• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 1995-2021 The OpenSSL Project Authors. All Rights Reserved.
3  *
4  * Licensed under the OpenSSL license (the "License").  You may not use
5  * this file except in compliance with the License.  You can obtain a copy
6  * in the file LICENSE in the source distribution or at
7  * https://www.openssl.org/source/license.html
8  */
9 
10 #include <stdio.h>
11 #include <time.h>
12 #include "internal/cryptlib.h"
13 #include <openssl/opensslconf.h>
14 #include "crypto/rand.h"
15 #include <openssl/engine.h>
16 #include "internal/thread_once.h"
17 #include "rand_local.h"
18 #include "e_os.h"
19 
20 #ifndef OPENSSL_NO_ENGINE
21 /* non-NULL if default_RAND_meth is ENGINE-provided */
22 static ENGINE *funct_ref;
23 static CRYPTO_RWLOCK *rand_engine_lock;
24 #endif
25 static CRYPTO_RWLOCK *rand_meth_lock;
26 static const RAND_METHOD *default_RAND_meth;
27 static CRYPTO_ONCE rand_init = CRYPTO_ONCE_STATIC_INIT;
28 
29 static CRYPTO_RWLOCK *rand_nonce_lock;
30 static int rand_nonce_count;
31 
32 static int rand_inited = 0;
33 
34 #ifdef OPENSSL_RAND_SEED_RDTSC
35 /*
36  * IMPORTANT NOTE:  It is not currently possible to use this code
37  * because we are not sure about the amount of randomness it provides.
38  * Some SP900 tests have been run, but there is internal skepticism.
39  * So for now this code is not used.
40  */
41 # error "RDTSC enabled?  Should not be possible!"
42 
43 /*
44  * Acquire entropy from high-speed clock
45  *
46  * Since we get some randomness from the low-order bits of the
47  * high-speed clock, it can help.
48  *
49  * Returns the total entropy count, if it exceeds the requested
50  * entropy count. Otherwise, returns an entropy count of 0.
51  */
rand_acquire_entropy_from_tsc(RAND_POOL * pool)52 size_t rand_acquire_entropy_from_tsc(RAND_POOL *pool)
53 {
54     unsigned char c;
55     int i;
56 
57     if ((OPENSSL_ia32cap_P[0] & (1 << 4)) != 0) {
58         for (i = 0; i < TSC_READ_COUNT; i++) {
59             c = (unsigned char)(OPENSSL_rdtsc() & 0xFF);
60             rand_pool_add(pool, &c, 1, 4);
61         }
62     }
63     return rand_pool_entropy_available(pool);
64 }
65 #endif
66 
67 #ifdef OPENSSL_RAND_SEED_RDCPU
68 size_t OPENSSL_ia32_rdseed_bytes(unsigned char *buf, size_t len);
69 size_t OPENSSL_ia32_rdrand_bytes(unsigned char *buf, size_t len);
70 
71 extern unsigned int OPENSSL_ia32cap_P[];
72 
73 /*
74  * Acquire entropy using Intel-specific cpu instructions
75  *
76  * Uses the RDSEED instruction if available, otherwise uses
77  * RDRAND if available.
78  *
79  * For the differences between RDSEED and RDRAND, and why RDSEED
80  * is the preferred choice, see https://goo.gl/oK3KcN
81  *
82  * Returns the total entropy count, if it exceeds the requested
83  * entropy count. Otherwise, returns an entropy count of 0.
84  */
rand_acquire_entropy_from_cpu(RAND_POOL * pool)85 size_t rand_acquire_entropy_from_cpu(RAND_POOL *pool)
86 {
87     size_t bytes_needed;
88     unsigned char *buffer;
89 
90     bytes_needed = rand_pool_bytes_needed(pool, 1 /*entropy_factor*/);
91     if (bytes_needed > 0) {
92         buffer = rand_pool_add_begin(pool, bytes_needed);
93 
94         if (buffer != NULL) {
95             /* Whichever comes first, use RDSEED, RDRAND or nothing */
96             if ((OPENSSL_ia32cap_P[2] & (1 << 18)) != 0) {
97                 if (OPENSSL_ia32_rdseed_bytes(buffer, bytes_needed)
98                     == bytes_needed) {
99                     rand_pool_add_end(pool, bytes_needed, 8 * bytes_needed);
100                 }
101             } else if ((OPENSSL_ia32cap_P[1] & (1 << (62 - 32))) != 0) {
102                 if (OPENSSL_ia32_rdrand_bytes(buffer, bytes_needed)
103                     == bytes_needed) {
104                     rand_pool_add_end(pool, bytes_needed, 8 * bytes_needed);
105                 }
106             } else {
107                 rand_pool_add_end(pool, 0, 0);
108             }
109         }
110     }
111 
112     return rand_pool_entropy_available(pool);
113 }
114 #endif
115 
116 
117 /*
118  * Implements the get_entropy() callback (see RAND_DRBG_set_callbacks())
119  *
120  * If the DRBG has a parent, then the required amount of entropy input
121  * is fetched using the parent's RAND_DRBG_generate().
122  *
123  * Otherwise, the entropy is polled from the system entropy sources
124  * using rand_pool_acquire_entropy().
125  *
126  * If a random pool has been added to the DRBG using RAND_add(), then
127  * its entropy will be used up first.
128  */
rand_drbg_get_entropy(RAND_DRBG * drbg,unsigned char ** pout,int entropy,size_t min_len,size_t max_len,int prediction_resistance)129 size_t rand_drbg_get_entropy(RAND_DRBG *drbg,
130                              unsigned char **pout,
131                              int entropy, size_t min_len, size_t max_len,
132                              int prediction_resistance)
133 {
134     size_t ret = 0;
135     size_t entropy_available = 0;
136     RAND_POOL *pool;
137 
138     if (drbg->parent != NULL && drbg->strength > drbg->parent->strength) {
139         /*
140          * We currently don't support the algorithm from NIST SP 800-90C
141          * 10.1.2 to use a weaker DRBG as source
142          */
143         RANDerr(RAND_F_RAND_DRBG_GET_ENTROPY, RAND_R_PARENT_STRENGTH_TOO_WEAK);
144         return 0;
145     }
146 
147     if (drbg->seed_pool != NULL) {
148         pool = drbg->seed_pool;
149         pool->entropy_requested = entropy;
150     } else {
151         pool = rand_pool_new(entropy, drbg->secure, min_len, max_len);
152         if (pool == NULL)
153             return 0;
154     }
155 
156     if (drbg->parent != NULL) {
157         size_t bytes_needed = rand_pool_bytes_needed(pool, 1 /*entropy_factor*/);
158         unsigned char *buffer = rand_pool_add_begin(pool, bytes_needed);
159 
160         if (buffer != NULL) {
161             size_t bytes = 0;
162 
163             /*
164              * Get random data from parent. Include our address as additional input,
165              * in order to provide some additional distinction between different
166              * DRBG child instances.
167              * Our lock is already held, but we need to lock our parent before
168              * generating bits from it. (Note: taking the lock will be a no-op
169              * if locking if drbg->parent->lock == NULL.)
170              */
171             rand_drbg_lock(drbg->parent);
172             if (RAND_DRBG_generate(drbg->parent,
173                                    buffer, bytes_needed,
174                                    prediction_resistance,
175                                    (unsigned char *)&drbg, sizeof(drbg)) != 0)
176                 bytes = bytes_needed;
177             rand_drbg_unlock(drbg->parent);
178 
179             rand_pool_add_end(pool, bytes, 8 * bytes);
180             entropy_available = rand_pool_entropy_available(pool);
181         }
182 
183     } else {
184         if (prediction_resistance) {
185             /*
186              * We don't have any entropy sources that comply with the NIST
187              * standard to provide prediction resistance (see NIST SP 800-90C,
188              * Section 5.4).
189              */
190             RANDerr(RAND_F_RAND_DRBG_GET_ENTROPY,
191                     RAND_R_PREDICTION_RESISTANCE_NOT_SUPPORTED);
192             goto err;
193         }
194 
195         /* Get entropy by polling system entropy sources. */
196         entropy_available = rand_pool_acquire_entropy(pool);
197     }
198 
199     if (entropy_available > 0) {
200         ret   = rand_pool_length(pool);
201         *pout = rand_pool_detach(pool);
202     }
203 
204  err:
205     if (drbg->seed_pool == NULL)
206         rand_pool_free(pool);
207     return ret;
208 }
209 
210 /*
211  * Implements the cleanup_entropy() callback (see RAND_DRBG_set_callbacks())
212  *
213  */
rand_drbg_cleanup_entropy(RAND_DRBG * drbg,unsigned char * out,size_t outlen)214 void rand_drbg_cleanup_entropy(RAND_DRBG *drbg,
215                                unsigned char *out, size_t outlen)
216 {
217     if (drbg->seed_pool == NULL) {
218         if (drbg->secure)
219             OPENSSL_secure_clear_free(out, outlen);
220         else
221             OPENSSL_clear_free(out, outlen);
222     }
223 }
224 
225 
226 /*
227  * Implements the get_nonce() callback (see RAND_DRBG_set_callbacks())
228  *
229  */
rand_drbg_get_nonce(RAND_DRBG * drbg,unsigned char ** pout,int entropy,size_t min_len,size_t max_len)230 size_t rand_drbg_get_nonce(RAND_DRBG *drbg,
231                            unsigned char **pout,
232                            int entropy, size_t min_len, size_t max_len)
233 {
234     size_t ret = 0;
235     RAND_POOL *pool;
236 
237     struct {
238         void * instance;
239         int count;
240     } data;
241 
242     memset(&data, 0, sizeof(data));
243     pool = rand_pool_new(0, 0, min_len, max_len);
244     if (pool == NULL)
245         return 0;
246 
247     if (rand_pool_add_nonce_data(pool) == 0)
248         goto err;
249 
250     data.instance = drbg;
251     CRYPTO_atomic_add(&rand_nonce_count, 1, &data.count, rand_nonce_lock);
252 
253     if (rand_pool_add(pool, (unsigned char *)&data, sizeof(data), 0) == 0)
254         goto err;
255 
256     ret   = rand_pool_length(pool);
257     *pout = rand_pool_detach(pool);
258 
259  err:
260     rand_pool_free(pool);
261 
262     return ret;
263 }
264 
265 /*
266  * Implements the cleanup_nonce() callback (see RAND_DRBG_set_callbacks())
267  *
268  */
rand_drbg_cleanup_nonce(RAND_DRBG * drbg,unsigned char * out,size_t outlen)269 void rand_drbg_cleanup_nonce(RAND_DRBG *drbg,
270                              unsigned char *out, size_t outlen)
271 {
272     OPENSSL_clear_free(out, outlen);
273 }
274 
275 /*
276  * Generate additional data that can be used for the drbg. The data does
277  * not need to contain entropy, but it's useful if it contains at least
278  * some bits that are unpredictable.
279  *
280  * Returns 0 on failure.
281  *
282  * On success it allocates a buffer at |*pout| and returns the length of
283  * the data. The buffer should get freed using OPENSSL_secure_clear_free().
284  */
rand_drbg_get_additional_data(RAND_POOL * pool,unsigned char ** pout)285 size_t rand_drbg_get_additional_data(RAND_POOL *pool, unsigned char **pout)
286 {
287     size_t ret = 0;
288 
289     if (rand_pool_add_additional_data(pool) == 0)
290         goto err;
291 
292     ret = rand_pool_length(pool);
293     *pout = rand_pool_detach(pool);
294 
295  err:
296     return ret;
297 }
298 
rand_drbg_cleanup_additional_data(RAND_POOL * pool,unsigned char * out)299 void rand_drbg_cleanup_additional_data(RAND_POOL *pool, unsigned char *out)
300 {
301     rand_pool_reattach(pool, out);
302 }
303 
DEFINE_RUN_ONCE_STATIC(do_rand_init)304 DEFINE_RUN_ONCE_STATIC(do_rand_init)
305 {
306 #ifndef OPENSSL_NO_ENGINE
307     rand_engine_lock = CRYPTO_THREAD_lock_new();
308     if (rand_engine_lock == NULL)
309         return 0;
310 #endif
311 
312     rand_meth_lock = CRYPTO_THREAD_lock_new();
313     if (rand_meth_lock == NULL)
314         goto err1;
315 
316     rand_nonce_lock = CRYPTO_THREAD_lock_new();
317     if (rand_nonce_lock == NULL)
318         goto err2;
319 
320     if (!rand_pool_init())
321         goto err3;
322 
323     rand_inited = 1;
324     return 1;
325 
326 err3:
327     CRYPTO_THREAD_lock_free(rand_nonce_lock);
328     rand_nonce_lock = NULL;
329 err2:
330     CRYPTO_THREAD_lock_free(rand_meth_lock);
331     rand_meth_lock = NULL;
332 err1:
333 #ifndef OPENSSL_NO_ENGINE
334     CRYPTO_THREAD_lock_free(rand_engine_lock);
335     rand_engine_lock = NULL;
336 #endif
337     return 0;
338 }
339 
rand_cleanup_int(void)340 void rand_cleanup_int(void)
341 {
342     const RAND_METHOD *meth = default_RAND_meth;
343 
344     if (!rand_inited)
345         return;
346 
347     if (meth != NULL && meth->cleanup != NULL)
348         meth->cleanup();
349     RAND_set_rand_method(NULL);
350     rand_pool_cleanup();
351 #ifndef OPENSSL_NO_ENGINE
352     CRYPTO_THREAD_lock_free(rand_engine_lock);
353     rand_engine_lock = NULL;
354 #endif
355     CRYPTO_THREAD_lock_free(rand_meth_lock);
356     rand_meth_lock = NULL;
357     CRYPTO_THREAD_lock_free(rand_nonce_lock);
358     rand_nonce_lock = NULL;
359     rand_inited = 0;
360 }
361 
362 /*
363  * RAND_close_seed_files() ensures that any seed file descriptors are
364  * closed after use.
365  */
RAND_keep_random_devices_open(int keep)366 void RAND_keep_random_devices_open(int keep)
367 {
368     if (RUN_ONCE(&rand_init, do_rand_init))
369         rand_pool_keep_random_devices_open(keep);
370 }
371 
372 /*
373  * RAND_poll() reseeds the default RNG using random input
374  *
375  * The random input is obtained from polling various entropy
376  * sources which depend on the operating system and are
377  * configurable via the --with-rand-seed configure option.
378  */
RAND_poll(void)379 int RAND_poll(void)
380 {
381     int ret = 0;
382 
383     RAND_POOL *pool = NULL;
384 
385     const RAND_METHOD *meth = RAND_get_rand_method();
386 
387     if (meth == NULL)
388         return 0;
389 
390     if (meth == RAND_OpenSSL()) {
391         /* fill random pool and seed the master DRBG */
392         RAND_DRBG *drbg = RAND_DRBG_get0_master();
393 
394         if (drbg == NULL)
395             return 0;
396 
397         rand_drbg_lock(drbg);
398         ret = rand_drbg_restart(drbg, NULL, 0, 0);
399         rand_drbg_unlock(drbg);
400 
401         return ret;
402 
403     } else {
404         /* fill random pool and seed the current legacy RNG */
405         pool = rand_pool_new(RAND_DRBG_STRENGTH, 1,
406                              (RAND_DRBG_STRENGTH + 7) / 8,
407                              RAND_POOL_MAX_LENGTH);
408         if (pool == NULL)
409             return 0;
410 
411         if (rand_pool_acquire_entropy(pool) == 0)
412             goto err;
413 
414         if (meth->add == NULL
415             || meth->add(rand_pool_buffer(pool),
416                          rand_pool_length(pool),
417                          (rand_pool_entropy(pool) / 8.0)) == 0)
418             goto err;
419 
420         ret = 1;
421     }
422 
423 err:
424     rand_pool_free(pool);
425     return ret;
426 }
427 
428 /*
429  * Allocate memory and initialize a new random pool
430  */
431 
rand_pool_new(int entropy_requested,int secure,size_t min_len,size_t max_len)432 RAND_POOL *rand_pool_new(int entropy_requested, int secure,
433                          size_t min_len, size_t max_len)
434 {
435     RAND_POOL *pool;
436     size_t min_alloc_size = RAND_POOL_MIN_ALLOCATION(secure);
437 
438     if (!RUN_ONCE(&rand_init, do_rand_init))
439         return NULL;
440 
441     pool = OPENSSL_zalloc(sizeof(*pool));
442     if (pool == NULL) {
443         RANDerr(RAND_F_RAND_POOL_NEW, ERR_R_MALLOC_FAILURE);
444         return NULL;
445     }
446 
447     pool->min_len = min_len;
448     pool->max_len = (max_len > RAND_POOL_MAX_LENGTH) ?
449         RAND_POOL_MAX_LENGTH : max_len;
450     pool->alloc_len = min_len < min_alloc_size ? min_alloc_size : min_len;
451     if (pool->alloc_len > pool->max_len)
452         pool->alloc_len = pool->max_len;
453 
454     if (secure)
455         pool->buffer = OPENSSL_secure_zalloc(pool->alloc_len);
456     else
457         pool->buffer = OPENSSL_zalloc(pool->alloc_len);
458 
459     if (pool->buffer == NULL) {
460         RANDerr(RAND_F_RAND_POOL_NEW, ERR_R_MALLOC_FAILURE);
461         goto err;
462     }
463 
464     pool->entropy_requested = entropy_requested;
465     pool->secure = secure;
466 
467     return pool;
468 
469 err:
470     OPENSSL_free(pool);
471     return NULL;
472 }
473 
474 /*
475  * Attach new random pool to the given buffer
476  *
477  * This function is intended to be used only for feeding random data
478  * provided by RAND_add() and RAND_seed() into the <master> DRBG.
479  */
rand_pool_attach(const unsigned char * buffer,size_t len,size_t entropy)480 RAND_POOL *rand_pool_attach(const unsigned char *buffer, size_t len,
481                             size_t entropy)
482 {
483     RAND_POOL *pool = OPENSSL_zalloc(sizeof(*pool));
484 
485     if (pool == NULL) {
486         RANDerr(RAND_F_RAND_POOL_ATTACH, ERR_R_MALLOC_FAILURE);
487         return NULL;
488     }
489 
490     /*
491      * The const needs to be cast away, but attached buffers will not be
492      * modified (in contrary to allocated buffers which are zeroed and
493      * freed in the end).
494      */
495     pool->buffer = (unsigned char *) buffer;
496     pool->len = len;
497 
498     pool->attached = 1;
499 
500     pool->min_len = pool->max_len = pool->alloc_len = pool->len;
501     pool->entropy = entropy;
502 
503     return pool;
504 }
505 
506 /*
507  * Free |pool|, securely erasing its buffer.
508  */
rand_pool_free(RAND_POOL * pool)509 void rand_pool_free(RAND_POOL *pool)
510 {
511     if (pool == NULL)
512         return;
513 
514     /*
515      * Although it would be advisable from a cryptographical viewpoint,
516      * we are not allowed to clear attached buffers, since they are passed
517      * to rand_pool_attach() as `const unsigned char*`.
518      * (see corresponding comment in rand_pool_attach()).
519      */
520     if (!pool->attached) {
521         if (pool->secure)
522             OPENSSL_secure_clear_free(pool->buffer, pool->alloc_len);
523         else
524             OPENSSL_clear_free(pool->buffer, pool->alloc_len);
525     }
526 
527     OPENSSL_free(pool);
528 }
529 
530 /*
531  * Return the |pool|'s buffer to the caller (readonly).
532  */
rand_pool_buffer(RAND_POOL * pool)533 const unsigned char *rand_pool_buffer(RAND_POOL *pool)
534 {
535     return pool->buffer;
536 }
537 
538 /*
539  * Return the |pool|'s entropy to the caller.
540  */
rand_pool_entropy(RAND_POOL * pool)541 size_t rand_pool_entropy(RAND_POOL *pool)
542 {
543     return pool->entropy;
544 }
545 
546 /*
547  * Return the |pool|'s buffer length to the caller.
548  */
rand_pool_length(RAND_POOL * pool)549 size_t rand_pool_length(RAND_POOL *pool)
550 {
551     return pool->len;
552 }
553 
554 /*
555  * Detach the |pool| buffer and return it to the caller.
556  * It's the responsibility of the caller to free the buffer
557  * using OPENSSL_secure_clear_free() or to re-attach it
558  * again to the pool using rand_pool_reattach().
559  */
rand_pool_detach(RAND_POOL * pool)560 unsigned char *rand_pool_detach(RAND_POOL *pool)
561 {
562     unsigned char *ret = pool->buffer;
563     pool->buffer = NULL;
564     pool->entropy = 0;
565     return ret;
566 }
567 
568 /*
569  * Re-attach the |pool| buffer. It is only allowed to pass
570  * the |buffer| which was previously detached from the same pool.
571  */
rand_pool_reattach(RAND_POOL * pool,unsigned char * buffer)572 void rand_pool_reattach(RAND_POOL *pool, unsigned char *buffer)
573 {
574     pool->buffer = buffer;
575     OPENSSL_cleanse(pool->buffer, pool->len);
576     pool->len = 0;
577 }
578 
579 /*
580  * If |entropy_factor| bits contain 1 bit of entropy, how many bytes does one
581  * need to obtain at least |bits| bits of entropy?
582  */
583 #define ENTROPY_TO_BYTES(bits, entropy_factor) \
584     (((bits) * (entropy_factor) + 7) / 8)
585 
586 
587 /*
588  * Checks whether the |pool|'s entropy is available to the caller.
589  * This is the case when entropy count and buffer length are high enough.
590  * Returns
591  *
592  *  |entropy|  if the entropy count and buffer size is large enough
593  *      0      otherwise
594  */
rand_pool_entropy_available(RAND_POOL * pool)595 size_t rand_pool_entropy_available(RAND_POOL *pool)
596 {
597     if (pool->entropy < pool->entropy_requested)
598         return 0;
599 
600     if (pool->len < pool->min_len)
601         return 0;
602 
603     return pool->entropy;
604 }
605 
606 /*
607  * Returns the (remaining) amount of entropy needed to fill
608  * the random pool.
609  */
610 
rand_pool_entropy_needed(RAND_POOL * pool)611 size_t rand_pool_entropy_needed(RAND_POOL *pool)
612 {
613     if (pool->entropy < pool->entropy_requested)
614         return pool->entropy_requested - pool->entropy;
615 
616     return 0;
617 }
618 
619 /* Increase the allocation size -- not usable for an attached pool */
rand_pool_grow(RAND_POOL * pool,size_t len)620 static int rand_pool_grow(RAND_POOL *pool, size_t len)
621 {
622     if (len > pool->alloc_len - pool->len) {
623         unsigned char *p;
624         const size_t limit = pool->max_len / 2;
625         size_t newlen = pool->alloc_len;
626 
627         if (pool->attached || len > pool->max_len - pool->len) {
628             RANDerr(RAND_F_RAND_POOL_GROW, ERR_R_INTERNAL_ERROR);
629             return 0;
630         }
631 
632         do
633             newlen = newlen < limit ? newlen * 2 : pool->max_len;
634         while (len > newlen - pool->len);
635 
636         if (pool->secure)
637             p = OPENSSL_secure_zalloc(newlen);
638         else
639             p = OPENSSL_zalloc(newlen);
640         if (p == NULL) {
641             RANDerr(RAND_F_RAND_POOL_GROW, ERR_R_MALLOC_FAILURE);
642             return 0;
643         }
644         memcpy(p, pool->buffer, pool->len);
645         if (pool->secure)
646             OPENSSL_secure_clear_free(pool->buffer, pool->alloc_len);
647         else
648             OPENSSL_clear_free(pool->buffer, pool->alloc_len);
649         pool->buffer = p;
650         pool->alloc_len = newlen;
651     }
652     return 1;
653 }
654 
655 /*
656  * Returns the number of bytes needed to fill the pool, assuming
657  * the input has 1 / |entropy_factor| entropy bits per data bit.
658  * In case of an error, 0 is returned.
659  */
660 
rand_pool_bytes_needed(RAND_POOL * pool,unsigned int entropy_factor)661 size_t rand_pool_bytes_needed(RAND_POOL *pool, unsigned int entropy_factor)
662 {
663     size_t bytes_needed;
664     size_t entropy_needed = rand_pool_entropy_needed(pool);
665 
666     if (entropy_factor < 1) {
667         RANDerr(RAND_F_RAND_POOL_BYTES_NEEDED, RAND_R_ARGUMENT_OUT_OF_RANGE);
668         return 0;
669     }
670 
671     bytes_needed = ENTROPY_TO_BYTES(entropy_needed, entropy_factor);
672 
673     if (bytes_needed > pool->max_len - pool->len) {
674         /* not enough space left */
675         RANDerr(RAND_F_RAND_POOL_BYTES_NEEDED, RAND_R_RANDOM_POOL_OVERFLOW);
676         return 0;
677     }
678 
679     if (pool->len < pool->min_len &&
680         bytes_needed < pool->min_len - pool->len)
681         /* to meet the min_len requirement */
682         bytes_needed = pool->min_len - pool->len;
683 
684     /*
685      * Make sure the buffer is large enough for the requested amount
686      * of data. This guarantees that existing code patterns where
687      * rand_pool_add_begin, rand_pool_add_end or rand_pool_add
688      * are used to collect entropy data without any error handling
689      * whatsoever, continue to be valid.
690      * Furthermore if the allocation here fails once, make sure that
691      * we don't fall back to a less secure or even blocking random source,
692      * as that could happen by the existing code patterns.
693      * This is not a concern for additional data, therefore that
694      * is not needed if rand_pool_grow fails in other places.
695      */
696     if (!rand_pool_grow(pool, bytes_needed)) {
697         /* persistent error for this pool */
698         pool->max_len = pool->len = 0;
699         return 0;
700     }
701 
702     return bytes_needed;
703 }
704 
705 /* Returns the remaining number of bytes available */
rand_pool_bytes_remaining(RAND_POOL * pool)706 size_t rand_pool_bytes_remaining(RAND_POOL *pool)
707 {
708     return pool->max_len - pool->len;
709 }
710 
711 /*
712  * Add random bytes to the random pool.
713  *
714  * It is expected that the |buffer| contains |len| bytes of
715  * random input which contains at least |entropy| bits of
716  * randomness.
717  *
718  * Returns 1 if the added amount is adequate, otherwise 0
719  */
rand_pool_add(RAND_POOL * pool,const unsigned char * buffer,size_t len,size_t entropy)720 int rand_pool_add(RAND_POOL *pool,
721                   const unsigned char *buffer, size_t len, size_t entropy)
722 {
723     if (len > pool->max_len - pool->len) {
724         RANDerr(RAND_F_RAND_POOL_ADD, RAND_R_ENTROPY_INPUT_TOO_LONG);
725         return 0;
726     }
727 
728     if (pool->buffer == NULL) {
729         RANDerr(RAND_F_RAND_POOL_ADD, ERR_R_INTERNAL_ERROR);
730         return 0;
731     }
732 
733     if (len > 0) {
734         /*
735          * This is to protect us from accidentally passing the buffer
736          * returned from rand_pool_add_begin.
737          * The check for alloc_len makes sure we do not compare the
738          * address of the end of the allocated memory to something
739          * different, since that comparison would have an
740          * indeterminate result.
741          */
742         if (pool->alloc_len > pool->len && pool->buffer + pool->len == buffer) {
743             RANDerr(RAND_F_RAND_POOL_ADD, ERR_R_INTERNAL_ERROR);
744             return 0;
745         }
746         /*
747          * We have that only for cases when a pool is used to collect
748          * additional data.
749          * For entropy data, as long as the allocation request stays within
750          * the limits given by rand_pool_bytes_needed this rand_pool_grow
751          * below is guaranteed to succeed, thus no allocation happens.
752          */
753         if (!rand_pool_grow(pool, len))
754             return 0;
755         memcpy(pool->buffer + pool->len, buffer, len);
756         pool->len += len;
757         pool->entropy += entropy;
758     }
759 
760     return 1;
761 }
762 
763 /*
764  * Start to add random bytes to the random pool in-place.
765  *
766  * Reserves the next |len| bytes for adding random bytes in-place
767  * and returns a pointer to the buffer.
768  * The caller is allowed to copy up to |len| bytes into the buffer.
769  * If |len| == 0 this is considered a no-op and a NULL pointer
770  * is returned without producing an error message.
771  *
772  * After updating the buffer, rand_pool_add_end() needs to be called
773  * to finish the update operation (see next comment).
774  */
rand_pool_add_begin(RAND_POOL * pool,size_t len)775 unsigned char *rand_pool_add_begin(RAND_POOL *pool, size_t len)
776 {
777     if (len == 0)
778         return NULL;
779 
780     if (len > pool->max_len - pool->len) {
781         RANDerr(RAND_F_RAND_POOL_ADD_BEGIN, RAND_R_RANDOM_POOL_OVERFLOW);
782         return NULL;
783     }
784 
785     if (pool->buffer == NULL) {
786         RANDerr(RAND_F_RAND_POOL_ADD_BEGIN, ERR_R_INTERNAL_ERROR);
787         return NULL;
788     }
789 
790     /*
791      * As long as the allocation request stays within the limits given
792      * by rand_pool_bytes_needed this rand_pool_grow below is guaranteed
793      * to succeed, thus no allocation happens.
794      * We have that only for cases when a pool is used to collect
795      * additional data. Then the buffer might need to grow here,
796      * and of course the caller is responsible to check the return
797      * value of this function.
798      */
799     if (!rand_pool_grow(pool, len))
800         return NULL;
801 
802     return pool->buffer + pool->len;
803 }
804 
805 /*
806  * Finish to add random bytes to the random pool in-place.
807  *
808  * Finishes an in-place update of the random pool started by
809  * rand_pool_add_begin() (see previous comment).
810  * It is expected that |len| bytes of random input have been added
811  * to the buffer which contain at least |entropy| bits of randomness.
812  * It is allowed to add less bytes than originally reserved.
813  */
rand_pool_add_end(RAND_POOL * pool,size_t len,size_t entropy)814 int rand_pool_add_end(RAND_POOL *pool, size_t len, size_t entropy)
815 {
816     if (len > pool->alloc_len - pool->len) {
817         RANDerr(RAND_F_RAND_POOL_ADD_END, RAND_R_RANDOM_POOL_OVERFLOW);
818         return 0;
819     }
820 
821     if (len > 0) {
822         pool->len += len;
823         pool->entropy += entropy;
824     }
825 
826     return 1;
827 }
828 
RAND_set_rand_method(const RAND_METHOD * meth)829 int RAND_set_rand_method(const RAND_METHOD *meth)
830 {
831     if (!RUN_ONCE(&rand_init, do_rand_init))
832         return 0;
833 
834     CRYPTO_THREAD_write_lock(rand_meth_lock);
835 #ifndef OPENSSL_NO_ENGINE
836     ENGINE_finish(funct_ref);
837     funct_ref = NULL;
838 #endif
839     default_RAND_meth = meth;
840     CRYPTO_THREAD_unlock(rand_meth_lock);
841     return 1;
842 }
843 
RAND_get_rand_method(void)844 const RAND_METHOD *RAND_get_rand_method(void)
845 {
846     const RAND_METHOD *tmp_meth = NULL;
847 
848     if (!RUN_ONCE(&rand_init, do_rand_init))
849         return NULL;
850 
851     CRYPTO_THREAD_write_lock(rand_meth_lock);
852     if (default_RAND_meth == NULL) {
853 #ifndef OPENSSL_NO_ENGINE
854         ENGINE *e;
855 
856         /* If we have an engine that can do RAND, use it. */
857         if ((e = ENGINE_get_default_RAND()) != NULL
858                 && (tmp_meth = ENGINE_get_RAND(e)) != NULL) {
859             funct_ref = e;
860             default_RAND_meth = tmp_meth;
861         } else {
862             ENGINE_finish(e);
863             default_RAND_meth = &rand_meth;
864         }
865 #else
866         default_RAND_meth = &rand_meth;
867 #endif
868     }
869     tmp_meth = default_RAND_meth;
870     CRYPTO_THREAD_unlock(rand_meth_lock);
871     return tmp_meth;
872 }
873 
874 #ifndef OPENSSL_NO_ENGINE
RAND_set_rand_engine(ENGINE * engine)875 int RAND_set_rand_engine(ENGINE *engine)
876 {
877     const RAND_METHOD *tmp_meth = NULL;
878 
879     if (!RUN_ONCE(&rand_init, do_rand_init))
880         return 0;
881 
882     if (engine != NULL) {
883         if (!ENGINE_init(engine))
884             return 0;
885         tmp_meth = ENGINE_get_RAND(engine);
886         if (tmp_meth == NULL) {
887             ENGINE_finish(engine);
888             return 0;
889         }
890     }
891     CRYPTO_THREAD_write_lock(rand_engine_lock);
892     /* This function releases any prior ENGINE so call it first */
893     RAND_set_rand_method(tmp_meth);
894     funct_ref = engine;
895     CRYPTO_THREAD_unlock(rand_engine_lock);
896     return 1;
897 }
898 #endif
899 
RAND_seed(const void * buf,int num)900 void RAND_seed(const void *buf, int num)
901 {
902     const RAND_METHOD *meth = RAND_get_rand_method();
903 
904     if (meth != NULL && meth->seed != NULL)
905         meth->seed(buf, num);
906 }
907 
RAND_add(const void * buf,int num,double randomness)908 void RAND_add(const void *buf, int num, double randomness)
909 {
910     const RAND_METHOD *meth = RAND_get_rand_method();
911 
912     if (meth != NULL && meth->add != NULL)
913         meth->add(buf, num, randomness);
914 }
915 
916 /*
917  * This function is not part of RAND_METHOD, so if we're not using
918  * the default method, then just call RAND_bytes().  Otherwise make
919  * sure we're instantiated and use the private DRBG.
920  */
RAND_priv_bytes(unsigned char * buf,int num)921 int RAND_priv_bytes(unsigned char *buf, int num)
922 {
923     const RAND_METHOD *meth = RAND_get_rand_method();
924     RAND_DRBG *drbg;
925 
926     if (meth != NULL && meth != RAND_OpenSSL())
927         return RAND_bytes(buf, num);
928 
929     drbg = RAND_DRBG_get0_private();
930     if (drbg != NULL)
931         return RAND_DRBG_bytes(drbg, buf, num);
932 
933     return 0;
934 }
935 
RAND_bytes(unsigned char * buf,int num)936 int RAND_bytes(unsigned char *buf, int num)
937 {
938     const RAND_METHOD *meth = RAND_get_rand_method();
939 
940     if (meth != NULL && meth->bytes != NULL)
941         return meth->bytes(buf, num);
942     RANDerr(RAND_F_RAND_BYTES, RAND_R_FUNC_NOT_IMPLEMENTED);
943     return -1;
944 }
945 
946 #if OPENSSL_API_COMPAT < 0x10100000L
RAND_pseudo_bytes(unsigned char * buf,int num)947 int RAND_pseudo_bytes(unsigned char *buf, int num)
948 {
949     const RAND_METHOD *meth = RAND_get_rand_method();
950 
951     if (meth != NULL && meth->pseudorand != NULL)
952         return meth->pseudorand(buf, num);
953     RANDerr(RAND_F_RAND_PSEUDO_BYTES, RAND_R_FUNC_NOT_IMPLEMENTED);
954     return -1;
955 }
956 #endif
957 
RAND_status(void)958 int RAND_status(void)
959 {
960     const RAND_METHOD *meth = RAND_get_rand_method();
961 
962     if (meth != NULL && meth->status != NULL)
963         return meth->status();
964     return 0;
965 }
966