_event, rcu_head);
4701 	if (event->ns)
4702 		put_pid_ns(event->ns);
4703 	perf_event_free_filter(event);
4704 	kfree(event);
4705 }
4706 
4707 static void ring_buffer_attach(struct perf_event *event,
4708 			       struct perf_buffer *rb);
4709 
detach_sb_event(struct perf_event * event)4710 static void detach_sb_event(struct perf_event *event)
4711 {
4712 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4713 
4714 	raw_spin_lock(&pel->lock);
4715 	list_del_rcu(&event->sb_list);
4716 	raw_spin_unlock(&pel->lock);
4717 }
4718 
is_sb_event(struct perf_event * event)4719 static bool is_sb_event(struct perf_event *event)
4720 {
4721 	struct perf_event_attr *attr = &event->attr;
4722 
4723 	if (event->parent)
4724 		return false;
4725 
4726 	if (event->attach_state & PERF_ATTACH_TASK)
4727 		return false;
4728 
4729 	if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4730 	    attr->comm || attr->comm_exec ||
4731 	    attr->task || attr->ksymbol ||
4732 	    attr->context_switch || attr->text_poke ||
4733 	    attr->bpf_event)
4734 		return true;
4735 	return false;
4736 }
4737 
unaccount_pmu_sb_event(struct perf_event * event)4738 static void unaccount_pmu_sb_event(struct perf_event *event)
4739 {
4740 	if (is_sb_event(event))
4741 		detach_sb_event(event);
4742 }
4743 
unaccount_event_cpu(struct perf_event * event,int cpu)4744 static void unaccount_event_cpu(struct perf_event *event, int cpu)
4745 {
4746 	if (event->parent)
4747 		return;
4748 
4749 	if (is_cgroup_event(event))
4750 		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4751 }
4752 
4753 #ifdef CONFIG_NO_HZ_FULL
4754 static DEFINE_SPINLOCK(nr_freq_lock);
4755 #endif
4756 
unaccount_freq_event_nohz(void)4757 static void unaccount_freq_event_nohz(void)
4758 {
4759 #ifdef CONFIG_NO_HZ_FULL
4760 	spin_lock(&nr_freq_lock);
4761 	if (atomic_dec_and_test(&nr_freq_events))
4762 		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4763 	spin_unlock(&nr_freq_lock);
4764 #endif
4765 }
4766 
unaccount_freq_event(void)4767 static void unaccount_freq_event(void)
4768 {
4769 	if (tick_nohz_full_enabled())
4770 		unaccount_freq_event_nohz();
4771 	else
4772 		atomic_dec(&nr_freq_events);
4773 }
4774 
unaccount_event(struct perf_event * event)4775 static void unaccount_event(struct perf_event *event)
4776 {
4777 	bool dec = false;
4778 
4779 	if (event->parent)
4780 		return;
4781 
4782 	if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
4783 		dec = true;
4784 	if (event->attr.mmap || event->attr.mmap_data)
4785 		atomic_dec(&nr_mmap_events);
4786 	if (event->attr.comm)
4787 		atomic_dec(&nr_comm_events);
4788 	if (event->attr.namespaces)
4789 		atomic_dec(&nr_namespaces_events);
4790 	if (event->attr.cgroup)
4791 		atomic_dec(&nr_cgroup_events);
4792 	if (event->attr.task)
4793 		atomic_dec(&nr_task_events);
4794 	if (event->attr.freq)
4795 		unaccount_freq_event();
4796 	if (event->attr.context_switch) {
4797 		dec = true;
4798 		atomic_dec(&nr_switch_events);
4799 	}
4800 	if (is_cgroup_event(event))
4801 		dec = true;
4802 	if (has_branch_stack(event))
4803 		dec = true;
4804 	if (event->attr.ksymbol)
4805 		atomic_dec(&nr_ksymbol_events);
4806 	if (event->attr.bpf_event)
4807 		atomic_dec(&nr_bpf_events);
4808 	if (event->attr.text_poke)
4809 		atomic_dec(&nr_text_poke_events);
4810 
4811 	if (dec) {
4812 		if (!atomic_add_unless(&perf_sched_count, -1, 1))
4813 			schedule_delayed_work(&perf_sched_work, HZ);
4814 	}
4815 
4816 	unaccount_event_cpu(event, event->cpu);
4817 
4818 	unaccount_pmu_sb_event(event);
4819 }
4820 
perf_sched_delayed(struct work_struct * work)4821 static void perf_sched_delayed(struct work_struct *work)
4822 {
4823 	mutex_lock(&perf_sched_mutex);
4824 	if (atomic_dec_and_test(&perf_sched_count))
4825 		static_branch_disable(&perf_sched_events);
4826 	mutex_unlock(&perf_sched_mutex);
4827 }
4828 
4829 /*
4830  * The following implement mutual exclusion of events on "exclusive" pmus
4831  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4832  * at a time, so we disallow creating events that might conflict, namely:
4833  *
4834  *  1) cpu-wide events in the presence of per-task events,
4835  *  2) per-task events in the presence of cpu-wide events,
4836  *  3) two matching events on the same context.
4837  *
4838  * The former two cases are handled in the allocation path (perf_event_alloc(),
4839  * _free_event()), the latter -- before the first perf_install_in_context().
4840  */
exclusive_event_init(struct perf_event * event)4841 static int exclusive_event_init(struct perf_event *event)
4842 {
4843 	struct pmu *pmu = event->pmu;
4844 
4845 	if (!is_exclusive_pmu(pmu))
4846 		return 0;
4847 
4848 	/*
4849 	 * Prevent co-existence of per-task and cpu-wide events on the
4850 	 * same exclusive pmu.
4851 	 *
4852 	 * Negative pmu::exclusive_cnt means there are cpu-wide
4853 	 * events on this "exclusive" pmu, positive means there are
4854 	 * per-task events.
4855 	 *
4856 	 * Since this is called in perf_event_alloc() path, event::ctx
4857 	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4858 	 * to mean "per-task event", because unlike other attach states it
4859 	 * never gets cleared.
4860 	 */
4861 	if (event->attach_state & PERF_ATTACH_TASK) {
4862 		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4863 			return -EBUSY;
4864 	} else {
4865 		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4866 			return -EBUSY;
4867 	}
4868 
4869 	return 0;
4870 }
4871 
exclusive_event_destroy(struct perf_event * event)4872 static void exclusive_event_destroy(struct perf_event *event)
4873 {
4874 	struct pmu *pmu = event->pmu;
4875 
4876 	if (!is_exclusive_pmu(pmu))
4877 		return;
4878 
4879 	/* see comment in exclusive_event_init() */
4880 	if (event->attach_state & PERF_ATTACH_TASK)
4881 		atomic_dec(&pmu->exclusive_cnt);
4882 	else
4883 		atomic_inc(&pmu->exclusive_cnt);
4884 }
4885 
exclusive_event_match(struct perf_event * e1,struct perf_event * e2)4886 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4887 {
4888 	if ((e1->pmu == e2->pmu) &&
4889 	    (e1->cpu == e2->cpu ||
4890 	     e1->cpu == -1 ||
4891 	     e2->cpu == -1))
4892 		return true;
4893 	return false;
4894 }
4895 
exclusive_event_installable(struct perf_event * event,struct perf_event_context * ctx)4896 static bool exclusive_event_installable(struct perf_event *event,
4897 					struct perf_event_context *ctx)
4898 {
4899 	struct perf_event *iter_event;
4900 	struct pmu *pmu = event->pmu;
4901 
4902 	lockdep_assert_held(&ctx->mutex);
4903 
4904 	if (!is_exclusive_pmu(pmu))
4905 		return true;
4906 
4907 	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4908 		if (exclusive_event_match(iter_event, event))
4909 			return false;
4910 	}
4911 
4912 	return true;
4913 }
4914 
4915 static void perf_addr_filters_splice(struct perf_event *event,
4916 				       struct list_head *head);
4917 
_free_event(struct perf_event * event)4918 static void _free_event(struct perf_event *event)
4919 {
4920 	irq_work_sync(&event->pending);
4921 
4922 	unaccount_event(event);
4923 
4924 	security_perf_event_free(event);
4925 
4926 	if (event->rb) {
4927 		/*
4928 		 * Can happen when we close an event with re-directed output.
4929 		 *
4930 		 * Since we have a 0 refcount, perf_mmap_close() will skip
4931 		 * over us; possibly making our ring_buffer_put() the last.
4932 		 */
4933 		mutex_lock(&event->mmap_mutex);
4934 		ring_buffer_attach(event, NULL);
4935 		mutex_unlock(&event->mmap_mutex);
4936 	}
4937 
4938 	if (is_cgroup_event(event))
4939 		perf_detach_cgroup(event);
4940 
4941 	if (!event->parent) {
4942 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4943 			put_callchain_buffers();
4944 	}
4945 
4946 	perf_event_free_bpf_prog(event);
4947 	perf_addr_filters_splice(event, NULL);
4948 	kfree(event->addr_filter_ranges);
4949 
4950 	if (event->destroy)
4951 		event->destroy(event);
4952 
4953 	/*
4954 	 * Must be after ->destroy(), due to uprobe_perf_close() using
4955 	 * hw.target.
4956 	 */
4957 	if (event->hw.target)
4958 		put_task_struct(event->hw.target);
4959 
4960 	/*
4961 	 * perf_event_free_task() relies on put_ctx() being 'last', in particular
4962 	 * all task references must be cleaned up.
4963 	 */
4964 	if (event->ctx)
4965 		put_ctx(event->ctx);
4966 
4967 	exclusive_event_destroy(event);
4968 	module_put(event->pmu->module);
4969 
4970 	call_rcu(&event->rcu_head, free_event_rcu);
4971 }
4972 
4973 /*
4974  * Used to free events which have a known refcount of 1, such as in error paths
4975  * where the event isn't exposed yet and inherited events.
4976  */
free_event(struct perf_event * event)4977 static void free_event(struct perf_event *event)
4978 {
4979 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4980 				"unexpected event refcount: %ld; ptr=%p\n",
4981 				atomic_long_read(&event->refcount), event)) {
4982 		/* leak to avoid use-after-free */
4983 		return;
4984 	}
4985 
4986 	_free_event(event);
4987 }
4988 
4989 /*
4990  * Remove user event from the owner task.
4991  */
perf_remove_from_owner(struct perf_event * event)4992 static void perf_remove_from_owner(struct perf_event *event)
4993 {
4994 	struct task_struct *owner;
4995 
4996 	rcu_read_lock();
4997 	/*
4998 	 * Matches the smp_store_release() in perf_event_exit_task(). If we
4999 	 * observe !owner it means the list deletion is complete and we can
5000 	 * indeed free this event, otherwise we need to serialize on
5001 	 * owner->perf_event_mutex.
5002 	 */
5003 	owner = READ_ONCE(event->owner);
5004 	if (owner) {
5005 		/*
5006 		 * Since delayed_put_task_struct() also drops the last
5007 		 * task reference we can safely take a new reference
5008 		 * while holding the rcu_read_lock().
5009 		 */
5010 		get_task_struct(owner);
5011 	}
5012 	rcu_read_unlock();
5013 
5014 	if (owner) {
5015 		/*
5016 		 * If we're here through perf_event_exit_task() we're already
5017 		 * holding ctx->mutex which would be an inversion wrt. the
5018 		 * normal lock order.
5019 		 *
5020 		 * However we can safely take this lock because its the child
5021 		 * ctx->mutex.
5022 		 */
5023 		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
5024 
5025 		/*
5026 		 * We have to re-check the event->owner field, if it is cleared
5027 		 * we raced with perf_event_exit_task(), acquiring the mutex
5028 		 * ensured they're done, and we can proceed with freeing the
5029 		 * event.
5030 		 */
5031 		if (event->owner) {
5032 			list_del_init(&event->owner_entry);
5033 			smp_store_release(&event->owner, NULL);
5034 		}
5035 		mutex_unlock(&owner->perf_event_mutex);
5036 		put_task_struct(owner);
5037 	}
5038 }
5039 
put_event(struct perf_event * event)5040 static void put_event(struct perf_event *event)
5041 {
5042 	if (!atomic_long_dec_and_test(&event->refcount))
5043 		return;
5044 
5045 	_free_event(event);
5046 }
5047 
5048 /*
5049  * Kill an event dead; while event:refcount will preserve the event
5050  * object, it will not preserve its functionality. Once the last 'user'
5051  * gives up the object, we'll destroy the thing.
5052  */
perf_event_release_kernel(struct perf_event * event)5053 int perf_event_release_kernel(struct perf_event *event)
5054 {
5055 	struct perf_event_context *ctx = event->ctx;
5056 	struct perf_event *child, *tmp;
5057 	LIST_HEAD(free_list);
5058 
5059 	/*
5060 	 * If we got here through err_file: fput(event_file); we will not have
5061 	 * attached to a context yet.
5062 	 */
5063 	if (!ctx) {
5064 		WARN_ON_ONCE(event->attach_state &
5065 				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
5066 		goto no_ctx;
5067 	}
5068 
5069 	if (!is_kernel_event(event))
5070 		perf_remove_from_owner(event);
5071 
5072 	ctx = perf_event_ctx_lock(event);
5073 	WARN_ON_ONCE(ctx->parent_ctx);
5074 	perf_remove_from_context(event, DETACH_GROUP);
5075 
5076 	raw_spin_lock_irq(&ctx->lock);
5077 	/*
5078 	 * Mark this event as STATE_DEAD, there is no external reference to it
5079 	 * anymore.
5080 	 *
5081 	 * Anybody acquiring event->child_mutex after the below loop _must_
5082 	 * also see this, most importantly inherit_event() which will avoid
5083 	 * placing more children on the list.
5084 	 *
5085 	 * Thus this guarantees that we will in fact observe and kill _ALL_
5086 	 * child events.
5087 	 */
5088 	event->state = PERF_EVENT_STATE_DEAD;
5089 	raw_spin_unlock_irq(&ctx->lock);
5090 
5091 	perf_event_ctx_unlock(event, ctx);
5092 
5093 again:
5094 	mutex_lock(&event->child_mutex);
5095 	list_for_each_entry(child, &event->child_list, child_list) {
5096 
5097 		/*
5098 		 * Cannot change, child events are not migrated, see the
5099 		 * comment with perf_event_ctx_lock_nested().
5100 		 */
5101 		ctx = READ_ONCE(child->ctx);
5102 		/*
5103 		 * Since child_mutex nests inside ctx::mutex, we must jump
5104 		 * through hoops. We start by grabbing a reference on the ctx.
5105 		 *
5106 		 * Since the event cannot get freed while we hold the
5107 		 * child_mutex, the context must also exist and have a !0
5108 		 * reference count.
5109 		 */
5110 		get_ctx(ctx);
5111 
5112 		/*
5113 		 * Now that we have a ctx ref, we can drop child_mutex, and
5114 		 * acquire ctx::mutex without fear of it going away. Then we
5115 		 * can re-acquire child_mutex.
5116 		 */
5117 		mutex_unlock(&event->child_mutex);
5118 		mutex_lock(&ctx->mutex);
5119 		mutex_lock(&event->child_mutex);
5120 
5121 		/*
5122 		 * Now that we hold ctx::mutex and child_mutex, revalidate our
5123 		 * state, if child is still the first entry, it didn't get freed
5124 		 * and we can continue doing so.
5125 		 */
5126 		tmp = list_first_entry_or_null(&event->child_list,
5127 					       struct perf_event, child_list);
5128 		if (tmp == child) {
5129 			perf_remove_from_context(child, DETACH_GROUP);
5130 			list_move(&child->child_list, &free_list);
5131 			/*
5132 			 * This matches the refcount bump in inherit_event();
5133 			 * this can't be the last reference.
5134 			 */
5135 			put_event(event);
5136 		}
5137 
5138 		mutex_unlock(&event->child_mutex);
5139 		mutex_unlock(&ctx->mutex);
5140 		put_ctx(ctx);
5141 		goto again;
5142 	}
5143 	mutex_unlock(&event->child_mutex);
5144 
5145 	list_for_each_entry_safe(child, tmp, &free_list, child_list) {
5146 		void *var = &child->ctx->refcount;
5147 
5148 		list_del(&child->child_list);
5149 		free_event(child);
5150 
5151 		/*
5152 		 * Wake any perf_event_free_task() waiting for this event to be
5153 		 * freed.
5154 		 */
5155 		smp_mb(); /* pairs with wait_var_event() */
5156 		wake_up_var(var);
5157 	}
5158 
5159 no_ctx:
5160 	put_event(event); /* Must be the 'last' reference */
5161 	return 0;
5162 }
5163 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
5164 
5165 /*
5166  * Called when the last reference to the file is gone.
5167  */
perf_release(struct inode * inode,struct file * file)5168 static int perf_release(struct inode *inode, struct file *file)
5169 {
5170 	perf_event_release_kernel(file->private_data);
5171 	return 0;
5172 }
5173 
__perf_event_read_value(struct perf_event * event,u64 * enabled,u64 * running)5174 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5175 {
5176 	struct perf_event *child;
5177 	u64 total = 0;
5178 
5179 	*enabled = 0;
5180 	*running = 0;
5181 
5182 	mutex_lock(&event->child_mutex);
5183 
5184 	(void)perf_event_read(event, false);
5185 	total += perf_event_count(event);
5186 
5187 	*enabled += event->total_time_enabled +
5188 			atomic64_read(&event->child_total_time_enabled);
5189 	*running += event->total_time_running +
5190 			atomic64_read(&event->child_total_time_running);
5191 
5192 	list_for_each_entry(child, &event->child_list, child_list) {
5193 		(void)perf_event_read(child, false);
5194 		total += perf_event_count(child);
5195 		*enabled += child->total_time_enabled;
5196 		*running += child->total_time_running;
5197 	}
5198 	mutex_unlock(&event->child_mutex);
5199 
5200 	return total;
5201 }
5202 
perf_event_read_value(struct perf_event * event,u64 * enabled,u64 * running)5203 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5204 {
5205 	struct perf_event_context *ctx;
5206 	u64 count;
5207 
5208 	ctx = perf_event_ctx_lock(event);
5209 	count = __perf_event_read_value(event, enabled, running);
5210 	perf_event_ctx_unlock(event, ctx);
5211 
5212 	return count;
5213 }
5214 EXPORT_SYMBOL_GPL(perf_event_read_value);
5215 
__perf_read_group_add(struct perf_event * leader,u64 read_format,u64 * values)5216 static int __perf_read_group_add(struct perf_event *leader,
5217 					u64 read_format, u64 *values)
5218 {
5219 	struct perf_event_context *ctx = leader->ctx;
5220 	struct perf_event *sub;
5221 	unsigned long flags;
5222 	int n = 1; /* skip @nr */
5223 	int ret;
5224 
5225 	ret = perf_event_read(leader, true);
5226 	if (ret)
5227 		return ret;
5228 
5229 	raw_spin_lock_irqsave(&ctx->lock, flags);
5230 
5231 	/*
5232 	 * Since we co-schedule groups, {enabled,running} times of siblings
5233 	 * will be identical to those of the leader, so we only publish one
5234 	 * set.
5235 	 */
5236 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5237 		values[n++] += leader->total_time_enabled +
5238 			atomic64_read(&leader->child_total_time_enabled);
5239 	}
5240 
5241 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5242 		values[n++] += leader->total_time_running +
5243 			atomic64_read(&leader->child_total_time_running);
5244 	}
5245 
5246 	/*
5247 	 * Write {count,id} tuples for every sibling.
5248 	 */
5249 	values[n++] += perf_event_count(leader);
5250 	if (read_format & PERF_FORMAT_ID)
5251 		values[n++] = primary_event_id(leader);
5252 
5253 	for_each_sibling_event(sub, leader) {
5254 		values[n++] += perf_event_count(sub);
5255 		if (read_format & PERF_FORMAT_ID)
5256 			values[n++] = primary_event_id(sub);
5257 	}
5258 
5259 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
5260 	return 0;
5261 }
5262 
perf_read_group(struct perf_event * event,u64 read_format,char __user * buf)5263 static int perf_read_group(struct perf_event *event,
5264 				   u64 read_format, char __user *buf)
5265 {
5266 	struct perf_event *leader = event->group_leader, *child;
5267 	struct perf_event_context *ctx = leader->ctx;
5268 	int ret;
5269 	u64 *values;
5270 
5271 	lockdep_assert_held(&ctx->mutex);
5272 
5273 	values = kzalloc(event->read_size, GFP_KERNEL);
5274 	if (!values)
5275 		return -ENOMEM;
5276 
5277 	values[0] = 1 + leader->nr_siblings;
5278 
5279 	/*
5280 	 * By locking the child_mutex of the leader we effectively
5281 	 * lock the child list of all siblings.. XXX explain how.
5282 	 */
5283 	mutex_lock(&leader->child_mutex);
5284 
5285 	ret = __perf_read_group_add(leader, read_format, values);
5286 	if (ret)
5287 		goto unlock;
5288 
5289 	list_for_each_entry(child, &leader->child_list, child_list) {
5290 		ret = __perf_read_group_add(child, read_format, values);
5291 		if (ret)
5292 			goto unlock;
5293 	}
5294 
5295 	mutex_unlock(&leader->child_mutex);
5296 
5297 	ret = event->read_size;
5298 	if (copy_to_user(buf, values, event->read_size))
5299 		ret = -EFAULT;
5300 	goto out;
5301 
5302 unlock:
5303 	mutex_unlock(&leader->child_mutex);
5304 out:
5305 	kfree(values);
5306 	return ret;
5307 }
5308 
perf_read_one(struct perf_event * event,u64 read_format,char __user * buf)5309 static int perf_read_one(struct perf_event *event,
5310 				 u64 read_format, char __user *buf)
5311 {
5312 	u64 enabled, running;
5313 	u64 values[4];
5314 	int n = 0;
5315 
5316 	values[n++] = __perf_event_read_value(event, &enabled, &running);
5317 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5318 		values[n++] = enabled;
5319 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5320 		values[n++] = running;
5321 	if (read_format & PERF_FORMAT_ID)
5322 		values[n++] = primary_event_id(event);
5323 
5324 	if (copy_to_user(buf, values, n * sizeof(u64)))
5325 		return -EFAULT;
5326 
5327 	return n * sizeof(u64);
5328 }
5329 
is_event_hup(struct perf_event * event)5330 static bool is_event_hup(struct perf_event *event)
5331 {
5332 	bool no_children;
5333 
5334 	if (event->state > PERF_EVENT_STATE_EXIT)
5335 		return false;
5336 
5337 	mutex_lock(&event->child_mutex);
5338 	no_children = list_empty(&event->child_list);
5339 	mutex_unlock(&event->child_mutex);
5340 	return no_children;
5341 }
5342 
5343 /*
5344  * Read the performance event - simple non blocking version for now
5345  */
5346 static ssize_t
__perf_read(struct perf_event * event,char __user * buf,size_t count)5347 __perf_read(struct perf_event *event, char __user *buf, size_t count)
5348 {
5349 	u64 read_format = event->attr.read_format;
5350 	int ret;
5351 
5352 	/*
5353 	 * Return end-of-file for a read on an event that is in
5354 	 * error state (i.e. because it was pinned but it couldn't be
5355 	 * scheduled on to the CPU at some point).
5356 	 */
5357 	if (event->state == PERF_EVENT_STATE_ERROR)
5358 		return 0;
5359 
5360 	if (count < event->read_size)
5361 		return -ENOSPC;
5362 
5363 	WARN_ON_ONCE(event->ctx->parent_ctx);
5364 	if (read_format & PERF_FORMAT_GROUP)
5365 		ret = perf_read_group(event, read_format, buf);
5366 	else
5367 		ret = perf_read_one(event, read_format, buf);
5368 
5369 	return ret;
5370 }
5371 
5372 static ssize_t
perf_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)5373 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
5374 {
5375 	struct perf_event *event = file->private_data;
5376 	struct perf_event_context *ctx;
5377 	int ret;
5378 
5379 	ret = security_perf_event_read(event);
5380 	if (ret)
5381 		return ret;
5382 
5383 	ctx = perf_event_ctx_lock(event);
5384 	ret = __perf_read(event, buf, count);
5385 	perf_event_ctx_unlock(event, ctx);
5386 
5387 	return ret;
5388 }
5389 
perf_poll(struct file * file,poll_table * wait)5390 static __poll_t perf_poll(struct file *file, poll_table *wait)
5391 {
5392 	struct perf_event *event = file->private_data;
5393 	struct perf_buffer *rb;
5394 	__poll_t events = EPOLLHUP;
5395 
5396 	poll_wait(file, &event->waitq, wait);
5397 
5398 	if (is_event_hup(event))
5399 		return events;
5400 
5401 	/*
5402 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
5403 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
5404 	 */
5405 	mutex_lock(&event->mmap_mutex);
5406 	rb = event->rb;
5407 	if (rb)
5408 		events = atomic_xchg(&rb->poll, 0);
5409 	mutex_unlock(&event->mmap_mutex);
5410 	return events;
5411 }
5412 
_perf_event_reset(struct perf_event * event)5413 static void _perf_event_reset(struct perf_event *event)
5414 {
5415 	(void)perf_event_read(event, false);
5416 	local64_set(&event->count, 0);
5417 	perf_event_update_userpage(event);
5418 }
5419 
5420 /* Assume it's not an event with inherit set. */
perf_event_pause(struct perf_event * event,bool reset)5421 u64 perf_event_pause(struct perf_event *event, bool reset)
5422 {
5423 	struct perf_event_context *ctx;
5424 	u64 count;
5425 
5426 	ctx = perf_event_ctx_lock(event);
5427 	WARN_ON_ONCE(event->attr.inherit);
5428 	_perf_event_disable(event);
5429 	count = local64_read(&event->count);
5430 	if (reset)
5431 		local64_set(&event->count, 0);
5432 	perf_event_ctx_unlock(event, ctx);
5433 
5434 	return count;
5435 }
5436 EXPORT_SYMBOL_GPL(perf_event_pause);
5437 
5438 /*
5439  * Holding the top-level event's child_mutex means that any
5440  * descendant process that has inherited this event will block
5441  * in perf_event_exit_event() if it goes to exit, thus satisfying the
5442  * task existence requirements of perf_event_enable/disable.
5443  */
perf_event_for_each_child(struct perf_event * event,void (* func)(struct perf_event *))5444 static void perf_event_for_each_child(struct perf_event *event,
5445 					void (*func)(struct perf_event *))
5446 {
5447 	struct perf_event *child;
5448 
5449 	WARN_ON_ONCE(event->ctx->parent_ctx);
5450 
5451 	mutex_lock(&event->child_mutex);
5452 	func(event);
5453 	list_for_each_entry(child, &event->child_list, child_list)
5454 		func(child);
5455 	mutex_unlock(&event->child_mutex);
5456 }
5457 
perf_event_for_each(struct perf_event * event,void (* func)(struct perf_event *))5458 static void perf_event_for_each(struct perf_event *event,
5459 				  void (*func)(struct perf_event *))
5460 {
5461 	struct perf_event_context *ctx = event->ctx;
5462 	struct perf_event *sibling;
5463 
5464 	lockdep_assert_held(&ctx->mutex);
5465 
5466 	event = event->group_leader;
5467 
5468 	perf_event_for_each_child(event, func);
5469 	for_each_sibling_event(sibling, event)
5470 		perf_event_for_each_child(sibling, func);
5471 }
5472 
__perf_event_period(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,void * info)5473 static void __perf_event_period(struct perf_event *event,
5474 				struct perf_cpu_context *cpuctx,
5475 				struct perf_event_context *ctx,
5476 				void *info)
5477 {
5478 	u64 value = *((u64 *)info);
5479 	bool active;
5480 
5481 	if (event->attr.freq) {
5482 		event->attr.sample_freq = value;
5483 	} else {
5484 		event->attr.sample_period = value;
5485 		event->hw.sample_period = value;
5486 	}
5487 
5488 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
5489 	if (active) {
5490 		perf_pmu_disable(ctx->pmu);
5491 		/*
5492 		 * We could be throttled; unthrottle now to avoid the tick
5493 		 * trying to unthrottle while we already re-started the event.
5494 		 */
5495 		if (event->hw.interrupts == MAX_INTERRUPTS) {
5496 			event->hw.interrupts = 0;
5497 			perf_log_throttle(event, 1);
5498 		}
5499 		event->pmu->stop(event, PERF_EF_UPDATE);
5500 	}
5501 
5502 	local64_set(&event->hw.period_left, 0);
5503 
5504 	if (active) {
5505 		event->pmu->start(event, PERF_EF_RELOAD);
5506 		perf_pmu_enable(ctx->pmu);
5507 	}
5508 }
5509 
perf_event_check_period(struct perf_event * event,u64 value)5510 static int perf_event_check_period(struct perf_event *event, u64 value)
5511 {
5512 	return event->pmu->check_period(event, value);
5513 }
5514 
_perf_event_period(struct perf_event * event,u64 value)5515 static int _perf_event_period(struct perf_event *event, u64 value)
5516 {
5517 	if (!is_sampling_event(event))
5518 		return -EINVAL;
5519 
5520 	if (!value)
5521 		return -EINVAL;
5522 
5523 	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5524 		return -EINVAL;
5525 
5526 	if (perf_event_check_period(event, value))
5527 		return -EINVAL;
5528 
5529 	if (!event->attr.freq && (value & (1ULL << 63)))
5530 		return -EINVAL;
5531 
5532 	event_function_call(event, __perf_event_period, &value);
5533 
5534 	return 0;
5535 }
5536 
perf_event_period(struct perf_event * event,u64 value)5537 int perf_event_period(struct perf_event *event, u64 value)
5538 {
5539 	struct perf_event_context *ctx;
5540 	int ret;
5541 
5542 	ctx = perf_event_ctx_lock(event);
5543 	ret = _perf_event_period(event, value);
5544 	perf_event_ctx_unlock(event, ctx);
5545 
5546 	return ret;
5547 }
5548 EXPORT_SYMBOL_GPL(perf_event_period);
5549 
5550 static const struct file_operations perf_fops;
5551 
perf_fget_light(int fd,struct fd * p)5552 static inline int perf_fget_light(int fd, struct fd *p)
5553 {
5554 	struct fd f = fdget(fd);
5555 	if (!f.file)
5556 		return -EBADF;
5557 
5558 	if (f.file->f_op != &perf_fops) {
5559 		fdput(f);
5560 		return -EBADF;
5561 	}
5562 	*p = f;
5563 	return 0;
5564 }
5565 
5566 static int perf_event_set_output(struct perf_event *event,
5567 				 struct perf_event *output_event);
5568 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5569 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
5570 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5571 			  struct perf_event_attr *attr);
5572 
_perf_ioctl(struct perf_event * event,unsigned int cmd,unsigned long arg)5573 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5574 {
5575 	void (*func)(struct perf_event *);
5576 	u32 flags = arg;
5577 
5578 	switch (cmd) {
5579 	case PERF_EVENT_IOC_ENABLE:
5580 		func = _perf_event_enable;
5581 		break;
5582 	case PERF_EVENT_IOC_DISABLE:
5583 		func = _perf_event_disable;
5584 		break;
5585 	case PERF_EVENT_IOC_RESET:
5586 		func = _perf_event_reset;
5587 		break;
5588 
5589 	case PERF_EVENT_IOC_REFRESH:
5590 		return _perf_event_refresh(event, arg);
5591 
5592 	case PERF_EVENT_IOC_PERIOD:
5593 	{
5594 		u64 value;
5595 
5596 		if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
5597 			return -EFAULT;
5598 
5599 		return _perf_event_period(event, value);
5600 	}
5601 	case PERF_EVENT_IOC_ID:
5602 	{
5603 		u64 id = primary_event_id(event);
5604 
5605 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5606 			return -EFAULT;
5607 		return 0;
5608 	}
5609 
5610 	case PERF_EVENT_IOC_SET_OUTPUT:
5611 	{
5612 		int ret;
5613 		if (arg != -1) {
5614 			struct perf_event *output_event;
5615 			struct fd output;
5616 			ret = perf_fget_light(arg, &output);
5617 			if (ret)
5618 				return ret;
5619 			output_event = output.file->private_data;
5620 			ret = perf_event_set_output(event, output_event);
5621 			fdput(output);
5622 		} else {
5623 			ret = perf_event_set_output(event, NULL);
5624 		}
5625 		return ret;
5626 	}
5627 
5628 	case PERF_EVENT_IOC_SET_FILTER:
5629 		return perf_event_set_filter(event, (void __user *)arg);
5630 
5631 	case PERF_EVENT_IOC_SET_BPF:
5632 		return perf_event_set_bpf_prog(event, arg);
5633 
5634 	case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5635 		struct perf_buffer *rb;
5636 
5637 		rcu_read_lock();
5638 		rb = rcu_dereference(event->rb);
5639 		if (!rb || !rb->nr_pages) {
5640 			rcu_read_unlock();
5641 			return -EINVAL;
5642 		}
5643 		rb_toggle_paused(rb, !!arg);
5644 		rcu_read_unlock();
5645 		return 0;
5646 	}
5647 
5648 	case PERF_EVENT_IOC_QUERY_BPF:
5649 		return perf_event_query_prog_array(event, (void __user *)arg);
5650 
5651 	case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5652 		struct perf_event_attr new_attr;
5653 		int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5654 					 &new_attr);
5655 
5656 		if (err)
5657 			return err;
5658 
5659 		return perf_event_modify_attr(event,  &new_attr);
5660 	}
5661 	default:
5662 		return -ENOTTY;
5663 	}
5664 
5665 	if (flags & PERF_IOC_FLAG_GROUP)
5666 		perf_event_for_each(event, func);
5667 	else
5668 		perf_event_for_each_child(event, func);
5669 
5670 	return 0;
5671 }
5672 
perf_ioctl(struct file * file,unsigned int cmd,unsigned long arg)5673 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5674 {
5675 	struct perf_event *event = file->private_data;
5676 	struct perf_event_context *ctx;
5677 	long ret;
5678 
5679 	/* Treat ioctl like writes as it is likely a mutating operation. */
5680 	ret = security_perf_event_write(event);
5681 	if (ret)
5682 		return ret;
5683 
5684 	ctx = perf_event_ctx_lock(event);
5685 	ret = _perf_ioctl(event, cmd, arg);
5686 	perf_event_ctx_unlock(event, ctx);
5687 
5688 	return ret;
5689 }
5690 
5691 #ifdef CONFIG_COMPAT
perf_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)5692 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5693 				unsigned long arg)
5694 {
5695 	switch (_IOC_NR(cmd)) {
5696 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5697 	case _IOC_NR(PERF_EVENT_IOC_ID):
5698 	case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5699 	case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
5700 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5701 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5702 			cmd &= ~IOCSIZE_MASK;
5703 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5704 		}
5705 		break;
5706 	}
5707 	return perf_ioctl(file, cmd, arg);
5708 }
5709 #else
5710 # define perf_compat_ioctl NULL
5711 #endif
5712 
perf_event_task_enable(void)5713 int perf_event_task_enable(void)
5714 {
5715 	struct perf_event_context *ctx;
5716 	struct perf_event *event;
5717 
5718 	mutex_lock(&current->perf_event_mutex);
5719 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5720 		ctx = perf_event_ctx_lock(event);
5721 		perf_event_for_each_child(event, _perf_event_enable);
5722 		perf_event_ctx_unlock(event, ctx);
5723 	}
5724 	mutex_unlock(&current->perf_event_mutex);
5725 
5726 	return 0;
5727 }
5728 
perf_event_task_disable(void)5729 int perf_event_task_disable(void)
5730 {
5731 	struct perf_event_context *ctx;
5732 	struct perf_event *event;
5733 
5734 	mutex_lock(&current->perf_event_mutex);
5735 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5736 		ctx = perf_event_ctx_lock(event);
5737 		perf_event_for_each_child(event, _perf_event_disable);
5738 		perf_event_ctx_unlock(event, ctx);
5739 	}
5740 	mutex_unlock(&current->perf_event_mutex);
5741 
5742 	return 0;
5743 }
5744 
perf_event_index(struct perf_event * event)5745 static int perf_event_index(struct perf_event *event)
5746 {
5747 	if (event->hw.state & PERF_HES_STOPPED)
5748 		return 0;
5749 
5750 	if (event->state != PERF_EVENT_STATE_ACTIVE)
5751 		return 0;
5752 
5753 	return event->pmu->event_idx(event);
5754 }
5755 
perf_event_init_userpage(struct perf_event * event)5756 static void perf_event_init_userpage(struct perf_event *event)
5757 {
5758 	struct perf_event_mmap_page *userpg;
5759 	struct perf_buffer *rb;
5760 
5761 	rcu_read_lock();
5762 	rb = rcu_dereference(event->rb);
5763 	if (!rb)
5764 		goto unlock;
5765 
5766 	userpg = rb->user_page;
5767 
5768 	/* Allow new userspace to detect that bit 0 is deprecated */
5769 	userpg->cap_bit0_is_deprecated = 1;
5770 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
5771 	userpg->data_offset = PAGE_SIZE;
5772 	userpg->data_size = perf_data_size(rb);
5773 
5774 unlock:
5775 	rcu_read_unlock();
5776 }
5777 
arch_perf_update_userpage(struct perf_event * event,struct perf_event_mmap_page * userpg,u64 now)5778 void __weak arch_perf_update_userpage(
5779 	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
5780 {
5781 }
5782 
5783 /*
5784  * Callers need to ensure there can be no nesting of this function, otherwise
5785  * the seqlock logic goes bad. We can not serialize this because the arch
5786  * code calls this from NMI context.
5787  */
perf_event_update_userpage(struct perf_event * event)5788 void perf_event_update_userpage(struct perf_event *event)
5789 {
5790 	struct perf_event_mmap_page *userpg;
5791 	struct perf_buffer *rb;
5792 	u64 enabled, running, now;
5793 
5794 	rcu_read_lock();
5795 	rb = rcu_dereference(event->rb);
5796 	if (!rb)
5797 		goto unlock;
5798 
5799 	/*
5800 	 * compute total_time_enabled, total_time_running
5801 	 * based on snapshot values taken when the event
5802 	 * was last scheduled in.
5803 	 *
5804 	 * we cannot simply called update_context_time()
5805 	 * because of locking issue as we can be called in
5806 	 * NMI context
5807 	 */
5808 	calc_timer_values(event, &now, &enabled, &running);
5809 
5810 	userpg = rb->user_page;
5811 	/*
5812 	 * Disable preemption to guarantee consistent time stamps are stored to
5813 	 * the user page.
5814 	 */
5815 	preempt_disable();
5816 	++userpg->lock;
5817 	barrier();
5818 	userpg->index = perf_event_index(event);
5819 	userpg->offset = perf_event_count(event);
5820 	if (userpg->index)
5821 		userpg->offset -= local64_read(&event->hw.prev_count);
5822 
5823 	userpg->time_enabled = enabled +
5824 			atomic64_read(&event->child_total_time_enabled);
5825 
5826 	userpg->time_running = running +
5827 			atomic64_read(&event->child_total_time_running);
5828 
5829 	arch_perf_update_userpage(event, userpg, now);
5830 
5831 	barrier();
5832 	++userpg->lock;
5833 	preempt_enable();
5834 unlock:
5835 	rcu_read_unlock();
5836 }
5837 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
5838 
perf_mmap_fault(struct vm_fault * vmf)5839 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
5840 {
5841 	struct perf_event *event = vmf->vma->vm_file->private_data;
5842 	struct perf_buffer *rb;
5843 	vm_fault_t ret = VM_FAULT_SIGBUS;
5844 
5845 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
5846 		if (vmf->pgoff == 0)
5847 			ret = 0;
5848 		return ret;
5849 	}
5850 
5851 	rcu_read_lock();
5852 	rb = rcu_dereference(event->rb);
5853 	if (!rb)
5854 		goto unlock;
5855 
5856 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5857 		goto unlock;
5858 
5859 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5860 	if (!vmf->page)
5861 		goto unlock;
5862 
5863 	get_page(vmf->page);
5864 	vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5865 	vmf->page->index   = vmf->pgoff;
5866 
5867 	ret = 0;
5868 unlock:
5869 	rcu_read_unlock();
5870 
5871 	return ret;
5872 }
5873 
ring_buffer_attach(struct perf_event * event,struct perf_buffer * rb)5874 static void ring_buffer_attach(struct perf_event *event,
5875 			       struct perf_buffer *rb)
5876 {
5877 	struct perf_buffer *old_rb = NULL;
5878 	unsigned long flags;
5879 
5880 	if (event->rb) {
5881 		/*
5882 		 * Should be impossible, we set this when removing
5883 		 * event->rb_entry and wait/clear when adding event->rb_entry.
5884 		 */
5885 		WARN_ON_ONCE(event->rcu_pending);
5886 
5887 		old_rb = event->rb;
5888 		spin_lock_irqsave(&old_rb->event_lock, flags);
5889 		list_del_rcu(&event->rb_entry);
5890 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
5891 
5892 		event->rcu_batches = get_state_synchronize_rcu();
5893 		event->rcu_pending = 1;
5894 	}
5895 
5896 	if (rb) {
5897 		if (event->rcu_pending) {
5898 			cond_synchronize_rcu(event->rcu_batches);
5899 			event->rcu_pending = 0;
5900 		}
5901 
5902 		spin_lock_irqsave(&rb->event_lock, flags);
5903 		list_add_rcu(&event->rb_entry, &rb->event_list);
5904 		spin_unlock_irqrestore(&rb->event_lock, flags);
5905 	}
5906 
5907 	/*
5908 	 * Avoid racing with perf_mmap_close(AUX): stop the event
5909 	 * before swizzling the event::rb pointer; if it's getting
5910 	 * unmapped, its aux_mmap_count will be 0 and it won't
5911 	 * restart. See the comment in __perf_pmu_output_stop().
5912 	 *
5913 	 * Data will inevitably be lost when set_output is done in
5914 	 * mid-air, but then again, whoever does it like this is
5915 	 * not in for the data anyway.
5916 	 */
5917 	if (has_aux(event))
5918 		perf_event_stop(event, 0);
5919 
5920 	rcu_assign_pointer(event->rb, rb);
5921 
5922 	if (old_rb) {
5923 		ring_buffer_put(old_rb);
5924 		/*
5925 		 * Since we detached before setting the new rb, so that we
5926 		 * could attach the new rb, we could have missed a wakeup.
5927 		 * Provide it now.
5928 		 */
5929 		wake_up_all(&event->waitq);
5930 	}
5931 }
5932 
ring_buffer_wakeup(struct perf_event * event)5933 static void ring_buffer_wakeup(struct perf_event *event)
5934 {
5935 	struct perf_buffer *rb;
5936 
5937 	rcu_read_lock();
5938 	rb = rcu_dereference(event->rb);
5939 	if (rb) {
5940 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5941 			wake_up_all(&event->waitq);
5942 	}
5943 	rcu_read_unlock();
5944 }
5945 
ring_buffer_get(struct perf_event * event)5946 struct perf_buffer *ring_buffer_get(struct perf_event *event)
5947 {
5948 	struct perf_buffer *rb;
5949 
5950 	rcu_read_lock();
5951 	rb = rcu_dereference(event->rb);
5952 	if (rb) {
5953 		if (!refcount_inc_not_zero(&rb->refcount))
5954 			rb = NULL;
5955 	}
5956 	rcu_read_unlock();
5957 
5958 	return rb;
5959 }
5960 
ring_buffer_put(struct perf_buffer * rb)5961 void ring_buffer_put(struct perf_buffer *rb)
5962 {
5963 	if (!refcount_dec_and_test(&rb->refcount))
5964 		return;
5965 
5966 	WARN_ON_ONCE(!list_empty(&rb->event_list));
5967 
5968 	call_rcu(&rb->rcu_head, rb_free_rcu);
5969 }
5970 
perf_mmap_open(struct vm_area_struct * vma)5971 static void perf_mmap_open(struct vm_area_struct *vma)
5972 {
5973 	struct perf_event *event = vma->vm_file->private_data;
5974 
5975 	atomic_inc(&event->mmap_count);
5976 	atomic_inc(&event->rb->mmap_count);
5977 
5978 	if (vma->vm_pgoff)
5979 		atomic_inc(&event->rb->aux_mmap_count);
5980 
5981 	if (event->pmu->event_mapped)
5982 		event->pmu->event_mapped(event, vma->vm_mm);
5983 }
5984 
5985 static void perf_pmu_output_stop(struct perf_event *event);
5986 
5987 /*
5988  * A buffer can be mmap()ed multiple times; either directly through the same
5989  * event, or through other events by use of perf_event_set_output().
5990  *
5991  * In order to undo the VM accounting done by perf_mmap() we need to destroy
5992  * the buffer here, where we still have a VM context. This means we need
5993  * to detach all events redirecting to us.
5994  */
perf_mmap_close(struct vm_area_struct * vma)5995 static void perf_mmap_close(struct vm_area_struct *vma)
5996 {
5997 	struct perf_event *event = vma->vm_file->private_data;
5998 	struct perf_buffer *rb = ring_buffer_get(event);
5999 	struct user_struct *mmap_user = rb->mmap_user;
6000 	int mmap_locked = rb->mmap_locked;
6001 	unsigned long size = perf_data_size(rb);
6002 	bool detach_rest = false;
6003 
6004 	if (event->pmu->event_unmapped)
6005 		event->pmu->event_unmapped(event, vma->vm_mm);
6006 
6007 	/*
6008 	 * rb->aux_mmap_count will always drop before rb->mmap_count and
6009 	 * event->mmap_count, so it is ok to use event->mmap_mutex to
6010 	 * serialize with perf_mmap here.
6011 	 */
6012 	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
6013 	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
6014 		/*
6015 		 * Stop all AUX events that are writing to this buffer,
6016 		 * so that we can free its AUX pages and corresponding PMU
6017 		 * data. Note that after rb::aux_mmap_count dropped to zero,
6018 		 * they won't start any more (see perf_aux_output_begin()).
6019 		 */
6020 		perf_pmu_output_stop(event);
6021 
6022 		/* now it's safe to free the pages */
6023 		atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
6024 		atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
6025 
6026 		/* this has to be the last one */
6027 		rb_free_aux(rb);
6028 		WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
6029 
6030 		mutex_unlock(&event->mmap_mutex);
6031 	}
6032 
6033 	if (atomic_dec_and_test(&rb->mmap_count))
6034 		detach_rest = true;
6035 
6036 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
6037 		goto out_put;
6038 
6039 	ring_buffer_attach(event, NULL);
6040 	mutex_unlock(&event->mmap_mutex);
6041 
6042 	/* If there's still other mmap()s of this buffer, we're done. */
6043 	if (!detach_rest)
6044 		goto out_put;
6045 
6046 	/*
6047 	 * No other mmap()s, detach from all other events that might redirect
6048 	 * into the now unreachable buffer. Somewhat complicated by the
6049 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
6050 	 */
6051 again:
6052 	rcu_read_lock();
6053 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
6054 		if (!atomic_long_inc_not_zero(&event->refcount)) {
6055 			/*
6056 			 * This event is en-route to free_event() which will
6057 			 * detach it and remove it from the list.
6058 			 */
6059 			continue;
6060 		}
6061 		rcu_read_unlock();
6062 
6063 		mutex_lock(&event->mmap_mutex);
6064 		/*
6065 		 * Check we didn't race with perf_event_set_output() which can
6066 		 * swizzle the rb from under us while we were waiting to
6067 		 * acquire mmap_mutex.
6068 		 *
6069 		 * If we find a different rb; ignore this event, a next
6070 		 * iteration will no longer find it on the list. We have to
6071 		 * still restart the iteration to make sure we're not now
6072 		 * iterating the wrong list.
6073 		 */
6074 		if (event->rb == rb)
6075 			ring_buffer_attach(event, NULL);
6076 
6077 		mutex_unlock(&event->mmap_mutex);
6078 		put_event(event);
6079 
6080 		/*
6081 		 * Restart the iteration; either we're on the wrong list or
6082 		 * destroyed its integrity by doing a deletion.
6083 		 */
6084 		goto again;
6085 	}
6086 	rcu_read_unlock();
6087 
6088 	/*
6089 	 * It could be there's still a few 0-ref events on the list; they'll
6090 	 * get cleaned up by free_event() -- they'll also still have their
6091 	 * ref on the rb and will free it whenever they are done with it.
6092 	 *
6093 	 * Aside from that, this buffer is 'fully' detached and unmapped,
6094 	 * undo the VM accounting.
6095 	 */
6096 
6097 	atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
6098 			&mmap_user->locked_vm);
6099 	atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
6100 	free_uid(mmap_user);
6101 
6102 out_put:
6103 	ring_buffer_put(rb); /* could be last */
6104 }
6105 
6106 static const struct vm_operations_struct perf_mmap_vmops = {
6107 	.open		= perf_mmap_open,
6108 	.close		= perf_mmap_close, /* non mergeable */
6109 	.fault		= perf_mmap_fault,
6110 	.page_mkwrite	= perf_mmap_fault,
6111 };
6112 
perf_mmap(struct file * file,struct vm_area_struct * vma)6113 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
6114 {
6115 	struct perf_event *event = file->private_data;
6116 	unsigned long user_locked, user_lock_limit;
6117 	struct user_struct *user = current_user();
6118 	struct perf_buffer *rb = NULL;
6119 	unsigned long locked, lock_limit;
6120 	unsigned long vma_size;
6121 	unsigned long nr_pages;
6122 	long user_extra = 0, extra = 0;
6123 	int ret = 0, flags = 0;
6124 
6125 	/*
6126 	 * Don't allow mmap() of inherited per-task counters. This would
6127 	 * create a performance issue due to all children writing to the
6128 	 * same rb.
6129 	 */
6130 	if (event->cpu == -1 && event->attr.inherit)
6131 		return -EINVAL;
6132 
6133 	if (!(vma->vm_flags & VM_SHARED))
6134 		return -EINVAL;
6135 
6136 	ret = security_perf_event_read(event);
6137 	if (ret)
6138 		return ret;
6139 
6140 	vma_size = vma->vm_end - vma->vm_start;
6141 
6142 	if (vma->vm_pgoff == 0) {
6143 		nr_pages = (vma_size / PAGE_SIZE) - 1;
6144 	} else {
6145 		/*
6146 		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
6147 		 * mapped, all subsequent mappings should have the same size
6148 		 * and offset. Must be above the normal perf buffer.
6149 		 */
6150 		u64 aux_offset, aux_size;
6151 
6152 		if (!event->rb)
6153 			return -EINVAL;
6154 
6155 		nr_pages = vma_size / PAGE_SIZE;
6156 
6157 		mutex_lock(&event->mmap_mutex);
6158 		ret = -EINVAL;
6159 
6160 		rb = event->rb;
6161 		if (!rb)
6162 			goto aux_unlock;
6163 
6164 		aux_offset = READ_ONCE(rb->user_page->aux_offset);
6165 		aux_size = READ_ONCE(rb->user_page->aux_size);
6166 
6167 		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
6168 			goto aux_unlock;
6169 
6170 		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
6171 			goto aux_unlock;
6172 
6173 		/* already mapped with a different offset */
6174 		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
6175 			goto aux_unlock;
6176 
6177 		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
6178 			goto aux_unlock;
6179 
6180 		/* already mapped with a different size */
6181 		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
6182 			goto aux_unlock;
6183 
6184 		if (!is_power_of_2(nr_pages))
6185 			goto aux_unlock;
6186 
6187 		if (!atomic_inc_not_zero(&rb->mmap_count))
6188 			goto aux_unlock;
6189 
6190 		if (rb_has_aux(rb)) {
6191 			atomic_inc(&rb->aux_mmap_count);
6192 			ret = 0;
6193 			goto unlock;
6194 		}
6195 
6196 		atomic_set(&rb->aux_mmap_count, 1);
6197 		user_extra = nr_pages;
6198 
6199 		goto accounting;
6200 	}
6201 
6202 	/*
6203 	 * If we have rb pages ensure they're a power-of-two number, so we
6204 	 * can do bitmasks instead of modulo.
6205 	 */
6206 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
6207 		return -EINVAL;
6208 
6209 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
6210 		return -EINVAL;
6211 
6212 	WARN_ON_ONCE(event->ctx->parent_ctx);
6213 again:
6214 	mutex_lock(&event->mmap_mutex);
6215 	if (event->rb) {
6216 		if (event->rb->nr_pages != nr_pages) {
6217 			ret = -EINVAL;
6218 			goto unlock;
6219 		}
6220 
6221 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
6222 			/*
6223 			 * Raced against perf_mmap_close() through
6224 			 * perf_event_set_output(). Try again, hope for better
6225 			 * luck.
6226 			 */
6227 			mutex_unlock(&event->mmap_mutex);
6228 			goto again;
6229 		}
6230 
6231 		goto unlock;
6232 	}
6233 
6234 	user_extra = nr_pages + 1;
6235 
6236 accounting:
6237 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
6238 
6239 	/*
6240 	 * Increase the limit linearly with more CPUs:
6241 	 */
6242 	user_lock_limit *= num_online_cpus();
6243 
6244 	user_locked = atomic_long_read(&user->locked_vm);
6245 
6246 	/*
6247 	 * sysctl_perf_event_mlock may have changed, so that
6248 	 *     user->locked_vm > user_lock_limit
6249 	 */
6250 	if (user_locked > user_lock_limit)
6251 		user_locked = user_lock_limit;
6252 	user_locked += user_extra;
6253 
6254 	if (user_locked > user_lock_limit) {
6255 		/*
6256 		 * charge locked_vm until it hits user_lock_limit;
6257 		 * charge the rest from pinned_vm
6258 		 */
6259 		extra = user_locked - user_lock_limit;
6260 		user_extra -= extra;
6261 	}
6262 
6263 	lock_limit = rlimit(RLIMIT_MEMLOCK);
6264 	lock_limit >>= PAGE_SHIFT;
6265 	locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
6266 
6267 	if ((locked > lock_limit) && perf_is_paranoid() &&
6268 		!capable(CAP_IPC_LOCK)) {
6269 		ret = -EPERM;
6270 		goto unlock;
6271 	}
6272 
6273 	WARN_ON(!rb && event->rb);
6274 
6275 	if (vma->vm_flags & VM_WRITE)
6276 		flags |= RING_BUFFER_WRITABLE;
6277 
6278 	if (!rb) {
6279 		rb = rb_alloc(nr_pages,
6280 			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
6281 			      event->cpu, flags);
6282 
6283 		if (!rb) {
6284 			ret = -ENOMEM;
6285 			goto unlock;
6286 		}
6287 
6288 		atomic_set(&rb->mmap_count, 1);
6289 		rb->mmap_user = get_current_user();
6290 		rb->mmap_locked = extra;
6291 
6292 		ring_buffer_attach(event, rb);
6293 
6294 		perf_event_update_time(event);
6295 		perf_event_init_userpage(event);
6296 		perf_event_update_userpage(event);
6297 	} else {
6298 		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
6299 				   event->attr.aux_watermark, flags);
6300 		if (!ret)
6301 			rb->aux_mmap_locked = extra;
6302 	}
6303 
6304 unlock:
6305 	if (!ret) {
6306 		atomic_long_add(user_extra, &user->locked_vm);
6307 		atomic64_add(extra, &vma->vm_mm->pinned_vm);
6308 
6309 		atomic_inc(&event->mmap_count);
6310 	} else if (rb) {
6311 		atomic_dec(&rb->mmap_count);
6312 	}
6313 aux_unlock:
6314 	mutex_unlock(&event->mmap_mutex);
6315 
6316 	/*
6317 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
6318 	 * vma.
6319 	 */
6320 	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
6321 	vma->vm_ops = &perf_mmap_vmops;
6322 
6323 	if (event->pmu->event_mapped)
6324 		event->pmu->event_mapped(event, vma->vm_mm);
6325 
6326 	return ret;
6327 }
6328 
perf_fasync(int fd,struct file * filp,int on)6329 static int perf_fasync(int fd, struct file *filp, int on)
6330 {
6331 	struct inode *inode = file_inode(filp);
6332 	struct perf_event *event = filp->private_data;
6333 	int retval;
6334 
6335 	inode_lock(inode);
6336 	retval = fasync_helper(fd, filp, on, &event->fasync);
6337 	inode_unlock(inode);
6338 
6339 	if (retval < 0)
6340 		return retval;
6341 
6342 	return 0;
6343 }
6344 
6345 static const struct file_operations perf_fops = {
6346 	.llseek			= no_llseek,
6347 	.release		= perf_release,
6348 	.read			= perf_read,
6349 	.poll			= perf_poll,
6350 	.unlocked_ioctl		= perf_ioctl,
6351 	.compat_ioctl		= perf_compat_ioctl,
6352 	.mmap			= perf_mmap,
6353 	.fasync			= perf_fasync,
6354 };
6355 
6356 /*
6357  * Perf event wakeup
6358  *
6359  * If there's data, ensure we set the poll() state and publish everything
6360  * to user-space before waking everybody up.
6361  */
6362 
perf_event_fasync(struct perf_event * event)6363 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
6364 {
6365 	/* only the parent has fasync state */
6366 	if (event->parent)
6367 		event = event->parent;
6368 	return &event->fasync;
6369 }
6370 
perf_event_wakeup(struct perf_event * event)6371 void perf_event_wakeup(struct perf_event *event)
6372 {
6373 	ring_buffer_wakeup(event);
6374 
6375 	if (event->pending_kill) {
6376 		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
6377 		event->pending_kill = 0;
6378 	}
6379 }
6380 
perf_pending_event_disable(struct perf_event * event)6381 static void perf_pending_event_disable(struct perf_event *event)
6382 {
6383 	int cpu = READ_ONCE(event->pending_disable);
6384 
6385 	if (cpu < 0)
6386 		return;
6387 
6388 	if (cpu == smp_processor_id()) {
6389 		WRITE_ONCE(event->pending_disable, -1);
6390 		perf_event_disable_local(event);
6391 		return;
6392 	}
6393 
6394 	/*
6395 	 *  CPU-A			CPU-B
6396 	 *
6397 	 *  perf_event_disable_inatomic()
6398 	 *    @pending_disable = CPU-A;
6399 	 *    irq_work_queue();
6400 	 *
6401 	 *  sched-out
6402 	 *    @pending_disable = -1;
6403 	 *
6404 	 *				sched-in
6405 	 *				perf_event_disable_inatomic()
6406 	 *				  @pending_disable = CPU-B;
6407 	 *				  irq_work_queue(); // FAILS
6408 	 *
6409 	 *  irq_work_run()
6410 	 *    perf_pending_event()
6411 	 *
6412 	 * But the event runs on CPU-B and wants disabling there.
6413 	 */
6414 	irq_work_queue_on(&event->pending, cpu);
6415 }
6416 
perf_pending_event(struct irq_work * entry)6417 static void perf_pending_event(struct irq_work *entry)
6418 {
6419 	struct perf_event *event = container_of(entry, struct perf_event, pending);
6420 	int rctx;
6421 
6422 	rctx = perf_swevent_get_recursion_context();
6423 	/*
6424 	 * If we 'fail' here, that's OK, it means recursion is already disabled
6425 	 * and we won't recurse 'further'.
6426 	 */
6427 
6428 	perf_pending_event_disable(event);
6429 
6430 	if (event->pending_wakeup) {
6431 		event->pending_wakeup = 0;
6432 		perf_event_wakeup(event);
6433 	}
6434 
6435 	if (rctx >= 0)
6436 		perf_swevent_put_recursion_context(rctx);
6437 }
6438 
6439 /*
6440  * We assume there is only KVM supporting the callbacks.
6441  * Later on, we might change it to a list if there is
6442  * another virtualization implementation supporting the callbacks.
6443  */
6444 struct perf_guest_info_callbacks __rcu *perf_guest_cbs;
6445 
perf_register_guest_info_callbacks(struct perf_guest_info_callbacks * cbs)6446 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6447 {
6448 	if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs)))
6449 		return -EBUSY;
6450 
6451 	rcu_assign_pointer(perf_guest_cbs, cbs);
6452 	return 0;
6453 }
6454 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
6455 
perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks * cbs)6456 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6457 {
6458 	if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs) != cbs))
6459 		return -EINVAL;
6460 
6461 	rcu_assign_pointer(perf_guest_cbs, NULL);
6462 	synchronize_rcu();
6463 	return 0;
6464 }
6465 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
6466 
6467 static void
perf_output_sample_regs(struct perf_output_handle * handle,struct pt_regs * regs,u64 mask)6468 perf_output_sample_regs(struct perf_output_handle *handle,
6469 			struct pt_regs *regs, u64 mask)
6470 {
6471 	int bit;
6472 	DECLARE_BITMAP(_mask, 64);
6473 
6474 	bitmap_from_u64(_mask, mask);
6475 	for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
6476 		u64 val;
6477 
6478 		val = perf_reg_value(regs, bit);
6479 		perf_output_put(handle, val);
6480 	}
6481 }
6482 
perf_sample_regs_user(struct perf_regs * regs_user,struct pt_regs * regs)6483 static void perf_sample_regs_user(struct perf_regs *regs_user,
6484 				  struct pt_regs *regs)
6485 {
6486 	if (user_mode(regs)) {
6487 		regs_user->abi = perf_reg_abi(current);
6488 		regs_user->regs = regs;
6489 	} else if (!(current->flags & PF_KTHREAD)) {
6490 		perf_get_regs_user(regs_user, regs);
6491 	} else {
6492 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
6493 		regs_user->regs = NULL;
6494 	}
6495 }
6496 
perf_sample_regs_intr(struct perf_regs * regs_intr,struct pt_regs * regs)6497 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
6498 				  struct pt_regs *regs)
6499 {
6500 	regs_intr->regs = regs;
6501 	regs_intr->abi  = perf_reg_abi(current);
6502 }
6503 
6504 
6505 /*
6506  * Get remaining task size from user stack pointer.
6507  *
6508  * It'd be better to take stack vma map and limit this more
6509  * precisely, but there's no way to get it safely under interrupt,
6510  * so using TASK_SIZE as limit.
6511  */
perf_ustack_task_size(struct pt_regs * regs)6512 static u64 perf_ustack_task_size(struct pt_regs *regs)
6513 {
6514 	unsigned long addr = perf_user_stack_pointer(regs);
6515 
6516 	if (!addr || addr >= TASK_SIZE)
6517 		return 0;
6518 
6519 	return TASK_SIZE - addr;
6520 }
6521 
6522 static u16
perf_sample_ustack_size(u16 stack_size,u16 header_size,struct pt_regs * regs)6523 perf_sample_ustack_size(u16 stack_size, u16 header_size,
6524 			struct pt_regs *regs)
6525 {
6526 	u64 task_size;
6527 
6528 	/* No regs, no stack pointer, no dump. */
6529 	if (!regs)
6530 		return 0;
6531 
6532 	/*
6533 	 * Check if we fit in with the requested stack size into the:
6534 	 * - TASK_SIZE
6535 	 *   If we don't, we limit the size to the TASK_SIZE.
6536 	 *
6537 	 * - remaining sample size
6538 	 *   If we don't, we customize the stack size to
6539 	 *   fit in to the remaining sample size.
6540 	 */
6541 
6542 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
6543 	stack_size = min(stack_size, (u16) task_size);
6544 
6545 	/* Current header size plus static size and dynamic size. */
6546 	header_size += 2 * sizeof(u64);
6547 
6548 	/* Do we fit in with the current stack dump size? */
6549 	if ((u16) (header_size + stack_size) < header_size) {
6550 		/*
6551 		 * If we overflow the maximum size for the sample,
6552 		 * we customize the stack dump size to fit in.
6553 		 */
6554 		stack_size = USHRT_MAX - header_size - sizeof(u64);
6555 		stack_size = round_up(stack_size, sizeof(u64));
6556 	}
6557 
6558 	return stack_size;
6559 }
6560 
6561 static void
perf_output_sample_ustack(struct perf_output_handle * handle,u64 dump_size,struct pt_regs * regs)6562 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
6563 			  struct pt_regs *regs)
6564 {
6565 	/* Case of a kernel thread, nothing to dump */
6566 	if (!regs) {
6567 		u64 size = 0;
6568 		perf_output_put(handle, size);
6569 	} else {
6570 		unsigned long sp;
6571 		unsigned int rem;
6572 		u64 dyn_size;
6573 		mm_segment_t fs;
6574 
6575 		/*
6576 		 * We dump:
6577 		 * static size
6578 		 *   - the size requested by user or the best one we can fit
6579 		 *     in to the sample max size
6580 		 * data
6581 		 *   - user stack dump data
6582 		 * dynamic size
6583 		 *   - the actual dumped size
6584 		 */
6585 
6586 		/* Static size. */
6587 		perf_output_put(handle, dump_size);
6588 
6589 		/* Data. */
6590 		sp = perf_user_stack_pointer(regs);
6591 		fs = force_uaccess_begin();
6592 		rem = __output_copy_user(handle, (void *) sp, dump_size);
6593 		force_uaccess_end(fs);
6594 		dyn_size = dump_size - rem;
6595 
6596 		perf_output_skip(handle, rem);
6597 
6598 		/* Dynamic size. */
6599 		perf_output_put(handle, dyn_size);
6600 	}
6601 }
6602 
perf_prepare_sample_aux(struct perf_event * event,struct perf_sample_data * data,size_t size)6603 static unsigned long perf_prepare_sample_aux(struct perf_event *event,
6604 					  struct perf_sample_data *data,
6605 					  size_t size)
6606 {
6607 	struct perf_event *sampler = event->aux_event;
6608 	struct perf_buffer *rb;
6609 
6610 	data->aux_size = 0;
6611 
6612 	if (!sampler)
6613 		goto out;
6614 
6615 	if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
6616 		goto out;
6617 
6618 	if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
6619 		goto out;
6620 
6621 	rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler);
6622 	if (!rb)
6623 		goto out;
6624 
6625 	/*
6626 	 * If this is an NMI hit inside sampling code, don't take
6627 	 * the sample. See also perf_aux_sample_output().
6628 	 */
6629 	if (READ_ONCE(rb->aux_in_sampling)) {
6630 		data->aux_size = 0;
6631 	} else {
6632 		size = min_t(size_t, size, perf_aux_size(rb));
6633 		data->aux_size = ALIGN(size, sizeof(u64));
6634 	}
6635 	ring_buffer_put(rb);
6636 
6637 out:
6638 	return data->aux_size;
6639 }
6640 
perf_pmu_snapshot_aux(struct perf_buffer * rb,struct perf_event * event,struct perf_output_handle * handle,unsigned long size)6641 long perf_pmu_snapshot_aux(struct perf_buffer *rb,
6642 			   struct perf_event *event,
6643 			   struct perf_output_handle *handle,
6644 			   unsigned long size)
6645 {
6646 	unsigned long flags;
6647 	long ret;
6648 
6649 	/*
6650 	 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
6651 	 * paths. If we start calling them in NMI context, they may race with
6652 	 * the IRQ ones, that is, for example, re-starting an event that's just
6653 	 * been stopped, which is why we're using a separate callback that
6654 	 * doesn't change the event state.
6655 	 *
6656 	 * IRQs need to be disabled to prevent IPIs from racing with us.
6657 	 */
6658 	local_irq_save(flags);
6659 	/*
6660 	 * Guard against NMI hits inside the critical section;
6661 	 * see also perf_prepare_sample_aux().
6662 	 */
6663 	WRITE_ONCE(rb->aux_in_sampling, 1);
6664 	barrier();
6665 
6666 	ret = event->pmu->snapshot_aux(event, handle, size);
6667 
6668 	barrier();
6669 	WRITE_ONCE(rb->aux_in_sampling, 0);
6670 	local_irq_restore(flags);
6671 
6672 	return ret;
6673 }
6674 
perf_aux_sample_output(struct perf_event * event,struct perf_output_handle * handle,struct perf_sample_data * data)6675 static void perf_aux_sample_output(struct perf_event *event,
6676 				   struct perf_output_handle *handle,
6677 				   struct perf_sample_data *data)
6678 {
6679 	struct perf_event *sampler = event->aux_event;
6680 	struct perf_buffer *rb;
6681 	unsigned long pad;
6682 	long size;
6683 
6684 	if (WARN_ON_ONCE(!sampler || !data->aux_size))
6685 		return;
6686 
6687 	rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler);
6688 	if (!rb)
6689 		return;
6690 
6691 	size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
6692 
6693 	/*
6694 	 * An error here means that perf_output_copy() failed (returned a
6695 	 * non-zero surplus that it didn't copy), which in its current
6696 	 * enlightened implementation is not possible. If that changes, we'd
6697 	 * like to know.
6698 	 */
6699 	if (WARN_ON_ONCE(size < 0))
6700 		goto out_put;
6701 
6702 	/*
6703 	 * The pad comes from ALIGN()ing data->aux_size up to u64 in
6704 	 * perf_prepare_sample_aux(), so should not be more than that.
6705 	 */
6706 	pad = data->aux_size - size;
6707 	if (WARN_ON_ONCE(pad >= sizeof(u64)))
6708 		pad = 8;
6709 
6710 	if (pad) {
6711 		u64 zero = 0;
6712 		perf_output_copy(handle, &zero, pad);
6713 	}
6714 
6715 out_put:
6716 	ring_buffer_put(rb);
6717 }
6718 
__perf_event_header__init_id(struct perf_event_header * header,struct perf_sample_data * data,struct perf_event * event)6719 static void __perf_event_header__init_id(struct perf_event_header *header,
6720 					 struct perf_sample_data *data,
6721 					 struct perf_event *event)
6722 {
6723 	u64 sample_type = event->attr.sample_type;
6724 
6725 	data->type = sample_type;
6726 	header->size += event->id_header_size;
6727 
6728 	if (sample_type & PERF_SAMPLE_TID) {
6729 		/* namespace issues */
6730 		data->tid_entry.pid = perf_event_pid(event, current);
6731 		data->tid_entry.tid = perf_event_tid(event, current);
6732 	}
6733 
6734 	if (sample_type & PERF_SAMPLE_TIME)
6735 		data->time = perf_event_clock(event);
6736 
6737 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6738 		data->id = primary_event_id(event);
6739 
6740 	if (sample_type & PERF_SAMPLE_STREAM_ID)
6741 		data->stream_id = event->id;
6742 
6743 	if (sample_type & PERF_SAMPLE_CPU) {
6744 		data->cpu_entry.cpu	 = raw_smp_processor_id();
6745 		data->cpu_entry.reserved = 0;
6746 	}
6747 }
6748 
perf_event_header__init_id(struct perf_event_header * header,struct perf_sample_data * data,struct perf_event * event)6749 void perf_event_header__init_id(struct perf_event_header *header,
6750 				struct perf_sample_data *data,
6751 				struct perf_event *event)
6752 {
6753 	if (event->attr.sample_id_all)
6754 		__perf_event_header__init_id(header, data, event);
6755 }
6756 
__perf_event__output_id_sample(struct perf_output_handle * handle,struct perf_sample_data * data)6757 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
6758 					   struct perf_sample_data *data)
6759 {
6760 	u64 sample_type = data->type;
6761 
6762 	if (sample_type & PERF_SAMPLE_TID)
6763 		perf_output_put(handle, data->tid_entry);
6764 
6765 	if (sample_type & PERF_SAMPLE_TIME)
6766 		perf_output_put(handle, data->time);
6767 
6768 	if (sample_type & PERF_SAMPLE_ID)
6769 		perf_output_put(handle, data->id);
6770 
6771 	if (sample_type & PERF_SAMPLE_STREAM_ID)
6772 		perf_output_put(handle, data->stream_id);
6773 
6774 	if (sample_type & PERF_SAMPLE_CPU)
6775 		perf_output_put(handle, data->cpu_entry);
6776 
6777 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
6778 		perf_output_put(handle, data->id);
6779 }
6780 
perf_event__output_id_sample(struct perf_event * event,struct perf_output_handle * handle,struct perf_sample_data * sample)6781 void perf_event__output_id_sample(struct perf_event *event,
6782 				  struct perf_output_handle *handle,
6783 				  struct perf_sample_data *sample)
6784 {
6785 	if (event->attr.sample_id_all)
6786 		__perf_event__output_id_sample(handle, sample);
6787 }
6788 
perf_output_read_one(struct perf_output_handle * handle,struct perf_event * event,u64 enabled,u64 running)6789 static void perf_output_read_one(struct perf_output_handle *handle,
6790 				 struct perf_event *event,
6791 				 u64 enabled, u64 running)
6792 {
6793 	u64 read_format = event->attr.read_format;
6794 	u64 values[4];
6795 	int n = 0;
6796 
6797 	values[n++] = perf_event_count(event);
6798 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
6799 		values[n++] = enabled +
6800 			atomic64_read(&event->child_total_time_enabled);
6801 	}
6802 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
6803 		values[n++] = running +
6804 			atomic64_read(&event->child_total_time_running);
6805 	}
6806 	if (read_format & PERF_FORMAT_ID)
6807 		values[n++] = primary_event_id(event);
6808 
6809 	__output_copy(handle, values, n * sizeof(u64));
6810 }
6811 
perf_output_read_group(struct perf_output_handle * handle,struct perf_event * event,u64 enabled,u64 running)6812 static void perf_output_read_group(struct perf_output_handle *handle,
6813 			    struct perf_event *event,
6814 			    u64 enabled, u64 running)
6815 {
6816 	struct perf_event *leader = event->group_leader, *sub;
6817 	u64 read_format = event->attr.read_format;
6818 	u64 values[5];
6819 	int n = 0;
6820 
6821 	values[n++] = 1 + leader->nr_siblings;
6822 
6823 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
6824 		values[n++] = enabled;
6825 
6826 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
6827 		values[n++] = running;
6828 
6829 	if ((leader != event) &&
6830 	    (leader->state == PERF_EVENT_STATE_ACTIVE))
6831 		leader->pmu->read(leader);
6832 
6833 	values[n++] = perf_event_count(leader);
6834 	if (read_format & PERF_FORMAT_ID)
6835 		values[n++] = primary_event_id(leader);
6836 
6837 	__output_copy(handle, values, n * sizeof(u64));
6838 
6839 	for_each_sibling_event(sub, leader) {
6840 		n = 0;
6841 
6842 		if ((sub != event) &&
6843 		    (sub->state == PERF_EVENT_STATE_ACTIVE))
6844 			sub->pmu->read(sub);
6845 
6846 		values[n++] = perf_event_count(sub);
6847 		if (read_format & PERF_FORMAT_ID)
6848 			values[n++] = primary_event_id(sub);
6849 
6850 		__output_copy(handle, values, n * sizeof(u64));
6851 	}
6852 }
6853 
6854 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
6855 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
6856 
6857 /*
6858  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
6859  *
6860  * The problem is that its both hard and excessively expensive to iterate the
6861  * child list, not to mention that its impossible to IPI the children running
6862  * on another CPU, from interrupt/NMI context.
6863  */
perf_output_read(struct perf_output_handle * handle,struct perf_event * event)6864 static void perf_output_read(struct perf_output_handle *handle,
6865 			     struct perf_event *event)
6866 {
6867 	u64 enabled = 0, running = 0, now;
6868 	u64 read_format = event->attr.read_format;
6869 
6870 	/*
6871 	 * compute total_time_enabled, total_time_running
6872 	 * based on snapshot values taken when the event
6873 	 * was last scheduled in.
6874 	 *
6875 	 * we cannot simply called update_context_time()
6876 	 * because of locking issue as we are called in
6877 	 * NMI context
6878 	 */
6879 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
6880 		calc_timer_values(event, &now, &enabled, &running);
6881 
6882 	if (event->attr.read_format & PERF_FORMAT_GROUP)
6883 		perf_output_read_group(handle, event, enabled, running);
6884 	else
6885 		perf_output_read_one(handle, event, enabled, running);
6886 }
6887 
perf_sample_save_hw_index(struct perf_event * event)6888 static inline bool perf_sample_save_hw_index(struct perf_event *event)
6889 {
6890 	return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_HW_INDEX;
6891 }
6892 
perf_output_sample(struct perf_output_handle * handle,struct perf_event_header * header,struct perf_sample_data * data,struct perf_event * event)6893 void perf_output_sample(struct perf_output_handle *handle,
6894 			struct perf_event_header *header,
6895 			struct perf_sample_data *data,
6896 			struct perf_event *event)
6897 {
6898 	u64 sample_type = data->type;
6899 
6900 	perf_output_put(handle, *header);
6901 
6902 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
6903 		perf_output_put(handle, data->id);
6904 
6905 	if (sample_type & PERF_SAMPLE_IP)
6906 		perf_output_put(handle, data->ip);
6907 
6908 	if (sample_type & PERF_SAMPLE_TID)
6909 		perf_output_put(handle, data->tid_entry);
6910 
6911 	if (sample_type & PERF_SAMPLE_TIME)
6912 		perf_output_put(handle, data->time);
6913 
6914 	if (sample_type & PERF_SAMPLE_ADDR)
6915 		perf_output_put(handle, data->addr);
6916 
6917 	if (sample_type & PERF_SAMPLE_ID)
6918 		perf_output_put(handle, data->id);
6919 
6920 	if (sample_type & PERF_SAMPLE_STREAM_ID)
6921 		perf_output_put(handle, data->stream_id);
6922 
6923 	if (sample_type & PERF_SAMPLE_CPU)
6924 		perf_output_put(handle, data->cpu_entry);
6925 
6926 	if (sample_type & PERF_SAMPLE_PERIOD)
6927 		perf_output_put(handle, data->period);
6928 
6929 	if (sample_type & PERF_SAMPLE_READ)
6930 		perf_output_read(handle, event);
6931 
6932 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6933 		int size = 1;
6934 
6935 		size += data->callchain->nr;
6936 		size *= sizeof(u64);
6937 		__output_copy(handle, data->callchain, size);
6938 	}
6939 
6940 	if (sample_type & PERF_SAMPLE_RAW) {
6941 		struct perf_raw_record *raw = data->raw;
6942 
6943 		if (raw) {
6944 			struct perf_raw_frag *frag = &raw->frag;
6945 
6946 			perf_output_put(handle, raw->size);
6947 			do {
6948 				if (frag->copy) {
6949 					__output_custom(handle, frag->copy,
6950 							frag->data, frag->size);
6951 				} else {
6952 					__output_copy(handle, frag->data,
6953 						      frag->size);
6954 				}
6955 				if (perf_raw_frag_last(frag))
6956 					break;
6957 				frag = frag->next;
6958 			} while (1);
6959 			if (frag->pad)
6960 				__output_skip(handle, NULL, frag->pad);
6961 		} else {
6962 			struct {
6963 				u32	size;
6964 				u32	data;
6965 			} raw = {
6966 				.size = sizeof(u32),
6967 				.data = 0,
6968 			};
6969 			perf_output_put(handle, raw);
6970 		}
6971 	}
6972 
6973 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6974 		if (data->br_stack) {
6975 			size_t size;
6976 
6977 			size = data->br_stack->nr
6978 			     * sizeof(struct perf_branch_entry);
6979 
6980 			perf_output_put(handle, data->br_stack->nr);
6981 			if (perf_sample_save_hw_index(event))
6982 				perf_output_put(handle, data->br_stack->hw_idx);
6983 			perf_output_copy(handle, data->br_stack->entries, size);
6984 		} else {
6985 			/*
6986 			 * we always store at least the value of nr
6987 			 */
6988 			u64 nr = 0;
6989 			perf_output_put(handle, nr);
6990 		}
6991 	}
6992 
6993 	if (sample_type & PERF_SAMPLE_REGS_USER) {
6994 		u64 abi = data->regs_user.abi;
6995 
6996 		/*
6997 		 * If there are no regs to dump, notice it through
6998 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6999 		 */
7000 		perf_output_put(handle, abi);
7001 
7002 		if (abi) {
7003 			u64 mask = event->attr.sample_regs_user;
7004 			perf_output_sample_regs(handle,
7005 						data->regs_user.regs,
7006 						mask);
7007 		}
7008 	}
7009 
7010 	if (sample_type & PERF_SAMPLE_STACK_USER) {
7011 		perf_output_sample_ustack(handle,
7012 					  data->stack_user_size,
7013 					  data->regs_user.regs);
7014 	}
7015 
7016 	if (sample_type & PERF_SAMPLE_WEIGHT)
7017 		perf_output_put(handle, data->weight);
7018 
7019 	if (sample_type & PERF_SAMPLE_DATA_SRC)
7020 		perf_output_put(handle, data->data_src.val);
7021 
7022 	if (sample_type & PERF_SAMPLE_TRANSACTION)
7023 		perf_output_put(handle, data->txn);
7024 
7025 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
7026 		u64 abi = data->regs_intr.abi;
7027 		/*
7028 		 * If there are no regs to dump, notice it through
7029 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7030 		 */
7031 		perf_output_put(handle, abi);
7032 
7033 		if (abi) {
7034 			u64 mask = event->attr.sample_regs_intr;
7035 
7036 			perf_output_sample_regs(handle,
7037 						data->regs_intr.regs,
7038 						mask);
7039 		}
7040 	}
7041 
7042 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7043 		perf_output_put(handle, data->phys_addr);
7044 
7045 	if (sample_type & PERF_SAMPLE_CGROUP)
7046 		perf_output_put(handle, data->cgroup);
7047 
7048 	if (sample_type & PERF_SAMPLE_AUX) {
7049 		perf_output_put(handle, data->aux_size);
7050 
7051 		if (data->aux_size)
7052 			perf_aux_sample_output(event, handle, data);
7053 	}
7054 
7055 	if (!event->attr.watermark) {
7056 		int wakeup_events = event->attr.wakeup_events;
7057 
7058 		if (wakeup_events) {
7059 			struct perf_buffer *rb = handle->rb;
7060 			int events = local_inc_return(&rb->events);
7061 
7062 			if (events >= wakeup_events) {
7063 				local_sub(wakeup_events, &rb->events);
7064 				local_inc(&rb->wakeup);
7065 			}
7066 		}
7067 	}
7068 }
7069 
perf_virt_to_phys(u64 virt)7070 static u64 perf_virt_to_phys(u64 virt)
7071 {
7072 	u64 phys_addr = 0;
7073 
7074 	if (!virt)
7075 		return 0;
7076 
7077 	if (virt >= TASK_SIZE) {
7078 		/* If it's vmalloc()d memory, leave phys_addr as 0 */
7079 		if (virt_addr_valid((void *)(uintptr_t)virt) &&
7080 		    !(virt >= VMALLOC_START && virt < VMALLOC_END))
7081 			phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
7082 	} else {
7083 		/*
7084 		 * Walking the pages tables for user address.
7085 		 * Interrupts are disabled, so it prevents any tear down
7086 		 * of the page tables.
7087 		 * Try IRQ-safe get_user_page_fast_only first.
7088 		 * If failed, leave phys_addr as 0.
7089 		 */
7090 		if (current->mm != NULL) {
7091 			struct page *p;
7092 
7093 			pagefault_disable();
7094 			if (get_user_page_fast_only(virt, 0, &p)) {
7095 				phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
7096 				put_page(p);
7097 			}
7098 			pagefault_enable();
7099 		}
7100 	}
7101 
7102 	return phys_addr;
7103 }
7104 
7105 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
7106 
7107 struct perf_callchain_entry *
perf_callchain(struct perf_event * event,struct pt_regs * regs)7108 perf_callchain(struct perf_event *event, struct pt_regs *regs)
7109 {
7110 	bool kernel = !event->attr.exclude_callchain_kernel;
7111 	bool user   = !event->attr.exclude_callchain_user;
7112 	/* Disallow cross-task user callchains. */
7113 	bool crosstask = event->ctx->task && event->ctx->task != current;
7114 	const u32 max_stack = event->attr.sample_max_stack;
7115 	struct perf_callchain_entry *callchain;
7116 
7117 	if (!kernel && !user)
7118 		return &__empty_callchain;
7119 
7120 	callchain = get_perf_callchain(regs, 0, kernel, user,
7121 				       max_stack, crosstask, true);
7122 	return callchain ?: &__empty_callchain;
7123 }
7124 
perf_prepare_sample(struct perf_event_header * header,struct perf_sample_data * data,struct perf_event * event,struct pt_regs * regs)7125 void perf_prepare_sample(struct perf_event_header *header,
7126 			 struct perf_sample_data *data,
7127 			 struct perf_event *event,
7128 			 struct pt_regs *regs)
7129 {
7130 	u64 sample_type = event->attr.sample_type;
7131 
7132 	header->type = PERF_RECORD_SAMPLE;
7133 	header->size = sizeof(*header) + event->header_size;
7134 
7135 	header->misc = 0;
7136 	header->misc |= perf_misc_flags(regs);
7137 
7138 	__perf_event_header__init_id(header, data, event);
7139 
7140 	if (sample_type & PERF_SAMPLE_IP)
7141 		data->ip = perf_instruction_pointer(regs);
7142 
7143 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
7144 		int size = 1;
7145 
7146 		if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY))
7147 			data->callchain = perf_callchain(event, regs);
7148 
7149 		size += data->callchain->nr;
7150 
7151 		header->size += size * sizeof(u64);
7152 	}
7153 
7154 	if (sample_type & PERF_SAMPLE_RAW) {
7155 		struct perf_raw_record *raw = data->raw;
7156 		int size;
7157 
7158 		if (raw) {
7159 			struct perf_raw_frag *frag = &raw->frag;
7160 			u32 sum = 0;
7161 
7162 			do {
7163 				sum += frag->size;
7164 				if (perf_raw_frag_last(frag))
7165 					break;
7166 				frag = frag->next;
7167 			} while (1);
7168 
7169 			size = round_up(sum + sizeof(u32), sizeof(u64));
7170 			raw->size = size - sizeof(u32);
7171 			frag->pad = raw->size - sum;
7172 		} else {
7173 			size = sizeof(u64);
7174 		}
7175 
7176 		header->size += size;
7177 	}
7178 
7179 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7180 		int size = sizeof(u64); /* nr */
7181 		if (data->br_stack) {
7182 			if (perf_sample_save_hw_index(event))
7183 				size += sizeof(u64);
7184 
7185 			size += data->br_stack->nr
7186 			      * sizeof(struct perf_branch_entry);
7187 		}
7188 		header->size += size;
7189 	}
7190 
7191 	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
7192 		perf_sample_regs_user(&data->regs_user, regs);
7193 
7194 	if (sample_type & PERF_SAMPLE_REGS_USER) {
7195 		/* regs dump ABI info */
7196 		int size = sizeof(u64);
7197 
7198 		if (data->regs_user.regs) {
7199 			u64 mask = event->attr.sample_regs_user;
7200 			size += hweight64(mask) * sizeof(u64);
7201 		}
7202 
7203 		header->size += size;
7204 	}
7205 
7206 	if (sample_type & PERF_SAMPLE_STACK_USER) {
7207 		/*
7208 		 * Either we need PERF_SAMPLE_STACK_USER bit to be always
7209 		 * processed as the last one or have additional check added
7210 		 * in case new sample type is added, because we could eat
7211 		 * up the rest of the sample size.
7212 		 */
7213 		u16 stack_size = event->attr.sample_stack_user;
7214 		u16 size = sizeof(u64);
7215 
7216 		stack_size = perf_sample_ustack_size(stack_size, header->size,
7217 						     data->regs_user.regs);
7218 
7219 		/*
7220 		 * If there is something to dump, add space for the dump
7221 		 * itself and for the field that tells the dynamic size,
7222 		 * which is how many have been actually dumped.
7223 		 */
7224 		if (stack_size)
7225 			size += sizeof(u64) + stack_size;
7226 
7227 		data->stack_user_size = stack_size;
7228 		header->size += size;
7229 	}
7230 
7231 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
7232 		/* regs dump ABI info */
7233 		int size = sizeof(u64);
7234 
7235 		perf_sample_regs_intr(&data->regs_intr, regs);
7236 
7237 		if (data->regs_intr.regs) {
7238 			u64 mask = event->attr.sample_regs_intr;
7239 
7240 			size += hweight64(mask) * sizeof(u64);
7241 		}
7242 
7243 		header->size += size;
7244 	}
7245 
7246 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7247 		data->phys_addr = perf_virt_to_phys(data->addr);
7248 
7249 #ifdef CONFIG_CGROUP_PERF
7250 	if (sample_type & PERF_SAMPLE_CGROUP) {
7251 		struct cgroup *cgrp;
7252 
7253 		/* protected by RCU */
7254 		cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup;
7255 		data->cgroup = cgroup_id(cgrp);
7256 	}
7257 #endif
7258 
7259 	if (sample_type & PERF_SAMPLE_AUX) {
7260 		u64 size;
7261 
7262 		header->size += sizeof(u64); /* size */
7263 
7264 		/*
7265 		 * Given the 16bit nature of header::size, an AUX sample can
7266 		 * easily overflow it, what with all the preceding sample bits.
7267 		 * Make sure this doesn't happen by using up to U16_MAX bytes
7268 		 * per sample in total (rounded down to 8 byte boundary).
7269 		 */
7270 		size = min_t(size_t, U16_MAX - header->size,
7271 			     event->attr.aux_sample_size);
7272 		size = rounddown(size, 8);
7273 		size = perf_prepare_sample_aux(event, data, size);
7274 
7275 		WARN_ON_ONCE(size + header->size > U16_MAX);
7276 		header->size += size;
7277 	}
7278 	/*
7279 	 * If you're adding more sample types here, you likely need to do
7280 	 * something about the overflowing header::size, like repurpose the
7281 	 * lowest 3 bits of size, which should be always zero at the moment.
7282 	 * This raises a more important question, do we really need 512k sized
7283 	 * samples and why, so good argumentation is in order for whatever you
7284 	 * do here next.
7285 	 */
7286 	WARN_ON_ONCE(header->size & 7);
7287 }
7288 
7289 static __always_inline int
__perf_event_output(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs,int (* output_begin)(struct perf_output_handle *,struct perf_sample_data *,struct perf_event *,unsigned int))7290 __perf_event_output(struct perf_event *event,
7291 		    struct perf_sample_data *data,
7292 		    struct pt_regs *regs,
7293 		    int (*output_begin)(struct perf_output_handle *,
7294 					struct perf_sample_data *,
7295 					struct perf_event *,
7296 					unsigned int))
7297 {
7298 	struct perf_output_handle handle;
7299 	struct perf_event_header header;
7300 	int err;
7301 
7302 	/* protect the callchain buffers */
7303 	rcu_read_lock();
7304 
7305 	perf_prepare_sample(&header, data, event, regs);
7306 
7307 	err = output_begin(&handle, data, event, header.size);
7308 	if (err)
7309 		goto exit;
7310 
7311 	perf_output_sample(&handle, &header, data, event);
7312 
7313 	perf_output_end(&handle);
7314 
7315 exit:
7316 	rcu_read_unlock();
7317 	return err;
7318 }
7319 
7320 void
perf_event_output_forward(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)7321 perf_event_output_forward(struct perf_event *event,
7322 			 struct perf_sample_data *data,
7323 			 struct pt_regs *regs)
7324 {
7325 	__perf_event_output(event, data, regs, perf_output_begin_forward);
7326 }
7327 
7328 void
perf_event_output_backward(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)7329 perf_event_output_backward(struct perf_event *event,
7330 			   struct perf_sample_data *data,
7331 			   struct pt_regs *regs)
7332 {
7333 	__perf_event_output(event, data, regs, perf_output_begin_backward);
7334 }
7335 
7336 int
perf_event_output(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)7337 perf_event_output(struct perf_event *event,
7338 		  struct perf_sample_data *data,
7339 		  struct pt_regs *regs)
7340 {
7341 	return __perf_event_output(event, data, regs, perf_output_begin);
7342 }
7343 
7344 /*
7345  * read event_id
7346  */
7347 
7348 struct perf_read_event {
7349 	struct perf_event_header	header;
7350 
7351 	u32				pid;
7352 	u32				tid;
7353 };
7354 
7355 static void
perf_event_read_event(struct perf_event * event,struct task_struct * task)7356 perf_event_read_event(struct perf_event *event,
7357 			struct task_struct *task)
7358 {
7359 	struct perf_output_handle handle;
7360 	struct perf_sample_data sample;
7361 	struct perf_read_event read_event = {
7362 		.header = {
7363 			.type = PERF_RECORD_READ,
7364 			.misc = 0,
7365 			.size = sizeof(read_event) + event->read_size,
7366 		},
7367 		.pid = perf_event_pid(event, task),
7368 		.tid = perf_event_tid(event, task),
7369 	};
7370 	int ret;
7371 
7372 	perf_event_header__init_id(&read_event.header, &sample, event);
7373 	ret = perf_output_begin(&handle, &sample, event, read_event.header.size);
7374 	if (ret)
7375 		return;
7376 
7377 	perf_output_put(&handle, read_event);
7378 	perf_output_read(&handle, event);
7379 	perf_event__output_id_sample(event, &handle, &sample);
7380 
7381 	perf_output_end(&handle);
7382 }
7383 
7384 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
7385 
7386 static void
perf_iterate_ctx(struct perf_event_context * ctx,perf_iterate_f output,void * data,bool all)7387 perf_iterate_ctx(struct perf_event_context *ctx,
7388 		   perf_iterate_f output,
7389 		   void *data, bool all)
7390 {
7391 	struct perf_event *event;
7392 
7393 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7394 		if (!all) {
7395 			if (event->state < PERF_EVENT_STATE_INACTIVE)
7396 				continue;
7397 			if (!event_filter_match(event))
7398 				continue;
7399 		}
7400 
7401 		output(event, data);
7402 	}
7403 }
7404 
perf_iterate_sb_cpu(perf_iterate_f output,void * data)7405 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
7406 {
7407 	struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
7408 	struct perf_event *event;
7409 
7410 	list_for_each_entry_rcu(event, &pel->list, sb_list) {
7411 		/*
7412 		 * Skip events that are not fully formed yet; ensure that
7413 		 * if we observe event->ctx, both event and ctx will be
7414 		 * complete enough. See perf_install_in_context().
7415 		 */
7416 		if (!smp_load_acquire(&event->ctx))
7417 			continue;
7418 
7419 		if (event->state < PERF_EVENT_STATE_INACTIVE)
7420 			continue;
7421 		if (!event_filter_match(event))
7422 			continue;
7423 		output(event, data);
7424 	}
7425 }
7426 
7427 /*
7428  * Iterate all events that need to receive side-band events.
7429  *
7430  * For new callers; ensure that account_pmu_sb_event() includes
7431  * your event, otherwise it might not get delivered.
7432  */
7433 static void
perf_iterate_sb(perf_iterate_f output,void * data,struct perf_event_context * task_ctx)7434 perf_iterate_sb(perf_iterate_f output, void *data,
7435 	       struct perf_event_context *task_ctx)
7436 {
7437 	struct perf_event_context *ctx;
7438 	int ctxn;
7439 
7440 	rcu_read_lock();
7441 	preempt_disable();
7442 
7443 	/*
7444 	 * If we have task_ctx != NULL we only notify the task context itself.
7445 	 * The task_ctx is set only for EXIT events before releasing task
7446 	 * context.
7447 	 */
7448 	if (task_ctx) {
7449 		perf_iterate_ctx(task_ctx, output, data, false);
7450 		goto done;
7451 	}
7452 
7453 	perf_iterate_sb_cpu(output, data);
7454 
7455 	for_each_task_context_nr(ctxn) {
7456 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7457 		if (ctx)
7458 			perf_iterate_ctx(ctx, output, data, false);
7459 	}
7460 done:
7461 	preempt_enable();
7462 	rcu_read_unlock();
7463 }
7464 
7465 /*
7466  * Clear all file-based filters at exec, they'll have to be
7467  * re-instated when/if these objects are mmapped again.
7468  */
perf_event_addr_filters_exec(struct perf_event * event,void * data)7469 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
7470 {
7471 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7472 	struct perf_addr_filter *filter;
7473 	unsigned int restart = 0, count = 0;
7474 	unsigned long flags;
7475 
7476 	if (!has_addr_filter(event))
7477 		return;
7478 
7479 	raw_spin_lock_irqsave(&ifh->lock, flags);
7480 	list_for_each_entry(filter, &ifh->list, entry) {
7481 		if (filter->path.dentry) {
7482 			event->addr_filter_ranges[count].start = 0;
7483 			event->addr_filter_ranges[count].size = 0;
7484 			restart++;
7485 		}
7486 
7487 		count++;
7488 	}
7489 
7490 	if (restart)
7491 		event->addr_filters_gen++;
7492 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
7493 
7494 	if (restart)
7495 		perf_event_stop(event, 1);
7496 }
7497 
perf_event_exec(void)7498 void perf_event_exec(void)
7499 {
7500 	struct perf_event_context *ctx;
7501 	int ctxn;
7502 
7503 	rcu_read_lock();
7504 	for_each_task_context_nr(ctxn) {
7505 		ctx = current->perf_event_ctxp[ctxn];
7506 		if (!ctx)
7507 			continue;
7508 
7509 		perf_event_enable_on_exec(ctxn);
7510 
7511 		perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
7512 				   true);
7513 	}
7514 	rcu_read_unlock();
7515 }
7516 
7517 struct remote_output {
7518 	struct perf_buffer	*rb;
7519 	int			err;
7520 };
7521 
__perf_event_output_stop(struct perf_event * event,void * data)7522 static void __perf_event_output_stop(struct perf_event *event, void *data)
7523 {
7524 	struct perf_event *parent = event->parent;
7525 	struct remote_output *ro = data;
7526 	struct perf_buffer *rb = ro->rb;
7527 	struct stop_event_data sd = {
7528 		.event	= event,
7529 	};
7530 
7531 	if (!has_aux(event))
7532 		return;
7533 
7534 	if (!parent)
7535 		parent = event;
7536 
7537 	/*
7538 	 * In case of inheritance, it will be the parent that links to the
7539 	 * ring-buffer, but it will be the child that's actually using it.
7540 	 *
7541 	 * We are using event::rb to determine if the event should be stopped,
7542 	 * however this may race with ring_buffer_attach() (through set_output),
7543 	 * which will make us skip the event that actually needs to be stopped.
7544 	 * So ring_buffer_attach() has to stop an aux event before re-assigning
7545 	 * its rb pointer.
7546 	 */
7547 	if (rcu_dereference(parent->rb) == rb)
7548 		ro->err = __perf_event_stop(&sd);
7549 }
7550 
__perf_pmu_output_stop(void * info)7551 static int __perf_pmu_output_stop(void *info)
7552 {
7553 	struct perf_event *event = info;
7554 	struct pmu *pmu = event->ctx->pmu;
7555 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7556 	struct remote_output ro = {
7557 		.rb	= event->rb,
7558 	};
7559 
7560 	rcu_read_lock();
7561 	perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
7562 	if (cpuctx->task_ctx)
7563 		perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
7564 				   &ro, false);
7565 	rcu_read_unlock();
7566 
7567 	return ro.err;
7568 }
7569 
perf_pmu_output_stop(struct perf_event * event)7570 static void perf_pmu_output_stop(struct perf_event *event)
7571 {
7572 	struct perf_event *iter;
7573 	int err, cpu;
7574 
7575 restart:
7576 	rcu_read_lock();
7577 	list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
7578 		/*
7579 		 * For per-CPU events, we need to make sure that neither they
7580 		 * nor their children are running; for cpu==-1 events it's
7581 		 * sufficient to stop the event itself if it's active, since
7582 		 * it can't have children.
7583 		 */
7584 		cpu = iter->cpu;
7585 		if (cpu == -1)
7586 			cpu = READ_ONCE(iter->oncpu);
7587 
7588 		if (cpu == -1)
7589 			continue;
7590 
7591 		err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
7592 		if (err == -EAGAIN) {
7593 			rcu_read_unlock();
7594 			goto restart;
7595 		}
7596 	}
7597 	rcu_read_unlock();
7598 }
7599 
7600 /*
7601  * task tracking -- fork/exit
7602  *
7603  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
7604  */
7605 
7606 struct perf_task_event {
7607 	struct task_struct		*task;
7608 	struct perf_event_context	*task_ctx;
7609 
7610 	struct {
7611 		struct perf_event_header	header;
7612 
7613 		u32				pid;
7614 		u32				ppid;
7615 		u32				tid;
7616 		u32				ptid;
7617 		u64				time;
7618 	} event_id;
7619 };
7620 
perf_event_task_match(struct perf_event * event)7621 static int perf_event_task_match(struct perf_event *event)
7622 {
7623 	return event->attr.comm  || event->attr.mmap ||
7624 	       event->attr.mmap2 || event->attr.mmap_data ||
7625 	       event->attr.task;
7626 }
7627 
perf_event_task_output(struct perf_event * event,void * data)7628 static void perf_event_task_output(struct perf_event *event,
7629 				   void *data)
7630 {
7631 	struct perf_task_event *task_event = data;
7632 	struct perf_output_handle handle;
7633 	struct perf_sample_data	sample;
7634 	struct task_struct *task = task_event->task;
7635 	int ret, size = task_event->event_id.header.size;
7636 
7637 	if (!perf_event_task_match(event))
7638 		return;
7639 
7640 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
7641 
7642 	ret = perf_output_begin(&handle, &sample, event,
7643 				task_event->event_id.header.size);
7644 	if (ret)
7645 		goto out;
7646 
7647 	task_event->event_id.pid = perf_event_pid(event, task);
7648 	task_event->event_id.tid = perf_event_tid(event, task);
7649 
7650 	if (task_event->event_id.header.type == PERF_RECORD_EXIT) {
7651 		task_event->event_id.ppid = perf_event_pid(event,
7652 							task->real_parent);
7653 		task_event->event_id.ptid = perf_event_pid(event,
7654 							task->real_parent);
7655 	} else {  /* PERF_RECORD_FORK */
7656 		task_event->event_id.ppid = perf_event_pid(event, current);
7657 		task_event->event_id.ptid = perf_event_tid(event, current);
7658 	}
7659 
7660 	task_event->event_id.time = perf_event_clock(event);
7661 
7662 	perf_output_put(&handle, task_event->event_id);
7663 
7664 	perf_event__output_id_sample(event, &handle, &sample);
7665 
7666 	perf_output_end(&handle);
7667 out:
7668 	task_event->event_id.header.size = size;
7669 }
7670 
perf_event_task(struct task_struct * task,struct perf_event_context * task_ctx,int new)7671 static void perf_event_task(struct task_struct *task,
7672 			      struct perf_event_context *task_ctx,
7673 			      int new)
7674 {
7675 	struct perf_task_event task_event;
7676 
7677 	if (!atomic_read(&nr_comm_events) &&
7678 	    !atomic_read(&nr_mmap_events) &&
7679 	    !atomic_read(&nr_task_events))
7680 		return;
7681 
7682 	task_event = (struct perf_task_event){
7683 		.task	  = task,
7684 		.task_ctx = task_ctx,
7685 		.event_id    = {
7686 			.header = {
7687 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
7688 				.misc = 0,
7689 				.size = sizeof(task_event.event_id),
7690 			},
7691 			/* .pid  */
7692 			/* .ppid */
7693 			/* .tid  */
7694 			/* .ptid */
7695 			/* .time */
7696 		},
7697 	};
7698 
7699 	perf_iterate_sb(perf_event_task_output,
7700 		       &task_event,
7701 		       task_ctx);
7702 }
7703 
perf_event_fork(struct task_struct * task)7704 void perf_event_fork(struct task_struct *task)
7705 {
7706 	perf_event_task(task, NULL, 1);
7707 	perf_event_namespaces(task);
7708 }
7709 
7710 /*
7711  * comm tracking
7712  */
7713 
7714 struct perf_comm_event {
7715 	struct task_struct	*task;
7716 	char			*comm;
7717 	int			comm_size;
7718 
7719 	struct {
7720 		struct perf_event_header	header;
7721 
7722 		u32				pid;
7723 		u32				tid;
7724 	} event_id;
7725 };
7726 
perf_event_comm_match(struct perf_event * event)7727 static int perf_event_comm_match(struct perf_event *event)
7728 {
7729 	return event->attr.comm;
7730 }
7731 
perf_event_comm_output(struct perf_event * event,void * data)7732 static void perf_event_comm_output(struct perf_event *event,
7733 				   void *data)
7734 {
7735 	struct perf_comm_event *comm_event = data;
7736 	struct perf_output_handle handle;
7737 	struct perf_sample_data sample;
7738 	int size = comm_event->event_id.header.size;
7739 	int ret;
7740 
7741 	if (!perf_event_comm_match(event))
7742 		return;
7743 
7744 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
7745 	ret = perf_output_begin(&handle, &sample, event,
7746 				comm_event->event_id.header.size);
7747 
7748 	if (ret)
7749 		goto out;
7750 
7751 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
7752 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
7753 
7754 	perf_output_put(&handle, comm_event->event_id);
7755 	__output_copy(&handle, comm_event->comm,
7756 				   comm_event->comm_size);
7757 
7758 	perf_event__output_id_sample(event, &handle, &sample);
7759 
7760 	perf_output_end(&handle);
7761 out:
7762 	comm_event->event_id.header.size = size;
7763 }
7764 
perf_event_comm_event(struct perf_comm_event * comm_event)7765 static void perf_event_comm_event(struct perf_comm_event *comm_event)
7766 {
7767 	char comm[TASK_COMM_LEN];
7768 	unsigned int size;
7769 
7770 	memset(comm, 0, sizeof(comm));
7771 	strlcpy(comm, comm_event->task->comm, sizeof(comm));
7772 	size = ALIGN(strlen(comm)+1, sizeof(u64));
7773 
7774 	comm_event->comm = comm;
7775 	comm_event->comm_size = size;
7776 
7777 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
7778 
7779 	perf_iterate_sb(perf_event_comm_output,
7780 		       comm_event,
7781 		       NULL);
7782 }
7783 
perf_event_comm(struct task_struct * task,bool exec)7784 void perf_event_comm(struct task_struct *task, bool exec)
7785 {
7786 	struct perf_comm_event comm_event;
7787 
7788 	if (!atomic_read(&nr_comm_events))
7789 		return;
7790 
7791 	comm_event = (struct perf_comm_event){
7792 		.task	= task,
7793 		/* .comm      */
7794 		/* .comm_size */
7795 		.event_id  = {
7796 			.header = {
7797 				.type = PERF_RECORD_COMM,
7798 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
7799 				/* .size */
7800 			},
7801 			/* .pid */
7802 			/* .tid */
7803 		},
7804 	};
7805 
7806 	perf_event_comm_event(&comm_event);
7807 }
7808 
7809 /*
7810  * namespaces tracking
7811  */
7812 
7813 struct perf_namespaces_event {
7814 	struct task_struct		*task;
7815 
7816 	struct {
7817 		struct perf_event_header	header;
7818 
7819 		u32				pid;
7820 		u32				tid;
7821 		u64				nr_namespaces;
7822 		struct perf_ns_link_info	link_info[NR_NAMESPACES];
7823 	} event_id;
7824 };
7825 
perf_event_namespaces_match(struct perf_event * event)7826 static int perf_event_namespaces_match(struct perf_event *event)
7827 {
7828 	return event->attr.namespaces;
7829 }
7830 
perf_event_namespaces_output(struct perf_event * event,void * data)7831 static void perf_event_namespaces_output(struct perf_event *event,
7832 					 void *data)
7833 {
7834 	struct perf_namespaces_event *namespaces_event = data;
7835 	struct perf_output_handle handle;
7836 	struct perf_sample_data sample;
7837 	u16 header_size = namespaces_event->event_id.header.size;
7838 	int ret;
7839 
7840 	if (!perf_event_namespaces_match(event))
7841 		return;
7842 
7843 	perf_event_header__init_id(&namespaces_event->event_id.header,
7844 				   &sample, event);
7845 	ret = perf_output_begin(&handle, &sample, event,
7846 				namespaces_event->event_id.header.size);
7847 	if (ret)
7848 		goto out;
7849 
7850 	namespaces_event->event_id.pid = perf_event_pid(event,
7851 							namespaces_event->task);
7852 	namespaces_event->event_id.tid = perf_event_tid(event,
7853 							namespaces_event->task);
7854 
7855 	perf_output_put(&handle, namespaces_event->event_id);
7856 
7857 	perf_event__output_id_sample(event, &handle, &sample);
7858 
7859 	perf_output_end(&handle);
7860 out:
7861 	namespaces_event->event_id.header.size = header_size;
7862 }
7863 
perf_fill_ns_link_info(struct perf_ns_link_info * ns_link_info,struct task_struct * task,const struct proc_ns_operations * ns_ops)7864 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
7865 				   struct task_struct *task,
7866 				   const struct proc_ns_operations *ns_ops)
7867 {
7868 	struct path ns_path;
7869 	struct inode *ns_inode;
7870 	int error;
7871 
7872 	error = ns_get_path(&ns_path, task, ns_ops);
7873 	if (!error) {
7874 		ns_inode = ns_path.dentry->d_inode;
7875 		ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
7876 		ns_link_info->ino = ns_inode->i_ino;
7877 		path_put(&ns_path);
7878 	}
7879 }
7880 
perf_event_namespaces(struct task_struct * task)7881 void perf_event_namespaces(struct task_struct *task)
7882 {
7883 	struct perf_namespaces_event namespaces_event;
7884 	struct perf_ns_link_info *ns_link_info;
7885 
7886 	if (!atomic_read(&nr_namespaces_events))
7887 		return;
7888 
7889 	namespaces_event = (struct perf_namespaces_event){
7890 		.task	= task,
7891 		.event_id  = {
7892 			.header = {
7893 				.type = PERF_RECORD_NAMESPACES,
7894 				.misc = 0,
7895 				.size = sizeof(namespaces_event.event_id),
7896 			},
7897 			/* .pid */
7898 			/* .tid */
7899 			.nr_namespaces = NR_NAMESPACES,
7900 			/* .link_info[NR_NAMESPACES] */
7901 		},
7902 	};
7903 
7904 	ns_link_info = namespaces_event.event_id.link_info;
7905 
7906 	perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
7907 			       task, &mntns_operations);
7908 
7909 #ifdef CONFIG_USER_NS
7910 	perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
7911 			       task, &userns_operations);
7912 #endif
7913 #ifdef CONFIG_NET_NS
7914 	perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
7915 			       task, &netns_operations);
7916 #endif
7917 #ifdef CONFIG_UTS_NS
7918 	perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
7919 			       task, &utsns_operations);
7920 #endif
7921 #ifdef CONFIG_IPC_NS
7922 	perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
7923 			       task, &ipcns_operations);
7924 #endif
7925 #ifdef CONFIG_PID_NS
7926 	perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
7927 			       task, &pidns_operations);
7928 #endif
7929 #ifdef CONFIG_CGROUPS
7930 	perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
7931 			       task, &cgroupns_operations);
7932 #endif
7933 
7934 	perf_iterate_sb(perf_event_namespaces_output,
7935 			&namespaces_event,
7936 			NULL);
7937 }
7938 
7939 /*
7940  * cgroup tracking
7941  */
7942 #ifdef CONFIG_CGROUP_PERF
7943 
7944 struct perf_cgroup_event {
7945 	char				*path;
7946 	int				path_size;
7947 	struct {
7948 		struct perf_event_header	header;
7949 		u64				id;
7950 		char				path[];
7951 	} event_id;
7952 };
7953 
perf_event_cgroup_match(struct perf_event * event)7954 static int perf_event_cgroup_match(struct perf_event *event)
7955 {
7956 	return event->attr.cgroup;
7957 }
7958 
perf_event_cgroup_output(struct perf_event * event,void * data)7959 static void perf_event_cgroup_output(struct perf_event *event, void *data)
7960 {
7961 	struct perf_cgroup_event *cgroup_event = data;
7962 	struct perf_output_handle handle;
7963 	struct perf_sample_data sample;
7964 	u16 header_size = cgroup_event->event_id.header.size;
7965 	int ret;
7966 
7967 	if (!perf_event_cgroup_match(event))
7968 		return;
7969 
7970 	perf_event_header__init_id(&cgroup_event->event_id.header,
7971 				   &sample, event);
7972 	ret = perf_output_begin(&handle, &sample, event,
7973 				cgroup_event->event_id.header.size);
7974 	if (ret)
7975 		goto out;
7976 
7977 	perf_output_put(&handle, cgroup_event->event_id);
7978 	__output_copy(&handle, cgroup_event->path, cgroup_event->path_size);
7979 
7980 	perf_event__output_id_sample(event, &handle, &sample);
7981 
7982 	perf_output_end(&handle);
7983 out:
7984 	cgroup_event->event_id.header.size = header_size;
7985 }
7986 
perf_event_cgroup(struct cgroup * cgrp)7987 static void perf_event_cgroup(struct cgroup *cgrp)
7988 {
7989 	struct perf_cgroup_event cgroup_event;
7990 	char path_enomem[16] = "//enomem";
7991 	char *pathname;
7992 	size_t size;
7993 
7994 	if (!atomic_read(&nr_cgroup_events))
7995 		return;
7996 
7997 	cgroup_event = (struct perf_cgroup_event){
7998 		.event_id  = {
7999 			.header = {
8000 				.type = PERF_RECORD_CGROUP,
8001 				.misc = 0,
8002 				.size = sizeof(cgroup_event.event_id),
8003 			},
8004 			.id = cgroup_id(cgrp),
8005 		},
8006 	};
8007 
8008 	pathname = kmalloc(PATH_MAX, GFP_KERNEL);
8009 	if (pathname == NULL) {
8010 		cgroup_event.path = path_enomem;
8011 	} else {
8012 		/* just to be sure to have enough space for alignment */
8013 		cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64));
8014 		cgroup_event.path = pathname;
8015 	}
8016 
8017 	/*
8018 	 * Since our buffer works in 8 byte units we need to align our string
8019 	 * size to a multiple of 8. However, we must guarantee the tail end is
8020 	 * zero'd out to avoid leaking random bits to userspace.
8021 	 */
8022 	size = strlen(cgroup_event.path) + 1;
8023 	while (!IS_ALIGNED(size, sizeof(u64)))
8024 		cgroup_event.path[size++] = '\0';
8025 
8026 	cgroup_event.event_id.header.size += size;
8027 	cgroup_event.path_size = size;
8028 
8029 	perf_iterate_sb(perf_event_cgroup_output,
8030 			&cgroup_event,
8031 			NULL);
8032 
8033 	kfree(pathname);
8034 }
8035 
8036 #endif
8037 
8038 /*
8039  * mmap tracking
8040  */
8041 
8042 struct perf_mmap_event {
8043 	struct vm_area_struct	*vma;
8044 
8045 	const char		*file_name;
8046 	int			file_size;
8047 	int			maj, min;
8048 	u64			ino;
8049 	u64			ino_generation;
8050 	u32			prot, flags;
8051 
8052 	struct {
8053 		struct perf_event_header	header;
8054 
8055 		u32				pid;
8056 		u32				tid;
8057 		u64				start;
8058 		u64				len;
8059 		u64				pgoff;
8060 	} event_id;
8061 };
8062 
perf_event_mmap_match(struct perf_event * event,void * data)8063 static int perf_event_mmap_match(struct perf_event *event,
8064 				 void *data)
8065 {
8066 	struct perf_mmap_event *mmap_event = data;
8067 	struct vm_area_struct *vma = mmap_event->vma;
8068 	int executable = vma->vm_flags & VM_EXEC;
8069 
8070 	return (!executable && event->attr.mmap_data) ||
8071 	       (executable && (event->attr.mmap || event->attr.mmap2));
8072 }
8073 
perf_event_mmap_output(struct perf_event * event,void * data)8074 static void perf_event_mmap_output(struct perf_event *event,
8075 				   void *data)
8076 {
8077 	struct perf_mmap_event *mmap_event = data;
8078 	struct perf_output_handle handle;
8079 	struct perf_sample_data sample;
8080 	int size = mmap_event->event_id.header.size;
8081 	u32 type = mmap_event->event_id.header.type;
8082 	int ret;
8083 
8084 	if (!perf_event_mmap_match(event, data))
8085 		return;
8086 
8087 	if (event->attr.mmap2) {
8088 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
8089 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
8090 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
8091 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
8092 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
8093 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
8094 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
8095 	}
8096 
8097 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
8098 	ret = perf_output_begin(&handle, &sample, event,
8099 				mmap_event->event_id.header.size);
8100 	if (ret)
8101 		goto out;
8102 
8103 	mmap_event->event_id.pid = perf_event_pid(event, current);
8104 	mmap_event->event_id.tid = perf_event_tid(event, current);
8105 
8106 	perf_output_put(&handle, mmap_event->event_id);
8107 
8108 	if (event->attr.mmap2) {
8109 		perf_output_put(&handle, mmap_event->maj);
8110 		perf_output_put(&handle, mmap_event->min);
8111 		perf_output_put(&handle, mmap_event->ino);
8112 		perf_output_put(&handle, mmap_event->ino_generation);
8113 		perf_output_put(&handle, mmap_event->prot);
8114 		perf_output_put(&handle, mmap_event->flags);
8115 	}
8116 
8117 	__output_copy(&handle, mmap_event->file_name,
8118 				   mmap_event->file_size);
8119 
8120 	perf_event__output_id_sample(event, &handle, &sample);
8121 
8122 	perf_output_end(&handle);
8123 out:
8124 	mmap_event->event_id.header.size = size;
8125 	mmap_event->event_id.header.type = type;
8126 }
8127 
perf_event_mmap_event(struct perf_mmap_event * mmap_event)8128 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
8129 {
8130 	struct vm_area_struct *vma = mmap_event->vma;
8131 	struct file *file = vma->vm_file;
8132 	int maj = 0, min = 0;
8133 	u64 ino = 0, gen = 0;
8134 	u32 prot = 0, flags = 0;
8135 	unsigned int size;
8136 	char tmp[16];
8137 	char *buf = NULL;
8138 	char *name;
8139 
8140 	if (vma->vm_flags & VM_READ)
8141 		prot |= PROT_READ;
8142 	if (vma->vm_flags & VM_WRITE)
8143 		prot |= PROT_WRITE;
8144 	if (vma->vm_flags & VM_EXEC)
8145 		prot |= PROT_EXEC;
8146 
8147 	if (vma->vm_flags & VM_MAYSHARE)
8148 		flags = MAP_SHARED;
8149 	else
8150 		flags = MAP_PRIVATE;
8151 
8152 	if (vma->vm_flags & VM_DENYWRITE)
8153 		flags |= MAP_DENYWRITE;
8154 	if (vma->vm_flags & VM_MAYEXEC)
8155 		flags |= MAP_EXECUTABLE;
8156 	if (vma->vm_flags & VM_LOCKED)
8157 		flags |= MAP_LOCKED;
8158 	if (is_vm_hugetlb_page(vma))
8159 		flags |= MAP_HUGETLB;
8160 
8161 	if (file) {
8162 		struct inode *inode;
8163 		dev_t dev;
8164 
8165 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
8166 		if (!buf) {
8167 			name = "//enomem";
8168 			goto cpy_name;
8169 		}
8170 		/*
8171 		 * d_path() works from the end of the rb backwards, so we
8172 		 * need to add enough zero bytes after the string to handle
8173 		 * the 64bit alignment we do later.
8174 		 */
8175 		name = file_path(file, buf, PATH_MAX - sizeof(u64));
8176 		if (IS_ERR(name)) {
8177 			name = "//toolong";
8178 			goto cpy_name;
8179 		}
8180 		inode = file_inode(vma->vm_file);
8181 		dev = inode->i_sb->s_dev;
8182 		ino = inode->i_ino;
8183 		gen = inode->i_generation;
8184 		maj = MAJOR(dev);
8185 		min = MINOR(dev);
8186 
8187 		goto got_name;
8188 	} else {
8189 		if (vma->vm_ops && vma->vm_ops->name) {
8190 			name = (char *) vma->vm_ops->name(vma);
8191 			if (name)
8192 				goto cpy_name;
8193 		}
8194 
8195 		name = (char *)arch_vma_name(vma);
8196 		if (name)
8197 			goto cpy_name;
8198 
8199 		if (vma->vm_start <= vma->vm_mm->start_brk &&
8200 				vma->vm_end >= vma->vm_mm->brk) {
8201 			name = "[heap]";
8202 			goto cpy_name;
8203 		}
8204 		if (vma->vm_start <= vma->vm_mm->start_stack &&
8205 				vma->vm_end >= vma->vm_mm->start_stack) {
8206 			name = "[stack]";
8207 			goto cpy_name;
8208 		}
8209 
8210 		name = "//anon";
8211 		goto cpy_name;
8212 	}
8213 
8214 cpy_name:
8215 	strlcpy(tmp, name, sizeof(tmp));
8216 	name = tmp;
8217 got_name:
8218 	/*
8219 	 * Since our buffer works in 8 byte units we need to align our string
8220 	 * size to a multiple of 8. However, we must guarantee the tail end is
8221 	 * zero'd out to avoid leaking random bits to userspace.
8222 	 */
8223 	size = strlen(name)+1;
8224 	while (!IS_ALIGNED(size, sizeof(u64)))
8225 		name[size++] = '\0';
8226 
8227 	mmap_event->file_name = name;
8228 	mmap_event->file_size = size;
8229 	mmap_event->maj = maj;
8230 	mmap_event->min = min;
8231 	mmap_event->ino = ino;
8232 	mmap_event->ino_generation = gen;
8233 	mmap_event->prot = prot;
8234 	mmap_event->flags = flags;
8235 
8236 	if (!(vma->vm_flags & VM_EXEC))
8237 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
8238 
8239 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
8240 
8241 	perf_iterate_sb(perf_event_mmap_output,
8242 		       mmap_event,
8243 		       NULL);
8244 
8245 	kfree(buf);
8246 }
8247 
8248 /*
8249  * Check whether inode and address range match filter criteria.
8250  */
perf_addr_filter_match(struct perf_addr_filter * filter,struct file * file,unsigned long offset,unsigned long size)8251 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
8252 				     struct file *file, unsigned long offset,
8253 				     unsigned long size)
8254 {
8255 	/* d_inode(NULL) won't be equal to any mapped user-space file */
8256 	if (!filter->path.dentry)
8257 		return false;
8258 
8259 	if (d_inode(filter->path.dentry) != file_inode(file))
8260 		return false;
8261 
8262 	if (filter->offset > offset + size)
8263 		return false;
8264 
8265 	if (filter->offset + filter->size < offset)
8266 		return false;
8267 
8268 	return true;
8269 }
8270 
perf_addr_filter_vma_adjust(struct perf_addr_filter * filter,struct vm_area_struct * vma,struct perf_addr_filter_range * fr)8271 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
8272 					struct vm_area_struct *vma,
8273 					struct perf_addr_filter_range *fr)
8274 {
8275 	unsigned long vma_size = vma->vm_end - vma->vm_start;
8276 	unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8277 	struct file *file = vma->vm_file;
8278 
8279 	if (!perf_addr_filter_match(filter, file, off, vma_size))
8280 		return false;
8281 
8282 	if (filter->offset < off) {
8283 		fr->start = vma->vm_start;
8284 		fr->size = min(vma_size, filter->size - (off - filter->offset));
8285 	} else {
8286 		fr->start = vma->vm_start + filter->offset - off;
8287 		fr->size = min(vma->vm_end - fr->start, filter->size);
8288 	}
8289 
8290 	return true;
8291 }
8292 
__perf_addr_filters_adjust(struct perf_event * event,void * data)8293 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
8294 {
8295 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8296 	struct vm_area_struct *vma = data;
8297 	struct perf_addr_filter *filter;
8298 	unsigned int restart = 0, count = 0;
8299 	unsigned long flags;
8300 
8301 	if (!has_addr_filter(event))
8302 		return;
8303 
8304 	if (!vma->vm_file)
8305 		return;
8306 
8307 	raw_spin_lock_irqsave(&ifh->lock, flags);
8308 	list_for_each_entry(filter, &ifh->list, entry) {
8309 		if (perf_addr_filter_vma_adjust(filter, vma,
8310 						&event->addr_filter_ranges[count]))
8311 			restart++;
8312 
8313 		count++;
8314 	}
8315 
8316 	if (restart)
8317 		event->addr_filters_gen++;
8318 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
8319 
8320 	if (restart)
8321 		perf_event_stop(event, 1);
8322 }
8323 
8324 /*
8325  * Adjust all task's events' filters to the new vma
8326  */
perf_addr_filters_adjust(struct vm_area_struct * vma)8327 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
8328 {
8329 	struct perf_event_context *ctx;
8330 	int ctxn;
8331 
8332 	/*
8333 	 * Data tracing isn't supported yet and as such there is no need
8334 	 * to keep track of anything that isn't related to executable code:
8335 	 */
8336 	if (!(vma->vm_flags & VM_EXEC))
8337 		return;
8338 
8339 	rcu_read_lock();
8340 	for_each_task_context_nr(ctxn) {
8341 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
8342 		if (!ctx)
8343 			continue;
8344 
8345 		perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
8346 	}
8347 	rcu_read_unlock();
8348 }
8349 
perf_event_mmap(struct vm_area_struct * vma)8350 void perf_event_mmap(struct vm_area_struct *vma)
8351 {
8352 	struct perf_mmap_event mmap_event;
8353 
8354 	if (!atomic_read(&nr_mmap_events))
8355 		return;
8356 
8357 	mmap_event = (struct perf_mmap_event){
8358 		.vma	= vma,
8359 		/* .file_name */
8360 		/* .file_size */
8361 		.event_id  = {
8362 			.header = {
8363 				.type = PERF_RECORD_MMAP,
8364 				.misc = PERF_RECORD_MISC_USER,
8365 				/* .size */
8366 			},
8367 			/* .pid */
8368 			/* .tid */
8369 			.start  = vma->vm_start,
8370 			.len    = vma->vm_end - vma->vm_start,
8371 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
8372 		},
8373 		/* .maj (attr_mmap2 only) */
8374 		/* .min (attr_mmap2 only) */
8375 		/* .ino (attr_mmap2 only) */
8376 		/* .ino_generation (attr_mmap2 only) */
8377 		/* .prot (attr_mmap2 only) */
8378 		/* .flags (attr_mmap2 only) */
8379 	};
8380 
8381 	perf_addr_filters_adjust(vma);
8382 	perf_event_mmap_event(&mmap_event);
8383 }
8384 
perf_event_aux_event(struct perf_event * event,unsigned long head,unsigned long size,u64 flags)8385 void perf_event_aux_event(struct perf_event *event, unsigned long head,
8386 			  unsigned long size, u64 flags)
8387 {
8388 	struct perf_output_handle handle;
8389 	struct perf_sample_data sample;
8390 	struct perf_aux_event {
8391 		struct perf_event_header	header;
8392 		u64				offset;
8393 		u64				size;
8394 		u64				flags;
8395 	} rec = {
8396 		.header = {
8397 			.type = PERF_RECORD_AUX,
8398 			.misc = 0,
8399 			.size = sizeof(rec),
8400 		},
8401 		.offset		= head,
8402 		.size		= size,
8403 		.flags		= flags,
8404 	};
8405 	int ret;
8406 
8407 	perf_event_header__init_id(&rec.header, &sample, event);
8408 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
8409 
8410 	if (ret)
8411 		return;
8412 
8413 	perf_output_put(&handle, rec);
8414 	perf_event__output_id_sample(event, &handle, &sample);
8415 
8416 	perf_output_end(&handle);
8417 }
8418 
8419 /*
8420  * Lost/dropped samples logging
8421  */
perf_log_lost_samples(struct perf_event * event,u64 lost)8422 void perf_log_lost_samples(struct perf_event *event, u64 lost)
8423 {
8424 	struct perf_output_handle handle;
8425 	struct perf_sample_data sample;
8426 	int ret;
8427 
8428 	struct {
8429 		struct perf_event_header	header;
8430 		u64				lost;
8431 	} lost_samples_event = {
8432 		.header = {
8433 			.type = PERF_RECORD_LOST_SAMPLES,
8434 			.misc = 0,
8435 			.size = sizeof(lost_samples_event),
8436 		},
8437 		.lost		= lost,
8438 	};
8439 
8440 	perf_event_header__init_id(&lost_samples_event.header, &sample, event);
8441 
8442 	ret = perf_output_begin(&handle, &sample, event,
8443 				lost_samples_event.header.size);
8444 	if (ret)
8445 		return;
8446 
8447 	perf_output_put(&handle, lost_samples_event);
8448 	perf_event__output_id_sample(event, &handle, &sample);
8449 	perf_output_end(&handle);
8450 }
8451 
8452 /*
8453  * context_switch tracking
8454  */
8455 
8456 struct perf_switch_event {
8457 	struct task_struct	*task;
8458 	struct task_struct	*next_prev;
8459 
8460 	struct {
8461 		struct perf_event_header	header;
8462 		u32				next_prev_pid;
8463 		u32				next_prev_tid;
8464 	} event_id;
8465 };
8466 
perf_event_switch_match(struct perf_event * event)8467 static int perf_event_switch_match(struct perf_event *event)
8468 {
8469 	return event->attr.context_switch;
8470 }
8471 
perf_event_switch_output(struct perf_event * event,void * data)8472 static void perf_event_switch_output(struct perf_event *event, void *data)
8473 {
8474 	struct perf_switch_event *se = data;
8475 	struct perf_output_handle handle;
8476 	struct perf_sample_data sample;
8477 	int ret;
8478 
8479 	if (!perf_event_switch_match(event))
8480 		return;
8481 
8482 	/* Only CPU-wide events are allowed to see next/prev pid/tid */
8483 	if (event->ctx->task) {
8484 		se->event_id.header.type = PERF_RECORD_SWITCH;
8485 		se->event_id.header.size = sizeof(se->event_id.header);
8486 	} else {
8487 		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
8488 		se->event_id.header.size = sizeof(se->event_id);
8489 		se->event_id.next_prev_pid =
8490 					perf_event_pid(event, se->next_prev);
8491 		se->event_id.next_prev_tid =
8492 					perf_event_tid(event, se->next_prev);
8493 	}
8494 
8495 	perf_event_header__init_id(&se->event_id.header, &sample, event);
8496 
8497 	ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size);
8498 	if (ret)
8499 		return;
8500 
8501 	if (event->ctx->task)
8502 		perf_output_put(&handle, se->event_id.header);
8503 	else
8504 		perf_output_put(&handle, se->event_id);
8505 
8506 	perf_event__output_id_sample(event, &handle, &sample);
8507 
8508 	perf_output_end(&handle);
8509 }
8510 
perf_event_switch(struct task_struct * task,struct task_struct * next_prev,bool sched_in)8511 static void perf_event_switch(struct task_struct *task,
8512 			      struct task_struct *next_prev, bool sched_in)
8513 {
8514 	struct perf_switch_event switch_event;
8515 
8516 	/* N.B. caller checks nr_switch_events != 0 */
8517 
8518 	switch_event = (struct perf_switch_event){
8519 		.task		= task,
8520 		.next_prev	= next_prev,
8521 		.event_id	= {
8522 			.header = {
8523 				/* .type */
8524 				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
8525 				/* .size */
8526 			},
8527 			/* .next_prev_pid */
8528 			/* .next_prev_tid */
8529 		},
8530 	};
8531 
8532 	if (!sched_in && task->state == TASK_RUNNING)
8533 		switch_event.event_id.header.misc |=
8534 				PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
8535 
8536 	perf_iterate_sb(perf_event_switch_output,
8537 		       &switch_event,
8538 		       NULL);
8539 }
8540 
8541 /*
8542  * IRQ throttle logging
8543  */
8544 
perf_log_throttle(struct perf_event * event,int enable)8545 static void perf_log_throttle(struct perf_event *event, int enable)
8546 {
8547 	struct perf_output_handle handle;
8548 	struct perf_sample_data sample;
8549 	int ret;
8550 
8551 	struct {
8552 		struct perf_event_header	header;
8553 		u64				time;
8554 		u64				id;
8555 		u64				stream_id;
8556 	} throttle_event = {
8557 		.header = {
8558 			.type = PERF_RECORD_THROTTLE,
8559 			.misc = 0,
8560 			.size = sizeof(throttle_event),
8561 		},
8562 		.time		= perf_event_clock(event),
8563 		.id		= primary_event_id(event),
8564 		.stream_id	= event->id,
8565 	};
8566 
8567 	if (enable)
8568 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
8569 
8570 	perf_event_header__init_id(&throttle_event.header, &sample, event);
8571 
8572 	ret = perf_output_begin(&handle, &sample, event,
8573 				throttle_event.header.size);
8574 	if (ret)
8575 		return;
8576 
8577 	perf_output_put(&handle, throttle_event);
8578 	perf_event__output_id_sample(event, &handle, &sample);
8579 	perf_output_end(&handle);
8580 }
8581 
8582 /*
8583  * ksymbol register/unregister tracking
8584  */
8585 
8586 struct perf_ksymbol_event {
8587 	const char	*name;
8588 	int		name_len;
8589 	struct {
8590 		struct perf_event_header        header;
8591 		u64				addr;
8592 		u32				len;
8593 		u16				ksym_type;
8594 		u16				flags;
8595 	} event_id;
8596 };
8597 
perf_event_ksymbol_match(struct perf_event * event)8598 static int perf_event_ksymbol_match(struct perf_event *event)
8599 {
8600 	return event->attr.ksymbol;
8601 }
8602 
perf_event_ksymbol_output(struct perf_event * event,void * data)8603 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
8604 {
8605 	struct perf_ksymbol_event *ksymbol_event = data;
8606 	struct perf_output_handle handle;
8607 	struct perf_sample_data sample;
8608 	int ret;
8609 
8610 	if (!perf_event_ksymbol_match(event))
8611 		return;
8612 
8613 	perf_event_header__init_id(&ksymbol_event->event_id.header,
8614 				   &sample, event);
8615 	ret = perf_output_begin(&handle, &sample, event,
8616 				ksymbol_event->event_id.header.size);
8617 	if (ret)
8618 		return;
8619 
8620 	perf_output_put(&handle, ksymbol_event->event_id);
8621 	__output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
8622 	perf_event__output_id_sample(event, &handle, &sample);
8623 
8624 	perf_output_end(&handle);
8625 }
8626 
perf_event_ksymbol(u16 ksym_type,u64 addr,u32 len,bool unregister,const char * sym)8627 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
8628 			const char *sym)
8629 {
8630 	struct perf_ksymbol_event ksymbol_event;
8631 	char name[KSYM_NAME_LEN];
8632 	u16 flags = 0;
8633 	int name_len;
8634 
8635 	if (!atomic_read(&nr_ksymbol_events))
8636 		return;
8637 
8638 	if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
8639 	    ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
8640 		goto err;
8641 
8642 	strlcpy(name, sym, KSYM_NAME_LEN);
8643 	name_len = strlen(name) + 1;
8644 	while (!IS_ALIGNED(name_len, sizeof(u64)))
8645 		name[name_len++] = '\0';
8646 	BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
8647 
8648 	if (unregister)
8649 		flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
8650 
8651 	ksymbol_event = (struct perf_ksymbol_event){
8652 		.name = name,
8653 		.name_len = name_len,
8654 		.event_id = {
8655 			.header = {
8656 				.type = PERF_RECORD_KSYMBOL,
8657 				.size = sizeof(ksymbol_event.event_id) +
8658 					name_len,
8659 			},
8660 			.addr = addr,
8661 			.len = len,
8662 			.ksym_type = ksym_type,
8663 			.flags = flags,
8664 		},
8665 	};
8666 
8667 	perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
8668 	return;
8669 err:
8670 	WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
8671 }
8672 
8673 /*
8674  * bpf program load/unload tracking
8675  */
8676 
8677 struct perf_bpf_event {
8678 	struct bpf_prog	*prog;
8679 	struct {
8680 		struct perf_event_header        header;
8681 		u16				type;
8682 		u16				flags;
8683 		u32				id;
8684 		u8				tag[BPF_TAG_SIZE];
8685 	} event_id;
8686 };
8687 
perf_event_bpf_match(struct perf_event * event)8688 static int perf_event_bpf_match(struct perf_event *event)
8689 {
8690 	return event->attr.bpf_event;
8691 }
8692 
perf_event_bpf_output(struct perf_event * event,void * data)8693 static void perf_event_bpf_output(struct perf_event *event, void *data)
8694 {
8695 	struct perf_bpf_event *bpf_event = data;
8696 	struct perf_output_handle handle;
8697 	struct perf_sample_data sample;
8698 	int ret;
8699 
8700 	if (!perf_event_bpf_match(event))
8701 		return;
8702 
8703 	perf_event_header__init_id(&bpf_event->event_id.header,
8704 				   &sample, event);
8705 	ret = perf_output_begin(&handle, data, event,
8706 				bpf_event->event_id.header.size);
8707 	if (ret)
8708 		return;
8709 
8710 	perf_output_put(&handle, bpf_event->event_id);
8711 	perf_event__output_id_sample(event, &handle, &sample);
8712 
8713 	perf_output_end(&handle);
8714 }
8715 
perf_event_bpf_emit_ksymbols(struct bpf_prog * prog,enum perf_bpf_event_type type)8716 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
8717 					 enum perf_bpf_event_type type)
8718 {
8719 	bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
8720 	int i;
8721 
8722 	if (prog->aux->func_cnt == 0) {
8723 		perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
8724 				   (u64)(unsigned long)prog->bpf_func,
8725 				   prog->jited_len, unregister,
8726 				   prog->aux->ksym.name);
8727 	} else {
8728 		for (i = 0; i < prog->aux->func_cnt; i++) {
8729 			struct bpf_prog *subprog = prog->aux->func[i];
8730 
8731 			perf_event_ksymbol(
8732 				PERF_RECORD_KSYMBOL_TYPE_BPF,
8733 				(u64)(unsigned long)subprog->bpf_func,
8734 				subprog->jited_len, unregister,
8735 				prog->aux->ksym.name);
8736 		}
8737 	}
8738 }
8739 
perf_event_bpf_event(struct bpf_prog * prog,enum perf_bpf_event_type type,u16 flags)8740 void perf_event_bpf_event(struct bpf_prog *prog,
8741 			  enum perf_bpf_event_type type,
8742 			  u16 flags)
8743 {
8744 	struct perf_bpf_event bpf_event;
8745 
8746 	if (type <= PERF_BPF_EVENT_UNKNOWN ||
8747 	    type >= PERF_BPF_EVENT_MAX)
8748 		return;
8749 
8750 	switch (type) {
8751 	case PERF_BPF_EVENT_PROG_LOAD:
8752 	case PERF_BPF_EVENT_PROG_UNLOAD:
8753 		if (atomic_read(&nr_ksymbol_events))
8754 			perf_event_bpf_emit_ksymbols(prog, type);
8755 		break;
8756 	default:
8757 		break;
8758 	}
8759 
8760 	if (!atomic_read(&nr_bpf_events))
8761 		return;
8762 
8763 	bpf_event = (struct perf_bpf_event){
8764 		.prog = prog,
8765 		.event_id = {
8766 			.header = {
8767 				.type = PERF_RECORD_BPF_EVENT,
8768 				.size = sizeof(bpf_event.event_id),
8769 			},
8770 			.type = type,
8771 			.flags = flags,
8772 			.id = prog->aux->id,
8773 		},
8774 	};
8775 
8776 	BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
8777 
8778 	memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
8779 	perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
8780 }
8781 
8782 struct perf_text_poke_event {
8783 	const void		*old_bytes;
8784 	const void		*new_bytes;
8785 	size_t			pad;
8786 	u16			old_len;
8787 	u16			new_len;
8788 
8789 	struct {
8790 		struct perf_event_header	header;
8791 
8792 		u64				addr;
8793 	} event_id;
8794 };
8795 
perf_event_text_poke_match(struct perf_event * event)8796 static int perf_event_text_poke_match(struct perf_event *event)
8797 {
8798 	return event->attr.text_poke;
8799 }
8800 
perf_event_text_poke_output(struct perf_event * event,void * data)8801 static void perf_event_text_poke_output(struct perf_event *event, void *data)
8802 {
8803 	struct perf_text_poke_event *text_poke_event = data;
8804 	struct perf_output_handle handle;
8805 	struct perf_sample_data sample;
8806 	u64 padding = 0;
8807 	int ret;
8808 
8809 	if (!perf_event_text_poke_match(event))
8810 		return;
8811 
8812 	perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event);
8813 
8814 	ret = perf_output_begin(&handle, &sample, event,
8815 				text_poke_event->event_id.header.size);
8816 	if (ret)
8817 		return;
8818 
8819 	perf_output_put(&handle, text_poke_event->event_id);
8820 	perf_output_put(&handle, text_poke_event->old_len);
8821 	perf_output_put(&handle, text_poke_event->new_len);
8822 
8823 	__output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len);
8824 	__output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len);
8825 
8826 	if (text_poke_event->pad)
8827 		__output_copy(&handle, &padding, text_poke_event->pad);
8828 
8829 	perf_event__output_id_sample(event, &handle, &sample);
8830 
8831 	perf_output_end(&handle);
8832 }
8833 
perf_event_text_poke(const void * addr,const void * old_bytes,size_t old_len,const void * new_bytes,size_t new_len)8834 void perf_event_text_poke(const void *addr, const void *old_bytes,
8835 			  size_t old_len, const void *new_bytes, size_t new_len)
8836 {
8837 	struct perf_text_poke_event text_poke_event;
8838 	size_t tot, pad;
8839 
8840 	if (!atomic_read(&nr_text_poke_events))
8841 		return;
8842 
8843 	tot  = sizeof(text_poke_event.old_len) + old_len;
8844 	tot += sizeof(text_poke_event.new_len) + new_len;
8845 	pad  = ALIGN(tot, sizeof(u64)) - tot;
8846 
8847 	text_poke_event = (struct perf_text_poke_event){
8848 		.old_bytes    = old_bytes,
8849 		.new_bytes    = new_bytes,
8850 		.pad          = pad,
8851 		.old_len      = old_len,
8852 		.new_len      = new_len,
8853 		.event_id  = {
8854 			.header = {
8855 				.type = PERF_RECORD_TEXT_POKE,
8856 				.misc = PERF_RECORD_MISC_KERNEL,
8857 				.size = sizeof(text_poke_event.event_id) + tot + pad,
8858 			},
8859 			.addr = (unsigned long)addr,
8860 		},
8861 	};
8862 
8863 	perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL);
8864 }
8865 
perf_event_itrace_started(struct perf_event * event)8866 void perf_event_itrace_started(struct perf_event *event)
8867 {
8868 	event->attach_state |= PERF_ATTACH_ITRACE;
8869 }
8870 
perf_log_itrace_start(struct perf_event * event)8871 static void perf_log_itrace_start(struct perf_event *event)
8872 {
8873 	struct perf_output_handle handle;
8874 	struct perf_sample_data sample;
8875 	struct perf_aux_event {
8876 		struct perf_event_header        header;
8877 		u32				pid;
8878 		u32				tid;
8879 	} rec;
8880 	int ret;
8881 
8882 	if (event->parent)
8883 		event = event->parent;
8884 
8885 	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
8886 	    event->attach_state & PERF_ATTACH_ITRACE)
8887 		return;
8888 
8889 	rec.header.type	= PERF_RECORD_ITRACE_START;
8890 	rec.header.misc	= 0;
8891 	rec.header.size	= sizeof(rec);
8892 	rec.pid	= perf_event_pid(event, current);
8893 	rec.tid	= perf_event_tid(event, current);
8894 
8895 	perf_event_header__init_id(&rec.header, &sample, event);
8896 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
8897 
8898 	if (ret)
8899 		return;
8900 
8901 	perf_output_put(&handle, rec);
8902 	perf_event__output_id_sample(event, &handle, &sample);
8903 
8904 	perf_output_end(&handle);
8905 }
8906 
8907 static int
__perf_event_account_interrupt(struct perf_event * event,int throttle)8908 __perf_event_account_interrupt(struct perf_event *event, int throttle)
8909 {
8910 	struct hw_perf_event *hwc = &event->hw;
8911 	int ret = 0;
8912 	u64 seq;
8913 
8914 	seq = __this_cpu_read(perf_throttled_seq);
8915 	if (seq != hwc->interrupts_seq) {
8916 		hwc->interrupts_seq = seq;
8917 		hwc->interrupts = 1;
8918 	} else {
8919 		hwc->interrupts++;
8920 		if (unlikely(throttle
8921 			     && hwc->interrupts >= max_samples_per_tick)) {
8922 			__this_cpu_inc(perf_throttled_count);
8923 			tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
8924 			hwc->interrupts = MAX_INTERRUPTS;
8925 			perf_log_throttle(event, 0);
8926 			ret = 1;
8927 		}
8928 	}
8929 
8930 	if (event->attr.freq) {
8931 		u64 now = perf_clock();
8932 		s64 delta = now - hwc->freq_time_stamp;
8933 
8934 		hwc->freq_time_stamp = now;
8935 
8936 		if (delta > 0 && delta < 2*TICK_NSEC)
8937 			perf_adjust_period(event, delta, hwc->last_period, true);
8938 	}
8939 
8940 	return ret;
8941 }
8942 
perf_event_account_interrupt(struct perf_event * event)8943 int perf_event_account_interrupt(struct perf_event *event)
8944 {
8945 	return __perf_event_account_interrupt(event, 1);
8946 }
8947 
8948 /*
8949  * Generic event overflow handling, sampling.
8950  */
8951 
__perf_event_overflow(struct perf_event * event,int throttle,struct perf_sample_data * data,struct pt_regs * regs)8952 static int __perf_event_overflow(struct perf_event *event,
8953 				   int throttle, struct perf_sample_data *data,
8954 				   struct pt_regs *regs)
8955 {
8956 	int events = atomic_read(&event->event_limit);
8957 	int ret = 0;
8958 
8959 	/*
8960 	 * Non-sampling counters might still use the PMI to fold short
8961 	 * hardware counters, ignore those.
8962 	 */
8963 	if (unlikely(!is_sampling_event(event)))
8964 		return 0;
8965 
8966 	ret = __perf_event_account_interrupt(event, throttle);
8967 
8968 	/*
8969 	 * XXX event_limit might not quite work as expected on inherited
8970 	 * events
8971 	 */
8972 
8973 	event->pending_kill = POLL_IN;
8974 	if (events && atomic_dec_and_test(&event->event_limit)) {
8975 		ret = 1;
8976 		event->pending_kill = POLL_HUP;
8977 
8978 		perf_event_disable_inatomic(event);
8979 	}
8980 
8981 	READ_ONCE(event->overflow_handler)(event, data, regs);
8982 
8983 	if (*perf_event_fasync(event) && event->pending_kill) {
8984 		event->pending_wakeup = 1;
8985 		irq_work_queue(&event->pending);
8986 	}
8987 
8988 	return ret;
8989 }
8990 
perf_event_overflow(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)8991 int perf_event_overflow(struct perf_event *event,
8992 			  struct perf_sample_data *data,
8993 			  struct pt_regs *regs)
8994 {
8995 	return __perf_event_overflow(event, 1, data, regs);
8996 }
8997 
8998 /*
8999  * Generic software event infrastructure
9000  */
9001 
9002 struct swevent_htable {
9003 	struct swevent_hlist		*swevent_hlist;
9004 	struct mutex			hlist_mutex;
9005 	int				hlist_refcount;
9006 
9007 	/* Recursion avoidance in each contexts */
9008 	int				recursion[PERF_NR_CONTEXTS];
9009 };
9010 
9011 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
9012 
9013 /*
9014  * We directly increment event->count and keep a second value in
9015  * event->hw.period_left to count intervals. This period event
9016  * is kept in the range [-sample_period, 0] so that we can use the
9017  * sign as trigger.
9018  */
9019 
perf_swevent_set_period(struct perf_event * event)9020 u64 perf_swevent_set_period(struct perf_event *event)
9021 {
9022 	struct hw_perf_event *hwc = &event->hw;
9023 	u64 period = hwc->last_period;
9024 	u64 nr, offset;
9025 	s64 old, val;
9026 
9027 	hwc->last_period = hwc->sample_period;
9028 
9029 again:
9030 	old = val = local64_read(&hwc->period_left);
9031 	if (val < 0)
9032 		return 0;
9033 
9034 	nr = div64_u64(period + val, period);
9035 	offset = nr * period;
9036 	val -= offset;
9037 	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
9038 		goto again;
9039 
9040 	return nr;
9041 }
9042 
perf_swevent_overflow(struct perf_event * event,u64 overflow,struct perf_sample_data * data,struct pt_regs * regs)9043 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
9044 				    struct perf_sample_data *data,
9045 				    struct pt_regs *regs)
9046 {
9047 	struct hw_perf_event *hwc = &event->hw;
9048 	int throttle = 0;
9049 
9050 	if (!overflow)
9051 		overflow = perf_swevent_set_period(event);
9052 
9053 	if (hwc->interrupts == MAX_INTERRUPTS)
9054 		return;
9055 
9056 	for (; overflow; overflow--) {
9057 		if (__perf_event_overflow(event, throttle,
9058 					    data, regs)) {
9059 			/*
9060 			 * We inhibit the overflow from happening when
9061 			 * hwc->interrupts == MAX_INTERRUPTS.
9062 			 */
9063 			break;
9064 		}
9065 		throttle = 1;
9066 	}
9067 }
9068 
perf_swevent_event(struct perf_event * event,u64 nr,struct perf_sample_data * data,struct pt_regs * regs)9069 static void perf_swevent_event(struct perf_event *event, u64 nr,
9070 			       struct perf_sample_data *data,
9071 			       struct pt_regs *regs)
9072 {
9073 	struct hw_perf_event *hwc = &event->hw;
9074 
9075 	local64_add(nr, &event->count);
9076 
9077 	if (!regs)
9078 		return;
9079 
9080 	if (!is_sampling_event(event))
9081 		return;
9082 
9083 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
9084 		data->period = nr;
9085 		return perf_swevent_overflow(event, 1, data, regs);
9086 	} else
9087 		data->period = event->hw.last_period;
9088 
9089 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
9090 		return perf_swevent_overflow(event, 1, data, regs);
9091 
9092 	if (local64_add_negative(nr, &hwc->period_left))
9093 		return;
9094 
9095 	perf_swevent_overflow(event, 0, data, regs);
9096 }
9097 
perf_exclude_event(struct perf_event * event,struct pt_regs * regs)9098 static int perf_exclude_event(struct perf_event *event,
9099 			      struct pt_regs *regs)
9100 {
9101 	if (event->hw.state & PERF_HES_STOPPED)
9102 		return 1;
9103 
9104 	if (regs) {
9105 		if (event->attr.exclude_user && user_mode(regs))
9106 			return 1;
9107 
9108 		if (event->attr.exclude_kernel && !user_mode(regs))
9109 			return 1;
9110 	}
9111 
9112 	return 0;
9113 }
9114 
perf_swevent_match(struct perf_event * event,enum perf_type_id type,u32 event_id,struct perf_sample_data * data,struct pt_regs * regs)9115 static int perf_swevent_match(struct perf_event *event,
9116 				enum perf_type_id type,
9117 				u32 event_id,
9118 				struct perf_sample_data *data,
9119 				struct pt_regs *regs)
9120 {
9121 	if (event->attr.type != type)
9122 		return 0;
9123 
9124 	if (event->attr.config != event_id)
9125 		return 0;
9126 
9127 	if (perf_exclude_event(event, regs))
9128 		return 0;
9129 
9130 	return 1;
9131 }
9132 
swevent_hash(u64 type,u32 event_id)9133 static inline u64 swevent_hash(u64 type, u32 event_id)
9134 {
9135 	u64 val = event_id | (type << 32);
9136 
9137 	return hash_64(val, SWEVENT_HLIST_BITS);
9138 }
9139 
9140 static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist * hlist,u64 type,u32 event_id)9141 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
9142 {
9143 	u64 hash = swevent_hash(type, event_id);
9144 
9145 	return &hlist->heads[hash];
9146 }
9147 
9148 /* For the read side: events when they trigger */
9149 static inline struct hlist_head *
find_swevent_head_rcu(struct swevent_htable * swhash,u64 type,u32 event_id)9150 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
9151 {
9152 	struct swevent_hlist *hlist;
9153 
9154 	hlist = rcu_dereference(swhash->swevent_hlist);
9155 	if (!hlist)
9156 		return NULL;
9157 
9158 	return __find_swevent_head(hlist, type, event_id);
9159 }
9160 
9161 /* For the event head insertion and removal in the hlist */
9162 static inline struct hlist_head *
find_swevent_head(struct swevent_htable * swhash,struct perf_event * event)9163 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
9164 {
9165 	struct swevent_hlist *hlist;
9166 	u32 event_id = event->attr.config;
9167 	u64 type = event->attr.type;
9168 
9169 	/*
9170 	 * Event scheduling is always serialized against hlist allocation
9171 	 * and release. Which makes the protected version suitable here.
9172 	 * The context lock guarantees that.
9173 	 */
9174 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
9175 					  lockdep_is_held(&event->ctx->lock));
9176 	if (!hlist)
9177 		return NULL;
9178 
9179 	return __find_swevent_head(hlist, type, event_id);
9180 }
9181 
do_perf_sw_event(enum perf_type_id type,u32 event_id,u64 nr,struct perf_sample_data * data,struct pt_regs * regs)9182 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
9183 				    u64 nr,
9184 				    struct perf_sample_data *data,
9185 				    struct pt_regs *regs)
9186 {
9187 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9188 	struct perf_event *event;
9189 	struct hlist_head *head;
9190 
9191 	rcu_read_lock();
9192 	head = find_swevent_head_rcu(swhash, type, event_id);
9193 	if (!head)
9194 		goto end;
9195 
9196 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
9197 		if (perf_swevent_match(event, type, event_id, data, regs))
9198 			perf_swevent_event(event, nr, data, regs);
9199 	}
9200 end:
9201 	rcu_read_unlock();
9202 }
9203 
9204 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
9205 
perf_swevent_get_recursion_context(void)9206 int perf_swevent_get_recursion_context(void)
9207 {
9208 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9209 
9210 	return get_recursion_context(swhash->recursion);
9211 }
9212 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
9213 
perf_swevent_put_recursion_context(int rctx)9214 void perf_swevent_put_recursion_context(int rctx)
9215 {
9216 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9217 
9218 	put_recursion_context(swhash->recursion, rctx);
9219 }
9220 
___perf_sw_event(u32 event_id,u64 nr,struct pt_regs * regs,u64 addr)9221 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9222 {
9223 	struct perf_sample_data data;
9224 
9225 	if (WARN_ON_ONCE(!regs))
9226 		return;
9227 
9228 	perf_sample_data_init(&data, addr, 0);
9229 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
9230 }
9231 
__perf_sw_event(u32 event_id,u64 nr,struct pt_regs * regs,u64 addr)9232 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9233 {
9234 	int rctx;
9235 
9236 	preempt_disable_notrace();
9237 	rctx = perf_swevent_get_recursion_context();
9238 	if (unlikely(rctx < 0))
9239 		goto fail;
9240 
9241 	___perf_sw_event(event_id, nr, regs, addr);
9242 
9243 	perf_swevent_put_recursion_context(rctx);
9244 fail:
9245 	preempt_enable_notrace();
9246 }
9247 
perf_swevent_read(struct perf_event * event)9248 static void perf_swevent_read(struct perf_event *event)
9249 {
9250 }
9251 
perf_swevent_add(struct perf_event * event,int flags)9252 static int perf_swevent_add(struct perf_event *event, int flags)
9253 {
9254 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9255 	struct hw_perf_event *hwc = &event->hw;
9256 	struct hlist_head *head;
9257 
9258 	if (is_sampling_event(event)) {
9259 		hwc->last_period = hwc->sample_period;
9260 		perf_swevent_set_period(event);
9261 	}
9262 
9263 	hwc->state = !(flags & PERF_EF_START);
9264 
9265 	head = find_swevent_head(swhash, event);
9266 	if (WARN_ON_ONCE(!head))
9267 		return -EINVAL;
9268 
9269 	hlist_add_head_rcu(&event->hlist_entry, head);
9270 	perf_event_update_userpage(event);
9271 
9272 	return 0;
9273 }
9274 
perf_swevent_del(struct perf_event * event,int flags)9275 static void perf_swevent_del(struct perf_event *event, int flags)
9276 {
9277 	hlist_del_rcu(&event->hlist_entry);
9278 }
9279 
perf_swevent_start(struct perf_event * event,int flags)9280 static void perf_swevent_start(struct perf_event *event, int flags)
9281 {
9282 	event->hw.state = 0;
9283 }
9284 
perf_swevent_stop(struct perf_event * event,int flags)9285 static void perf_swevent_stop(struct perf_event *event, int flags)
9286 {
9287 	event->hw.state = PERF_HES_STOPPED;
9288 }
9289 
9290 /* Deref the hlist from the update side */
9291 static inline struct swevent_hlist *
swevent_hlist_deref(struct swevent_htable * swhash)9292 swevent_hlist_deref(struct swevent_htable *swhash)
9293 {
9294 	return rcu_dereference_protected(swhash->swevent_hlist,
9295 					 lockdep_is_held(&swhash->hlist_mutex));
9296 }
9297 
swevent_hlist_release(struct swevent_htable * swhash)9298 static void swevent_hlist_release(struct swevent_htable *swhash)
9299 {
9300 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
9301 
9302 	if (!hlist)
9303 		return;
9304 
9305 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
9306 	kfree_rcu(hlist, rcu_head);
9307 }
9308 
swevent_hlist_put_cpu(int cpu)9309 static void swevent_hlist_put_cpu(int cpu)
9310 {
9311 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9312 
9313 	mutex_lock(&swhash->hlist_mutex);
9314 
9315 	if (!--swhash->hlist_refcount)
9316 		swevent_hlist_release(swhash);
9317 
9318 	mutex_unlock(&swhash->hlist_mutex);
9319 }
9320 
swevent_hlist_put(void)9321 static void swevent_hlist_put(void)
9322 {
9323 	int cpu;
9324 
9325 	for_each_possible_cpu(cpu)
9326 		swevent_hlist_put_cpu(cpu);
9327 }
9328 
swevent_hlist_get_cpu(int cpu)9329 static int swevent_hlist_get_cpu(int cpu)
9330 {
9331 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9332 	int err = 0;
9333 
9334 	mutex_lock(&swhash->hlist_mutex);
9335 	if (!swevent_hlist_deref(swhash) &&
9336 	    cpumask_test_cpu(cpu, perf_online_mask)) {
9337 		struct swevent_hlist *hlist;
9338 
9339 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
9340 		if (!hlist) {
9341 			err = -ENOMEM;
9342 			goto exit;
9343 		}
9344 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
9345 	}
9346 	swhash->hlist_refcount++;
9347 exit:
9348 	mutex_unlock(&swhash->hlist_mutex);
9349 
9350 	return err;
9351 }
9352 
swevent_hlist_get(void)9353 static int swevent_hlist_get(void)
9354 {
9355 	int err, cpu, failed_cpu;
9356 
9357 	mutex_lock(&pmus_lock);
9358 	for_each_possible_cpu(cpu) {
9359 		err = swevent_hlist_get_cpu(cpu);
9360 		if (err) {
9361 			failed_cpu = cpu;
9362 			goto fail;
9363 		}
9364 	}
9365 	mutex_unlock(&pmus_lock);
9366 	return 0;
9367 fail:
9368 	for_each_possible_cpu(cpu) {
9369 		if (cpu == failed_cpu)
9370 			break;
9371 		swevent_hlist_put_cpu(cpu);
9372 	}
9373 	mutex_unlock(&pmus_lock);
9374 	return err;
9375 }
9376 
9377 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
9378 
sw_perf_event_destroy(struct perf_event * event)9379 static void sw_perf_event_destroy(struct perf_event *event)
9380 {
9381 	u64 event_id = event->attr.config;
9382 
9383 	WARN_ON(event->parent);
9384 
9385 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
9386 	swevent_hlist_put();
9387 }
9388 
perf_swevent_init(struct perf_event * event)9389 static int perf_swevent_init(struct perf_event *event)
9390 {
9391 	u64 event_id = event->attr.config;
9392 
9393 	if (event->attr.type != PERF_TYPE_SOFTWARE)
9394 		return -ENOENT;
9395 
9396 	/*
9397 	 * no branch sampling for software events
9398 	 */
9399 	if (has_branch_stack(event))
9400 		return -EOPNOTSUPP;
9401 
9402 	switch (event_id) {
9403 	case PERF_COUNT_SW_CPU_CLOCK:
9404 	case PERF_COUNT_SW_TASK_CLOCK:
9405 		return -ENOENT;
9406 
9407 	default:
9408 		break;
9409 	}
9410 
9411 	if (event_id >= PERF_COUNT_SW_MAX)
9412 		return -ENOENT;
9413 
9414 	if (!event->parent) {
9415 		int err;
9416 
9417 		err = swevent_hlist_get();
9418 		if (err)
9419 			return err;
9420 
9421 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
9422 		event->destroy = sw_perf_event_destroy;
9423 	}
9424 
9425 	return 0;
9426 }
9427 
9428 static struct pmu perf_swevent = {
9429 	.task_ctx_nr	= perf_sw_context,
9430 
9431 	.capabilities	= PERF_PMU_CAP_NO_NMI,
9432 
9433 	.event_init	= perf_swevent_init,
9434 	.add		= perf_swevent_add,
9435 	.del		= perf_swevent_del,
9436 	.start		= perf_swevent_start,
9437 	.stop		= perf_swevent_stop,
9438 	.read		= perf_swevent_read,
9439 };
9440 
9441 #ifdef CONFIG_EVENT_TRACING
9442 
perf_tp_filter_match(struct perf_event * event,struct perf_sample_data * data)9443 static int perf_tp_filter_match(struct perf_event *event,
9444 				struct perf_sample_data *data)
9445 {
9446 	void *record = data->raw->frag.data;
9447 
9448 	/* only top level events have filters set */
9449 	if (event->parent)
9450 		event = event->parent;
9451 
9452 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
9453 		return 1;
9454 	return 0;
9455 }
9456 
perf_tp_event_match(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)9457 static int perf_tp_event_match(struct perf_event *event,
9458 				struct perf_sample_data *data,
9459 				struct pt_regs *regs)
9460 {
9461 	if (event->hw.state & PERF_HES_STOPPED)
9462 		return 0;
9463 	/*
9464 	 * If exclude_kernel, only trace user-space tracepoints (uprobes)
9465 	 */
9466 	if (event->attr.exclude_kernel && !user_mode(regs))
9467 		return 0;
9468 
9469 	if (!perf_tp_filter_match(event, data))
9470 		return 0;
9471 
9472 	return 1;
9473 }
9474 
perf_trace_run_bpf_submit(void * raw_data,int size,int rctx,struct trace_event_call * call,u64 count,struct pt_regs * regs,struct hlist_head * head,struct task_struct * task)9475 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
9476 			       struct trace_event_call *call, u64 count,
9477 			       struct pt_regs *regs, struct hlist_head *head,
9478 			       struct task_struct *task)
9479 {
9480 	if (bpf_prog_array_valid(call)) {
9481 		*(struct pt_regs **)raw_data = regs;
9482 		if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
9483 			perf_swevent_put_recursion_context(rctx);
9484 			return;
9485 		}
9486 	}
9487 	perf_tp_event(call->event.type, count, raw_data, size, regs, head,
9488 		      rctx, task);
9489 }
9490 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
9491 
perf_tp_event(u16 event_type,u64 count,void * record,int entry_size,struct pt_regs * regs,struct hlist_head * head,int rctx,struct task_struct * task)9492 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
9493 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
9494 		   struct task_struct *task)
9495 {
9496 	struct perf_sample_data data;
9497 	struct perf_event *event;
9498 
9499 	struct perf_raw_record raw = {
9500 		.frag = {
9501 			.size = entry_size,
9502 			.data = record,
9503 		},
9504 	};
9505 
9506 	perf_sample_data_init(&data, 0, 0);
9507 	data.raw = &raw;
9508 
9509 	perf_trace_buf_update(record, event_type);
9510 
9511 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
9512 		if (perf_tp_event_match(event, &data, regs))
9513 			perf_swevent_event(event, count, &data, regs);
9514 	}
9515 
9516 	/*
9517 	 * If we got specified a target task, also iterate its context and
9518 	 * deliver this event there too.
9519 	 */
9520 	if (task && task != current) {
9521 		struct perf_event_context *ctx;
9522 		struct trace_entry *entry = record;
9523 
9524 		rcu_read_lock();
9525 		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
9526 		if (!ctx)
9527 			goto unlock;
9528 
9529 		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
9530 			if (event->cpu != smp_processor_id())
9531 				continue;
9532 			if (event->attr.type != PERF_TYPE_TRACEPOINT)
9533 				continue;
9534 			if (event->attr.config != entry->type)
9535 				continue;
9536 			if (perf_tp_event_match(event, &data, regs))
9537 				perf_swevent_event(event, count, &data, regs);
9538 		}
9539 unlock:
9540 		rcu_read_unlock();
9541 	}
9542 
9543 	perf_swevent_put_recursion_context(rctx);
9544 }
9545 EXPORT_SYMBOL_GPL(perf_tp_event);
9546 
tp_perf_event_destroy(struct perf_event * event)9547 static void tp_perf_event_destroy(struct perf_event *event)
9548 {
9549 	perf_trace_destroy(event);
9550 }
9551 
perf_tp_event_init(struct perf_event * event)9552 static int perf_tp_event_init(struct perf_event *event)
9553 {
9554 	int err;
9555 
9556 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
9557 		return -ENOENT;
9558 
9559 	/*
9560 	 * no branch sampling for tracepoint events
9561 	 */
9562 	if (has_branch_stack(event))
9563 		return -EOPNOTSUPP;
9564 
9565 	err = perf_trace_init(event);
9566 	if (err)
9567 		return err;
9568 
9569 	event->destroy = tp_perf_event_destroy;
9570 
9571 	return 0;
9572 }
9573 
9574 static struct pmu perf_tracepoint = {
9575 	.task_ctx_nr	= perf_sw_context,
9576 
9577 	.event_init	= perf_tp_event_init,
9578 	.add		= perf_trace_add,
9579 	.del		= perf_trace_del,
9580 	.start		= perf_swevent_start,
9581 	.stop		= perf_swevent_stop,
9582 	.read		= perf_swevent_read,
9583 };
9584 
9585 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
9586 /*
9587  * Flags in config, used by dynamic PMU kprobe and uprobe
9588  * The flags should match following PMU_FORMAT_ATTR().
9589  *
9590  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
9591  *                               if not set, create kprobe/uprobe
9592  *
9593  * The following values specify a reference counter (or semaphore in the
9594  * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
9595  * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
9596  *
9597  * PERF_UPROBE_REF_CTR_OFFSET_BITS	# of bits in config as th offset
9598  * PERF_UPROBE_REF_CTR_OFFSET_SHIFT	# of bits to shift left
9599  */
9600 enum perf_probe_config {
9601 	PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
9602 	PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
9603 	PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
9604 };
9605 
9606 PMU_FORMAT_ATTR(retprobe, "config:0");
9607 #endif
9608 
9609 #ifdef CONFIG_KPROBE_EVENTS
9610 static struct attribute *kprobe_attrs[] = {
9611 	&format_attr_retprobe.attr,
9612 	NULL,
9613 };
9614 
9615 static struct attribute_group kprobe_format_group = {
9616 	.name = "format",
9617 	.attrs = kprobe_attrs,
9618 };
9619 
9620 static const struct attribute_group *kprobe_attr_groups[] = {
9621 	&kprobe_format_group,
9622 	NULL,
9623 };
9624 
9625 static int perf_kprobe_event_init(struct perf_event *event);
9626 static struct pmu perf_kprobe = {
9627 	.task_ctx_nr	= perf_sw_context,
9628 	.event_init	= perf_kprobe_event_init,
9629 	.add		= perf_trace_add,
9630 	.del		= perf_trace_del,
9631 	.start		= perf_swevent_start,
9632 	.stop		= perf_swevent_stop,
9633 	.read		= perf_swevent_read,
9634 	.attr_groups	= kprobe_attr_groups,
9635 };
9636 
perf_kprobe_event_init(struct perf_event * event)9637 static int perf_kprobe_event_init(struct perf_event *event)
9638 {
9639 	int err;
9640 	bool is_retprobe;
9641 
9642 	if (event->attr.type != perf_kprobe.type)
9643 		return -ENOENT;
9644 
9645 	if (!perfmon_capable())
9646 		return -EACCES;
9647 
9648 	/*
9649 	 * no branch sampling for probe events
9650 	 */
9651 	if (has_branch_stack(event))
9652 		return -EOPNOTSUPP;
9653 
9654 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
9655 	err = perf_kprobe_init(event, is_retprobe);
9656 	if (err)
9657 		return err;
9658 
9659 	event->destroy = perf_kprobe_destroy;
9660 
9661 	return 0;
9662 }
9663 #endif /* CONFIG_KPROBE_EVENTS */
9664 
9665 #ifdef CONFIG_UPROBE_EVENTS
9666 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
9667 
9668 static struct attribute *uprobe_attrs[] = {
9669 	&format_attr_retprobe.attr,
9670 	&format_attr_ref_ctr_offset.attr,
9671 	NULL,
9672 };
9673 
9674 static struct attribute_group uprobe_format_group = {
9675 	.name = "format",
9676 	.attrs = uprobe_attrs,
9677 };
9678 
9679 static const struct attribute_group *uprobe_attr_groups[] = {
9680 	&uprobe_format_group,
9681 	NULL,
9682 };
9683 
9684 static int perf_uprobe_event_init(struct perf_event *event);
9685 static struct pmu perf_uprobe = {
9686 	.task_ctx_nr	= perf_sw_context,
9687 	.event_init	= perf_uprobe_event_init,
9688 	.add		= perf_trace_add,
9689 	.del		= perf_trace_del,
9690 	.start		= perf_swevent_start,
9691 	.stop		= perf_swevent_stop,
9692 	.read		= perf_swevent_read,
9693 	.attr_groups	= uprobe_attr_groups,
9694 };
9695 
perf_uprobe_event_init(struct perf_event * event)9696 static int perf_uprobe_event_init(struct perf_event *event)
9697 {
9698 	int err;
9699 	unsigned long ref_ctr_offset;
9700 	bool is_retprobe;
9701 
9702 	if (event->attr.type != perf_uprobe.type)
9703 		return -ENOENT;
9704 
9705 	if (!perfmon_capable())
9706 		return -EACCES;
9707 
9708 	/*
9709 	 * no branch sampling for probe events
9710 	 */
9711 	if (has_branch_stack(event))
9712 		return -EOPNOTSUPP;
9713 
9714 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
9715 	ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
9716 	err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
9717 	if (err)
9718 		return err;
9719 
9720 	event->destroy = perf_uprobe_destroy;
9721 
9722 	return 0;
9723 }
9724 #endif /* CONFIG_UPROBE_EVENTS */
9725 
perf_tp_register(void)9726 static inline void perf_tp_register(void)
9727 {
9728 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
9729 #ifdef CONFIG_KPROBE_EVENTS
9730 	perf_pmu_register(&perf_kprobe, "kprobe", -1);
9731 #endif
9732 #ifdef CONFIG_UPROBE_EVENTS
9733 	perf_pmu_register(&perf_uprobe, "uprobe", -1);
9734 #endif
9735 }
9736 
perf_event_free_filter(struct perf_event * event)9737 static void perf_event_free_filter(struct perf_event *event)
9738 {
9739 	ftrace_profile_free_filter(event);
9740 }
9741 
9742 #ifdef CONFIG_BPF_SYSCALL
bpf_overflow_handler(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)9743 static void bpf_overflow_handler(struct perf_event *event,
9744 				 struct perf_sample_data *data,
9745 				 struct pt_regs *regs)
9746 {
9747 	struct bpf_perf_event_data_kern ctx = {
9748 		.data = data,
9749 		.event = event,
9750 	};
9751 	int ret = 0;
9752 
9753 	ctx.regs = perf_arch_bpf_user_pt_regs(regs);
9754 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
9755 		goto out;
9756 	rcu_read_lock();
9757 	ret = BPF_PROG_RUN(event->prog, &ctx);
9758 	rcu_read_unlock();
9759 out:
9760 	__this_cpu_dec(bpf_prog_active);
9761 	if (!ret)
9762 		return;
9763 
9764 	event->orig_overflow_handler(event, data, regs);
9765 }
9766 
perf_event_set_bpf_handler(struct perf_event * event,u32 prog_fd)9767 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
9768 {
9769 	struct bpf_prog *prog;
9770 
9771 	if (event->overflow_handler_context)
9772 		/* hw breakpoint or kernel counter */
9773 		return -EINVAL;
9774 
9775 	if (event->prog)
9776 		return -EEXIST;
9777 
9778 	prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
9779 	if (IS_ERR(prog))
9780 		return PTR_ERR(prog);
9781 
9782 	if (event->attr.precise_ip &&
9783 	    prog->call_get_stack &&
9784 	    (!(event->attr.sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY) ||
9785 	     event->attr.exclude_callchain_kernel ||
9786 	     event->attr.exclude_callchain_user)) {
9787 		/*
9788 		 * On perf_event with precise_ip, calling bpf_get_stack()
9789 		 * may trigger unwinder warnings and occasional crashes.
9790 		 * bpf_get_[stack|stackid] works around this issue by using
9791 		 * callchain attached to perf_sample_data. If the
9792 		 * perf_event does not full (kernel and user) callchain
9793 		 * attached to perf_sample_data, do not allow attaching BPF
9794 		 * program that calls bpf_get_[stack|stackid].
9795 		 */
9796 		bpf_prog_put(prog);
9797 		return -EPROTO;
9798 	}
9799 
9800 	event->prog = prog;
9801 	event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
9802 	WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
9803 	return 0;
9804 }
9805 
perf_event_free_bpf_handler(struct perf_event * event)9806 static void perf_event_free_bpf_handler(struct perf_event *event)
9807 {
9808 	struct bpf_prog *prog = event->prog;
9809 
9810 	if (!prog)
9811 		return;
9812 
9813 	WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
9814 	event->prog = NULL;
9815 	bpf_prog_put(prog);
9816 }
9817 #else
perf_event_set_bpf_handler(struct perf_event * event,u32 prog_fd)9818 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
9819 {
9820 	return -EOPNOTSUPP;
9821 }
perf_event_free_bpf_handler(struct perf_event * event)9822 static void perf_event_free_bpf_handler(struct perf_event *event)
9823 {
9824 }
9825 #endif
9826 
9827 /*
9828  * returns true if the event is a tracepoint, or a kprobe/upprobe created
9829  * with perf_event_open()
9830  */
perf_event_is_tracing(struct perf_event * event)9831 static inline bool perf_event_is_tracing(struct perf_event *event)
9832 {
9833 	if (event->pmu == &perf_tracepoint)
9834 		return true;
9835 #ifdef CONFIG_KPROBE_EVENTS
9836 	if (event->pmu == &perf_kprobe)
9837 		return true;
9838 #endif
9839 #ifdef CONFIG_UPROBE_EVENTS
9840 	if (event->pmu == &perf_uprobe)
9841 		return true;
9842 #endif
9843 	return false;
9844 }
9845 
perf_event_set_bpf_prog(struct perf_event * event,u32 prog_fd)9846 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
9847 {
9848 	bool is_kprobe, is_tracepoint, is_syscall_tp;
9849 	struct bpf_prog *prog;
9850 	int ret;
9851 
9852 	if (!perf_event_is_tracing(event))
9853 		return perf_event_set_bpf_handler(event, prog_fd);
9854 
9855 	is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
9856 	is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
9857 	is_syscall_tp = is_syscall_trace_event(event->tp_event);
9858 	if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
9859 		/* bpf programs can only be attached to u/kprobe or tracepoint */
9860 		return -EINVAL;
9861 
9862 	prog = bpf_prog_get(prog_fd);
9863 	if (IS_ERR(prog))
9864 		return PTR_ERR(prog);
9865 
9866 	if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
9867 	    (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
9868 	    (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
9869 		/* valid fd, but invalid bpf program type */
9870 		bpf_prog_put(prog);
9871 		return -EINVAL;
9872 	}
9873 
9874 	/* Kprobe override only works for kprobes, not uprobes. */
9875 	if (prog->kprobe_override &&
9876 	    !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) {
9877 		bpf_prog_put(prog);
9878 		return -EINVAL;
9879 	}
9880 
9881 	if (is_tracepoint || is_syscall_tp) {
9882 		int off = trace_event_get_offsets(event->tp_event);
9883 
9884 		if (prog->aux->max_ctx_offset > off) {
9885 			bpf_prog_put(prog);
9886 			return -EACCES;
9887 		}
9888 	}
9889 
9890 	ret = perf_event_attach_bpf_prog(event, prog);
9891 	if (ret)
9892 		bpf_prog_put(prog);
9893 	return ret;
9894 }
9895 
perf_event_free_bpf_prog(struct perf_event * event)9896 static void perf_event_free_bpf_prog(struct perf_event *event)
9897 {
9898 	if (!perf_event_is_tracing(event)) {
9899 		perf_event_free_bpf_handler(event);
9900 		return;
9901 	}
9902 	perf_event_detach_bpf_prog(event);
9903 }
9904 
9905 #else
9906 
perf_tp_register(void)9907 static inline void perf_tp_register(void)
9908 {
9909 }
9910 
perf_event_free_filter(struct perf_event * event)9911 static void perf_event_free_filter(struct perf_event *event)
9912 {
9913 }
9914 
perf_event_set_bpf_prog(struct perf_event * event,u32 prog_fd)9915 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
9916 {
9917 	return -ENOENT;
9918 }
9919 
perf_event_free_bpf_prog(struct perf_event * event)9920 static void perf_event_free_bpf_prog(struct perf_event *event)
9921 {
9922 }
9923 #endif /* CONFIG_EVENT_TRACING */
9924 
9925 #ifdef CONFIG_HAVE_HW_BREAKPOINT
perf_bp_event(struct perf_event * bp,void * data)9926 void perf_bp_event(struct perf_event *bp, void *data)
9927 {
9928 	struct perf_sample_data sample;
9929 	struct pt_regs *regs = data;
9930 
9931 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
9932 
9933 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
9934 		perf_swevent_event(bp, 1, &sample, regs);
9935 }
9936 #endif
9937 
9938 /*
9939  * Allocate a new address filter
9940  */
9941 static struct perf_addr_filter *
perf_addr_filter_new(struct perf_event * event,struct list_head * filters)9942 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
9943 {
9944 	int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
9945 	struct perf_addr_filter *filter;
9946 
9947 	filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
9948 	if (!filter)
9949 		return NULL;
9950 
9951 	INIT_LIST_HEAD(&filter->entry);
9952 	list_add_tail(&filter->entry, filters);
9953 
9954 	return filter;
9955 }
9956 
free_filters_list(struct list_head * filters)9957 static void free_filters_list(struct list_head *filters)
9958 {
9959 	struct perf_addr_filter *filter, *iter;
9960 
9961 	list_for_each_entry_safe(filter, iter, filters, entry) {
9962 		path_put(&filter->path);
9963 		list_del(&filter->entry);
9964 		kfree(filter);
9965 	}
9966 }
9967 
9968 /*
9969  * Free existing address filters and optionally install new ones
9970  */
perf_addr_filters_splice(struct perf_event * event,struct list_head * head)9971 static void perf_addr_filters_splice(struct perf_event *event,
9972 				     struct list_head *head)
9973 {
9974 	unsigned long flags;
9975 	LIST_HEAD(list);
9976 
9977 	if (!has_addr_filter(event))
9978 		return;
9979 
9980 	/* don't bother with children, they don't have their own filters */
9981 	if (event->parent)
9982 		return;
9983 
9984 	raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
9985 
9986 	list_splice_init(&event->addr_filters.list, &list);
9987 	if (head)
9988 		list_splice(head, &event->addr_filters.list);
9989 
9990 	raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
9991 
9992 	free_filters_list(&list);
9993 }
9994 
9995 /*
9996  * Scan through mm's vmas and see if one of them matches the
9997  * @filter; if so, adjust filter's address range.
9998  * Called with mm::mmap_lock down for reading.
9999  */
perf_addr_filter_apply(struct perf_addr_filter * filter,struct mm_struct * mm,struct perf_addr_filter_range * fr)10000 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
10001 				   struct mm_struct *mm,
10002 				   struct perf_addr_filter_range *fr)
10003 {
10004 	struct vm_area_struct *vma;
10005 
10006 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
10007 		if (!vma->vm_file)
10008 			continue;
10009 
10010 		if (perf_addr_filter_vma_adjust(filter, vma, fr))
10011 			return;
10012 	}
10013 }
10014 
10015 /*
10016  * Update event's address range filters based on the
10017  * task's existing mappings, if any.
10018  */
perf_event_addr_filters_apply(struct perf_event * event)10019 static void perf_event_addr_filters_apply(struct perf_event *event)
10020 {
10021 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10022 	struct task_struct *task = READ_ONCE(event->ctx->task);
10023 	struct perf_addr_filter *filter;
10024 	struct mm_struct *mm = NULL;
10025 	unsigned int count = 0;
10026 	unsigned long flags;
10027 
10028 	/*
10029 	 * We may observe TASK_TOMBSTONE, which means that the event tear-down
10030 	 * will stop on the parent's child_mutex that our caller is also holding
10031 	 */
10032 	if (task == TASK_TOMBSTONE)
10033 		return;
10034 
10035 	if (ifh->nr_file_filters) {
10036 		mm = get_task_mm(task);
10037 		if (!mm)
10038 			goto restart;
10039 
10040 		mmap_read_lock(mm);
10041 	}
10042 
10043 	raw_spin_lock_irqsave(&ifh->lock, flags);
10044 	list_for_each_entry(filter, &ifh->list, entry) {
10045 		if (filter->path.dentry) {
10046 			/*
10047 			 * Adjust base offset if the filter is associated to a
10048 			 * binary that needs to be mapped:
10049 			 */
10050 			event->addr_filter_ranges[count].start = 0;
10051 			event->addr_filter_ranges[count].size = 0;
10052 
10053 			perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
10054 		} else {
10055 			event->addr_filter_ranges[count].start = filter->offset;
10056 			event->addr_filter_ranges[count].size  = filter->size;
10057 		}
10058 
10059 		count++;
10060 	}
10061 
10062 	event->addr_filters_gen++;
10063 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
10064 
10065 	if (ifh->nr_file_filters) {
10066 		mmap_read_unlock(mm);
10067 
10068 		mmput(mm);
10069 	}
10070 
10071 restart:
10072 	perf_event_stop(event, 1);
10073 }
10074 
10075 /*
10076  * Address range filtering: limiting the data to certain
10077  * instruction address ranges. Filters are ioctl()ed to us from
10078  * userspace as ascii strings.
10079  *
10080  * Filter string format:
10081  *
10082  * ACTION RANGE_SPEC
10083  * where ACTION is one of the
10084  *  * "filter": limit the trace to this region
10085  *  * "start": start tracing from this address
10086  *  * "stop": stop tracing at this address/region;
10087  * RANGE_SPEC is
10088  *  * for kernel addresses: <start address>[/<size>]
10089  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
10090  *
10091  * if <size> is not specified or is zero, the range is treated as a single
10092  * address; not valid for ACTION=="filter".
10093  */
10094 enum {
10095 	IF_ACT_NONE = -1,
10096 	IF_ACT_FILTER,
10097 	IF_ACT_START,
10098 	IF_ACT_STOP,
10099 	IF_SRC_FILE,
10100 	IF_SRC_KERNEL,
10101 	IF_SRC_FILEADDR,
10102 	IF_SRC_KERNELADDR,
10103 };
10104 
10105 enum {
10106 	IF_STATE_ACTION = 0,
10107 	IF_STATE_SOURCE,
10108 	IF_STATE_END,
10109 };
10110 
10111 static const match_table_t if_tokens = {
10112 	{ IF_ACT_FILTER,	"filter" },
10113 	{ IF_ACT_START,		"start" },
10114 	{ IF_ACT_STOP,		"stop" },
10115 	{ IF_SRC_FILE,		"%u/%u@%s" },
10116 	{ IF_SRC_KERNEL,	"%u/%u" },
10117 	{ IF_SRC_FILEADDR,	"%u@%s" },
10118 	{ IF_SRC_KERNELADDR,	"%u" },
10119 	{ IF_ACT_NONE,		NULL },
10120 };
10121 
10122 /*
10123  * Address filter string parser
10124  */
10125 static int
perf_event_parse_addr_filter(struct perf_event * event,char * fstr,struct list_head * filters)10126 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
10127 			     struct list_head *filters)
10128 {
10129 	struct perf_addr_filter *filter = NULL;
10130 	char *start, *orig, *filename = NULL;
10131 	substring_t args[MAX_OPT_ARGS];
10132 	int state = IF_STATE_ACTION, token;
10133 	unsigned int kernel = 0;
10134 	int ret = -EINVAL;
10135 
10136 	orig = fstr = kstrdup(fstr, GFP_KERNEL);
10137 	if (!fstr)
10138 		return -ENOMEM;
10139 
10140 	while ((start = strsep(&fstr, " ,\n")) != NULL) {
10141 		static const enum perf_addr_filter_action_t actions[] = {
10142 			[IF_ACT_FILTER]	= PERF_ADDR_FILTER_ACTION_FILTER,
10143 			[IF_ACT_START]	= PERF_ADDR_FILTER_ACTION_START,
10144 			[IF_ACT_STOP]	= PERF_ADDR_FILTER_ACTION_STOP,
10145 		};
10146 		ret = -EINVAL;
10147 
10148 		if (!*start)
10149 			continue;
10150 
10151 		/* filter definition begins */
10152 		if (state == IF_STATE_ACTION) {
10153 			filter = perf_addr_filter_new(event, filters);
10154 			if (!filter)
10155 				goto fail;
10156 		}
10157 
10158 		token = match_token(start, if_tokens, args);
10159 		switch (token) {
10160 		case IF_ACT_FILTER:
10161 		case IF_ACT_START:
10162 		case IF_ACT_STOP:
10163 			if (state != IF_STATE_ACTION)
10164 				goto fail;
10165 
10166 			filter->action = actions[token];
10167 			state = IF_STATE_SOURCE;
10168 			break;
10169 
10170 		case IF_SRC_KERNELADDR:
10171 		case IF_SRC_KERNEL:
10172 			kernel = 1;
10173 			fallthrough;
10174 
10175 		case IF_SRC_FILEADDR:
10176 		case IF_SRC_FILE:
10177 			if (state != IF_STATE_SOURCE)
10178 				goto fail;
10179 
10180 			*args[0].to = 0;
10181 			ret = kstrtoul(args[0].from, 0, &filter->offset);
10182 			if (ret)
10183 				goto fail;
10184 
10185 			if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
10186 				*args[1].to = 0;
10187 				ret = kstrtoul(args[1].from, 0, &filter->size);
10188 				if (ret)
10189 					goto fail;
10190 			}
10191 
10192 			if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
10193 				int fpos = token == IF_SRC_FILE ? 2 : 1;
10194 
10195 				kfree(filename);
10196 				filename = match_strdup(&args[fpos]);
10197 				if (!filename) {
10198 					ret = -ENOMEM;
10199 					goto fail;
10200 				}
10201 			}
10202 
10203 			state = IF_STATE_END;
10204 			break;
10205 
10206 		default:
10207 			goto fail;
10208 		}
10209 
10210 		/*
10211 		 * Filter definition is fully parsed, validate and install it.
10212 		 * Make sure that it doesn't contradict itself or the event's
10213 		 * attribute.
10214 		 */
10215 		if (state == IF_STATE_END) {
10216 			ret = -EINVAL;
10217 			if (kernel && event->attr.exclude_kernel)
10218 				goto fail;
10219 
10220 			/*
10221 			 * ACTION "filter" must have a non-zero length region
10222 			 * specified.
10223 			 */
10224 			if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
10225 			    !filter->size)
10226 				goto fail;
10227 
10228 			if (!kernel) {
10229 				if (!filename)
10230 					goto fail;
10231 
10232 				/*
10233 				 * For now, we only support file-based filters
10234 				 * in per-task events; doing so for CPU-wide
10235 				 * events requires additional context switching
10236 				 * trickery, since same object code will be
10237 				 * mapped at different virtual addresses in
10238 				 * different processes.
10239 				 */
10240 				ret = -EOPNOTSUPP;
10241 				if (!event->ctx->task)
10242 					goto fail;
10243 
10244 				/* look up the path and grab its inode */
10245 				ret = kern_path(filename, LOOKUP_FOLLOW,
10246 						&filter->path);
10247 				if (ret)
10248 					goto fail;
10249 
10250 				ret = -EINVAL;
10251 				if (!filter->path.dentry ||
10252 				    !S_ISREG(d_inode(filter->path.dentry)
10253 					     ->i_mode))
10254 					goto fail;
10255 
10256 				event->addr_filters.nr_file_filters++;
10257 			}
10258 
10259 			/* ready to consume more filters */
10260 			state = IF_STATE_ACTION;
10261 			filter = NULL;
10262 		}
10263 	}
10264 
10265 	if (state != IF_STATE_ACTION)
10266 		goto fail;
10267 
10268 	kfree(filename);
10269 	kfree(orig);
10270 
10271 	return 0;
10272 
10273 fail:
10274 	kfree(filename);
10275 	free_filters_list(filters);
10276 	kfree(orig);
10277 
10278 	return ret;
10279 }
10280 
10281 static int
perf_event_set_addr_filter(struct perf_event * event,char * filter_str)10282 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
10283 {
10284 	LIST_HEAD(filters);
10285 	int ret;
10286 
10287 	/*
10288 	 * Since this is called in perf_ioctl() path, we're already holding
10289 	 * ctx::mutex.
10290 	 */
10291 	lockdep_assert_held(&event->ctx->mutex);
10292 
10293 	if (WARN_ON_ONCE(event->parent))
10294 		return -EINVAL;
10295 
10296 	ret = perf_event_parse_addr_filter(event, filter_str, &filters);
10297 	if (ret)
10298 		goto fail_clear_files;
10299 
10300 	ret = event->pmu->addr_filters_validate(&filters);
10301 	if (ret)
10302 		goto fail_free_filters;
10303 
10304 	/* remove existing filters, if any */
10305 	perf_addr_filters_splice(event, &filters);
10306 
10307 	/* install new filters */
10308 	perf_event_for_each_child(event, perf_event_addr_filters_apply);
10309 
10310 	return ret;
10311 
10312 fail_free_filters:
10313 	free_filters_list(&filters);
10314 
10315 fail_clear_files:
10316 	event->addr_filters.nr_file_filters = 0;
10317 
10318 	return ret;
10319 }
10320 
perf_event_set_filter(struct perf_event * event,void __user * arg)10321 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
10322 {
10323 	int ret = -EINVAL;
10324 	char *filter_str;
10325 
10326 	filter_str = strndup_user(arg, PAGE_SIZE);
10327 	if (IS_ERR(filter_str))
10328 		return PTR_ERR(filter_str);
10329 
10330 #ifdef CONFIG_EVENT_TRACING
10331 	if (perf_event_is_tracing(event)) {
10332 		struct perf_event_context *ctx = event->ctx;
10333 
10334 		/*
10335 		 * Beware, here be dragons!!
10336 		 *
10337 		 * the tracepoint muck will deadlock against ctx->mutex, but
10338 		 * the tracepoint stuff does not actually need it. So
10339 		 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
10340 		 * already have a reference on ctx.
10341 		 *
10342 		 * This can result in event getting moved to a different ctx,
10343 		 * but that does not affect the tracepoint state.
10344 		 */
10345 		mutex_unlock(&ctx->mutex);
10346 		ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
10347 		mutex_lock(&ctx->mutex);
10348 	} else
10349 #endif
10350 	if (has_addr_filter(event))
10351 		ret = perf_event_set_addr_filter(event, filter_str);
10352 
10353 	kfree(filter_str);
10354 	return ret;
10355 }
10356 
10357 /*
10358  * hrtimer based swevent callback
10359  */
10360 
perf_swevent_hrtimer(struct hrtimer * hrtimer)10361 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
10362 {
10363 	enum hrtimer_restart ret = HRTIMER_RESTART;
10364 	struct perf_sample_data data;
10365 	struct pt_regs *regs;
10366 	struct perf_event *event;
10367 	u64 period;
10368 
10369 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
10370 
10371 	if (event->state != PERF_EVENT_STATE_ACTIVE)
10372 		return HRTIMER_NORESTART;
10373 
10374 	event->pmu->read(event);
10375 
10376 	perf_sample_data_init(&data, 0, event->hw.last_period);
10377 	regs = get_irq_regs();
10378 
10379 	if (regs && !perf_exclude_event(event, regs)) {
10380 		if (!(event->attr.exclude_idle && is_idle_task(current)))
10381 			if (__perf_event_overflow(event, 1, &data, regs))
10382 				ret = HRTIMER_NORESTART;
10383 	}
10384 
10385 	period = max_t(u64, 10000, event->hw.sample_period);
10386 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
10387 
10388 	return ret;
10389 }
10390 
perf_swevent_start_hrtimer(struct perf_event * event)10391 static void perf_swevent_start_hrtimer(struct perf_event *event)
10392 {
10393 	struct hw_perf_event *hwc = &event->hw;
10394 	s64 period;
10395 
10396 	if (!is_sampling_event(event))
10397 		return;
10398 
10399 	period = local64_read(&hwc->period_left);
10400 	if (period) {
10401 		if (period < 0)
10402 			period = 10000;
10403 
10404 		local64_set(&hwc->period_left, 0);
10405 	} else {
10406 		period = max_t(u64, 10000, hwc->sample_period);
10407 	}
10408 	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
10409 		      HRTIMER_MODE_REL_PINNED_HARD);
10410 }
10411 
perf_swevent_cancel_hrtimer(struct perf_event * event)10412 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
10413 {
10414 	struct hw_perf_event *hwc = &event->hw;
10415 
10416 	if (is_sampling_event(event)) {
10417 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
10418 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
10419 
10420 		hrtimer_cancel(&hwc->hrtimer);
10421 	}
10422 }
10423 
perf_swevent_init_hrtimer(struct perf_event * event)10424 static void perf_swevent_init_hrtimer(struct perf_event *event)
10425 {
10426 	struct hw_perf_event *hwc = &event->hw;
10427 
10428 	if (!is_sampling_event(event))
10429 		return;
10430 
10431 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
10432 	hwc->hrtimer.function = perf_swevent_hrtimer;
10433 
10434 	/*
10435 	 * Since hrtimers have a fixed rate, we can do a static freq->period
10436 	 * mapping and avoid the whole period adjust feedback stuff.
10437 	 */
10438 	if (event->attr.freq) {
10439 		long freq = event->attr.sample_freq;
10440 
10441 		event->attr.sample_period = NSEC_PER_SEC / freq;
10442 		hwc->sample_period = event->attr.sample_period;
10443 		local64_set(&hwc->period_left, hwc->sample_period);
10444 		hwc->last_period = hwc->sample_period;
10445 		event->attr.freq = 0;
10446 	}
10447 }
10448 
10449 /*
10450  * Software event: cpu wall time clock
10451  */
10452 
cpu_clock_event_update(struct perf_event * event)10453 static void cpu_clock_event_update(struct perf_event *event)
10454 {
10455 	s64 prev;
10456 	u64 now;
10457 
10458 	now = local_clock();
10459 	prev = local64_xchg(&event->hw.prev_count, now);
10460 	local64_add(now - prev, &event->count);
10461 }
10462 
cpu_clock_event_start(struct perf_event * event,int flags)10463 static void cpu_clock_event_start(struct perf_event *event, int flags)
10464 {
10465 	local64_set(&event->hw.prev_count, local_clock());
10466 	perf_swevent_start_hrtimer(event);
10467 }
10468 
cpu_clock_event_stop(struct perf_event * event,int flags)10469 static void cpu_clock_event_stop(struct perf_event *event, int flags)
10470 {
10471 	perf_swevent_cancel_hrtimer(event);
10472 	cpu_clock_event_update(event);
10473 }
10474 
cpu_clock_event_add(struct perf_event * event,int flags)10475 static int cpu_clock_event_add(struct perf_event *event, int flags)
10476 {
10477 	if (flags & PERF_EF_START)
10478 		cpu_clock_event_start(event, flags);
10479 	perf_event_update_userpage(event);
10480 
10481 	return 0;
10482 }
10483 
cpu_clock_event_del(struct perf_event * event,int flags)10484 static void cpu_clock_event_del(struct perf_event *event, int flags)
10485 {
10486 	cpu_clock_event_stop(event, flags);
10487 }
10488 
cpu_clock_event_read(struct perf_event * event)10489 static void cpu_clock_event_read(struct perf_event *event)
10490 {
10491 	cpu_clock_event_update(event);
10492 }
10493 
cpu_clock_event_init(struct perf_event * event)10494 static int cpu_clock_event_init(struct perf_event *event)
10495 {
10496 	if (event->attr.type != PERF_TYPE_SOFTWARE)
10497 		return -ENOENT;
10498 
10499 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
10500 		return -ENOENT;
10501 
10502 	/*
10503 	 * no branch sampling for software events
10504 	 */
10505 	if (has_branch_stack(event))
10506 		return -EOPNOTSUPP;
10507 
10508 	perf_swevent_init_hrtimer(event);
10509 
10510 	return 0;
10511 }
10512 
10513 static struct pmu perf_cpu_clock = {
10514 	.task_ctx_nr	= perf_sw_context,
10515 
10516 	.capabilities	= PERF_PMU_CAP_NO_NMI,
10517 
10518 	.event_init	= cpu_clock_event_init,
10519 	.add		= cpu_clock_event_add,
10520 	.del		= cpu_clock_event_del,
10521 	.start		= cpu_clock_event_start,
10522 	.stop		= cpu_clock_event_stop,
10523 	.read		= cpu_clock_event_read,
10524 };
10525 
10526 /*
10527  * Software event: task time clock
10528  */
10529 
task_clock_event_update(struct perf_event * event,u64 now)10530 static void task_clock_event_update(struct perf_event *event, u64 now)
10531 {
10532 	u64 prev;
10533 	s64 delta;
10534 
10535 	prev = local64_xchg(&event->hw.prev_count, now);
10536 	delta = now - prev;
10537 	local64_add(delta, &event->count);
10538 }
10539 
task_clock_event_start(struct perf_event * event,int flags)10540 static void task_clock_event_start(struct perf_event *event, int flags)
10541 {
10542 	local64_set(&event->hw.prev_count, event->ctx->time);
10543 	perf_swevent_start_hrtimer(event);
10544 }
10545 
task_clock_event_stop(struct perf_event * event,int flags)10546 static void task_clock_event_stop(struct perf_event *event, int flags)
10547 {
10548 	perf_swevent_cancel_hrtimer(event);
10549 	task_clock_event_update(event, event->ctx->time);
10550 }
10551 
task_clock_event_add(struct perf_event * event,int flags)10552 static int task_clock_event_add(struct perf_event *event, int flags)
10553 {
10554 	if (flags & PERF_EF_START)
10555 		task_clock_event_start(event, flags);
10556 	perf_event_update_userpage(event);
10557 
10558 	return 0;
10559 }
10560 
task_clock_event_del(struct perf_event * event,int flags)10561 static void task_clock_event_del(struct perf_event *event, int flags)
10562 {
10563 	task_clock_event_stop(event, PERF_EF_UPDATE);
10564 }
10565 
task_clock_event_read(struct perf_event * event)10566 static void task_clock_event_read(struct perf_event *event)
10567 {
10568 	u64 now = perf_clock();
10569 	u64 delta = now - event->ctx->timestamp;
10570 	u64 time = event->ctx->time + delta;
10571 
10572 	task_clock_event_update(event, time);
10573 }
10574 
task_clock_event_init(struct perf_event * event)10575 static int task_clock_event_init(struct perf_event *event)
10576 {
10577 	if (event->attr.type != PERF_TYPE_SOFTWARE)
10578 		return -ENOENT;
10579 
10580 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
10581 		return -ENOENT;
10582 
10583 	/*
10584 	 * no branch sampling for software events
10585 	 */
10586 	if (has_branch_stack(event))
10587 		return -EOPNOTSUPP;
10588 
10589 	perf_swevent_init_hrtimer(event);
10590 
10591 	return 0;
10592 }
10593 
10594 static struct pmu perf_task_clock = {
10595 	.task_ctx_nr	= perf_sw_context,
10596 
10597 	.capabilities	= PERF_PMU_CAP_NO_NMI,
10598 
10599 	.event_init	= task_clock_event_init,
10600 	.add		= task_clock_event_add,
10601 	.del		= task_clock_event_del,
10602 	.start		= task_clock_event_start,
10603 	.stop		= task_clock_event_stop,
10604 	.read		= task_clock_event_read,
10605 };
10606 
perf_pmu_nop_void(struct pmu * pmu)10607 static void perf_pmu_nop_void(struct pmu *pmu)
10608 {
10609 }
10610 
perf_pmu_nop_txn(struct pmu * pmu,unsigned int flags)10611 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
10612 {
10613 }
10614 
perf_pmu_nop_int(struct pmu * pmu)10615 static int perf_pmu_nop_int(struct pmu *pmu)
10616 {
10617 	return 0;
10618 }
10619 
perf_event_nop_int(struct perf_event * event,u64 value)10620 static int perf_event_nop_int(struct perf_event *event, u64 value)
10621 {
10622 	return 0;
10623 }
10624 
10625 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
10626 
perf_pmu_start_txn(struct pmu * pmu,unsigned int flags)10627 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
10628 {
10629 	__this_cpu_write(nop_txn_flags, flags);
10630 
10631 	if (flags & ~PERF_PMU_TXN_ADD)
10632 		return;
10633 
10634 	perf_pmu_disable(pmu);
10635 }
10636 
perf_pmu_commit_txn(struct pmu * pmu)10637 static int perf_pmu_commit_txn(struct pmu *pmu)
10638 {
10639 	unsigned int flags = __this_cpu_read(nop_txn_flags);
10640 
10641 	__this_cpu_write(nop_txn_flags, 0);
10642 
10643 	if (flags & ~PERF_PMU_TXN_ADD)
10644 		return 0;
10645 
10646 	perf_pmu_enable(pmu);
10647 	return 0;
10648 }
10649 
perf_pmu_cancel_txn(struct pmu * pmu)10650 static void perf_pmu_cancel_txn(struct pmu *pmu)
10651 {
10652 	unsigned int flags =  __this_cpu_read(nop_txn_flags);
10653 
10654 	__this_cpu_write(nop_txn_flags, 0);
10655 
10656 	if (flags & ~PERF_PMU_TXN_ADD)
10657 		return;
10658 
10659 	perf_pmu_enable(pmu);
10660 }
10661 
perf_event_idx_default(struct perf_event * event)10662 static int perf_event_idx_default(struct perf_event *event)
10663 {
10664 	return 0;
10665 }
10666 
10667 /*
10668  * Ensures all contexts with the same task_ctx_nr have the same
10669  * pmu_cpu_context too.
10670  */
find_pmu_context(int ctxn)10671 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
10672 {
10673 	struct pmu *pmu;
10674 
10675 	if (ctxn < 0)
10676 		return NULL;
10677 
10678 	list_for_each_entry(pmu, &pmus, entry) {
10679 		if (pmu->task_ctx_nr == ctxn)
10680 			return pmu->pmu_cpu_context;
10681 	}
10682 
10683 	return NULL;
10684 }
10685 
free_pmu_context(struct pmu * pmu)10686 static void free_pmu_context(struct pmu *pmu)
10687 {
10688 	/*
10689 	 * Static contexts such as perf_sw_context have a global lifetime
10690 	 * and may be shared between different PMUs. Avoid freeing them
10691 	 * when a single PMU is going away.
10692 	 */
10693 	if (pmu->task_ctx_nr > perf_invalid_context)
10694 		return;
10695 
10696 	free_percpu(pmu->pmu_cpu_context);
10697 }
10698 
10699 /*
10700  * Let userspace know that this PMU supports address range filtering:
10701  */
nr_addr_filters_show(struct device * dev,struct device_attribute * attr,char * page)10702 static ssize_t nr_addr_filters_show(struct device *dev,
10703 				    struct device_attribute *attr,
10704 				    char *page)
10705 {
10706 	struct pmu *pmu = dev_get_drvdata(dev);
10707 
10708 	return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
10709 }
10710 DEVICE_ATTR_RO(nr_addr_filters);
10711 
10712 static struct idr pmu_idr;
10713 
10714 static ssize_t
type_show(struct device * dev,struct device_attribute * attr,char * page)10715 type_show(struct device *dev, struct device_attribute *attr, char *page)
10716 {
10717 	struct pmu *pmu = dev_get_drvdata(dev);
10718 
10719 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
10720 }
10721 static DEVICE_ATTR_RO(type);
10722 
10723 static ssize_t
perf_event_mux_interval_ms_show(struct device * dev,struct device_attribute * attr,char * page)10724 perf_event_mux_interval_ms_show(struct device *dev,
10725 				struct device_attribute *attr,
10726 				char *page)
10727 {
10728 	struct pmu *pmu = dev_get_drvdata(dev);
10729 
10730 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
10731 }
10732 
10733 static DEFINE_MUTEX(mux_interval_mutex);
10734 
10735 static ssize_t
perf_event_mux_interval_ms_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)10736 perf_event_mux_interval_ms_store(struct device *dev,
10737 				 struct device_attribute *attr,
10738 				 const char *buf, size_t count)
10739 {
10740 	struct pmu *pmu = dev_get_drvdata(dev);
10741 	int timer, cpu, ret;
10742 
10743 	ret = kstrtoint(buf, 0, &timer);
10744 	if (ret)
10745 		return ret;
10746 
10747 	if (timer < 1)
10748 		return -EINVAL;
10749 
10750 	/* same value, noting to do */
10751 	if (timer == pmu->hrtimer_interval_ms)
10752 		return count;
10753 
10754 	mutex_lock(&mux_interval_mutex);
10755 	pmu->hrtimer_interval_ms = timer;
10756 
10757 	/* update all cpuctx for this PMU */
10758 	cpus_read_lock();
10759 	for_each_online_cpu(cpu) {
10760 		struct perf_cpu_context *cpuctx;
10761 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
10762 		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
10763 
10764 		cpu_function_call(cpu,
10765 			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
10766 	}
10767 	cpus_read_unlock();
10768 	mutex_unlock(&mux_interval_mutex);
10769 
10770 	return count;
10771 }
10772 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
10773 
10774 static struct attribute *pmu_dev_attrs[] = {
10775 	&dev_attr_type.attr,
10776 	&dev_attr_perf_event_mux_interval_ms.attr,
10777 	NULL,
10778 };
10779 ATTRIBUTE_GROUPS(pmu_dev);
10780 
10781 static int pmu_bus_running;
10782 static struct bus_type pmu_bus = {
10783 	.name		= "event_source",
10784 	.dev_groups	= pmu_dev_groups,
10785 };
10786 
pmu_dev_release(struct device * dev)10787 static void pmu_dev_release(struct device *dev)
10788 {
10789 	kfree(dev);
10790 }
10791 
pmu_dev_alloc(struct pmu * pmu)10792 static int pmu_dev_alloc(struct pmu *pmu)
10793 {
10794 	int ret = -ENOMEM;
10795 
10796 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
10797 	if (!pmu->dev)
10798 		goto out;
10799 
10800 	pmu->dev->groups = pmu->attr_groups;
10801 	device_initialize(pmu->dev);
10802 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
10803 	if (ret)
10804 		goto free_dev;
10805 
10806 	dev_set_drvdata(pmu->dev, pmu);
10807 	pmu->dev->bus = &pmu_bus;
10808 	pmu->dev->release = pmu_dev_release;
10809 	ret = device_add(pmu->dev);
10810 	if (ret)
10811 		goto free_dev;
10812 
10813 	/* For PMUs with address filters, throw in an extra attribute: */
10814 	if (pmu->nr_addr_filters)
10815 		ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
10816 
10817 	if (ret)
10818 		goto del_dev;
10819 
10820 	if (pmu->attr_update)
10821 		ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
10822 
10823 	if (ret)
10824 		goto del_dev;
10825 
10826 out:
10827 	return ret;
10828 
10829 del_dev:
10830 	device_del(pmu->dev);
10831 
10832 free_dev:
10833 	put_device(pmu->dev);
10834 	goto out;
10835 }
10836 
10837 static struct lock_class_key cpuctx_mutex;
10838 static struct lock_class_key cpuctx_lock;
10839 
perf_pmu_register(struct pmu * pmu,const char * name,int type)10840 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
10841 {
10842 	int cpu, ret, max = PERF_TYPE_MAX;
10843 
10844 	mutex_lock(&pmus_lock);
10845 	ret = -ENOMEM;
10846 	pmu->pmu_disable_count = alloc_percpu(int);
10847 	if (!pmu->pmu_disable_count)
10848 		goto unlock;
10849 
10850 	pmu->type = -1;
10851 	if (!name)
10852 		goto skip_type;
10853 	pmu->name = name;
10854 
10855 	if (type != PERF_TYPE_SOFTWARE) {
10856 		if (type >= 0)
10857 			max = type;
10858 
10859 		ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL);
10860 		if (ret < 0)
10861 			goto free_pdc;
10862 
10863 		WARN_ON(type >= 0 && ret != type);
10864 
10865 		type = ret;
10866 	}
10867 	pmu->type = type;
10868 
10869 	if (pmu_bus_running) {
10870 		ret = pmu_dev_alloc(pmu);
10871 		if (ret)
10872 			goto free_idr;
10873 	}
10874 
10875 skip_type:
10876 	if (pmu->task_ctx_nr == perf_hw_context) {
10877 		static int hw_context_taken = 0;
10878 
10879 		/*
10880 		 * Other than systems with heterogeneous CPUs, it never makes
10881 		 * sense for two PMUs to share perf_hw_context. PMUs which are
10882 		 * uncore must use perf_invalid_context.
10883 		 */
10884 		if (WARN_ON_ONCE(hw_context_taken &&
10885 		    !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
10886 			pmu->task_ctx_nr = perf_invalid_context;
10887 
10888 		hw_context_taken = 1;
10889 	}
10890 
10891 	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
10892 	if (pmu->pmu_cpu_context)
10893 		goto got_cpu_context;
10894 
10895 	ret = -ENOMEM;
10896 	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
10897 	if (!pmu->pmu_cpu_context)
10898 		goto free_dev;
10899 
10900 	for_each_possible_cpu(cpu) {
10901 		struct perf_cpu_context *cpuctx;
10902 
10903 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
10904 		__perf_event_init_context(&cpuctx->ctx);
10905 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
10906 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
10907 		cpuctx->ctx.pmu = pmu;
10908 		cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
10909 
10910 		__perf_mux_hrtimer_init(cpuctx, cpu);
10911 
10912 		cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default);
10913 		cpuctx->heap = cpuctx->heap_default;
10914 	}
10915 
10916 got_cpu_context:
10917 	if (!pmu->start_txn) {
10918 		if (pmu->pmu_enable) {
10919 			/*
10920 			 * If we have pmu_enable/pmu_disable calls, install
10921 			 * transaction stubs that use that to try and batch
10922 			 * hardware accesses.
10923 			 */
10924 			pmu->start_txn  = perf_pmu_start_txn;
10925 			pmu->commit_txn = perf_pmu_commit_txn;
10926 			pmu->cancel_txn = perf_pmu_cancel_txn;
10927 		} else {
10928 			pmu->start_txn  = perf_pmu_nop_txn;
10929 			pmu->commit_txn = perf_pmu_nop_int;
10930 			pmu->cancel_txn = perf_pmu_nop_void;
10931 		}
10932 	}
10933 
10934 	if (!pmu->pmu_enable) {
10935 		pmu->pmu_enable  = perf_pmu_nop_void;
10936 		pmu->pmu_disable = perf_pmu_nop_void;
10937 	}
10938 
10939 	if (!pmu->check_period)
10940 		pmu->check_period = perf_event_nop_int;
10941 
10942 	if (!pmu->event_idx)
10943 		pmu->event_idx = perf_event_idx_default;
10944 
10945 	/*
10946 	 * Ensure the TYPE_SOFTWARE PMUs are at the head of the list,
10947 	 * since these cannot be in the IDR. This way the linear search
10948 	 * is fast, provided a valid software event is provided.
10949 	 */
10950 	if (type == PERF_TYPE_SOFTWARE || !name)
10951 		list_add_rcu(&pmu->entry, &pmus);
10952 	else
10953 		list_add_tail_rcu(&pmu->entry, &pmus);
10954 
10955 	atomic_set(&pmu->exclusive_cnt, 0);
10956 	ret = 0;
10957 unlock:
10958 	mutex_unlock(&pmus_lock);
10959 
10960 	return ret;
10961 
10962 free_dev:
10963 	device_del(pmu->dev);
10964 	put_device(pmu->dev);
10965 
10966 free_idr:
10967 	if (pmu->type != PERF_TYPE_SOFTWARE)
10968 		idr_remove(&pmu_idr, pmu->type);
10969 
10970 free_pdc:
10971 	free_percpu(pmu->pmu_disable_count);
10972 	goto unlock;
10973 }
10974 EXPORT_SYMBOL_GPL(perf_pmu_register);
10975 
perf_pmu_unregister(struct pmu * pmu)10976 void perf_pmu_unregister(struct pmu *pmu)
10977 {
10978 	mutex_lock(&pmus_lock);
10979 	list_del_rcu(&pmu->entry);
10980 
10981 	/*
10982 	 * We dereference the pmu list under both SRCU and regular RCU, so
10983 	 * synchronize against both of those.
10984 	 */
10985 	synchronize_srcu(&pmus_srcu);
10986 	synchronize_rcu();
10987 
10988 	free_percpu(pmu->pmu_disable_count);
10989 	if (pmu->type != PERF_TYPE_SOFTWARE)
10990 		idr_remove(&pmu_idr, pmu->type);
10991 	if (pmu_bus_running) {
10992 		if (pmu->nr_addr_filters)
10993 			device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
10994 		device_del(pmu->dev);
10995 		put_device(pmu->dev);
10996 	}
10997 	free_pmu_context(pmu);
10998 	mutex_unlock(&pmus_lock);
10999 }
11000 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
11001 
has_extended_regs(struct perf_event * event)11002 static inline bool has_extended_regs(struct perf_event *event)
11003 {
11004 	return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
11005 	       (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
11006 }
11007 
perf_try_init_event(struct pmu * pmu,struct perf_event * event)11008 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
11009 {
11010 	struct perf_event_context *ctx = NULL;
11011 	int ret;
11012 
11013 	if (!try_module_get(pmu->module))
11014 		return -ENODEV;
11015 
11016 	/*
11017 	 * A number of pmu->event_init() methods iterate the sibling_list to,
11018 	 * for example, validate if the group fits on the PMU. Therefore,
11019 	 * if this is a sibling event, acquire the ctx->mutex to protect
11020 	 * the sibling_list.
11021 	 */
11022 	if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
11023 		/*
11024 		 * This ctx->mutex can nest when we're called through
11025 		 * inheritance. See the perf_event_ctx_lock_nested() comment.
11026 		 */
11027 		ctx = perf_event_ctx_lock_nested(event->group_leader,
11028 						 SINGLE_DEPTH_NESTING);
11029 		BUG_ON(!ctx);
11030 	}
11031 
11032 	event->pmu = pmu;
11033 	ret = pmu->event_init(event);
11034 
11035 	if (ctx)
11036 		perf_event_ctx_unlock(event->group_leader, ctx);
11037 
11038 	if (!ret) {
11039 		if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
11040 		    has_extended_regs(event))
11041 			ret = -EOPNOTSUPP;
11042 
11043 		if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
11044 		    event_has_any_exclude_flag(event))
11045 			ret = -EINVAL;
11046 
11047 		if (ret && event->destroy)
11048 			event->destroy(event);
11049 	}
11050 
11051 	if (ret)
11052 		module_put(pmu->module);
11053 
11054 	return ret;
11055 }
11056 
perf_init_event(struct perf_event * event)11057 static struct pmu *perf_init_event(struct perf_event *event)
11058 {
11059 	int idx, type, ret;
11060 	struct pmu *pmu;
11061 
11062 	idx = srcu_read_lock(&pmus_srcu);
11063 
11064 	/* Try parent's PMU first: */
11065 	if (event->parent && event->parent->pmu) {
11066 		pmu = event->parent->pmu;
11067 		ret = perf_try_init_event(pmu, event);
11068 		if (!ret)
11069 			goto unlock;
11070 	}
11071 
11072 	/*
11073 	 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
11074 	 * are often aliases for PERF_TYPE_RAW.
11075 	 */
11076 	type = event->attr.type;
11077 	if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE)
11078 		type = PERF_TYPE_RAW;
11079 
11080 again:
11081 	rcu_read_lock();
11082 	pmu = idr_find(&pmu_idr, type);
11083 	rcu_read_unlock();
11084 	if (pmu) {
11085 		ret = perf_try_init_event(pmu, event);
11086 		if (ret == -ENOENT && event->attr.type != type) {
11087 			type = event->attr.type;
11088 			goto again;
11089 		}
11090 
11091 		if (ret)
11092 			pmu = ERR_PTR(ret);
11093 
11094 		goto unlock;
11095 	}
11096 
11097 	list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
11098 		ret = perf_try_init_event(pmu, event);
11099 		if (!ret)
11100 			goto unlock;
11101 
11102 		if (ret != -ENOENT) {
11103 			pmu = ERR_PTR(ret);
11104 			goto unlock;
11105 		}
11106 	}
11107 	pmu = ERR_PTR(-ENOENT);
11108 unlock:
11109 	srcu_read_unlock(&pmus_srcu, idx);
11110 
11111 	return pmu;
11112 }
11113 
attach_sb_event(struct perf_event * event)11114 static void attach_sb_event(struct perf_event *event)
11115 {
11116 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
11117 
11118 	raw_spin_lock(&pel->lock);
11119 	list_add_rcu(&event->sb_list, &pel->list);
11120 	raw_spin_unlock(&pel->lock);
11121 }
11122 
11123 /*
11124  * We keep a list of all !task (and therefore per-cpu) events
11125  * that need to receive side-band records.
11126  *
11127  * This avoids having to scan all the various PMU per-cpu contexts
11128  * looking for them.
11129  */
account_pmu_sb_event(struct perf_event * event)11130 static void account_pmu_sb_event(struct perf_event *event)
11131 {
11132 	if (is_sb_event(event))
11133 		attach_sb_event(event);
11134 }
11135 
account_event_cpu(struct perf_event * event,int cpu)11136 static void account_event_cpu(struct perf_event *event, int cpu)
11137 {
11138 	if (event->parent)
11139 		return;
11140 
11141 	if (is_cgroup_event(event))
11142 		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
11143 }
11144 
11145 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
account_freq_event_nohz(void)11146 static void account_freq_event_nohz(void)
11147 {
11148 #ifdef CONFIG_NO_HZ_FULL
11149 	/* Lock so we don't race with concurrent unaccount */
11150 	spin_lock(&nr_freq_lock);
11151 	if (atomic_inc_return(&nr_freq_events) == 1)
11152 		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
11153 	spin_unlock(&nr_freq_lock);
11154 #endif
11155 }
11156 
account_freq_event(void)11157 static void account_freq_event(void)
11158 {
11159 	if (tick_nohz_full_enabled())
11160 		account_freq_event_nohz();
11161 	else
11162 		atomic_inc(&nr_freq_events);
11163 }
11164 
11165 
account_event(struct perf_event * event)11166 static void account_event(struct perf_event *event)
11167 {
11168 	bool inc = false;
11169 
11170 	if (event->parent)
11171 		return;
11172 
11173 	if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
11174 		inc = true;
11175 	if (event->attr.mmap || event->attr.mmap_data)
11176 		atomic_inc(&nr_mmap_events);
11177 	if (event->attr.comm)
11178 		atomic_inc(&nr_comm_events);
11179 	if (event->attr.namespaces)
11180 		atomic_inc(&nr_namespaces_events);
11181 	if (event->attr.cgroup)
11182 		atomic_inc(&nr_cgroup_events);
11183 	if (event->attr.task)
11184 		atomic_inc(&nr_task_events);
11185 	if (event->attr.freq)
11186 		account_freq_event();
11187 	if (event->attr.context_switch) {
11188 		atomic_inc(&nr_switch_events);
11189 		inc = true;
11190 	}
11191 	if (has_branch_stack(event))
11192 		inc = true;
11193 	if (is_cgroup_event(event))
11194 		inc = true;
11195 	if (event->attr.ksymbol)
11196 		atomic_inc(&nr_ksymbol_events);
11197 	if (event->attr.bpf_event)
11198 		atomic_inc(&nr_bpf_events);
11199 	if (event->attr.text_poke)
11200 		atomic_inc(&nr_text_poke_events);
11201 
11202 	if (inc) {
11203 		/*
11204 		 * We need the mutex here because static_branch_enable()
11205 		 * must complete *before* the perf_sched_count increment
11206 		 * becomes visible.
11207 		 */
11208 		if (atomic_inc_not_zero(&perf_sched_count))
11209 			goto enabled;
11210 
11211 		mutex_lock(&perf_sched_mutex);
11212 		if (!atomic_read(&perf_sched_count)) {
11213 			static_branch_enable(&perf_sched_events);
11214 			/*
11215 			 * Guarantee that all CPUs observe they key change and
11216 			 * call the perf scheduling hooks before proceeding to
11217 			 * install events that need them.
11218 			 */
11219 			synchronize_rcu();
11220 		}
11221 		/*
11222 		 * Now that we have waited for the sync_sched(), allow further
11223 		 * increments to by-pass the mutex.
11224 		 */
11225 		atomic_inc(&perf_sched_count);
11226 		mutex_unlock(&perf_sched_mutex);
11227 	}
11228 enabled:
11229 
11230 	account_event_cpu(event, event->cpu);
11231 
11232 	account_pmu_sb_event(event);
11233 }
11234 
11235 /*
11236  * Allocate and initialize an event structure
11237  */
11238 static struct perf_event *
perf_event_alloc(struct perf_event_attr * attr,int cpu,struct task_struct * task,struct perf_event * group_leader,struct perf_event * parent_event,perf_overflow_handler_t overflow_handler,void * context,int cgroup_fd)11239 perf_event_alloc(struct perf_event_attr *attr, int cpu,
11240 		 struct task_struct *task,
11241 		 struct perf_event *group_leader,
11242 		 struct perf_event *parent_event,
11243 		 perf_overflow_handler_t overflow_handler,
11244 		 void *context, int cgroup_fd)
11245 {
11246 	struct pmu *pmu;
11247 	struct perf_event *event;
11248 	struct hw_perf_event *hwc;
11249 	long err = -EINVAL;
11250 
11251 	if ((unsigned)cpu >= nr_cpu_ids) {
11252 		if (!task || cpu != -1)
11253 			return ERR_PTR(-EINVAL);
11254 	}
11255 
11256 	event = kzalloc(sizeof(*event), GFP_KERNEL);
11257 	if (!event)
11258 		return ERR_PTR(-ENOMEM);
11259 
11260 	/*
11261 	 * Single events are their own group leaders, with an
11262 	 * empty sibling list:
11263 	 */
11264 	if (!group_leader)
11265 		group_leader = event;
11266 
11267 	mutex_init(&event->child_mutex);
11268 	INIT_LIST_HEAD(&event->child_list);
11269 
11270 	INIT_LIST_HEAD(&event->event_entry);
11271 	INIT_LIST_HEAD(&event->sibling_list);
11272 	INIT_LIST_HEAD(&event->active_list);
11273 	init_event_group(event);
11274 	INIT_LIST_HEAD(&event->rb_entry);
11275 	INIT_LIST_HEAD(&event->active_entry);
11276 	INIT_LIST_HEAD(&event->addr_filters.list);
11277 	INIT_HLIST_NODE(&event->hlist_entry);
11278 
11279 
11280 	init_waitqueue_head(&event->waitq);
11281 	event->pending_disable = -1;
11282 	init_irq_work(&event->pending, perf_pending_event);
11283 
11284 	mutex_init(&event->mmap_mutex);
11285 	raw_spin_lock_init(&event->addr_filters.lock);
11286 
11287 	atomic_long_set(&event->refcount, 1);
11288 	event->cpu		= cpu;
11289 	event->attr		= *attr;
11290 	event->group_leader	= group_leader;
11291 	event->pmu		= NULL;
11292 	event->oncpu		= -1;
11293 
11294 	event->parent		= parent_event;
11295 
11296 	event->ns		= get_pid_ns(task_active_pid_ns(current));
11297 	event->id		= atomic64_inc_return(&perf_event_id);
11298 
11299 	event->state		= PERF_EVENT_STATE_INACTIVE;
11300 
11301 	if (task) {
11302 		event->attach_state = PERF_ATTACH_TASK;
11303 		/*
11304 		 * XXX pmu::event_init needs to know what task to account to
11305 		 * and we cannot use the ctx information because we need the
11306 		 * pmu before we get a ctx.
11307 		 */
11308 		event->hw.target = get_task_struct(task);
11309 	}
11310 
11311 	event->clock = &local_clock;
11312 	if (parent_event)
11313 		event->clock = parent_event->clock;
11314 
11315 	if (!overflow_handler && parent_event) {
11316 		overflow_handler = parent_event->overflow_handler;
11317 		context = parent_event->overflow_handler_context;
11318 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
11319 		if (overflow_handler == bpf_overflow_handler) {
11320 			struct bpf_prog *prog = parent_event->prog;
11321 
11322 			bpf_prog_inc(prog);
11323 			event->prog = prog;
11324 			event->orig_overflow_handler =
11325 				parent_event->orig_overflow_handler;
11326 		}
11327 #endif
11328 	}
11329 
11330 	if (overflow_handler) {
11331 		event->overflow_handler	= overflow_handler;
11332 		event->overflow_handler_context = context;
11333 	} else if (is_write_backward(event)){
11334 		event->overflow_handler = perf_event_output_backward;
11335 		event->overflow_handler_context = NULL;
11336 	} else {
11337 		event->overflow_handler = perf_event_output_forward;
11338 		event->overflow_handler_context = NULL;
11339 	}
11340 
11341 	perf_event__state_init(event);
11342 
11343 	pmu = NULL;
11344 
11345 	hwc = &event->hw;
11346 	hwc->sample_period = attr->sample_period;
11347 	if (attr->freq && attr->sample_freq)
11348 		hwc->sample_period = 1;
11349 	hwc->last_period = hwc->sample_period;
11350 
11351 	local64_set(&hwc->period_left, hwc->sample_period);
11352 
11353 	/*
11354 	 * We currently do not support PERF_SAMPLE_READ on inherited events.
11355 	 * See perf_output_read().
11356 	 */
11357 	if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
11358 		goto err_ns;
11359 
11360 	if (!has_branch_stack(event))
11361 		event->attr.branch_sample_type = 0;
11362 
11363 	pmu = perf_init_event(event);
11364 	if (IS_ERR(pmu)) {
11365 		err = PTR_ERR(pmu);
11366 		goto err_ns;
11367 	}
11368 
11369 	/*
11370 	 * Disallow uncore-cgroup events, they don't make sense as the cgroup will
11371 	 * be different on other CPUs in the uncore mask.
11372 	 */
11373 	if (pmu->task_ctx_nr == perf_invalid_context && cgroup_fd != -1) {
11374 		err = -EINVAL;
11375 		goto err_pmu;
11376 	}
11377 
11378 	if (event->attr.aux_output &&
11379 	    !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) {
11380 		err = -EOPNOTSUPP;
11381 		goto err_pmu;
11382 	}
11383 
11384 	if (cgroup_fd != -1) {
11385 		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
11386 		if (err)
11387 			goto err_pmu;
11388 	}
11389 
11390 	err = exclusive_event_init(event);
11391 	if (err)
11392 		goto err_pmu;
11393 
11394 	if (has_addr_filter(event)) {
11395 		event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
11396 						    sizeof(struct perf_addr_filter_range),
11397 						    GFP_KERNEL);
11398 		if (!event->addr_filter_ranges) {
11399 			err = -ENOMEM;
11400 			goto err_per_task;
11401 		}
11402 
11403 		/*
11404 		 * Clone the parent's vma offsets: they are valid until exec()
11405 		 * even if the mm is not shared with the parent.
11406 		 */
11407 		if (event->parent) {
11408 			struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
11409 
11410 			raw_spin_lock_irq(&ifh->lock);
11411 			memcpy(event->addr_filter_ranges,
11412 			       event->parent->addr_filter_ranges,
11413 			       pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
11414 			raw_spin_unlock_irq(&ifh->lock);
11415 		}
11416 
11417 		/* force hw sync on the address filters */
11418 		event->addr_filters_gen = 1;
11419 	}
11420 
11421 	if (!event->parent) {
11422 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
11423 			err = get_callchain_buffers(attr->sample_max_stack);
11424 			if (err)
11425 				goto err_addr_filters;
11426 		}
11427 	}
11428 
11429 	err = security_perf_event_alloc(event);
11430 	if (err)
11431 		goto err_callchain_buffer;
11432 
11433 	/* symmetric to unaccount_event() in _free_event() */
11434 	account_event(event);
11435 
11436 	return event;
11437 
11438 err_callchain_buffer:
11439 	if (!event->parent) {
11440 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
11441 			put_callchain_buffers();
11442 	}
11443 err_addr_filters:
11444 	kfree(event->addr_filter_ranges);
11445 
11446 err_per_task:
11447 	exclusive_event_destroy(event);
11448 
11449 err_pmu:
11450 	if (is_cgroup_event(event))
11451 		perf_detach_cgroup(event);
11452 	if (event->destroy)
11453 		event->destroy(event);
11454 	module_put(pmu->module);
11455 err_ns:
11456 	if (event->ns)
11457 		put_pid_ns(event->ns);
11458 	if (event->hw.target)
11459 		put_task_struct(event->hw.target);
11460 	kfree(event);
11461 
11462 	return ERR_PTR(err);
11463 }
11464 
perf_copy_attr(struct perf_event_attr __user * uattr,struct perf_event_attr * attr)11465 static int perf_copy_attr(struct perf_event_attr __user *uattr,
11466 			  struct perf_event_attr *attr)
11467 {
11468 	u32 size;
11469 	int ret;
11470 
11471 	/* Zero the full structure, so that a short copy will be nice. */
11472 	memset(attr, 0, sizeof(*attr));
11473 
11474 	ret = get_user(size, &uattr->size);
11475 	if (ret)
11476 		return ret;
11477 
11478 	/* ABI compatibility quirk: */
11479 	if (!size)
11480 		size = PERF_ATTR_SIZE_VER0;
11481 	if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
11482 		goto err_size;
11483 
11484 	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
11485 	if (ret) {
11486 		if (ret == -E2BIG)
11487 			goto err_size;
11488 		return ret;
11489 	}
11490 
11491 	attr->size = size;
11492 
11493 	if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
11494 		return -EINVAL;
11495 
11496 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
11497 		return -EINVAL;
11498 
11499 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
11500 		return -EINVAL;
11501 
11502 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
11503 		u64 mask = attr->branch_sample_type;
11504 
11505 		/* only using defined bits */
11506 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
11507 			return -EINVAL;
11508 
11509 		/* at least one branch bit must be set */
11510 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
11511 			return -EINVAL;
11512 
11513 		/* propagate priv level, when not set for branch */
11514 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
11515 
11516 			/* exclude_kernel checked on syscall entry */
11517 			if (!attr->exclude_kernel)
11518 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
11519 
11520 			if (!attr->exclude_user)
11521 				mask |= PERF_SAMPLE_BRANCH_USER;
11522 
11523 			if (!attr->exclude_hv)
11524 				mask |= PERF_SAMPLE_BRANCH_HV;
11525 			/*
11526 			 * adjust user setting (for HW filter setup)
11527 			 */
11528 			attr->branch_sample_type = mask;
11529 		}
11530 		/* privileged levels capture (kernel, hv): check permissions */
11531 		if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
11532 			ret = perf_allow_kernel(attr);
11533 			if (ret)
11534 				return ret;
11535 		}
11536 	}
11537 
11538 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
11539 		ret = perf_reg_validate(attr->sample_regs_user);
11540 		if (ret)
11541 			return ret;
11542 	}
11543 
11544 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
11545 		if (!arch_perf_have_user_stack_dump())
11546 			return -ENOSYS;
11547 
11548 		/*
11549 		 * We have __u32 type for the size, but so far
11550 		 * we can only use __u16 as maximum due to the
11551 		 * __u16 sample size limit.
11552 		 */
11553 		if (attr->sample_stack_user >= USHRT_MAX)
11554 			return -EINVAL;
11555 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
11556 			return -EINVAL;
11557 	}
11558 
11559 	if (!attr->sample_max_stack)
11560 		attr->sample_max_stack = sysctl_perf_event_max_stack;
11561 
11562 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
11563 		ret = perf_reg_validate(attr->sample_regs_intr);
11564 
11565 #ifndef CONFIG_CGROUP_PERF
11566 	if (attr->sample_type & PERF_SAMPLE_CGROUP)
11567 		return -EINVAL;
11568 #endif
11569 
11570 out:
11571 	return ret;
11572 
11573 err_size:
11574 	put_user(sizeof(*attr), &uattr->size);
11575 	ret = -E2BIG;
11576 	goto out;
11577 }
11578 
11579 static int
perf_event_set_output(struct perf_event * event,struct perf_event * output_event)11580 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
11581 {
11582 	struct perf_buffer *rb = NULL;
11583 	int ret = -EINVAL;
11584 
11585 	if (!output_event)
11586 		goto set;
11587 
11588 	/* don't allow circular references */
11589 	if (event == output_event)
11590 		goto out;
11591 
11592 	/*
11593 	 * Don't allow cross-cpu buffers
11594 	 */
11595 	if (output_event->cpu != event->cpu)
11596 		goto out;
11597 
11598 	/*
11599 	 * If its not a per-cpu rb, it must be the same task.
11600 	 */
11601 	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
11602 		goto out;
11603 
11604 	/*
11605 	 * Mixing clocks in the same buffer is trouble you don't need.
11606 	 */
11607 	if (output_event->clock != event->clock)
11608 		goto out;
11609 
11610 	/*
11611 	 * Either writing ring buffer from beginning or from end.
11612 	 * Mixing is not allowed.
11613 	 */
11614 	if (is_write_backward(output_event) != is_write_backward(event))
11615 		goto out;
11616 
11617 	/*
11618 	 * If both events generate aux data, they must be on the same PMU
11619 	 */
11620 	if (has_aux(event) && has_aux(output_event) &&
11621 	    event->pmu != output_event->pmu)
11622 		goto out;
11623 
11624 set:
11625 	mutex_lock(&event->mmap_mutex);
11626 	/* Can't redirect output if we've got an active mmap() */
11627 	if (atomic_read(&event->mmap_count))
11628 		goto unlock;
11629 
11630 	if (output_event) {
11631 		/* get the rb we want to redirect to */
11632 		rb = ring_buffer_get(output_event);
11633 		if (!rb)
11634 			goto unlock;
11635 	}
11636 
11637 	ring_buffer_attach(event, rb);
11638 
11639 	ret = 0;
11640 unlock:
11641 	mutex_unlock(&event->mmap_mutex);
11642 
11643 out:
11644 	return ret;
11645 }
11646 
mutex_lock_double(struct mutex * a,struct mutex * b)11647 static void mutex_lock_double(struct mutex *a, struct mutex *b)
11648 {
11649 	if (b < a)
11650 		swap(a, b);
11651 
11652 	mutex_lock(a);
11653 	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
11654 }
11655 
perf_event_set_clock(struct perf_event * event,clockid_t clk_id)11656 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
11657 {
11658 	bool nmi_safe = false;
11659 
11660 	switch (clk_id) {
11661 	case CLOCK_MONOTONIC:
11662 		event->clock = &ktime_get_mono_fast_ns;
11663 		nmi_safe = true;
11664 		break;
11665 
11666 	case CLOCK_MONOTONIC_RAW:
11667 		event->clock = &ktime_get_raw_fast_ns;
11668 		nmi_safe = true;
11669 		break;
11670 
11671 	case CLOCK_REALTIME:
11672 		event->clock = &ktime_get_real_ns;
11673 		break;
11674 
11675 	case CLOCK_BOOTTIME:
11676 		event->clock = &ktime_get_boottime_ns;
11677 		break;
11678 
11679 	case CLOCK_TAI:
11680 		event->clock = &ktime_get_clocktai_ns;
11681 		break;
11682 
11683 	default:
11684 		return -EINVAL;
11685 	}
11686 
11687 	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
11688 		return -EINVAL;
11689 
11690 	return 0;
11691 }
11692 
11693 /*
11694  * Variation on perf_event_ctx_lock_nested(), except we take two context
11695  * mutexes.
11696  */
11697 static struct perf_event_context *
__perf_event_ctx_lock_double(struct perf_event * group_leader,struct perf_event_context * ctx)11698 __perf_event_ctx_lock_double(struct perf_event *group_leader,
11699 			     struct perf_event_context *ctx)
11700 {
11701 	struct perf_event_context *gctx;
11702 
11703 again:
11704 	rcu_read_lock();
11705 	gctx = READ_ONCE(group_leader->ctx);
11706 	if (!refcount_inc_not_zero(&gctx->refcount)) {
11707 		rcu_read_unlock();
11708 		goto again;
11709 	}
11710 	rcu_read_unlock();
11711 
11712 	mutex_lock_double(&gctx->mutex, &ctx->mutex);
11713 
11714 	if (group_leader->ctx != gctx) {
11715 		mutex_unlock(&ctx->mutex);
11716 		mutex_unlock(&gctx->mutex);
11717 		put_ctx(gctx);
11718 		goto again;
11719 	}
11720 
11721 	return gctx;
11722 }
11723 
11724 /**
11725  * sys_perf_event_open - open a performance event, associate it to a task/cpu
11726  *
11727  * @attr_uptr:	event_id type attributes for monitoring/sampling
11728  * @pid:		target pid
11729  * @cpu:		target cpu
11730  * @group_fd:		group leader event fd
11731  */
SYSCALL_DEFINE5(perf_event_open,struct perf_event_attr __user *,attr_uptr,pid_t,pid,int,cpu,int,group_fd,unsigned long,flags)11732 SYSCALL_DEFINE5(perf_event_open,
11733 		struct perf_event_attr __user *, attr_uptr,
11734 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
11735 {
11736 	struct perf_event *group_leader = NULL, *output_event = NULL;
11737 	struct perf_event *event, *sibling;
11738 	struct perf_event_attr attr;
11739 	struct perf_event_context *ctx, *gctx;
11740 	struct file *event_file = NULL;
11741 	struct fd group = {NULL, 0};
11742 	struct task_struct *task = NULL;
11743 	struct pmu *pmu;
11744 	int event_fd;
11745 	int move_group = 0;
11746 	int err;
11747 	int f_flags = O_RDWR;
11748 	int cgroup_fd = -1;
11749 
11750 	/* for future expandability... */
11751 	if (flags & ~PERF_FLAG_ALL)
11752 		return -EINVAL;
11753 
11754 	/* Do we allow access to perf_event_open(2) ? */
11755 	err = security_perf_event_open(&attr, PERF_SECURITY_OPEN);
11756 	if (err)
11757 		return err;
11758 
11759 	err = perf_copy_attr(attr_uptr, &attr);
11760 	if (err)
11761 		return err;
11762 
11763 	if (!attr.exclude_kernel) {
11764 		err = perf_allow_kernel(&attr);
11765 		if (err)
11766 			return err;
11767 	}
11768 
11769 	if (attr.namespaces) {
11770 		if (!perfmon_capable())
11771 			return -EACCES;
11772 	}
11773 
11774 	if (attr.freq) {
11775 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
11776 			return -EINVAL;
11777 	} else {
11778 		if (attr.sample_period & (1ULL << 63))
11779 			return -EINVAL;
11780 	}
11781 
11782 	/* Only privileged users can get physical addresses */
11783 	if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
11784 		err = perf_allow_kernel(&attr);
11785 		if (err)
11786 			return err;
11787 	}
11788 
11789 	/* REGS_INTR can leak data, lockdown must prevent this */
11790 	if (attr.sample_type & PERF_SAMPLE_REGS_INTR) {
11791 		err = security_locked_down(LOCKDOWN_PERF);
11792 		if (err)
11793 			return err;
11794 	}
11795 
11796 	/*
11797 	 * In cgroup mode, the pid argument is used to pass the fd
11798 	 * opened to the cgroup directory in cgroupfs. The cpu argument
11799 	 * designates the cpu on which to monitor threads from that
11800 	 * cgroup.
11801 	 */
11802 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
11803 		return -EINVAL;
11804 
11805 	if (flags & PERF_FLAG_FD_CLOEXEC)
11806 		f_flags |= O_CLOEXEC;
11807 
11808 	event_fd = get_unused_fd_flags(f_flags);
11809 	if (event_fd < 0)
11810 		return event_fd;
11811 
11812 	if (group_fd != -1) {
11813 		err = perf_fget_light(group_fd, &group);
11814 		if (err)
11815 			goto err_fd;
11816 		group_leader = group.file->private_data;
11817 		if (flags & PERF_FLAG_FD_OUTPUT)
11818 			output_event = group_leader;
11819 		if (flags & PERF_FLAG_FD_NO_GROUP)
11820 			group_leader = NULL;
11821 	}
11822 
11823 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
11824 		task = find_lively_task_by_vpid(pid);
11825 		if (IS_ERR(task)) {
11826 			err = PTR_ERR(task);
11827 			goto err_group_fd;
11828 		}
11829 	}
11830 
11831 	if (task && group_leader &&
11832 	    group_leader->attr.inherit != attr.inherit) {
11833 		err = -EINVAL;
11834 		goto err_task;
11835 	}
11836 
11837 	if (flags & PERF_FLAG_PID_CGROUP)
11838 		cgroup_fd = pid;
11839 
11840 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
11841 				 NULL, NULL, cgroup_fd);
11842 	if (IS_ERR(event)) {
11843 		err = PTR_ERR(event);
11844 		goto err_task;
11845 	}
11846 
11847 	if (is_sampling_event(event)) {
11848 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
11849 			err = -EOPNOTSUPP;
11850 			goto err_alloc;
11851 		}
11852 	}
11853 
11854 	/*
11855 	 * Special case software events and allow them to be part of
11856 	 * any hardware group.
11857 	 */
11858 	pmu = event->pmu;
11859 
11860 	if (attr.use_clockid) {
11861 		err = perf_event_set_clock(event, attr.clockid);
11862 		if (err)
11863 			goto err_alloc;
11864 	}
11865 
11866 	if (pmu->task_ctx_nr == perf_sw_context)
11867 		event->event_caps |= PERF_EV_CAP_SOFTWARE;
11868 
11869 	if (group_leader) {
11870 		if (is_software_event(event) &&
11871 		    !in_software_context(group_leader)) {
11872 			/*
11873 			 * If the event is a sw event, but the group_leader
11874 			 * is on hw context.
11875 			 *
11876 			 * Allow the addition of software events to hw
11877 			 * groups, this is safe because software events
11878 			 * never fail to schedule.
11879 			 */
11880 			pmu = group_leader->ctx->pmu;
11881 		} else if (!is_software_event(event) &&
11882 			   is_software_event(group_leader) &&
11883 			   (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
11884 			/*
11885 			 * In case the group is a pure software group, and we
11886 			 * try to add a hardware event, move the whole group to
11887 			 * the hardware context.
11888 			 */
11889 			move_group = 1;
11890 		}
11891 	}
11892 
11893 	/*
11894 	 * Get the target context (task or percpu):
11895 	 */
11896 	ctx = find_get_context(pmu, task, event);
11897 	if (IS_ERR(ctx)) {
11898 		err = PTR_ERR(ctx);
11899 		goto err_alloc;
11900 	}
11901 
11902 	/*
11903 	 * Look up the group leader (we will attach this event to it):
11904 	 */
11905 	if (group_leader) {
11906 		err = -EINVAL;
11907 
11908 		/*
11909 		 * Do not allow a recursive hierarchy (this new sibling
11910 		 * becoming part of another group-sibling):
11911 		 */
11912 		if (group_leader->group_leader != group_leader)
11913 			goto err_context;
11914 
11915 		/* All events in a group should have the same clock */
11916 		if (group_leader->clock != event->clock)
11917 			goto err_context;
11918 
11919 		/*
11920 		 * Make sure we're both events for the same CPU;
11921 		 * grouping events for different CPUs is broken; since
11922 		 * you can never concurrently schedule them anyhow.
11923 		 */
11924 		if (group_leader->cpu != event->cpu)
11925 			goto err_context;
11926 
11927 		/*
11928 		 * Make sure we're both on the same task, or both
11929 		 * per-CPU events.
11930 		 */
11931 		if (group_leader->ctx->task != ctx->task)
11932 			goto err_context;
11933 
11934 		/*
11935 		 * Do not allow to attach to a group in a different task
11936 		 * or CPU context. If we're moving SW events, we'll fix
11937 		 * this up later, so allow that.
11938 		 *
11939 		 * Racy, not holding group_leader->ctx->mutex, see comment with
11940 		 * perf_event_ctx_lock().
11941 		 */
11942 		if (!move_group && group_leader->ctx != ctx)
11943 			goto err_context;
11944 
11945 		/*
11946 		 * Only a group leader can be exclusive or pinned
11947 		 */
11948 		if (attr.exclusive || attr.pinned)
11949 			goto err_context;
11950 	}
11951 
11952 	if (output_event) {
11953 		err = perf_event_set_output(event, output_event);
11954 		if (err)
11955 			goto err_context;
11956 	}
11957 
11958 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
11959 					f_flags);
11960 	if (IS_ERR(event_file)) {
11961 		err = PTR_ERR(event_file);
11962 		event_file = NULL;
11963 		goto err_context;
11964 	}
11965 
11966 	if (task) {
11967 		err = down_read_interruptible(&task->signal->exec_update_lock);
11968 		if (err)
11969 			goto err_file;
11970 
11971 		/*
11972 		 * Preserve ptrace permission check for backwards compatibility.
11973 		 *
11974 		 * We must hold exec_update_lock across this and any potential
11975 		 * perf_install_in_context() call for this new event to
11976 		 * serialize against exec() altering our credentials (and the
11977 		 * perf_event_exit_task() that could imply).
11978 		 */
11979 		err = -EACCES;
11980 		if (!perfmon_capable() && !ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
11981 			goto err_cred;
11982 	}
11983 
11984 	if (move_group) {
11985 		gctx = __perf_event_ctx_lock_double(group_leader, ctx);
11986 
11987 		if (gctx->task == TASK_TOMBSTONE) {
11988 			err = -ESRCH;
11989 			goto err_locked;
11990 		}
11991 
11992 		/*
11993 		 * Check if we raced against another sys_perf_event_open() call
11994 		 * moving the software group underneath us.
11995 		 */
11996 		if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
11997 			/*
11998 			 * If someone moved the group out from under us, check
11999 			 * if this new event wound up on the same ctx, if so
12000 			 * its the regular !move_group case, otherwise fail.
12001 			 */
12002 			if (gctx != ctx) {
12003 				err = -EINVAL;
12004 				goto err_locked;
12005 			} else {
12006 				perf_event_ctx_unlock(group_leader, gctx);
12007 				move_group = 0;
12008 				goto not_move_group;
12009 			}
12010 		}
12011 
12012 		/*
12013 		 * Failure to create exclusive events returns -EBUSY.
12014 		 */
12015 		err = -EBUSY;
12016 		if (!exclusive_event_installable(group_leader, ctx))
12017 			goto err_locked;
12018 
12019 		for_each_sibling_event(sibling, group_leader) {
12020 			if (!exclusive_event_installable(sibling, ctx))
12021 				goto err_locked;
12022 		}
12023 	} else {
12024 		mutex_lock(&ctx->mutex);
12025 
12026 		/*
12027 		 * Now that we hold ctx->lock, (re)validate group_leader->ctx == ctx,
12028 		 * see the group_leader && !move_group test earlier.
12029 		 */
12030 		if (group_leader && group_leader->ctx != ctx) {
12031 			err = -EINVAL;
12032 			goto err_locked;
12033 		}
12034 	}
12035 not_move_group:
12036 
12037 	if (ctx->task == TASK_TOMBSTONE) {
12038 		err = -ESRCH;
12039 		goto err_locked;
12040 	}
12041 
12042 	if (!perf_event_validate_size(event)) {
12043 		err = -E2BIG;
12044 		goto err_locked;
12045 	}
12046 
12047 	if (!task) {
12048 		/*
12049 		 * Check if the @cpu we're creating an event for is online.
12050 		 *
12051 		 * We use the perf_cpu_context::ctx::mutex to serialize against
12052 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12053 		 */
12054 		struct perf_cpu_context *cpuctx =
12055 			container_of(ctx, struct perf_cpu_context, ctx);
12056 
12057 		if (!cpuctx->online) {
12058 			err = -ENODEV;
12059 			goto err_locked;
12060 		}
12061 	}
12062 
12063 	if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) {
12064 		err = -EINVAL;
12065 		goto err_locked;
12066 	}
12067 
12068 	/*
12069 	 * Must be under the same ctx::mutex as perf_install_in_context(),
12070 	 * because we need to serialize with concurrent event creation.
12071 	 */
12072 	if (!exclusive_event_installable(event, ctx)) {
12073 		err = -EBUSY;
12074 		goto err_locked;
12075 	}
12076 
12077 	WARN_ON_ONCE(ctx->parent_ctx);
12078 
12079 	/*
12080 	 * This is the point on no return; we cannot fail hereafter. This is
12081 	 * where we start modifying current state.
12082 	 */
12083 
12084 	if (move_group) {
12085 		/*
12086 		 * See perf_event_ctx_lock() for comments on the details
12087 		 * of swizzling perf_event::ctx.
12088 		 */
12089 		perf_remove_from_context(group_leader, 0);
12090 		put_ctx(gctx);
12091 
12092 		for_each_sibling_event(sibling, group_leader) {
12093 			perf_remove_from_context(sibling, 0);
12094 			put_ctx(gctx);
12095 		}
12096 
12097 		/*
12098 		 * Wait for everybody to stop referencing the events through
12099 		 * the old lists, before installing it on new lists.
12100 		 */
12101 		synchronize_rcu();
12102 
12103 		/*
12104 		 * Install the group siblings before the group leader.
12105 		 *
12106 		 * Because a group leader will try and install the entire group
12107 		 * (through the sibling list, which is still in-tact), we can
12108 		 * end up with siblings installed in the wrong context.
12109 		 *
12110 		 * By installing siblings first we NO-OP because they're not
12111 		 * reachable through the group lists.
12112 		 */
12113 		for_each_sibling_event(sibling, group_leader) {
12114 			perf_event__state_init(sibling);
12115 			perf_install_in_context(ctx, sibling, sibling->cpu);
12116 			get_ctx(ctx);
12117 		}
12118 
12119 		/*
12120 		 * Removing from the context ends up with disabled
12121 		 * event. What we want here is event in the initial
12122 		 * startup state, ready to be add into new context.
12123 		 */
12124 		perf_event__state_init(group_leader);
12125 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
12126 		get_ctx(ctx);
12127 	}
12128 
12129 	/*
12130 	 * Precalculate sample_data sizes; do while holding ctx::mutex such
12131 	 * that we're serialized against further additions and before
12132 	 * perf_install_in_context() which is the point the event is active and
12133 	 * can use these values.
12134 	 */
12135 	perf_event__header_size(event);
12136 	perf_event__id_header_size(event);
12137 
12138 	event->owner = current;
12139 
12140 	perf_install_in_context(ctx, event, event->cpu);
12141 	perf_unpin_context(ctx);
12142 
12143 	if (move_group)
12144 		perf_event_ctx_unlock(group_leader, gctx);
12145 	mutex_unlock(&ctx->mutex);
12146 
12147 	if (task) {
12148 		up_read(&task->signal->exec_update_lock);
12149 		put_task_struct(task);
12150 	}
12151 
12152 	mutex_lock(&current->perf_event_mutex);
12153 	list_add_tail(&event->owner_entry, &current->perf_event_list);
12154 	mutex_unlock(&current->perf_event_mutex);
12155 
12156 	/*
12157 	 * Drop the reference on the group_event after placing the
12158 	 * new event on the sibling_list. This ensures destruction
12159 	 * of the group leader will find the pointer to itself in
12160 	 * perf_group_detach().
12161 	 */
12162 	fdput(group);
12163 	fd_install(event_fd, event_file);
12164 	return event_fd;
12165 
12166 err_locked:
12167 	if (move_group)
12168 		perf_event_ctx_unlock(group_leader, gctx);
12169 	mutex_unlock(&ctx->mutex);
12170 err_cred:
12171 	if (task)
12172 		up_read(&task->signal->exec_update_lock);
12173 err_file:
12174 	fput(event_file);
12175 err_context:
12176 	perf_unpin_context(ctx);
12177 	put_ctx(ctx);
12178 err_alloc:
12179 	/*
12180 	 * If event_file is set, the fput() above will have called ->release()
12181 	 * and that will take care of freeing the event.
12182 	 */
12183 	if (!event_file)
12184 		free_event(event);
12185 err_task:
12186 	if (task)
12187 		put_task_struct(task);
12188 err_group_fd:
12189 	fdput(group);
12190 err_fd:
12191 	put_unused_fd(event_fd);
12192 	return err;
12193 }
12194 
12195 /**
12196  * perf_event_create_kernel_counter
12197  *
12198  * @attr: attributes of the counter to create
12199  * @cpu: cpu in which the counter is bound
12200  * @task: task to profile (NULL for percpu)
12201  */
12202 struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr * attr,int cpu,struct task_struct * task,perf_overflow_handler_t overflow_handler,void * context)12203 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
12204 				 struct task_struct *task,
12205 				 perf_overflow_handler_t overflow_handler,
12206 				 void *context)
12207 {
12208 	struct perf_event_context *ctx;
12209 	struct perf_event *event;
12210 	int err;
12211 
12212 	/*
12213 	 * Grouping is not supported for kernel events, neither is 'AUX',
12214 	 * make sure the caller's intentions are adjusted.
12215 	 */
12216 	if (attr->aux_output)
12217 		return ERR_PTR(-EINVAL);
12218 
12219 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
12220 				 overflow_handler, context, -1);
12221 	if (IS_ERR(event)) {
12222 		err = PTR_ERR(event);
12223 		goto err;
12224 	}
12225 
12226 	/* Mark owner so we could distinguish it from user events. */
12227 	event->owner = TASK_TOMBSTONE;
12228 
12229 	/*
12230 	 * Get the target context (task or percpu):
12231 	 */
12232 	ctx = find_get_context(event->pmu, task, event);
12233 	if (IS_ERR(ctx)) {
12234 		err = PTR_ERR(ctx);
12235 		goto err_free;
12236 	}
12237 
12238 	WARN_ON_ONCE(ctx->parent_ctx);
12239 	mutex_lock(&ctx->mutex);
12240 	if (ctx->task == TASK_TOMBSTONE) {
12241 		err = -ESRCH;
12242 		goto err_unlock;
12243 	}
12244 
12245 	if (!task) {
12246 		/*
12247 		 * Check if the @cpu we're creating an event for is online.
12248 		 *
12249 		 * We use the perf_cpu_context::ctx::mutex to serialize against
12250 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12251 		 */
12252 		struct perf_cpu_context *cpuctx =
12253 			container_of(ctx, struct perf_cpu_context, ctx);
12254 		if (!cpuctx->online) {
12255 			err = -ENODEV;
12256 			goto err_unlock;
12257 		}
12258 	}
12259 
12260 	if (!exclusive_event_installable(event, ctx)) {
12261 		err = -EBUSY;
12262 		goto err_unlock;
12263 	}
12264 
12265 	perf_install_in_context(ctx, event, event->cpu);
12266 	perf_unpin_context(ctx);
12267 	mutex_unlock(&ctx->mutex);
12268 
12269 	return event;
12270 
12271 err_unlock:
12272 	mutex_unlock(&ctx->mutex);
12273 	perf_unpin_context(ctx);
12274 	put_ctx(ctx);
12275 err_free:
12276 	free_event(event);
12277 err:
12278 	return ERR_PTR(err);
12279 }
12280 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
12281 
perf_pmu_migrate_context(struct pmu * pmu,int src_cpu,int dst_cpu)12282 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
12283 {
12284 	struct perf_event_context *src_ctx;
12285 	struct perf_event_context *dst_ctx;
12286 	struct perf_event *event, *tmp;
12287 	LIST_HEAD(events);
12288 
12289 	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
12290 	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
12291 
12292 	/*
12293 	 * See perf_event_ctx_lock() for comments on the details
12294 	 * of swizzling perf_event::ctx.
12295 	 */
12296 	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
12297 	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
12298 				 event_entry) {
12299 		perf_remove_from_context(event, 0);
12300 		unaccount_event_cpu(event, src_cpu);
12301 		put_ctx(src_ctx);
12302 		list_add(&event->migrate_entry, &events);
12303 	}
12304 
12305 	/*
12306 	 * Wait for the events to quiesce before re-instating them.
12307 	 */
12308 	synchronize_rcu();
12309 
12310 	/*
12311 	 * Re-instate events in 2 passes.
12312 	 *
12313 	 * Skip over group leaders and only install siblings on this first
12314 	 * pass, siblings will not get enabled without a leader, however a
12315 	 * leader will enable its siblings, even if those are still on the old
12316 	 * context.
12317 	 */
12318 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
12319 		if (event->group_leader == event)
12320 			continue;
12321 
12322 		list_del(&event->migrate_entry);
12323 		if (event->state >= PERF_EVENT_STATE_OFF)
12324 			event->state = PERF_EVENT_STATE_INACTIVE;
12325 		account_event_cpu(event, dst_cpu);
12326 		perf_install_in_context(dst_ctx, event, dst_cpu);
12327 		get_ctx(dst_ctx);
12328 	}
12329 
12330 	/*
12331 	 * Once all the siblings are setup properly, install the group leaders
12332 	 * to make it go.
12333 	 */
12334 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
12335 		list_del(&event->migrate_entry);
12336 		if (event->state >= PERF_EVENT_STATE_OFF)
12337 			event->state = PERF_EVENT_STATE_INACTIVE;
12338 		account_event_cpu(event, dst_cpu);
12339 		perf_install_in_context(dst_ctx, event, dst_cpu);
12340 		get_ctx(dst_ctx);
12341 	}
12342 	mutex_unlock(&dst_ctx->mutex);
12343 	mutex_unlock(&src_ctx->mutex);
12344 }
12345 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
12346 
sync_child_event(struct perf_event * child_event,struct task_struct * child)12347 static void sync_child_event(struct perf_event *child_event,
12348 			       struct task_struct *child)
12349 {
12350 	struct perf_event *parent_event = child_event->parent;
12351 	u64 child_val;
12352 
12353 	if (child_event->attr.inherit_stat)
12354 		perf_event_read_event(child_event, child);
12355 
12356 	child_val = perf_event_count(child_event);
12357 
12358 	/*
12359 	 * Add back the child's count to the parent's count:
12360 	 */
12361 	atomic64_add(child_val, &parent_event->child_count);
12362 	atomic64_add(child_event->total_time_enabled,
12363 		     &parent_event->child_total_time_enabled);
12364 	atomic64_add(child_event->total_time_running,
12365 		     &parent_event->child_total_time_running);
12366 }
12367 
12368 static void
perf_event_exit_event(struct perf_event * child_event,struct perf_event_context * child_ctx,struct task_struct * child)12369 perf_event_exit_event(struct perf_event *child_event,
12370 		      struct perf_event_context *child_ctx,
12371 		      struct task_struct *child)
12372 {
12373 	struct perf_event *parent_event = child_event->parent;
12374 
12375 	/*
12376 	 * Do not destroy the 'original' grouping; because of the context
12377 	 * switch optimization the original events could've ended up in a
12378 	 * random child task.
12379 	 *
12380 	 * If we were to destroy the original group, all group related
12381 	 * operations would cease to function properly after this random
12382 	 * child dies.
12383 	 *
12384 	 * Do destroy all inherited groups, we don't care about those
12385 	 * and being thorough is better.
12386 	 */
12387 	raw_spin_lock_irq(&child_ctx->lock);
12388 	WARN_ON_ONCE(child_ctx->is_active);
12389 
12390 	if (parent_event)
12391 		perf_group_detach(child_event);
12392 	list_del_event(child_event, child_ctx);
12393 	perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */
12394 	raw_spin_unlock_irq(&child_ctx->lock);
12395 
12396 	/*
12397 	 * Parent events are governed by their filedesc, retain them.
12398 	 */
12399 	if (!parent_event) {
12400 		perf_event_wakeup(child_event);
12401 		return;
12402 	}
12403 	/*
12404 	 * Child events can be cleaned up.
12405 	 */
12406 
12407 	sync_child_event(child_event, child);
12408 
12409 	/*
12410 	 * Remove this event from the parent's list
12411 	 */
12412 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
12413 	mutex_lock(&parent_event->child_mutex);
12414 	list_del_init(&child_event->child_list);
12415 	mutex_unlock(&parent_event->child_mutex);
12416 
12417 	/*
12418 	 * Kick perf_poll() for is_event_hup().
12419 	 */
12420 	perf_event_wakeup(parent_event);
12421 	free_event(child_event);
12422 	put_event(parent_event);
12423 }
12424 
perf_event_exit_task_context(struct task_struct * child,int ctxn)12425 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
12426 {
12427 	struct perf_event_context *child_ctx, *clone_ctx = NULL;
12428 	struct perf_event *child_event, *next;
12429 
12430 	WARN_ON_ONCE(child != current);
12431 
12432 	child_ctx = perf_pin_task_context(child, ctxn);
12433 	if (!child_ctx)
12434 		return;
12435 
12436 	/*
12437 	 * In order to reduce the amount of tricky in ctx tear-down, we hold
12438 	 * ctx::mutex over the entire thing. This serializes against almost
12439 	 * everything that wants to access the ctx.
12440 	 *
12441 	 * The exception is sys_perf_event_open() /
12442 	 * perf_event_create_kernel_count() which does find_get_context()
12443 	 * without ctx::mutex (it cannot because of the move_group double mutex
12444 	 * lock thing). See the comments in perf_install_in_context().
12445 	 */
12446 	mutex_lock(&child_ctx->mutex);
12447 
12448 	/*
12449 	 * In a single ctx::lock section, de-schedule the events and detach the
12450 	 * context from the task such that we cannot ever get it scheduled back
12451 	 * in.
12452 	 */
12453 	raw_spin_lock_irq(&child_ctx->lock);
12454 	task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
12455 
12456 	/*
12457 	 * Now that the context is inactive, destroy the task <-> ctx relation
12458 	 * and mark the context dead.
12459 	 */
12460 	RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
12461 	put_ctx(child_ctx); /* cannot be last */
12462 	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
12463 	put_task_struct(current); /* cannot be last */
12464 
12465 	clone_ctx = unclone_ctx(child_ctx);
12466 	raw_spin_unlock_irq(&child_ctx->lock);
12467 
12468 	if (clone_ctx)
12469 		put_ctx(clone_ctx);
12470 
12471 	/*
12472 	 * Report the task dead after unscheduling the events so that we
12473 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
12474 	 * get a few PERF_RECORD_READ events.
12475 	 */
12476 	perf_event_task(child, child_ctx, 0);
12477 
12478 	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
12479 		perf_event_exit_event(child_event, child_ctx, child);
12480 
12481 	mutex_unlock(&child_ctx->mutex);
12482 
12483 	put_ctx(child_ctx);
12484 }
12485 
12486 /*
12487  * When a child task exits, feed back event values to parent events.
12488  *
12489  * Can be called with exec_update_lock held when called from
12490  * setup_new_exec().
12491  */
perf_event_exit_task(struct task_struct * child)12492 void perf_event_exit_task(struct task_struct *child)
12493 {
12494 	struct perf_event *event, *tmp;
12495 	int ctxn;
12496 
12497 	mutex_lock(&child->perf_event_mutex);
12498 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
12499 				 owner_entry) {
12500 		list_del_init(&event->owner_entry);
12501 
12502 		/*
12503 		 * Ensure the list deletion is visible before we clear
12504 		 * the owner, closes a race against perf_release() where
12505 		 * we need to serialize on the owner->perf_event_mutex.
12506 		 */
12507 		smp_store_release(&event->owner, NULL);
12508 	}
12509 	mutex_unlock(&child->perf_event_mutex);
12510 
12511 	for_each_task_context_nr(ctxn)
12512 		perf_event_exit_task_context(child, ctxn);
12513 
12514 	/*
12515 	 * The perf_event_exit_task_context calls perf_event_task
12516 	 * with child's task_ctx, which generates EXIT events for
12517 	 * child contexts and sets child->perf_event_ctxp[] to NULL.
12518 	 * At this point we need to send EXIT events to cpu contexts.
12519 	 */
12520 	perf_event_task(child, NULL, 0);
12521 }
12522 
perf_free_event(struct perf_event * event,struct perf_event_context * ctx)12523 static void perf_free_event(struct perf_event *event,
12524 			    struct perf_event_context *ctx)
12525 {
12526 	struct perf_event *parent = event->parent;
12527 
12528 	if (WARN_ON_ONCE(!parent))
12529 		return;
12530 
12531 	mutex_lock(&parent->child_mutex);
12532 	list_del_init(&event->child_list);
12533 	mutex_unlock(&parent->child_mutex);
12534 
12535 	put_event(parent);
12536 
12537 	raw_spin_lock_irq(&ctx->lock);
12538 	perf_group_detach(event);
12539 	list_del_event(event, ctx);
12540 	raw_spin_unlock_irq(&ctx->lock);
12541 	free_event(event);
12542 }
12543 
12544 /*
12545  * Free a context as created by inheritance by perf_event_init_task() below,
12546  * used by fork() in case of fail.
12547  *
12548  * Even though the task has never lived, the context and events have been
12549  * exposed through the child_list, so we must take care tearing it all down.
12550  */
perf_event_free_task(struct task_struct * task)12551 void perf_event_free_task(struct task_struct *task)
12552 {
12553 	struct perf_event_context *ctx;
12554 	struct perf_event *event, *tmp;
12555 	int ctxn;
12556 
12557 	for_each_task_context_nr(ctxn) {
12558 		ctx = task->perf_event_ctxp[ctxn];
12559 		if (!ctx)
12560 			continue;
12561 
12562 		mutex_lock(&ctx->mutex);
12563 		raw_spin_lock_irq(&ctx->lock);
12564 		/*
12565 		 * Destroy the task <-> ctx relation and mark the context dead.
12566 		 *
12567 		 * This is important because even though the task hasn't been
12568 		 * exposed yet the context has been (through child_list).
12569 		 */
12570 		RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
12571 		WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
12572 		put_task_struct(task); /* cannot be last */
12573 		raw_spin_unlock_irq(&ctx->lock);
12574 
12575 		list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
12576 			perf_free_event(event, ctx);
12577 
12578 		mutex_unlock(&ctx->mutex);
12579 
12580 		/*
12581 		 * perf_event_release_kernel() could've stolen some of our
12582 		 * child events and still have them on its free_list. In that
12583 		 * case we must wait for these events to have been freed (in
12584 		 * particular all their references to this task must've been
12585 		 * dropped).
12586 		 *
12587 		 * Without this copy_process() will unconditionally free this
12588 		 * task (irrespective of its reference count) and
12589 		 * _free_event()'s put_task_struct(event->hw.target) will be a
12590 		 * use-after-free.
12591 		 *
12592 		 * Wait for all events to drop their context reference.
12593 		 */
12594 		wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
12595 		put_ctx(ctx); /* must be last */
12596 	}
12597 }
12598 
perf_event_delayed_put(struct task_struct * task)12599 void perf_event_delayed_put(struct task_struct *task)
12600 {
12601 	int ctxn;
12602 
12603 	for_each_task_context_nr(ctxn)
12604 		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
12605 }
12606 
perf_event_get(unsigned int fd)12607 struct file *perf_event_get(unsigned int fd)
12608 {
12609 	struct file *file = fget(fd);
12610 	if (!file)
12611 		return ERR_PTR(-EBADF);
12612 
12613 	if (file->f_op != &perf_fops) {
12614 		fput(file);
12615 		return ERR_PTR(-EBADF);
12616 	}
12617 
12618 	return file;
12619 }
12620 
perf_get_event(struct file * file)12621 const struct perf_event *perf_get_event(struct file *file)
12622 {
12623 	if (file->f_op != &perf_fops)
12624 		return ERR_PTR(-EINVAL);
12625 
12626 	return file->private_data;
12627 }
12628 
perf_event_attrs(struct perf_event * event)12629 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
12630 {
12631 	if (!event)
12632 		return ERR_PTR(-EINVAL);
12633 
12634 	return &event->attr;
12635 }
12636 
12637 /*
12638  * Inherit an event from parent task to child task.
12639  *
12640  * Returns:
12641  *  - valid pointer on success
12642  *  - NULL for orphaned events
12643  *  - IS_ERR() on error
12644  */
12645 static struct perf_event *
inherit_event(struct perf_event * parent_event,struct task_struct * parent,struct perf_event_context * parent_ctx,struct task_struct * child,struct perf_event * group_leader,struct perf_event_context * child_ctx)12646 inherit_event(struct perf_event *parent_event,
12647 	      struct task_struct *parent,
12648 	      struct perf_event_context *parent_ctx,
12649 	      struct task_struct *child,
12650 	      struct perf_event *group_leader,
12651 	      struct perf_event_context *child_ctx)
12652 {
12653 	enum perf_event_state parent_state = parent_event->state;
12654 	struct perf_event *child_event;
12655 	unsigned long flags;
12656 
12657 	/*
12658 	 * Instead of creating recursive hierarchies of events,
12659 	 * we link inherited events back to the original parent,
12660 	 * which has a filp for sure, which we use as the reference
12661 	 * count:
12662 	 */
12663 	if (parent_event->parent)
12664 		parent_event = parent_event->parent;
12665 
12666 	child_event = perf_event_alloc(&parent_event->attr,
12667 					   parent_event->cpu,
12668 					   child,
12669 					   group_leader, parent_event,
12670 					   NULL, NULL, -1);
12671 	if (IS_ERR(child_event))
12672 		return child_event;
12673 
12674 
12675 	if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
12676 	    !child_ctx->task_ctx_data) {
12677 		struct pmu *pmu = child_event->pmu;
12678 
12679 		child_ctx->task_ctx_data = alloc_task_ctx_data(pmu);
12680 		if (!child_ctx->task_ctx_data) {
12681 			free_event(child_event);
12682 			return ERR_PTR(-ENOMEM);
12683 		}
12684 	}
12685 
12686 	/*
12687 	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
12688 	 * must be under the same lock in order to serialize against
12689 	 * perf_event_release_kernel(), such that either we must observe
12690 	 * is_orphaned_event() or they will observe us on the child_list.
12691 	 */
12692 	mutex_lock(&parent_event->child_mutex);
12693 	if (is_orphaned_event(parent_event) ||
12694 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
12695 		mutex_unlock(&parent_event->child_mutex);
12696 		/* task_ctx_data is freed with child_ctx */
12697 		free_event(child_event);
12698 		return NULL;
12699 	}
12700 
12701 	get_ctx(child_ctx);
12702 
12703 	/*
12704 	 * Make the child state follow the state of the parent event,
12705 	 * not its attr.disabled bit.  We hold the parent's mutex,
12706 	 * so we won't race with perf_event_{en, dis}able_family.
12707 	 */
12708 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
12709 		child_event->state = PERF_EVENT_STATE_INACTIVE;
12710 	else
12711 		child_event->state = PERF_EVENT_STATE_OFF;
12712 
12713 	if (parent_event->attr.freq) {
12714 		u64 sample_period = parent_event->hw.sample_period;
12715 		struct hw_perf_event *hwc = &child_event->hw;
12716 
12717 		hwc->sample_period = sample_period;
12718 		hwc->last_period   = sample_period;
12719 
12720 		local64_set(&hwc->period_left, sample_period);
12721 	}
12722 
12723 	child_event->ctx = child_ctx;
12724 	child_event->overflow_handler = parent_event->overflow_handler;
12725 	child_event->overflow_handler_context
12726 		= parent_event->overflow_handler_context;
12727 
12728 	/*
12729 	 * Precalculate sample_data sizes
12730 	 */
12731 	perf_event__header_size(child_event);
12732 	perf_event__id_header_size(child_event);
12733 
12734 	/*
12735 	 * Link it up in the child's context:
12736 	 */
12737 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
12738 	add_event_to_ctx(child_event, child_ctx);
12739 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
12740 
12741 	/*
12742 	 * Link this into the parent event's child list
12743 	 */
12744 	list_add_tail(&child_event->child_list, &parent_event->child_list);
12745 	mutex_unlock(&parent_event->child_mutex);
12746 
12747 	return child_event;
12748 }
12749 
12750 /*
12751  * Inherits an event group.
12752  *
12753  * This will quietly suppress orphaned events; !inherit_event() is not an error.
12754  * This matches with perf_event_release_kernel() removing all child events.
12755  *
12756  * Returns:
12757  *  - 0 on success
12758  *  - <0 on error
12759  */
inherit_group(struct perf_event * parent_event,struct task_struct * parent,struct perf_event_context * parent_ctx,struct task_struct * child,struct perf_event_context * child_ctx)12760 static int inherit_group(struct perf_event *parent_event,
12761 	      struct task_struct *parent,
12762 	      struct perf_event_context *parent_ctx,
12763 	      struct task_struct *child,
12764 	      struct perf_event_context *child_ctx)
12765 {
12766 	struct perf_event *leader;
12767 	struct perf_event *sub;
12768 	struct perf_event *child_ctr;
12769 
12770 	leader = inherit_event(parent_event, parent, parent_ctx,
12771 				 child, NULL, child_ctx);
12772 	if (IS_ERR(leader))
12773 		return PTR_ERR(leader);
12774 	/*
12775 	 * @leader can be NULL here because of is_orphaned_event(). In this
12776 	 * case inherit_event() will create individual events, similar to what
12777 	 * perf_group_detach() would do anyway.
12778 	 */
12779 	for_each_sibling_event(sub, parent_event) {
12780 		child_ctr = inherit_event(sub, parent, parent_ctx,
12781 					    child, leader, child_ctx);
12782 		if (IS_ERR(child_ctr))
12783 			return PTR_ERR(child_ctr);
12784 
12785 		if (sub->aux_event == parent_event && child_ctr &&
12786 		    !perf_get_aux_event(child_ctr, leader))
12787 			return -EINVAL;
12788 	}
12789 	return 0;
12790 }
12791 
12792 /*
12793  * Creates the child task context and tries to inherit the event-group.
12794  *
12795  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
12796  * inherited_all set when we 'fail' to inherit an orphaned event; this is
12797  * consistent with perf_event_release_kernel() removing all child events.
12798  *
12799  * Returns:
12800  *  - 0 on success
12801  *  - <0 on error
12802  */
12803 static int
inherit_task_group(struct perf_event * event,struct task_struct * parent,struct perf_event_context * parent_ctx,struct task_struct * child,int ctxn,int * inherited_all)12804 inherit_task_group(struct perf_event *event, struct task_struct *parent,
12805 		   struct perf_event_context *parent_ctx,
12806 		   struct task_struct *child, int ctxn,
12807 		   int *inherited_all)
12808 {
12809 	int ret;
12810 	struct perf_event_context *child_ctx;
12811 
12812 	if (!event->attr.inherit) {
12813 		*inherited_all = 0;
12814 		return 0;
12815 	}
12816 
12817 	child_ctx = child->perf_event_ctxp[ctxn];
12818 	if (!child_ctx) {
12819 		/*
12820 		 * This is executed from the parent task context, so
12821 		 * inherit events that have been marked for cloning.
12822 		 * First allocate and initialize a context for the
12823 		 * child.
12824 		 */
12825 		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
12826 		if (!child_ctx)
12827 			return -ENOMEM;
12828 
12829 		child->perf_event_ctxp[ctxn] = child_ctx;
12830 	}
12831 
12832 	ret = inherit_group(event, parent, parent_ctx,
12833 			    child, child_ctx);
12834 
12835 	if (ret)
12836 		*inherited_all = 0;
12837 
12838 	return ret;
12839 }
12840 
12841 /*
12842  * Initialize the perf_event context in task_struct
12843  */
perf_event_init_context(struct task_struct * child,int ctxn)12844 static int perf_event_init_context(struct task_struct *child, int ctxn)
12845 {
12846 	struct perf_event_context *child_ctx, *parent_ctx;
12847 	struct perf_event_context *cloned_ctx;
12848 	struct perf_event *event;
12849 	struct task_struct *parent = current;
12850 	int inherited_all = 1;
12851 	unsigned long flags;
12852 	int ret = 0;
12853 
12854 	if (likely(!parent->perf_event_ctxp[ctxn]))
12855 		return 0;
12856 
12857 	/*
12858 	 * If the parent's context is a clone, pin it so it won't get
12859 	 * swapped under us.
12860 	 */
12861 	parent_ctx = perf_pin_task_context(parent, ctxn);
12862 	if (!parent_ctx)
12863 		return 0;
12864 
12865 	/*
12866 	 * No need to check if parent_ctx != NULL here; since we saw
12867 	 * it non-NULL earlier, the only reason for it to become NULL
12868 	 * is if we exit, and since we're currently in the middle of
12869 	 * a fork we can't be exiting at the same time.
12870 	 */
12871 
12872 	/*
12873 	 * Lock the parent list. No need to lock the child - not PID
12874 	 * hashed yet and not running, so nobody can access it.
12875 	 */
12876 	mutex_lock(&parent_ctx->mutex);
12877 
12878 	/*
12879 	 * We dont have to disable NMIs - we are only looking at
12880 	 * the list, not manipulating it:
12881 	 */
12882 	perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
12883 		ret = inherit_task_group(event, parent, parent_ctx,
12884 					 child, ctxn, &inherited_all);
12885 		if (ret)
12886 			goto out_unlock;
12887 	}
12888 
12889 	/*
12890 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
12891 	 * to allocations, but we need to prevent rotation because
12892 	 * rotate_ctx() will change the list from interrupt context.
12893 	 */
12894 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
12895 	parent_ctx->rotate_disable = 1;
12896 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
12897 
12898 	perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
12899 		ret = inherit_task_group(event, parent, parent_ctx,
12900 					 child, ctxn, &inherited_all);
12901 		if (ret)
12902 			goto out_unlock;
12903 	}
12904 
12905 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
12906 	parent_ctx->rotate_disable = 0;
12907 
12908 	child_ctx = child->perf_event_ctxp[ctxn];
12909 
12910 	if (child_ctx && inherited_all) {
12911 		/*
12912 		 * Mark the child context as a clone of the parent
12913 		 * context, or of whatever the parent is a clone of.
12914 		 *
12915 		 * Note that if the parent is a clone, the holding of
12916 		 * parent_ctx->lock avoids it from being uncloned.
12917 		 */
12918 		cloned_ctx = parent_ctx->parent_ctx;
12919 		if (cloned_ctx) {
12920 			child_ctx->parent_ctx = cloned_ctx;
12921 			child_ctx->parent_gen = parent_ctx->parent_gen;
12922 		} else {
12923 			child_ctx->parent_ctx = parent_ctx;
12924 			child_ctx->parent_gen = parent_ctx->generation;
12925 		}
12926 		get_ctx(child_ctx->parent_ctx);
12927 	}
12928 
12929 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
12930 out_unlock:
12931 	mutex_unlock(&parent_ctx->mutex);
12932 
12933 	perf_unpin_context(parent_ctx);
12934 	put_ctx(parent_ctx);
12935 
12936 	return ret;
12937 }
12938 
12939 /*
12940  * Initialize the perf_event context in task_struct
12941  */
perf_event_init_task(struct task_struct * child)12942 int perf_event_init_task(struct task_struct *child)
12943 {
12944 	int ctxn, ret;
12945 
12946 	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
12947 	mutex_init(&child->perf_event_mutex);
12948 	INIT_LIST_HEAD(&child->perf_event_list);
12949 
12950 	for_each_task_context_nr(ctxn) {
12951 		ret = perf_event_init_context(child, ctxn);
12952 		if (ret) {
12953 			perf_event_free_task(child);
12954 			return ret;
12955 		}
12956 	}
12957 
12958 	return 0;
12959 }
12960 
perf_event_init_all_cpus(void)12961 static void __init perf_event_init_all_cpus(void)
12962 {
12963 	struct swevent_htable *swhash;
12964 	int cpu;
12965 
12966 	zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
12967 
12968 	for_each_possible_cpu(cpu) {
12969 		swhash = &per_cpu(swevent_htable, cpu);
12970 		mutex_init(&swhash->hlist_mutex);
12971 		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
12972 
12973 		INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
12974 		raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
12975 
12976 #ifdef CONFIG_CGROUP_PERF
12977 		INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
12978 #endif
12979 		INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
12980 	}
12981 }
12982 
perf_swevent_init_cpu(unsigned int cpu)12983 static void perf_swevent_init_cpu(unsigned int cpu)
12984 {
12985 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
12986 
12987 	mutex_lock(&swhash->hlist_mutex);
12988 	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
12989 		struct swevent_hlist *hlist;
12990 
12991 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
12992 		WARN_ON(!hlist);
12993 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
12994 	}
12995 	mutex_unlock(&swhash->hlist_mutex);
12996 }
12997 
12998 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
__perf_event_exit_context(void * __info)12999 static void __perf_event_exit_context(void *__info)
13000 {
13001 	struct perf_event_context *ctx = __info;
13002 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
13003 	struct perf_event *event;
13004 
13005 	raw_spin_lock(&ctx->lock);
13006 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
13007 	list_for_each_entry(event, &ctx->event_list, event_entry)
13008 		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
13009 	raw_spin_unlock(&ctx->lock);
13010 }
13011 
perf_event_exit_cpu_context(int cpu)13012 static void perf_event_exit_cpu_context(int cpu)
13013 {
13014 	struct perf_cpu_context *cpuctx;
13015 	struct perf_event_context *ctx;
13016 	struct pmu *pmu;
13017 
13018 	mutex_lock(&pmus_lock);
13019 	list_for_each_entry(pmu, &pmus, entry) {
13020 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
13021 		ctx = &cpuctx->ctx;
13022 
13023 		mutex_lock(&ctx->mutex);
13024 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
13025 		cpuctx->online = 0;
13026 		mutex_unlock(&ctx->mutex);
13027 	}
13028 	cpumask_clear_cpu(cpu, perf_online_mask);
13029 	mutex_unlock(&pmus_lock);
13030 }
13031 #else
13032 
perf_event_exit_cpu_context(int cpu)13033 static void perf_event_exit_cpu_context(int cpu) { }
13034 
13035 #endif
13036 
perf_event_init_cpu(unsigned int cpu)13037 int perf_event_init_cpu(unsigned int cpu)
13038 {
13039 	struct perf_cpu_context *cpuctx;
13040 	struct perf_event_context *ctx;
13041 	struct pmu *pmu;
13042 
13043 	perf_swevent_init_cpu(cpu);
13044 
13045 	mutex_lock(&pmus_lock);
13046 	cpumask_set_cpu(cpu, perf_online_mask);
13047 	list_for_each_entry(pmu, &pmus, entry) {
13048 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
13049 		ctx = &cpuctx->ctx;
13050 
13051 		mutex_lock(&ctx->mutex);
13052 		cpuctx->online = 1;
13053 		mutex_unlock(&ctx->mutex);
13054 	}
13055 	mutex_unlock(&pmus_lock);
13056 
13057 	return 0;
13058 }
13059 
perf_event_exit_cpu(unsigned int cpu)13060 int perf_event_exit_cpu(unsigned int cpu)
13061 {
13062 	perf_event_exit_cpu_context(cpu);
13063 	return 0;
13064 }
13065 
13066 static int
perf_reboot(struct notifier_block * notifier,unsigned long val,void * v)13067 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
13068 {
13069 	int cpu;
13070 
13071 	for_each_online_cpu(cpu)
13072 		perf_event_exit_cpu(cpu);
13073 
13074 	return NOTIFY_OK;
13075 }
13076 
13077 /*
13078  * Run the perf reboot notifier at the very last possible moment so that
13079  * the generic watchdog code runs as long as possible.
13080  */
13081 static struct notifier_block perf_reboot_notifier = {
13082 	.notifier_call = perf_reboot,
13083 	.priority = INT_MIN,
13084 };
13085 
perf_event_init(void)13086 void __init perf_event_init(void)
13087 {
13088 	int ret;
13089 
13090 	idr_init(&pmu_idr);
13091 
13092 	perf_event_init_all_cpus();
13093 	init_srcu_struct(&pmus_srcu);
13094 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
13095 	perf_pmu_register(&perf_cpu_clock, NULL, -1);
13096 	perf_pmu_register(&perf_task_clock, NULL, -1);
13097 	perf_tp_register();
13098 	perf_event_init_cpu(smp_processor_id());
13099 	register_reboot_notifier(&perf_reboot_notifier);
13100 
13101 	ret = init_hw_breakpoint();
13102 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
13103 
13104 	/*
13105 	 * Build time assertion that we keep the data_head at the intended
13106 	 * location.  IOW, validation we got the __reserved[] size right.
13107 	 */
13108 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
13109 		     != 1024);
13110 }
13111 
perf_event_sysfs_show(struct device * dev,struct device_attribute * attr,char * page)13112 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
13113 			      char *page)
13114 {
13115 	struct perf_pmu_events_attr *pmu_attr =
13116 		container_of(attr, struct perf_pmu_events_attr, attr);
13117 
13118 	if (pmu_attr->event_str)
13119 		return sprintf(page, "%s\n", pmu_attr->event_str);
13120 
13121 	return 0;
13122 }
13123 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
13124 
perf_event_sysfs_init(void)13125 static int __init perf_event_sysfs_init(void)
13126 {
13127 	struct pmu *pmu;
13128 	int ret;
13129 
13130 	mutex_lock(&pmus_lock);
13131 
13132 	ret = bus_register(&pmu_bus);
13133 	if (ret)
13134 		goto unlock;
13135 
13136 	list_for_each_entry(pmu, &pmus, entry) {
13137 		if (!pmu->name || pmu->type < 0)
13138 			continue;
13139 
13140 		ret = pmu_dev_alloc(pmu);
13141 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
13142 	}
13143 	pmu_bus_running = 1;
13144 	ret = 0;
13145 
13146 unlock:
13147 	mutex_unlock(&pmus_lock);
13148 
13149 	return ret;
13150 }
13151 device_initcall(perf_event_sysfs_init);
13152 
13153 #ifdef CONFIG_CGROUP_PERF
13154 static struct cgroup_subsys_state *
perf_cgroup_css_alloc(struct cgroup_subsys_state * parent_css)13155 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
13156 {
13157 	struct perf_cgroup *jc;
13158 
13159 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
13160 	if (!jc)
13161 		return ERR_PTR(-ENOMEM);
13162 
13163 	jc->info = alloc_percpu(struct perf_cgroup_info);
13164 	if (!jc->info) {
13165 		kfree(jc);
13166 		return ERR_PTR(-ENOMEM);
13167 	}
13168 
13169 	return &jc->css;
13170 }
13171 
perf_cgroup_css_free(struct cgroup_subsys_state * css)13172 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
13173 {
13174 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
13175 
13176 	free_percpu(jc->info);
13177 	kfree(jc);
13178 }
13179 
perf_cgroup_css_online(struct cgroup_subsys_state * css)13180 static int perf_cgroup_css_online(struct cgroup_subsys_state *css)
13181 {
13182 	perf_event_cgroup(css->cgroup);
13183 	return 0;
13184 }
13185 
__perf_cgroup_move(void * info)13186 static int __perf_cgroup_move(void *info)
13187 {
13188 	struct task_struct *task = info;
13189 	rcu_read_lock();
13190 	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
13191 	rcu_read_unlock();
13192 	return 0;
13193 }
13194 
perf_cgroup_attach(struct cgroup_taskset * tset)13195 static void perf_cgroup_attach(struct cgroup_taskset *tset)
13196 {
13197 	struct task_struct *task;
13198 	struct cgroup_subsys_state *css;
13199 
13200 	cgroup_taskset_for_each(task, css, tset)
13201 		task_function_call(task, __perf_cgroup_move, task);
13202 }
13203 
13204 struct cgroup_subsys perf_event_cgrp_subsys = {
13205 	.css_alloc	= perf_cgroup_css_alloc,
13206 	.css_free	= perf_cgroup_css_free,
13207 	.css_online	= perf_cgroup_css_online,
13208 	.attach		= perf_cgroup_attach,
13209 	/*
13210 	 * Implicitly enable on dfl hierarchy so that perf events can
13211 	 * always be filtered by cgroup2 path as long as perf_event
13212 	 * controller is not mounted on a legacy hierarchy.
13213 	 */
13214 	.implicit_on_dfl = true,
13215 	.threaded	= true,
13216 };
13217 #endif /* CONFIG_CGROUP_PERF */
13218