• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* -*- Mode: c; c-basic-offset: 4; tab-width: 8; indent-tabs-mode: t; -*- */
2 /*
3  *
4  * Copyright © 2000 Keith Packard, member of The XFree86 Project, Inc.
5  * Copyright © 2000 SuSE, Inc.
6  *             2005 Lars Knoll & Zack Rusin, Trolltech
7  * Copyright © 2007 Red Hat, Inc.
8  *
9  *
10  * Permission to use, copy, modify, distribute, and sell this software and its
11  * documentation for any purpose is hereby granted without fee, provided that
12  * the above copyright notice appear in all copies and that both that
13  * copyright notice and this permission notice appear in supporting
14  * documentation, and that the name of Keith Packard not be used in
15  * advertising or publicity pertaining to distribution of the software without
16  * specific, written prior permission.  Keith Packard makes no
17  * representations about the suitability of this software for any purpose.  It
18  * is provided "as is" without express or implied warranty.
19  *
20  * THE COPYRIGHT HOLDERS DISCLAIM ALL WARRANTIES WITH REGARD TO THIS
21  * SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
22  * FITNESS, IN NO EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY
23  * SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
24  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN
25  * AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING
26  * OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
27  * SOFTWARE.
28  */
29 
30 #ifdef HAVE_CONFIG_H
31 #include <config.h>
32 #endif
33 #include <stdlib.h>
34 #include <math.h>
35 #include "pixman-private.h"
36 
37 static inline pixman_fixed_32_32_t
dot(pixman_fixed_48_16_t x1,pixman_fixed_48_16_t y1,pixman_fixed_48_16_t z1,pixman_fixed_48_16_t x2,pixman_fixed_48_16_t y2,pixman_fixed_48_16_t z2)38 dot (pixman_fixed_48_16_t x1,
39      pixman_fixed_48_16_t y1,
40      pixman_fixed_48_16_t z1,
41      pixman_fixed_48_16_t x2,
42      pixman_fixed_48_16_t y2,
43      pixman_fixed_48_16_t z2)
44 {
45     /*
46      * Exact computation, assuming that the input values can
47      * be represented as pixman_fixed_16_16_t
48      */
49     return x1 * x2 + y1 * y2 + z1 * z2;
50 }
51 
52 static inline double
fdot(double x1,double y1,double z1,double x2,double y2,double z2)53 fdot (double x1,
54       double y1,
55       double z1,
56       double x2,
57       double y2,
58       double z2)
59 {
60     /*
61      * Error can be unbound in some special cases.
62      * Using clever dot product algorithms (for example compensated
63      * dot product) would improve this but make the code much less
64      * obvious
65      */
66     return x1 * x2 + y1 * y2 + z1 * z2;
67 }
68 
69 static void
radial_write_color(double a,double b,double c,double inva,double dr,double mindr,pixman_gradient_walker_t * walker,pixman_repeat_t repeat,int Bpp,pixman_gradient_walker_write_t write_pixel,uint32_t * buffer)70 radial_write_color (double                         a,
71 		    double                         b,
72 		    double                         c,
73 		    double                         inva,
74 		    double                         dr,
75 		    double                         mindr,
76 		    pixman_gradient_walker_t      *walker,
77 		    pixman_repeat_t                repeat,
78 		    int                            Bpp,
79 		    pixman_gradient_walker_write_t write_pixel,
80 		    uint32_t                      *buffer)
81 {
82     /*
83      * In this function error propagation can lead to bad results:
84      *  - discr can have an unbound error (if b*b-a*c is very small),
85      *    potentially making it the opposite sign of what it should have been
86      *    (thus clearing a pixel that would have been colored or vice-versa)
87      *    or propagating the error to sqrtdiscr;
88      *    if discr has the wrong sign or b is very small, this can lead to bad
89      *    results
90      *
91      *  - the algorithm used to compute the solutions of the quadratic
92      *    equation is not numerically stable (but saves one division compared
93      *    to the numerically stable one);
94      *    this can be a problem if a*c is much smaller than b*b
95      *
96      *  - the above problems are worse if a is small (as inva becomes bigger)
97      */
98     double discr;
99 
100     if (a == 0)
101     {
102 	double t;
103 
104 	if (b == 0)
105 	{
106 	    memset (buffer, 0, Bpp);
107 	    return;
108 	}
109 
110 	t = pixman_fixed_1 / 2 * c / b;
111 	if (repeat == PIXMAN_REPEAT_NONE)
112 	{
113 	    if (0 <= t && t <= pixman_fixed_1)
114 	    {
115 		write_pixel (walker, t, buffer);
116 		return;
117 	    }
118 	}
119 	else
120 	{
121 	    if (t * dr >= mindr)
122 	    {
123 		write_pixel (walker, t, buffer);
124 		return;
125 	    }
126 	}
127 
128 	memset (buffer, 0, Bpp);
129 	return;
130     }
131 
132     discr = fdot (b, a, 0, b, -c, 0);
133     if (discr >= 0)
134     {
135 	double sqrtdiscr, t0, t1;
136 
137 	sqrtdiscr = sqrt (discr);
138 	t0 = (b + sqrtdiscr) * inva;
139 	t1 = (b - sqrtdiscr) * inva;
140 
141 	/*
142 	 * The root that must be used is the biggest one that belongs
143 	 * to the valid range ([0,1] for PIXMAN_REPEAT_NONE, any
144 	 * solution that results in a positive radius otherwise).
145 	 *
146 	 * If a > 0, t0 is the biggest solution, so if it is valid, it
147 	 * is the correct result.
148 	 *
149 	 * If a < 0, only one of the solutions can be valid, so the
150 	 * order in which they are tested is not important.
151 	 */
152 	if (repeat == PIXMAN_REPEAT_NONE)
153 	{
154 	    if (0 <= t0 && t0 <= pixman_fixed_1)
155 	    {
156 		write_pixel (walker, t0, buffer);
157 		return;
158 	    }
159 	    else if (0 <= t1 && t1 <= pixman_fixed_1)
160 	    {
161 		write_pixel (walker, t1, buffer);
162 		return;
163            }
164 	}
165 	else
166 	{
167 	    if (t0 * dr >= mindr)
168 	    {
169 		write_pixel (walker, t0, buffer);
170 		return;
171 	    }
172 	    else if (t1 * dr >= mindr)
173 	    {
174 		write_pixel (walker, t1, buffer);
175 		return;
176 	    }
177 	}
178     }
179 
180     memset (buffer, 0, Bpp);
181     return;
182 }
183 
184 static uint32_t *
radial_get_scanline(pixman_iter_t * iter,const uint32_t * mask,int Bpp,pixman_gradient_walker_write_t write_pixel)185 radial_get_scanline (pixman_iter_t                 *iter,
186 		     const uint32_t                *mask,
187 		     int                            Bpp,
188 		     pixman_gradient_walker_write_t write_pixel)
189 {
190     /*
191      * Implementation of radial gradients following the PDF specification.
192      * See section 8.7.4.5.4 Type 3 (Radial) Shadings of the PDF Reference
193      * Manual (PDF 32000-1:2008 at the time of this writing).
194      *
195      * In the radial gradient problem we are given two circles (c₁,r₁) and
196      * (c₂,r₂) that define the gradient itself.
197      *
198      * Mathematically the gradient can be defined as the family of circles
199      *
200      *     ((1-t)·c₁ + t·(c₂), (1-t)·r₁ + t·r₂)
201      *
202      * excluding those circles whose radius would be < 0. When a point
203      * belongs to more than one circle, the one with a bigger t is the only
204      * one that contributes to its color. When a point does not belong
205      * to any of the circles, it is transparent black, i.e. RGBA (0, 0, 0, 0).
206      * Further limitations on the range of values for t are imposed when
207      * the gradient is not repeated, namely t must belong to [0,1].
208      *
209      * The graphical result is the same as drawing the valid (radius > 0)
210      * circles with increasing t in [-inf, +inf] (or in [0,1] if the gradient
211      * is not repeated) using SOURCE operator composition.
212      *
213      * It looks like a cone pointing towards the viewer if the ending circle
214      * is smaller than the starting one, a cone pointing inside the page if
215      * the starting circle is the smaller one and like a cylinder if they
216      * have the same radius.
217      *
218      * What we actually do is, given the point whose color we are interested
219      * in, compute the t values for that point, solving for t in:
220      *
221      *     length((1-t)·c₁ + t·(c₂) - p) = (1-t)·r₁ + t·r₂
222      *
223      * Let's rewrite it in a simpler way, by defining some auxiliary
224      * variables:
225      *
226      *     cd = c₂ - c₁
227      *     pd = p - c₁
228      *     dr = r₂ - r₁
229      *     length(t·cd - pd) = r₁ + t·dr
230      *
231      * which actually means
232      *
233      *     hypot(t·cdx - pdx, t·cdy - pdy) = r₁ + t·dr
234      *
235      * or
236      *
237      *     ⎷((t·cdx - pdx)² + (t·cdy - pdy)²) = r₁ + t·dr.
238      *
239      * If we impose (as stated earlier) that r₁ + t·dr >= 0, it becomes:
240      *
241      *     (t·cdx - pdx)² + (t·cdy - pdy)² = (r₁ + t·dr)²
242      *
243      * where we can actually expand the squares and solve for t:
244      *
245      *     t²cdx² - 2t·cdx·pdx + pdx² + t²cdy² - 2t·cdy·pdy + pdy² =
246      *       = r₁² + 2·r₁·t·dr + t²·dr²
247      *
248      *     (cdx² + cdy² - dr²)t² - 2(cdx·pdx + cdy·pdy + r₁·dr)t +
249      *         (pdx² + pdy² - r₁²) = 0
250      *
251      *     A = cdx² + cdy² - dr²
252      *     B = pdx·cdx + pdy·cdy + r₁·dr
253      *     C = pdx² + pdy² - r₁²
254      *     At² - 2Bt + C = 0
255      *
256      * The solutions (unless the equation degenerates because of A = 0) are:
257      *
258      *     t = (B ± ⎷(B² - A·C)) / A
259      *
260      * The solution we are going to prefer is the bigger one, unless the
261      * radius associated to it is negative (or it falls outside the valid t
262      * range).
263      *
264      * Additional observations (useful for optimizations):
265      * A does not depend on p
266      *
267      * A < 0 <=> one of the two circles completely contains the other one
268      *   <=> for every p, the radiuses associated with the two t solutions
269      *       have opposite sign
270      */
271     pixman_image_t *image = iter->image;
272     int x = iter->x;
273     int y = iter->y;
274     int width = iter->width;
275     uint32_t *buffer = iter->buffer;
276 
277     gradient_t *gradient = (gradient_t *)image;
278     radial_gradient_t *radial = (radial_gradient_t *)image;
279     uint32_t *end = buffer + width * (Bpp / 4);
280     pixman_gradient_walker_t walker;
281     pixman_vector_t v, unit;
282 
283     /* reference point is the center of the pixel */
284     v.vector[0] = pixman_int_to_fixed (x) + pixman_fixed_1 / 2;
285     v.vector[1] = pixman_int_to_fixed (y) + pixman_fixed_1 / 2;
286     v.vector[2] = pixman_fixed_1;
287 
288     _pixman_gradient_walker_init (&walker, gradient, image->common.repeat);
289 
290     if (image->common.transform)
291     {
292 	if (!pixman_transform_point_3d (image->common.transform, &v))
293 	    return iter->buffer;
294 
295 	unit.vector[0] = image->common.transform->matrix[0][0];
296 	unit.vector[1] = image->common.transform->matrix[1][0];
297 	unit.vector[2] = image->common.transform->matrix[2][0];
298     }
299     else
300     {
301 	unit.vector[0] = pixman_fixed_1;
302 	unit.vector[1] = 0;
303 	unit.vector[2] = 0;
304     }
305 
306     if (unit.vector[2] == 0 && v.vector[2] == pixman_fixed_1)
307     {
308 	/*
309 	 * Given:
310 	 *
311 	 * t = (B ± ⎷(B² - A·C)) / A
312 	 *
313 	 * where
314 	 *
315 	 * A = cdx² + cdy² - dr²
316 	 * B = pdx·cdx + pdy·cdy + r₁·dr
317 	 * C = pdx² + pdy² - r₁²
318 	 * det = B² - A·C
319 	 *
320 	 * Since we have an affine transformation, we know that (pdx, pdy)
321 	 * increase linearly with each pixel,
322 	 *
323 	 * pdx = pdx₀ + n·ux,
324 	 * pdy = pdy₀ + n·uy,
325 	 *
326 	 * we can then express B, C and det through multiple differentiation.
327 	 */
328 	pixman_fixed_32_32_t b, db, c, dc, ddc;
329 
330 	/* warning: this computation may overflow */
331 	v.vector[0] -= radial->c1.x;
332 	v.vector[1] -= radial->c1.y;
333 
334 	/*
335 	 * B and C are computed and updated exactly.
336 	 * If fdot was used instead of dot, in the worst case it would
337 	 * lose 11 bits of precision in each of the multiplication and
338 	 * summing up would zero out all the bit that were preserved,
339 	 * thus making the result 0 instead of the correct one.
340 	 * This would mean a worst case of unbound relative error or
341 	 * about 2^10 absolute error
342 	 */
343 	b = dot (v.vector[0], v.vector[1], radial->c1.radius,
344 		 radial->delta.x, radial->delta.y, radial->delta.radius);
345 	db = dot (unit.vector[0], unit.vector[1], 0,
346 		  radial->delta.x, radial->delta.y, 0);
347 
348 	c = dot (v.vector[0], v.vector[1],
349 		 -((pixman_fixed_48_16_t) radial->c1.radius),
350 		 v.vector[0], v.vector[1], radial->c1.radius);
351 	dc = dot (2 * (pixman_fixed_48_16_t) v.vector[0] + unit.vector[0],
352 		  2 * (pixman_fixed_48_16_t) v.vector[1] + unit.vector[1],
353 		  0,
354 		  unit.vector[0], unit.vector[1], 0);
355 	ddc = 2 * dot (unit.vector[0], unit.vector[1], 0,
356 		       unit.vector[0], unit.vector[1], 0);
357 
358 	while (buffer < end)
359 	{
360 	    if (!mask || *mask++)
361 	    {
362 		radial_write_color (radial->a, b, c,
363 				    radial->inva,
364 				    radial->delta.radius,
365 				    radial->mindr,
366 				    &walker,
367 				    image->common.repeat,
368 				    Bpp,
369 				    write_pixel,
370 				    buffer);
371 	    }
372 
373 	    b += db;
374 	    c += dc;
375 	    dc += ddc;
376 	    buffer += (Bpp / 4);
377 	}
378     }
379     else
380     {
381 	/* projective */
382 	/* Warning:
383 	 * error propagation guarantees are much looser than in the affine case
384 	 */
385 	while (buffer < end)
386 	{
387 	    if (!mask || *mask++)
388 	    {
389 		if (v.vector[2] != 0)
390 		{
391 		    double pdx, pdy, invv2, b, c;
392 
393 		    invv2 = 1. * pixman_fixed_1 / v.vector[2];
394 
395 		    pdx = v.vector[0] * invv2 - radial->c1.x;
396 		    /*    / pixman_fixed_1 */
397 
398 		    pdy = v.vector[1] * invv2 - radial->c1.y;
399 		    /*    / pixman_fixed_1 */
400 
401 		    b = fdot (pdx, pdy, radial->c1.radius,
402 			      radial->delta.x, radial->delta.y,
403 			      radial->delta.radius);
404 		    /*  / pixman_fixed_1 / pixman_fixed_1 */
405 
406 		    c = fdot (pdx, pdy, -radial->c1.radius,
407 			      pdx, pdy, radial->c1.radius);
408 		    /*  / pixman_fixed_1 / pixman_fixed_1 */
409 
410 		    radial_write_color (radial->a, b, c,
411 					radial->inva,
412 					radial->delta.radius,
413 					radial->mindr,
414 					&walker,
415 					image->common.repeat,
416 					Bpp,
417 					write_pixel,
418 					buffer);
419 		}
420 		else
421 		{
422 		    memset (buffer, 0, Bpp);
423 		}
424 	    }
425 
426 	    buffer += (Bpp / 4);
427 
428 	    v.vector[0] += unit.vector[0];
429 	    v.vector[1] += unit.vector[1];
430 	    v.vector[2] += unit.vector[2];
431 	}
432     }
433 
434     iter->y++;
435     return iter->buffer;
436 }
437 
438 static uint32_t *
radial_get_scanline_narrow(pixman_iter_t * iter,const uint32_t * mask)439 radial_get_scanline_narrow (pixman_iter_t *iter, const uint32_t *mask)
440 {
441     return radial_get_scanline (iter, mask, 4,
442 				_pixman_gradient_walker_write_narrow);
443 }
444 
445 static uint32_t *
radial_get_scanline_wide(pixman_iter_t * iter,const uint32_t * mask)446 radial_get_scanline_wide (pixman_iter_t *iter, const uint32_t *mask)
447 {
448     return radial_get_scanline (iter, NULL, 16,
449 				_pixman_gradient_walker_write_wide);
450 }
451 
452 void
_pixman_radial_gradient_iter_init(pixman_image_t * image,pixman_iter_t * iter)453 _pixman_radial_gradient_iter_init (pixman_image_t *image, pixman_iter_t *iter)
454 {
455     if (iter->iter_flags & ITER_NARROW)
456 	iter->get_scanline = radial_get_scanline_narrow;
457     else
458 	iter->get_scanline = radial_get_scanline_wide;
459 }
460 
461 PIXMAN_EXPORT pixman_image_t *
pixman_image_create_radial_gradient(const pixman_point_fixed_t * inner,const pixman_point_fixed_t * outer,pixman_fixed_t inner_radius,pixman_fixed_t outer_radius,const pixman_gradient_stop_t * stops,int n_stops)462 pixman_image_create_radial_gradient (const pixman_point_fixed_t *  inner,
463 				     const pixman_point_fixed_t *  outer,
464 				     pixman_fixed_t                inner_radius,
465 				     pixman_fixed_t                outer_radius,
466 				     const pixman_gradient_stop_t *stops,
467 				     int                           n_stops)
468 {
469     pixman_image_t *image;
470     radial_gradient_t *radial;
471 
472     image = _pixman_image_allocate ();
473 
474     if (!image)
475 	return NULL;
476 
477     radial = &image->radial;
478 
479     if (!_pixman_init_gradient (&radial->common, stops, n_stops))
480     {
481 	free (image);
482 	return NULL;
483     }
484 
485     image->type = RADIAL;
486 
487     radial->c1.x = inner->x;
488     radial->c1.y = inner->y;
489     radial->c1.radius = inner_radius;
490     radial->c2.x = outer->x;
491     radial->c2.y = outer->y;
492     radial->c2.radius = outer_radius;
493 
494     /* warning: this computations may overflow */
495     radial->delta.x = radial->c2.x - radial->c1.x;
496     radial->delta.y = radial->c2.y - radial->c1.y;
497     radial->delta.radius = radial->c2.radius - radial->c1.radius;
498 
499     /* computed exactly, then cast to double -> every bit of the double
500        representation is correct (53 bits) */
501     radial->a = dot (radial->delta.x, radial->delta.y, -radial->delta.radius,
502 		     radial->delta.x, radial->delta.y, radial->delta.radius);
503     if (radial->a != 0)
504 	radial->inva = 1. * pixman_fixed_1 / radial->a;
505 
506     radial->mindr = -1. * pixman_fixed_1 * radial->c1.radius;
507 
508     return image;
509 }
510