1 /* -*- Mode: c; c-basic-offset: 4; tab-width: 8; indent-tabs-mode: t; -*- */
2 /*
3 *
4 * Copyright © 2000 Keith Packard, member of The XFree86 Project, Inc.
5 * Copyright © 2000 SuSE, Inc.
6 * 2005 Lars Knoll & Zack Rusin, Trolltech
7 * Copyright © 2007 Red Hat, Inc.
8 *
9 *
10 * Permission to use, copy, modify, distribute, and sell this software and its
11 * documentation for any purpose is hereby granted without fee, provided that
12 * the above copyright notice appear in all copies and that both that
13 * copyright notice and this permission notice appear in supporting
14 * documentation, and that the name of Keith Packard not be used in
15 * advertising or publicity pertaining to distribution of the software without
16 * specific, written prior permission. Keith Packard makes no
17 * representations about the suitability of this software for any purpose. It
18 * is provided "as is" without express or implied warranty.
19 *
20 * THE COPYRIGHT HOLDERS DISCLAIM ALL WARRANTIES WITH REGARD TO THIS
21 * SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
22 * FITNESS, IN NO EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY
23 * SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
24 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN
25 * AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING
26 * OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
27 * SOFTWARE.
28 */
29
30 #ifdef HAVE_CONFIG_H
31 #include <config.h>
32 #endif
33 #include <stdlib.h>
34 #include <math.h>
35 #include "pixman-private.h"
36
37 static inline pixman_fixed_32_32_t
dot(pixman_fixed_48_16_t x1,pixman_fixed_48_16_t y1,pixman_fixed_48_16_t z1,pixman_fixed_48_16_t x2,pixman_fixed_48_16_t y2,pixman_fixed_48_16_t z2)38 dot (pixman_fixed_48_16_t x1,
39 pixman_fixed_48_16_t y1,
40 pixman_fixed_48_16_t z1,
41 pixman_fixed_48_16_t x2,
42 pixman_fixed_48_16_t y2,
43 pixman_fixed_48_16_t z2)
44 {
45 /*
46 * Exact computation, assuming that the input values can
47 * be represented as pixman_fixed_16_16_t
48 */
49 return x1 * x2 + y1 * y2 + z1 * z2;
50 }
51
52 static inline double
fdot(double x1,double y1,double z1,double x2,double y2,double z2)53 fdot (double x1,
54 double y1,
55 double z1,
56 double x2,
57 double y2,
58 double z2)
59 {
60 /*
61 * Error can be unbound in some special cases.
62 * Using clever dot product algorithms (for example compensated
63 * dot product) would improve this but make the code much less
64 * obvious
65 */
66 return x1 * x2 + y1 * y2 + z1 * z2;
67 }
68
69 static void
radial_write_color(double a,double b,double c,double inva,double dr,double mindr,pixman_gradient_walker_t * walker,pixman_repeat_t repeat,int Bpp,pixman_gradient_walker_write_t write_pixel,uint32_t * buffer)70 radial_write_color (double a,
71 double b,
72 double c,
73 double inva,
74 double dr,
75 double mindr,
76 pixman_gradient_walker_t *walker,
77 pixman_repeat_t repeat,
78 int Bpp,
79 pixman_gradient_walker_write_t write_pixel,
80 uint32_t *buffer)
81 {
82 /*
83 * In this function error propagation can lead to bad results:
84 * - discr can have an unbound error (if b*b-a*c is very small),
85 * potentially making it the opposite sign of what it should have been
86 * (thus clearing a pixel that would have been colored or vice-versa)
87 * or propagating the error to sqrtdiscr;
88 * if discr has the wrong sign or b is very small, this can lead to bad
89 * results
90 *
91 * - the algorithm used to compute the solutions of the quadratic
92 * equation is not numerically stable (but saves one division compared
93 * to the numerically stable one);
94 * this can be a problem if a*c is much smaller than b*b
95 *
96 * - the above problems are worse if a is small (as inva becomes bigger)
97 */
98 double discr;
99
100 if (a == 0)
101 {
102 double t;
103
104 if (b == 0)
105 {
106 memset (buffer, 0, Bpp);
107 return;
108 }
109
110 t = pixman_fixed_1 / 2 * c / b;
111 if (repeat == PIXMAN_REPEAT_NONE)
112 {
113 if (0 <= t && t <= pixman_fixed_1)
114 {
115 write_pixel (walker, t, buffer);
116 return;
117 }
118 }
119 else
120 {
121 if (t * dr >= mindr)
122 {
123 write_pixel (walker, t, buffer);
124 return;
125 }
126 }
127
128 memset (buffer, 0, Bpp);
129 return;
130 }
131
132 discr = fdot (b, a, 0, b, -c, 0);
133 if (discr >= 0)
134 {
135 double sqrtdiscr, t0, t1;
136
137 sqrtdiscr = sqrt (discr);
138 t0 = (b + sqrtdiscr) * inva;
139 t1 = (b - sqrtdiscr) * inva;
140
141 /*
142 * The root that must be used is the biggest one that belongs
143 * to the valid range ([0,1] for PIXMAN_REPEAT_NONE, any
144 * solution that results in a positive radius otherwise).
145 *
146 * If a > 0, t0 is the biggest solution, so if it is valid, it
147 * is the correct result.
148 *
149 * If a < 0, only one of the solutions can be valid, so the
150 * order in which they are tested is not important.
151 */
152 if (repeat == PIXMAN_REPEAT_NONE)
153 {
154 if (0 <= t0 && t0 <= pixman_fixed_1)
155 {
156 write_pixel (walker, t0, buffer);
157 return;
158 }
159 else if (0 <= t1 && t1 <= pixman_fixed_1)
160 {
161 write_pixel (walker, t1, buffer);
162 return;
163 }
164 }
165 else
166 {
167 if (t0 * dr >= mindr)
168 {
169 write_pixel (walker, t0, buffer);
170 return;
171 }
172 else if (t1 * dr >= mindr)
173 {
174 write_pixel (walker, t1, buffer);
175 return;
176 }
177 }
178 }
179
180 memset (buffer, 0, Bpp);
181 return;
182 }
183
184 static uint32_t *
radial_get_scanline(pixman_iter_t * iter,const uint32_t * mask,int Bpp,pixman_gradient_walker_write_t write_pixel)185 radial_get_scanline (pixman_iter_t *iter,
186 const uint32_t *mask,
187 int Bpp,
188 pixman_gradient_walker_write_t write_pixel)
189 {
190 /*
191 * Implementation of radial gradients following the PDF specification.
192 * See section 8.7.4.5.4 Type 3 (Radial) Shadings of the PDF Reference
193 * Manual (PDF 32000-1:2008 at the time of this writing).
194 *
195 * In the radial gradient problem we are given two circles (c₁,r₁) and
196 * (c₂,r₂) that define the gradient itself.
197 *
198 * Mathematically the gradient can be defined as the family of circles
199 *
200 * ((1-t)·c₁ + t·(c₂), (1-t)·r₁ + t·r₂)
201 *
202 * excluding those circles whose radius would be < 0. When a point
203 * belongs to more than one circle, the one with a bigger t is the only
204 * one that contributes to its color. When a point does not belong
205 * to any of the circles, it is transparent black, i.e. RGBA (0, 0, 0, 0).
206 * Further limitations on the range of values for t are imposed when
207 * the gradient is not repeated, namely t must belong to [0,1].
208 *
209 * The graphical result is the same as drawing the valid (radius > 0)
210 * circles with increasing t in [-inf, +inf] (or in [0,1] if the gradient
211 * is not repeated) using SOURCE operator composition.
212 *
213 * It looks like a cone pointing towards the viewer if the ending circle
214 * is smaller than the starting one, a cone pointing inside the page if
215 * the starting circle is the smaller one and like a cylinder if they
216 * have the same radius.
217 *
218 * What we actually do is, given the point whose color we are interested
219 * in, compute the t values for that point, solving for t in:
220 *
221 * length((1-t)·c₁ + t·(c₂) - p) = (1-t)·r₁ + t·r₂
222 *
223 * Let's rewrite it in a simpler way, by defining some auxiliary
224 * variables:
225 *
226 * cd = c₂ - c₁
227 * pd = p - c₁
228 * dr = r₂ - r₁
229 * length(t·cd - pd) = r₁ + t·dr
230 *
231 * which actually means
232 *
233 * hypot(t·cdx - pdx, t·cdy - pdy) = r₁ + t·dr
234 *
235 * or
236 *
237 * ⎷((t·cdx - pdx)² + (t·cdy - pdy)²) = r₁ + t·dr.
238 *
239 * If we impose (as stated earlier) that r₁ + t·dr >= 0, it becomes:
240 *
241 * (t·cdx - pdx)² + (t·cdy - pdy)² = (r₁ + t·dr)²
242 *
243 * where we can actually expand the squares and solve for t:
244 *
245 * t²cdx² - 2t·cdx·pdx + pdx² + t²cdy² - 2t·cdy·pdy + pdy² =
246 * = r₁² + 2·r₁·t·dr + t²·dr²
247 *
248 * (cdx² + cdy² - dr²)t² - 2(cdx·pdx + cdy·pdy + r₁·dr)t +
249 * (pdx² + pdy² - r₁²) = 0
250 *
251 * A = cdx² + cdy² - dr²
252 * B = pdx·cdx + pdy·cdy + r₁·dr
253 * C = pdx² + pdy² - r₁²
254 * At² - 2Bt + C = 0
255 *
256 * The solutions (unless the equation degenerates because of A = 0) are:
257 *
258 * t = (B ± ⎷(B² - A·C)) / A
259 *
260 * The solution we are going to prefer is the bigger one, unless the
261 * radius associated to it is negative (or it falls outside the valid t
262 * range).
263 *
264 * Additional observations (useful for optimizations):
265 * A does not depend on p
266 *
267 * A < 0 <=> one of the two circles completely contains the other one
268 * <=> for every p, the radiuses associated with the two t solutions
269 * have opposite sign
270 */
271 pixman_image_t *image = iter->image;
272 int x = iter->x;
273 int y = iter->y;
274 int width = iter->width;
275 uint32_t *buffer = iter->buffer;
276
277 gradient_t *gradient = (gradient_t *)image;
278 radial_gradient_t *radial = (radial_gradient_t *)image;
279 uint32_t *end = buffer + width * (Bpp / 4);
280 pixman_gradient_walker_t walker;
281 pixman_vector_t v, unit;
282
283 /* reference point is the center of the pixel */
284 v.vector[0] = pixman_int_to_fixed (x) + pixman_fixed_1 / 2;
285 v.vector[1] = pixman_int_to_fixed (y) + pixman_fixed_1 / 2;
286 v.vector[2] = pixman_fixed_1;
287
288 _pixman_gradient_walker_init (&walker, gradient, image->common.repeat);
289
290 if (image->common.transform)
291 {
292 if (!pixman_transform_point_3d (image->common.transform, &v))
293 return iter->buffer;
294
295 unit.vector[0] = image->common.transform->matrix[0][0];
296 unit.vector[1] = image->common.transform->matrix[1][0];
297 unit.vector[2] = image->common.transform->matrix[2][0];
298 }
299 else
300 {
301 unit.vector[0] = pixman_fixed_1;
302 unit.vector[1] = 0;
303 unit.vector[2] = 0;
304 }
305
306 if (unit.vector[2] == 0 && v.vector[2] == pixman_fixed_1)
307 {
308 /*
309 * Given:
310 *
311 * t = (B ± ⎷(B² - A·C)) / A
312 *
313 * where
314 *
315 * A = cdx² + cdy² - dr²
316 * B = pdx·cdx + pdy·cdy + r₁·dr
317 * C = pdx² + pdy² - r₁²
318 * det = B² - A·C
319 *
320 * Since we have an affine transformation, we know that (pdx, pdy)
321 * increase linearly with each pixel,
322 *
323 * pdx = pdx₀ + n·ux,
324 * pdy = pdy₀ + n·uy,
325 *
326 * we can then express B, C and det through multiple differentiation.
327 */
328 pixman_fixed_32_32_t b, db, c, dc, ddc;
329
330 /* warning: this computation may overflow */
331 v.vector[0] -= radial->c1.x;
332 v.vector[1] -= radial->c1.y;
333
334 /*
335 * B and C are computed and updated exactly.
336 * If fdot was used instead of dot, in the worst case it would
337 * lose 11 bits of precision in each of the multiplication and
338 * summing up would zero out all the bit that were preserved,
339 * thus making the result 0 instead of the correct one.
340 * This would mean a worst case of unbound relative error or
341 * about 2^10 absolute error
342 */
343 b = dot (v.vector[0], v.vector[1], radial->c1.radius,
344 radial->delta.x, radial->delta.y, radial->delta.radius);
345 db = dot (unit.vector[0], unit.vector[1], 0,
346 radial->delta.x, radial->delta.y, 0);
347
348 c = dot (v.vector[0], v.vector[1],
349 -((pixman_fixed_48_16_t) radial->c1.radius),
350 v.vector[0], v.vector[1], radial->c1.radius);
351 dc = dot (2 * (pixman_fixed_48_16_t) v.vector[0] + unit.vector[0],
352 2 * (pixman_fixed_48_16_t) v.vector[1] + unit.vector[1],
353 0,
354 unit.vector[0], unit.vector[1], 0);
355 ddc = 2 * dot (unit.vector[0], unit.vector[1], 0,
356 unit.vector[0], unit.vector[1], 0);
357
358 while (buffer < end)
359 {
360 if (!mask || *mask++)
361 {
362 radial_write_color (radial->a, b, c,
363 radial->inva,
364 radial->delta.radius,
365 radial->mindr,
366 &walker,
367 image->common.repeat,
368 Bpp,
369 write_pixel,
370 buffer);
371 }
372
373 b += db;
374 c += dc;
375 dc += ddc;
376 buffer += (Bpp / 4);
377 }
378 }
379 else
380 {
381 /* projective */
382 /* Warning:
383 * error propagation guarantees are much looser than in the affine case
384 */
385 while (buffer < end)
386 {
387 if (!mask || *mask++)
388 {
389 if (v.vector[2] != 0)
390 {
391 double pdx, pdy, invv2, b, c;
392
393 invv2 = 1. * pixman_fixed_1 / v.vector[2];
394
395 pdx = v.vector[0] * invv2 - radial->c1.x;
396 /* / pixman_fixed_1 */
397
398 pdy = v.vector[1] * invv2 - radial->c1.y;
399 /* / pixman_fixed_1 */
400
401 b = fdot (pdx, pdy, radial->c1.radius,
402 radial->delta.x, radial->delta.y,
403 radial->delta.radius);
404 /* / pixman_fixed_1 / pixman_fixed_1 */
405
406 c = fdot (pdx, pdy, -radial->c1.radius,
407 pdx, pdy, radial->c1.radius);
408 /* / pixman_fixed_1 / pixman_fixed_1 */
409
410 radial_write_color (radial->a, b, c,
411 radial->inva,
412 radial->delta.radius,
413 radial->mindr,
414 &walker,
415 image->common.repeat,
416 Bpp,
417 write_pixel,
418 buffer);
419 }
420 else
421 {
422 memset (buffer, 0, Bpp);
423 }
424 }
425
426 buffer += (Bpp / 4);
427
428 v.vector[0] += unit.vector[0];
429 v.vector[1] += unit.vector[1];
430 v.vector[2] += unit.vector[2];
431 }
432 }
433
434 iter->y++;
435 return iter->buffer;
436 }
437
438 static uint32_t *
radial_get_scanline_narrow(pixman_iter_t * iter,const uint32_t * mask)439 radial_get_scanline_narrow (pixman_iter_t *iter, const uint32_t *mask)
440 {
441 return radial_get_scanline (iter, mask, 4,
442 _pixman_gradient_walker_write_narrow);
443 }
444
445 static uint32_t *
radial_get_scanline_wide(pixman_iter_t * iter,const uint32_t * mask)446 radial_get_scanline_wide (pixman_iter_t *iter, const uint32_t *mask)
447 {
448 return radial_get_scanline (iter, NULL, 16,
449 _pixman_gradient_walker_write_wide);
450 }
451
452 void
_pixman_radial_gradient_iter_init(pixman_image_t * image,pixman_iter_t * iter)453 _pixman_radial_gradient_iter_init (pixman_image_t *image, pixman_iter_t *iter)
454 {
455 if (iter->iter_flags & ITER_NARROW)
456 iter->get_scanline = radial_get_scanline_narrow;
457 else
458 iter->get_scanline = radial_get_scanline_wide;
459 }
460
461 PIXMAN_EXPORT pixman_image_t *
pixman_image_create_radial_gradient(const pixman_point_fixed_t * inner,const pixman_point_fixed_t * outer,pixman_fixed_t inner_radius,pixman_fixed_t outer_radius,const pixman_gradient_stop_t * stops,int n_stops)462 pixman_image_create_radial_gradient (const pixman_point_fixed_t * inner,
463 const pixman_point_fixed_t * outer,
464 pixman_fixed_t inner_radius,
465 pixman_fixed_t outer_radius,
466 const pixman_gradient_stop_t *stops,
467 int n_stops)
468 {
469 pixman_image_t *image;
470 radial_gradient_t *radial;
471
472 image = _pixman_image_allocate ();
473
474 if (!image)
475 return NULL;
476
477 radial = &image->radial;
478
479 if (!_pixman_init_gradient (&radial->common, stops, n_stops))
480 {
481 free (image);
482 return NULL;
483 }
484
485 image->type = RADIAL;
486
487 radial->c1.x = inner->x;
488 radial->c1.y = inner->y;
489 radial->c1.radius = inner_radius;
490 radial->c2.x = outer->x;
491 radial->c2.y = outer->y;
492 radial->c2.radius = outer_radius;
493
494 /* warning: this computations may overflow */
495 radial->delta.x = radial->c2.x - radial->c1.x;
496 radial->delta.y = radial->c2.y - radial->c1.y;
497 radial->delta.radius = radial->c2.radius - radial->c1.radius;
498
499 /* computed exactly, then cast to double -> every bit of the double
500 representation is correct (53 bits) */
501 radial->a = dot (radial->delta.x, radial->delta.y, -radial->delta.radius,
502 radial->delta.x, radial->delta.y, radial->delta.radius);
503 if (radial->a != 0)
504 radial->inva = 1. * pixman_fixed_1 / radial->a;
505
506 radial->mindr = -1. * pixman_fixed_1 * radial->c1.radius;
507
508 return image;
509 }
510