1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/pipe.c
4 *
5 * Copyright (C) 1991, 1992, 1999 Linus Torvalds
6 */
7
8 #include <linux/mm.h>
9 #include <linux/file.h>
10 #include <linux/poll.h>
11 #include <linux/slab.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/fs.h>
15 #include <linux/log2.h>
16 #include <linux/mount.h>
17 #include <linux/pseudo_fs.h>
18 #include <linux/magic.h>
19 #include <linux/pipe_fs_i.h>
20 #include <linux/uio.h>
21 #include <linux/highmem.h>
22 #include <linux/pagemap.h>
23 #include <linux/audit.h>
24 #include <linux/syscalls.h>
25 #include <linux/fcntl.h>
26 #include <linux/memcontrol.h>
27 #include <linux/watch_queue.h>
28
29 #include <linux/uaccess.h>
30 #include <asm/ioctls.h>
31
32 #include "internal.h"
33
34 /*
35 * New pipe buffers will be restricted to this size while the user is exceeding
36 * their pipe buffer quota. The general pipe use case needs at least two
37 * buffers: one for data yet to be read, and one for new data. If this is less
38 * than two, then a write to a non-empty pipe may block even if the pipe is not
39 * full. This can occur with GNU make jobserver or similar uses of pipes as
40 * semaphores: multiple processes may be waiting to write tokens back to the
41 * pipe before reading tokens: https://lore.kernel.org/lkml/1628086770.5rn8p04n6j.none@localhost/.
42 *
43 * Users can reduce their pipe buffers with F_SETPIPE_SZ below this at their
44 * own risk, namely: pipe writes to non-full pipes may block until the pipe is
45 * emptied.
46 */
47 #define PIPE_MIN_DEF_BUFFERS 2
48
49 /*
50 * The max size that a non-root user is allowed to grow the pipe. Can
51 * be set by root in /proc/sys/fs/pipe-max-size
52 */
53 unsigned int pipe_max_size = 1048576;
54
55 /* Maximum allocatable pages per user. Hard limit is unset by default, soft
56 * matches default values.
57 */
58 unsigned long pipe_user_pages_hard;
59 unsigned long pipe_user_pages_soft = PIPE_DEF_BUFFERS * INR_OPEN_CUR;
60
61 /*
62 * We use head and tail indices that aren't masked off, except at the point of
63 * dereference, but rather they're allowed to wrap naturally. This means there
64 * isn't a dead spot in the buffer, but the ring has to be a power of two and
65 * <= 2^31.
66 * -- David Howells 2019-09-23.
67 *
68 * Reads with count = 0 should always return 0.
69 * -- Julian Bradfield 1999-06-07.
70 *
71 * FIFOs and Pipes now generate SIGIO for both readers and writers.
72 * -- Jeremy Elson <jelson@circlemud.org> 2001-08-16
73 *
74 * pipe_read & write cleanup
75 * -- Manfred Spraul <manfred@colorfullife.com> 2002-05-09
76 */
77
pipe_lock_nested(struct pipe_inode_info * pipe,int subclass)78 static void pipe_lock_nested(struct pipe_inode_info *pipe, int subclass)
79 {
80 if (pipe->files)
81 mutex_lock_nested(&pipe->mutex, subclass);
82 }
83
pipe_lock(struct pipe_inode_info * pipe)84 void pipe_lock(struct pipe_inode_info *pipe)
85 {
86 /*
87 * pipe_lock() nests non-pipe inode locks (for writing to a file)
88 */
89 pipe_lock_nested(pipe, I_MUTEX_PARENT);
90 }
91 EXPORT_SYMBOL(pipe_lock);
92
pipe_unlock(struct pipe_inode_info * pipe)93 void pipe_unlock(struct pipe_inode_info *pipe)
94 {
95 if (pipe->files)
96 mutex_unlock(&pipe->mutex);
97 }
98 EXPORT_SYMBOL(pipe_unlock);
99
__pipe_lock(struct pipe_inode_info * pipe)100 static inline void __pipe_lock(struct pipe_inode_info *pipe)
101 {
102 mutex_lock_nested(&pipe->mutex, I_MUTEX_PARENT);
103 }
104
__pipe_unlock(struct pipe_inode_info * pipe)105 static inline void __pipe_unlock(struct pipe_inode_info *pipe)
106 {
107 mutex_unlock(&pipe->mutex);
108 }
109
pipe_double_lock(struct pipe_inode_info * pipe1,struct pipe_inode_info * pipe2)110 void pipe_double_lock(struct pipe_inode_info *pipe1,
111 struct pipe_inode_info *pipe2)
112 {
113 BUG_ON(pipe1 == pipe2);
114
115 if (pipe1 < pipe2) {
116 pipe_lock_nested(pipe1, I_MUTEX_PARENT);
117 pipe_lock_nested(pipe2, I_MUTEX_CHILD);
118 } else {
119 pipe_lock_nested(pipe2, I_MUTEX_PARENT);
120 pipe_lock_nested(pipe1, I_MUTEX_CHILD);
121 }
122 }
123
anon_pipe_buf_release(struct pipe_inode_info * pipe,struct pipe_buffer * buf)124 static void anon_pipe_buf_release(struct pipe_inode_info *pipe,
125 struct pipe_buffer *buf)
126 {
127 struct page *page = buf->page;
128
129 /*
130 * If nobody else uses this page, and we don't already have a
131 * temporary page, let's keep track of it as a one-deep
132 * allocation cache. (Otherwise just release our reference to it)
133 */
134 if (page_count(page) == 1 && !pipe->tmp_page)
135 pipe->tmp_page = page;
136 else
137 put_page(page);
138 }
139
anon_pipe_buf_try_steal(struct pipe_inode_info * pipe,struct pipe_buffer * buf)140 static bool anon_pipe_buf_try_steal(struct pipe_inode_info *pipe,
141 struct pipe_buffer *buf)
142 {
143 struct page *page = buf->page;
144
145 if (page_count(page) != 1)
146 return false;
147 memcg_kmem_uncharge_page(page, 0);
148 __SetPageLocked(page);
149 return true;
150 }
151
152 /**
153 * generic_pipe_buf_try_steal - attempt to take ownership of a &pipe_buffer
154 * @pipe: the pipe that the buffer belongs to
155 * @buf: the buffer to attempt to steal
156 *
157 * Description:
158 * This function attempts to steal the &struct page attached to
159 * @buf. If successful, this function returns 0 and returns with
160 * the page locked. The caller may then reuse the page for whatever
161 * he wishes; the typical use is insertion into a different file
162 * page cache.
163 */
generic_pipe_buf_try_steal(struct pipe_inode_info * pipe,struct pipe_buffer * buf)164 bool generic_pipe_buf_try_steal(struct pipe_inode_info *pipe,
165 struct pipe_buffer *buf)
166 {
167 struct page *page = buf->page;
168
169 /*
170 * A reference of one is golden, that means that the owner of this
171 * page is the only one holding a reference to it. lock the page
172 * and return OK.
173 */
174 if (page_count(page) == 1) {
175 lock_page(page);
176 return true;
177 }
178 return false;
179 }
180 EXPORT_SYMBOL(generic_pipe_buf_try_steal);
181
182 /**
183 * generic_pipe_buf_get - get a reference to a &struct pipe_buffer
184 * @pipe: the pipe that the buffer belongs to
185 * @buf: the buffer to get a reference to
186 *
187 * Description:
188 * This function grabs an extra reference to @buf. It's used in
189 * in the tee() system call, when we duplicate the buffers in one
190 * pipe into another.
191 */
generic_pipe_buf_get(struct pipe_inode_info * pipe,struct pipe_buffer * buf)192 bool generic_pipe_buf_get(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
193 {
194 return try_get_page(buf->page);
195 }
196 EXPORT_SYMBOL(generic_pipe_buf_get);
197
198 /**
199 * generic_pipe_buf_release - put a reference to a &struct pipe_buffer
200 * @pipe: the pipe that the buffer belongs to
201 * @buf: the buffer to put a reference to
202 *
203 * Description:
204 * This function releases a reference to @buf.
205 */
generic_pipe_buf_release(struct pipe_inode_info * pipe,struct pipe_buffer * buf)206 void generic_pipe_buf_release(struct pipe_inode_info *pipe,
207 struct pipe_buffer *buf)
208 {
209 put_page(buf->page);
210 }
211 EXPORT_SYMBOL(generic_pipe_buf_release);
212
213 static const struct pipe_buf_operations anon_pipe_buf_ops = {
214 .release = anon_pipe_buf_release,
215 .try_steal = anon_pipe_buf_try_steal,
216 .get = generic_pipe_buf_get,
217 };
218
219 /* Done while waiting without holding the pipe lock - thus the READ_ONCE() */
pipe_readable(const struct pipe_inode_info * pipe)220 static inline bool pipe_readable(const struct pipe_inode_info *pipe)
221 {
222 unsigned int head = READ_ONCE(pipe->head);
223 unsigned int tail = READ_ONCE(pipe->tail);
224 unsigned int writers = READ_ONCE(pipe->writers);
225
226 return !pipe_empty(head, tail) || !writers;
227 }
228
229 static ssize_t
pipe_read(struct kiocb * iocb,struct iov_iter * to)230 pipe_read(struct kiocb *iocb, struct iov_iter *to)
231 {
232 size_t total_len = iov_iter_count(to);
233 struct file *filp = iocb->ki_filp;
234 struct pipe_inode_info *pipe = filp->private_data;
235 bool was_full, wake_next_reader = false;
236 ssize_t ret;
237
238 /* Null read succeeds. */
239 if (unlikely(total_len == 0))
240 return 0;
241
242 ret = 0;
243 __pipe_lock(pipe);
244
245 /*
246 * We only wake up writers if the pipe was full when we started
247 * reading in order to avoid unnecessary wakeups.
248 *
249 * But when we do wake up writers, we do so using a sync wakeup
250 * (WF_SYNC), because we want them to get going and generate more
251 * data for us.
252 */
253 was_full = pipe_full(pipe->head, pipe->tail, pipe->max_usage);
254 for (;;) {
255 unsigned int head = pipe->head;
256 unsigned int tail = pipe->tail;
257 unsigned int mask = pipe->ring_size - 1;
258
259 #ifdef CONFIG_WATCH_QUEUE
260 if (pipe->note_loss) {
261 struct watch_notification n;
262
263 if (total_len < 8) {
264 if (ret == 0)
265 ret = -ENOBUFS;
266 break;
267 }
268
269 n.type = WATCH_TYPE_META;
270 n.subtype = WATCH_META_LOSS_NOTIFICATION;
271 n.info = watch_sizeof(n);
272 if (copy_to_iter(&n, sizeof(n), to) != sizeof(n)) {
273 if (ret == 0)
274 ret = -EFAULT;
275 break;
276 }
277 ret += sizeof(n);
278 total_len -= sizeof(n);
279 pipe->note_loss = false;
280 }
281 #endif
282
283 if (!pipe_empty(head, tail)) {
284 struct pipe_buffer *buf = &pipe->bufs[tail & mask];
285 size_t chars = buf->len;
286 size_t written;
287 int error;
288
289 if (chars > total_len) {
290 if (buf->flags & PIPE_BUF_FLAG_WHOLE) {
291 if (ret == 0)
292 ret = -ENOBUFS;
293 break;
294 }
295 chars = total_len;
296 }
297
298 error = pipe_buf_confirm(pipe, buf);
299 if (error) {
300 if (!ret)
301 ret = error;
302 break;
303 }
304
305 written = copy_page_to_iter(buf->page, buf->offset, chars, to);
306 if (unlikely(written < chars)) {
307 if (!ret)
308 ret = -EFAULT;
309 break;
310 }
311 ret += chars;
312 buf->offset += chars;
313 buf->len -= chars;
314
315 /* Was it a packet buffer? Clean up and exit */
316 if (buf->flags & PIPE_BUF_FLAG_PACKET) {
317 total_len = chars;
318 buf->len = 0;
319 }
320
321 if (!buf->len) {
322 pipe_buf_release(pipe, buf);
323 spin_lock_irq(&pipe->rd_wait.lock);
324 #ifdef CONFIG_WATCH_QUEUE
325 if (buf->flags & PIPE_BUF_FLAG_LOSS)
326 pipe->note_loss = true;
327 #endif
328 tail++;
329 pipe->tail = tail;
330 spin_unlock_irq(&pipe->rd_wait.lock);
331 }
332 total_len -= chars;
333 if (!total_len)
334 break; /* common path: read succeeded */
335 if (!pipe_empty(head, tail)) /* More to do? */
336 continue;
337 }
338
339 if (!pipe->writers)
340 break;
341 if (ret)
342 break;
343 if (filp->f_flags & O_NONBLOCK) {
344 ret = -EAGAIN;
345 break;
346 }
347 __pipe_unlock(pipe);
348
349 /*
350 * We only get here if we didn't actually read anything.
351 *
352 * However, we could have seen (and removed) a zero-sized
353 * pipe buffer, and might have made space in the buffers
354 * that way.
355 *
356 * You can't make zero-sized pipe buffers by doing an empty
357 * write (not even in packet mode), but they can happen if
358 * the writer gets an EFAULT when trying to fill a buffer
359 * that already got allocated and inserted in the buffer
360 * array.
361 *
362 * So we still need to wake up any pending writers in the
363 * _very_ unlikely case that the pipe was full, but we got
364 * no data.
365 */
366 if (unlikely(was_full))
367 wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
368 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
369
370 /*
371 * But because we didn't read anything, at this point we can
372 * just return directly with -ERESTARTSYS if we're interrupted,
373 * since we've done any required wakeups and there's no need
374 * to mark anything accessed. And we've dropped the lock.
375 */
376 if (wait_event_interruptible_exclusive(pipe->rd_wait, pipe_readable(pipe)) < 0)
377 return -ERESTARTSYS;
378
379 __pipe_lock(pipe);
380 was_full = pipe_full(pipe->head, pipe->tail, pipe->max_usage);
381 wake_next_reader = true;
382 }
383 if (pipe_empty(pipe->head, pipe->tail))
384 wake_next_reader = false;
385 __pipe_unlock(pipe);
386
387 if (was_full)
388 wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
389 if (wake_next_reader)
390 wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
391 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
392 if (ret > 0)
393 file_accessed(filp);
394 return ret;
395 }
396
is_packetized(struct file * file)397 static inline int is_packetized(struct file *file)
398 {
399 return (file->f_flags & O_DIRECT) != 0;
400 }
401
402 /* Done while waiting without holding the pipe lock - thus the READ_ONCE() */
pipe_writable(const struct pipe_inode_info * pipe)403 static inline bool pipe_writable(const struct pipe_inode_info *pipe)
404 {
405 unsigned int head = READ_ONCE(pipe->head);
406 unsigned int tail = READ_ONCE(pipe->tail);
407 unsigned int max_usage = READ_ONCE(pipe->max_usage);
408
409 return !pipe_full(head, tail, max_usage) ||
410 !READ_ONCE(pipe->readers);
411 }
412
413 static ssize_t
pipe_write(struct kiocb * iocb,struct iov_iter * from)414 pipe_write(struct kiocb *iocb, struct iov_iter *from)
415 {
416 struct file *filp = iocb->ki_filp;
417 struct pipe_inode_info *pipe = filp->private_data;
418 unsigned int head;
419 ssize_t ret = 0;
420 size_t total_len = iov_iter_count(from);
421 ssize_t chars;
422 bool was_empty = false;
423 bool wake_next_writer = false;
424
425 /* Null write succeeds. */
426 if (unlikely(total_len == 0))
427 return 0;
428
429 __pipe_lock(pipe);
430
431 if (!pipe->readers) {
432 send_sig(SIGPIPE, current, 0);
433 ret = -EPIPE;
434 goto out;
435 }
436
437 #ifdef CONFIG_WATCH_QUEUE
438 if (pipe->watch_queue) {
439 ret = -EXDEV;
440 goto out;
441 }
442 #endif
443
444 /*
445 * If it wasn't empty we try to merge new data into
446 * the last buffer.
447 *
448 * That naturally merges small writes, but it also
449 * page-aligns the rest of the writes for large writes
450 * spanning multiple pages.
451 */
452 head = pipe->head;
453 was_empty = pipe_empty(head, pipe->tail);
454 chars = total_len & (PAGE_SIZE-1);
455 if (chars && !was_empty) {
456 unsigned int mask = pipe->ring_size - 1;
457 struct pipe_buffer *buf = &pipe->bufs[(head - 1) & mask];
458 int offset = buf->offset + buf->len;
459
460 if ((buf->flags & PIPE_BUF_FLAG_CAN_MERGE) &&
461 offset + chars <= PAGE_SIZE) {
462 ret = pipe_buf_confirm(pipe, buf);
463 if (ret)
464 goto out;
465
466 ret = copy_page_from_iter(buf->page, offset, chars, from);
467 if (unlikely(ret < chars)) {
468 ret = -EFAULT;
469 goto out;
470 }
471
472 buf->len += ret;
473 if (!iov_iter_count(from))
474 goto out;
475 }
476 }
477
478 for (;;) {
479 if (!pipe->readers) {
480 send_sig(SIGPIPE, current, 0);
481 if (!ret)
482 ret = -EPIPE;
483 break;
484 }
485
486 head = pipe->head;
487 if (!pipe_full(head, pipe->tail, pipe->max_usage)) {
488 unsigned int mask = pipe->ring_size - 1;
489 struct pipe_buffer *buf = &pipe->bufs[head & mask];
490 struct page *page = pipe->tmp_page;
491 int copied;
492
493 if (!page) {
494 page = alloc_page(GFP_HIGHUSER | __GFP_ACCOUNT);
495 if (unlikely(!page)) {
496 ret = ret ? : -ENOMEM;
497 break;
498 }
499 pipe->tmp_page = page;
500 }
501
502 /* Allocate a slot in the ring in advance and attach an
503 * empty buffer. If we fault or otherwise fail to use
504 * it, either the reader will consume it or it'll still
505 * be there for the next write.
506 */
507 spin_lock_irq(&pipe->rd_wait.lock);
508
509 head = pipe->head;
510 if (pipe_full(head, pipe->tail, pipe->max_usage)) {
511 spin_unlock_irq(&pipe->rd_wait.lock);
512 continue;
513 }
514
515 pipe->head = head + 1;
516 spin_unlock_irq(&pipe->rd_wait.lock);
517
518 /* Insert it into the buffer array */
519 buf = &pipe->bufs[head & mask];
520 buf->page = page;
521 buf->ops = &anon_pipe_buf_ops;
522 buf->offset = 0;
523 buf->len = 0;
524 if (is_packetized(filp))
525 buf->flags = PIPE_BUF_FLAG_PACKET;
526 else
527 buf->flags = PIPE_BUF_FLAG_CAN_MERGE;
528 pipe->tmp_page = NULL;
529
530 copied = copy_page_from_iter(page, 0, PAGE_SIZE, from);
531 if (unlikely(copied < PAGE_SIZE && iov_iter_count(from))) {
532 if (!ret)
533 ret = -EFAULT;
534 break;
535 }
536 ret += copied;
537 buf->offset = 0;
538 buf->len = copied;
539
540 if (!iov_iter_count(from))
541 break;
542 }
543
544 if (!pipe_full(head, pipe->tail, pipe->max_usage))
545 continue;
546
547 /* Wait for buffer space to become available. */
548 if (filp->f_flags & O_NONBLOCK) {
549 if (!ret)
550 ret = -EAGAIN;
551 break;
552 }
553 if (signal_pending(current)) {
554 if (!ret)
555 ret = -ERESTARTSYS;
556 break;
557 }
558
559 /*
560 * We're going to release the pipe lock and wait for more
561 * space. We wake up any readers if necessary, and then
562 * after waiting we need to re-check whether the pipe
563 * become empty while we dropped the lock.
564 */
565 __pipe_unlock(pipe);
566 if (was_empty)
567 wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
568 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
569 wait_event_interruptible_exclusive(pipe->wr_wait, pipe_writable(pipe));
570 __pipe_lock(pipe);
571 was_empty = pipe_empty(pipe->head, pipe->tail);
572 wake_next_writer = true;
573 }
574 out:
575 if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
576 wake_next_writer = false;
577 __pipe_unlock(pipe);
578
579 /*
580 * If we do do a wakeup event, we do a 'sync' wakeup, because we
581 * want the reader to start processing things asap, rather than
582 * leave the data pending.
583 *
584 * This is particularly important for small writes, because of
585 * how (for example) the GNU make jobserver uses small writes to
586 * wake up pending jobs
587 *
588 * Epoll nonsensically wants a wakeup whether the pipe
589 * was already empty or not.
590 */
591 if (was_empty || pipe->poll_usage)
592 wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
593 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
594 if (wake_next_writer)
595 wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
596 if (ret > 0 && sb_start_write_trylock(file_inode(filp)->i_sb)) {
597 int err = file_update_time(filp);
598 if (err)
599 ret = err;
600 sb_end_write(file_inode(filp)->i_sb);
601 }
602 return ret;
603 }
604
pipe_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)605 static long pipe_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
606 {
607 struct pipe_inode_info *pipe = filp->private_data;
608 int count, head, tail, mask;
609
610 switch (cmd) {
611 case FIONREAD:
612 __pipe_lock(pipe);
613 count = 0;
614 head = pipe->head;
615 tail = pipe->tail;
616 mask = pipe->ring_size - 1;
617
618 while (tail != head) {
619 count += pipe->bufs[tail & mask].len;
620 tail++;
621 }
622 __pipe_unlock(pipe);
623
624 return put_user(count, (int __user *)arg);
625
626 #ifdef CONFIG_WATCH_QUEUE
627 case IOC_WATCH_QUEUE_SET_SIZE: {
628 int ret;
629 __pipe_lock(pipe);
630 ret = watch_queue_set_size(pipe, arg);
631 __pipe_unlock(pipe);
632 return ret;
633 }
634
635 case IOC_WATCH_QUEUE_SET_FILTER:
636 return watch_queue_set_filter(
637 pipe, (struct watch_notification_filter __user *)arg);
638 #endif
639
640 default:
641 return -ENOIOCTLCMD;
642 }
643 }
644
645 /* No kernel lock held - fine */
646 static __poll_t
pipe_poll(struct file * filp,poll_table * wait)647 pipe_poll(struct file *filp, poll_table *wait)
648 {
649 __poll_t mask;
650 struct pipe_inode_info *pipe = filp->private_data;
651 unsigned int head, tail;
652
653 /* Epoll has some historical nasty semantics, this enables them */
654 pipe->poll_usage = 1;
655
656 /*
657 * Reading pipe state only -- no need for acquiring the semaphore.
658 *
659 * But because this is racy, the code has to add the
660 * entry to the poll table _first_ ..
661 */
662 if (filp->f_mode & FMODE_READ)
663 poll_wait(filp, &pipe->rd_wait, wait);
664 if (filp->f_mode & FMODE_WRITE)
665 poll_wait(filp, &pipe->wr_wait, wait);
666
667 /*
668 * .. and only then can you do the racy tests. That way,
669 * if something changes and you got it wrong, the poll
670 * table entry will wake you up and fix it.
671 */
672 head = READ_ONCE(pipe->head);
673 tail = READ_ONCE(pipe->tail);
674
675 mask = 0;
676 if (filp->f_mode & FMODE_READ) {
677 if (!pipe_empty(head, tail))
678 mask |= EPOLLIN | EPOLLRDNORM;
679 if (!pipe->writers && filp->f_version != pipe->w_counter)
680 mask |= EPOLLHUP;
681 }
682
683 if (filp->f_mode & FMODE_WRITE) {
684 if (!pipe_full(head, tail, pipe->max_usage))
685 mask |= EPOLLOUT | EPOLLWRNORM;
686 /*
687 * Most Unices do not set EPOLLERR for FIFOs but on Linux they
688 * behave exactly like pipes for poll().
689 */
690 if (!pipe->readers)
691 mask |= EPOLLERR;
692 }
693
694 return mask;
695 }
696
put_pipe_info(struct inode * inode,struct pipe_inode_info * pipe)697 static void put_pipe_info(struct inode *inode, struct pipe_inode_info *pipe)
698 {
699 int kill = 0;
700
701 spin_lock(&inode->i_lock);
702 if (!--pipe->files) {
703 inode->i_pipe = NULL;
704 kill = 1;
705 }
706 spin_unlock(&inode->i_lock);
707
708 if (kill)
709 free_pipe_info(pipe);
710 }
711
712 static int
pipe_release(struct inode * inode,struct file * file)713 pipe_release(struct inode *inode, struct file *file)
714 {
715 struct pipe_inode_info *pipe = file->private_data;
716
717 __pipe_lock(pipe);
718 if (file->f_mode & FMODE_READ)
719 pipe->readers--;
720 if (file->f_mode & FMODE_WRITE)
721 pipe->writers--;
722
723 /* Was that the last reader or writer, but not the other side? */
724 if (!pipe->readers != !pipe->writers) {
725 wake_up_interruptible_all(&pipe->rd_wait);
726 wake_up_interruptible_all(&pipe->wr_wait);
727 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
728 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
729 }
730 __pipe_unlock(pipe);
731
732 put_pipe_info(inode, pipe);
733 return 0;
734 }
735
736 static int
pipe_fasync(int fd,struct file * filp,int on)737 pipe_fasync(int fd, struct file *filp, int on)
738 {
739 struct pipe_inode_info *pipe = filp->private_data;
740 int retval = 0;
741
742 __pipe_lock(pipe);
743 if (filp->f_mode & FMODE_READ)
744 retval = fasync_helper(fd, filp, on, &pipe->fasync_readers);
745 if ((filp->f_mode & FMODE_WRITE) && retval >= 0) {
746 retval = fasync_helper(fd, filp, on, &pipe->fasync_writers);
747 if (retval < 0 && (filp->f_mode & FMODE_READ))
748 /* this can happen only if on == T */
749 fasync_helper(-1, filp, 0, &pipe->fasync_readers);
750 }
751 __pipe_unlock(pipe);
752 return retval;
753 }
754
account_pipe_buffers(struct user_struct * user,unsigned long old,unsigned long new)755 unsigned long account_pipe_buffers(struct user_struct *user,
756 unsigned long old, unsigned long new)
757 {
758 return atomic_long_add_return(new - old, &user->pipe_bufs);
759 }
760
too_many_pipe_buffers_soft(unsigned long user_bufs)761 bool too_many_pipe_buffers_soft(unsigned long user_bufs)
762 {
763 unsigned long soft_limit = READ_ONCE(pipe_user_pages_soft);
764
765 return soft_limit && user_bufs > soft_limit;
766 }
767
too_many_pipe_buffers_hard(unsigned long user_bufs)768 bool too_many_pipe_buffers_hard(unsigned long user_bufs)
769 {
770 unsigned long hard_limit = READ_ONCE(pipe_user_pages_hard);
771
772 return hard_limit && user_bufs > hard_limit;
773 }
774
pipe_is_unprivileged_user(void)775 bool pipe_is_unprivileged_user(void)
776 {
777 return !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN);
778 }
779
alloc_pipe_info(void)780 struct pipe_inode_info *alloc_pipe_info(void)
781 {
782 struct pipe_inode_info *pipe;
783 unsigned long pipe_bufs = PIPE_DEF_BUFFERS;
784 struct user_struct *user = get_current_user();
785 unsigned long user_bufs;
786 unsigned int max_size = READ_ONCE(pipe_max_size);
787
788 pipe = kzalloc(sizeof(struct pipe_inode_info), GFP_KERNEL_ACCOUNT);
789 if (pipe == NULL)
790 goto out_free_uid;
791
792 if (pipe_bufs * PAGE_SIZE > max_size && !capable(CAP_SYS_RESOURCE))
793 pipe_bufs = max_size >> PAGE_SHIFT;
794
795 user_bufs = account_pipe_buffers(user, 0, pipe_bufs);
796
797 if (too_many_pipe_buffers_soft(user_bufs) && pipe_is_unprivileged_user()) {
798 user_bufs = account_pipe_buffers(user, pipe_bufs, PIPE_MIN_DEF_BUFFERS);
799 pipe_bufs = PIPE_MIN_DEF_BUFFERS;
800 }
801
802 if (too_many_pipe_buffers_hard(user_bufs) && pipe_is_unprivileged_user())
803 goto out_revert_acct;
804
805 pipe->bufs = kcalloc(pipe_bufs, sizeof(struct pipe_buffer),
806 GFP_KERNEL_ACCOUNT);
807
808 if (pipe->bufs) {
809 init_waitqueue_head(&pipe->rd_wait);
810 init_waitqueue_head(&pipe->wr_wait);
811 pipe->r_counter = pipe->w_counter = 1;
812 pipe->max_usage = pipe_bufs;
813 pipe->ring_size = pipe_bufs;
814 pipe->nr_accounted = pipe_bufs;
815 pipe->user = user;
816 mutex_init(&pipe->mutex);
817 return pipe;
818 }
819
820 out_revert_acct:
821 (void) account_pipe_buffers(user, pipe_bufs, 0);
822 kfree(pipe);
823 out_free_uid:
824 free_uid(user);
825 return NULL;
826 }
827
free_pipe_info(struct pipe_inode_info * pipe)828 void free_pipe_info(struct pipe_inode_info *pipe)
829 {
830 int i;
831
832 #ifdef CONFIG_WATCH_QUEUE
833 if (pipe->watch_queue) {
834 watch_queue_clear(pipe->watch_queue);
835 put_watch_queue(pipe->watch_queue);
836 }
837 #endif
838
839 (void) account_pipe_buffers(pipe->user, pipe->nr_accounted, 0);
840 free_uid(pipe->user);
841 for (i = 0; i < pipe->ring_size; i++) {
842 struct pipe_buffer *buf = pipe->bufs + i;
843 if (buf->ops)
844 pipe_buf_release(pipe, buf);
845 }
846 if (pipe->tmp_page)
847 __free_page(pipe->tmp_page);
848 kfree(pipe->bufs);
849 kfree(pipe);
850 }
851
852 static struct vfsmount *pipe_mnt __read_mostly;
853
854 /*
855 * pipefs_dname() is called from d_path().
856 */
pipefs_dname(struct dentry * dentry,char * buffer,int buflen)857 static char *pipefs_dname(struct dentry *dentry, char *buffer, int buflen)
858 {
859 return dynamic_dname(dentry, buffer, buflen, "pipe:[%lu]",
860 d_inode(dentry)->i_ino);
861 }
862
863 static const struct dentry_operations pipefs_dentry_operations = {
864 .d_dname = pipefs_dname,
865 };
866
get_pipe_inode(void)867 static struct inode * get_pipe_inode(void)
868 {
869 struct inode *inode = new_inode_pseudo(pipe_mnt->mnt_sb);
870 struct pipe_inode_info *pipe;
871
872 if (!inode)
873 goto fail_inode;
874
875 inode->i_ino = get_next_ino();
876
877 pipe = alloc_pipe_info();
878 if (!pipe)
879 goto fail_iput;
880
881 inode->i_pipe = pipe;
882 pipe->files = 2;
883 pipe->readers = pipe->writers = 1;
884 inode->i_fop = &pipefifo_fops;
885
886 /*
887 * Mark the inode dirty from the very beginning,
888 * that way it will never be moved to the dirty
889 * list because "mark_inode_dirty()" will think
890 * that it already _is_ on the dirty list.
891 */
892 inode->i_state = I_DIRTY;
893 inode->i_mode = S_IFIFO | S_IRUSR | S_IWUSR;
894 inode->i_uid = current_fsuid();
895 inode->i_gid = current_fsgid();
896 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
897
898 return inode;
899
900 fail_iput:
901 iput(inode);
902
903 fail_inode:
904 return NULL;
905 }
906
create_pipe_files(struct file ** res,int flags)907 int create_pipe_files(struct file **res, int flags)
908 {
909 struct inode *inode = get_pipe_inode();
910 struct file *f;
911 int error;
912
913 if (!inode)
914 return -ENFILE;
915
916 if (flags & O_NOTIFICATION_PIPE) {
917 error = watch_queue_init(inode->i_pipe);
918 if (error) {
919 free_pipe_info(inode->i_pipe);
920 iput(inode);
921 return error;
922 }
923 }
924
925 f = alloc_file_pseudo(inode, pipe_mnt, "",
926 O_WRONLY | (flags & (O_NONBLOCK | O_DIRECT)),
927 &pipefifo_fops);
928 if (IS_ERR(f)) {
929 free_pipe_info(inode->i_pipe);
930 iput(inode);
931 return PTR_ERR(f);
932 }
933
934 f->private_data = inode->i_pipe;
935
936 res[0] = alloc_file_clone(f, O_RDONLY | (flags & O_NONBLOCK),
937 &pipefifo_fops);
938 if (IS_ERR(res[0])) {
939 put_pipe_info(inode, inode->i_pipe);
940 fput(f);
941 return PTR_ERR(res[0]);
942 }
943 res[0]->private_data = inode->i_pipe;
944 res[1] = f;
945 stream_open(inode, res[0]);
946 stream_open(inode, res[1]);
947 return 0;
948 }
949
__do_pipe_flags(int * fd,struct file ** files,int flags)950 static int __do_pipe_flags(int *fd, struct file **files, int flags)
951 {
952 int error;
953 int fdw, fdr;
954
955 if (flags & ~(O_CLOEXEC | O_NONBLOCK | O_DIRECT | O_NOTIFICATION_PIPE))
956 return -EINVAL;
957
958 error = create_pipe_files(files, flags);
959 if (error)
960 return error;
961
962 error = get_unused_fd_flags(flags);
963 if (error < 0)
964 goto err_read_pipe;
965 fdr = error;
966
967 error = get_unused_fd_flags(flags);
968 if (error < 0)
969 goto err_fdr;
970 fdw = error;
971
972 audit_fd_pair(fdr, fdw);
973 fd[0] = fdr;
974 fd[1] = fdw;
975 return 0;
976
977 err_fdr:
978 put_unused_fd(fdr);
979 err_read_pipe:
980 fput(files[0]);
981 fput(files[1]);
982 return error;
983 }
984
do_pipe_flags(int * fd,int flags)985 int do_pipe_flags(int *fd, int flags)
986 {
987 struct file *files[2];
988 int error = __do_pipe_flags(fd, files, flags);
989 if (!error) {
990 fd_install(fd[0], files[0]);
991 fd_install(fd[1], files[1]);
992 }
993 return error;
994 }
995
996 /*
997 * sys_pipe() is the normal C calling standard for creating
998 * a pipe. It's not the way Unix traditionally does this, though.
999 */
do_pipe2(int __user * fildes,int flags)1000 static int do_pipe2(int __user *fildes, int flags)
1001 {
1002 struct file *files[2];
1003 int fd[2];
1004 int error;
1005
1006 error = __do_pipe_flags(fd, files, flags);
1007 if (!error) {
1008 if (unlikely(copy_to_user(fildes, fd, sizeof(fd)))) {
1009 fput(files[0]);
1010 fput(files[1]);
1011 put_unused_fd(fd[0]);
1012 put_unused_fd(fd[1]);
1013 error = -EFAULT;
1014 } else {
1015 fd_install(fd[0], files[0]);
1016 fd_install(fd[1], files[1]);
1017 }
1018 }
1019 return error;
1020 }
1021
SYSCALL_DEFINE2(pipe2,int __user *,fildes,int,flags)1022 SYSCALL_DEFINE2(pipe2, int __user *, fildes, int, flags)
1023 {
1024 return do_pipe2(fildes, flags);
1025 }
1026
SYSCALL_DEFINE1(pipe,int __user *,fildes)1027 SYSCALL_DEFINE1(pipe, int __user *, fildes)
1028 {
1029 return do_pipe2(fildes, 0);
1030 }
1031
1032 /*
1033 * This is the stupid "wait for pipe to be readable or writable"
1034 * model.
1035 *
1036 * See pipe_read/write() for the proper kind of exclusive wait,
1037 * but that requires that we wake up any other readers/writers
1038 * if we then do not end up reading everything (ie the whole
1039 * "wake_next_reader/writer" logic in pipe_read/write()).
1040 */
pipe_wait_readable(struct pipe_inode_info * pipe)1041 void pipe_wait_readable(struct pipe_inode_info *pipe)
1042 {
1043 pipe_unlock(pipe);
1044 wait_event_interruptible(pipe->rd_wait, pipe_readable(pipe));
1045 pipe_lock(pipe);
1046 }
1047
pipe_wait_writable(struct pipe_inode_info * pipe)1048 void pipe_wait_writable(struct pipe_inode_info *pipe)
1049 {
1050 pipe_unlock(pipe);
1051 wait_event_interruptible(pipe->wr_wait, pipe_writable(pipe));
1052 pipe_lock(pipe);
1053 }
1054
1055 /*
1056 * This depends on both the wait (here) and the wakeup (wake_up_partner)
1057 * holding the pipe lock, so "*cnt" is stable and we know a wakeup cannot
1058 * race with the count check and waitqueue prep.
1059 *
1060 * Normally in order to avoid races, you'd do the prepare_to_wait() first,
1061 * then check the condition you're waiting for, and only then sleep. But
1062 * because of the pipe lock, we can check the condition before being on
1063 * the wait queue.
1064 *
1065 * We use the 'rd_wait' waitqueue for pipe partner waiting.
1066 */
wait_for_partner(struct pipe_inode_info * pipe,unsigned int * cnt)1067 static int wait_for_partner(struct pipe_inode_info *pipe, unsigned int *cnt)
1068 {
1069 DEFINE_WAIT(rdwait);
1070 int cur = *cnt;
1071
1072 while (cur == *cnt) {
1073 prepare_to_wait(&pipe->rd_wait, &rdwait, TASK_INTERRUPTIBLE);
1074 pipe_unlock(pipe);
1075 schedule();
1076 finish_wait(&pipe->rd_wait, &rdwait);
1077 pipe_lock(pipe);
1078 if (signal_pending(current))
1079 break;
1080 }
1081 return cur == *cnt ? -ERESTARTSYS : 0;
1082 }
1083
wake_up_partner(struct pipe_inode_info * pipe)1084 static void wake_up_partner(struct pipe_inode_info *pipe)
1085 {
1086 wake_up_interruptible_all(&pipe->rd_wait);
1087 }
1088
fifo_open(struct inode * inode,struct file * filp)1089 static int fifo_open(struct inode *inode, struct file *filp)
1090 {
1091 struct pipe_inode_info *pipe;
1092 bool is_pipe = inode->i_sb->s_magic == PIPEFS_MAGIC;
1093 int ret;
1094
1095 filp->f_version = 0;
1096
1097 spin_lock(&inode->i_lock);
1098 if (inode->i_pipe) {
1099 pipe = inode->i_pipe;
1100 pipe->files++;
1101 spin_unlock(&inode->i_lock);
1102 } else {
1103 spin_unlock(&inode->i_lock);
1104 pipe = alloc_pipe_info();
1105 if (!pipe)
1106 return -ENOMEM;
1107 pipe->files = 1;
1108 spin_lock(&inode->i_lock);
1109 if (unlikely(inode->i_pipe)) {
1110 inode->i_pipe->files++;
1111 spin_unlock(&inode->i_lock);
1112 free_pipe_info(pipe);
1113 pipe = inode->i_pipe;
1114 } else {
1115 inode->i_pipe = pipe;
1116 spin_unlock(&inode->i_lock);
1117 }
1118 }
1119 filp->private_data = pipe;
1120 /* OK, we have a pipe and it's pinned down */
1121
1122 __pipe_lock(pipe);
1123
1124 /* We can only do regular read/write on fifos */
1125 stream_open(inode, filp);
1126
1127 switch (filp->f_mode & (FMODE_READ | FMODE_WRITE)) {
1128 case FMODE_READ:
1129 /*
1130 * O_RDONLY
1131 * POSIX.1 says that O_NONBLOCK means return with the FIFO
1132 * opened, even when there is no process writing the FIFO.
1133 */
1134 pipe->r_counter++;
1135 if (pipe->readers++ == 0)
1136 wake_up_partner(pipe);
1137
1138 if (!is_pipe && !pipe->writers) {
1139 if ((filp->f_flags & O_NONBLOCK)) {
1140 /* suppress EPOLLHUP until we have
1141 * seen a writer */
1142 filp->f_version = pipe->w_counter;
1143 } else {
1144 if (wait_for_partner(pipe, &pipe->w_counter))
1145 goto err_rd;
1146 }
1147 }
1148 break;
1149
1150 case FMODE_WRITE:
1151 /*
1152 * O_WRONLY
1153 * POSIX.1 says that O_NONBLOCK means return -1 with
1154 * errno=ENXIO when there is no process reading the FIFO.
1155 */
1156 ret = -ENXIO;
1157 if (!is_pipe && (filp->f_flags & O_NONBLOCK) && !pipe->readers)
1158 goto err;
1159
1160 pipe->w_counter++;
1161 if (!pipe->writers++)
1162 wake_up_partner(pipe);
1163
1164 if (!is_pipe && !pipe->readers) {
1165 if (wait_for_partner(pipe, &pipe->r_counter))
1166 goto err_wr;
1167 }
1168 break;
1169
1170 case FMODE_READ | FMODE_WRITE:
1171 /*
1172 * O_RDWR
1173 * POSIX.1 leaves this case "undefined" when O_NONBLOCK is set.
1174 * This implementation will NEVER block on a O_RDWR open, since
1175 * the process can at least talk to itself.
1176 */
1177
1178 pipe->readers++;
1179 pipe->writers++;
1180 pipe->r_counter++;
1181 pipe->w_counter++;
1182 if (pipe->readers == 1 || pipe->writers == 1)
1183 wake_up_partner(pipe);
1184 break;
1185
1186 default:
1187 ret = -EINVAL;
1188 goto err;
1189 }
1190
1191 /* Ok! */
1192 __pipe_unlock(pipe);
1193 return 0;
1194
1195 err_rd:
1196 if (!--pipe->readers)
1197 wake_up_interruptible(&pipe->wr_wait);
1198 ret = -ERESTARTSYS;
1199 goto err;
1200
1201 err_wr:
1202 if (!--pipe->writers)
1203 wake_up_interruptible_all(&pipe->rd_wait);
1204 ret = -ERESTARTSYS;
1205 goto err;
1206
1207 err:
1208 __pipe_unlock(pipe);
1209
1210 put_pipe_info(inode, pipe);
1211 return ret;
1212 }
1213
1214 const struct file_operations pipefifo_fops = {
1215 .open = fifo_open,
1216 .llseek = no_llseek,
1217 .read_iter = pipe_read,
1218 .write_iter = pipe_write,
1219 .poll = pipe_poll,
1220 .unlocked_ioctl = pipe_ioctl,
1221 .release = pipe_release,
1222 .fasync = pipe_fasync,
1223 .splice_write = iter_file_splice_write,
1224 };
1225
1226 /*
1227 * Currently we rely on the pipe array holding a power-of-2 number
1228 * of pages. Returns 0 on error.
1229 */
round_pipe_size(unsigned long size)1230 unsigned int round_pipe_size(unsigned long size)
1231 {
1232 if (size > (1U << 31))
1233 return 0;
1234
1235 /* Minimum pipe size, as required by POSIX */
1236 if (size < PAGE_SIZE)
1237 return PAGE_SIZE;
1238
1239 return roundup_pow_of_two(size);
1240 }
1241
1242 /*
1243 * Resize the pipe ring to a number of slots.
1244 *
1245 * Note the pipe can be reduced in capacity, but only if the current
1246 * occupancy doesn't exceed nr_slots; if it does, EBUSY will be
1247 * returned instead.
1248 */
pipe_resize_ring(struct pipe_inode_info * pipe,unsigned int nr_slots)1249 int pipe_resize_ring(struct pipe_inode_info *pipe, unsigned int nr_slots)
1250 {
1251 struct pipe_buffer *bufs;
1252 unsigned int head, tail, mask, n;
1253
1254 bufs = kcalloc(nr_slots, sizeof(*bufs),
1255 GFP_KERNEL_ACCOUNT | __GFP_NOWARN);
1256 if (unlikely(!bufs))
1257 return -ENOMEM;
1258
1259 spin_lock_irq(&pipe->rd_wait.lock);
1260 mask = pipe->ring_size - 1;
1261 head = pipe->head;
1262 tail = pipe->tail;
1263
1264 n = pipe_occupancy(head, tail);
1265 if (nr_slots < n) {
1266 spin_unlock_irq(&pipe->rd_wait.lock);
1267 kfree(bufs);
1268 return -EBUSY;
1269 }
1270
1271 /*
1272 * The pipe array wraps around, so just start the new one at zero
1273 * and adjust the indices.
1274 */
1275 if (n > 0) {
1276 unsigned int h = head & mask;
1277 unsigned int t = tail & mask;
1278 if (h > t) {
1279 memcpy(bufs, pipe->bufs + t,
1280 n * sizeof(struct pipe_buffer));
1281 } else {
1282 unsigned int tsize = pipe->ring_size - t;
1283 if (h > 0)
1284 memcpy(bufs + tsize, pipe->bufs,
1285 h * sizeof(struct pipe_buffer));
1286 memcpy(bufs, pipe->bufs + t,
1287 tsize * sizeof(struct pipe_buffer));
1288 }
1289 }
1290
1291 head = n;
1292 tail = 0;
1293
1294 kfree(pipe->bufs);
1295 pipe->bufs = bufs;
1296 pipe->ring_size = nr_slots;
1297 if (pipe->max_usage > nr_slots)
1298 pipe->max_usage = nr_slots;
1299 pipe->tail = tail;
1300 pipe->head = head;
1301
1302 spin_unlock_irq(&pipe->rd_wait.lock);
1303
1304 /* This might have made more room for writers */
1305 wake_up_interruptible(&pipe->wr_wait);
1306 return 0;
1307 }
1308
1309 /*
1310 * Allocate a new array of pipe buffers and copy the info over. Returns the
1311 * pipe size if successful, or return -ERROR on error.
1312 */
pipe_set_size(struct pipe_inode_info * pipe,unsigned long arg)1313 static long pipe_set_size(struct pipe_inode_info *pipe, unsigned long arg)
1314 {
1315 unsigned long user_bufs;
1316 unsigned int nr_slots, size;
1317 long ret = 0;
1318
1319 #ifdef CONFIG_WATCH_QUEUE
1320 if (pipe->watch_queue)
1321 return -EBUSY;
1322 #endif
1323
1324 size = round_pipe_size(arg);
1325 nr_slots = size >> PAGE_SHIFT;
1326
1327 if (!nr_slots)
1328 return -EINVAL;
1329
1330 /*
1331 * If trying to increase the pipe capacity, check that an
1332 * unprivileged user is not trying to exceed various limits
1333 * (soft limit check here, hard limit check just below).
1334 * Decreasing the pipe capacity is always permitted, even
1335 * if the user is currently over a limit.
1336 */
1337 if (nr_slots > pipe->max_usage &&
1338 size > pipe_max_size && !capable(CAP_SYS_RESOURCE))
1339 return -EPERM;
1340
1341 user_bufs = account_pipe_buffers(pipe->user, pipe->nr_accounted, nr_slots);
1342
1343 if (nr_slots > pipe->max_usage &&
1344 (too_many_pipe_buffers_hard(user_bufs) ||
1345 too_many_pipe_buffers_soft(user_bufs)) &&
1346 pipe_is_unprivileged_user()) {
1347 ret = -EPERM;
1348 goto out_revert_acct;
1349 }
1350
1351 ret = pipe_resize_ring(pipe, nr_slots);
1352 if (ret < 0)
1353 goto out_revert_acct;
1354
1355 pipe->max_usage = nr_slots;
1356 pipe->nr_accounted = nr_slots;
1357 return pipe->max_usage * PAGE_SIZE;
1358
1359 out_revert_acct:
1360 (void) account_pipe_buffers(pipe->user, nr_slots, pipe->nr_accounted);
1361 return ret;
1362 }
1363
1364 /*
1365 * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same
1366 * location, so checking ->i_pipe is not enough to verify that this is a
1367 * pipe.
1368 */
get_pipe_info(struct file * file,bool for_splice)1369 struct pipe_inode_info *get_pipe_info(struct file *file, bool for_splice)
1370 {
1371 struct pipe_inode_info *pipe = file->private_data;
1372
1373 if (file->f_op != &pipefifo_fops || !pipe)
1374 return NULL;
1375 #ifdef CONFIG_WATCH_QUEUE
1376 if (for_splice && pipe->watch_queue)
1377 return NULL;
1378 #endif
1379 return pipe;
1380 }
1381
pipe_fcntl(struct file * file,unsigned int cmd,unsigned long arg)1382 long pipe_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1383 {
1384 struct pipe_inode_info *pipe;
1385 long ret;
1386
1387 pipe = get_pipe_info(file, false);
1388 if (!pipe)
1389 return -EBADF;
1390
1391 __pipe_lock(pipe);
1392
1393 switch (cmd) {
1394 case F_SETPIPE_SZ:
1395 ret = pipe_set_size(pipe, arg);
1396 break;
1397 case F_GETPIPE_SZ:
1398 ret = pipe->max_usage * PAGE_SIZE;
1399 break;
1400 default:
1401 ret = -EINVAL;
1402 break;
1403 }
1404
1405 __pipe_unlock(pipe);
1406 return ret;
1407 }
1408
1409 static const struct super_operations pipefs_ops = {
1410 .destroy_inode = free_inode_nonrcu,
1411 .statfs = simple_statfs,
1412 };
1413
1414 /*
1415 * pipefs should _never_ be mounted by userland - too much of security hassle,
1416 * no real gain from having the whole whorehouse mounted. So we don't need
1417 * any operations on the root directory. However, we need a non-trivial
1418 * d_name - pipe: will go nicely and kill the special-casing in procfs.
1419 */
1420
pipefs_init_fs_context(struct fs_context * fc)1421 static int pipefs_init_fs_context(struct fs_context *fc)
1422 {
1423 struct pseudo_fs_context *ctx = init_pseudo(fc, PIPEFS_MAGIC);
1424 if (!ctx)
1425 return -ENOMEM;
1426 ctx->ops = &pipefs_ops;
1427 ctx->dops = &pipefs_dentry_operations;
1428 return 0;
1429 }
1430
1431 static struct file_system_type pipe_fs_type = {
1432 .name = "pipefs",
1433 .init_fs_context = pipefs_init_fs_context,
1434 .kill_sb = kill_anon_super,
1435 };
1436
init_pipe_fs(void)1437 static int __init init_pipe_fs(void)
1438 {
1439 int err = register_filesystem(&pipe_fs_type);
1440
1441 if (!err) {
1442 pipe_mnt = kern_mount(&pipe_fs_type);
1443 if (IS_ERR(pipe_mnt)) {
1444 err = PTR_ERR(pipe_mnt);
1445 unregister_filesystem(&pipe_fs_type);
1446 }
1447 }
1448 return err;
1449 }
1450
1451 fs_initcall(init_pipe_fs);
1452