• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * random.c -- A strong random number generator
3  *
4  * Copyright (C) 2017 Jason A. Donenfeld <Jason@zx2c4.com>. All
5  * Rights Reserved.
6  *
7  * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
8  *
9  * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999.  All
10  * rights reserved.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, and the entire permission notice in its entirety,
17  *    including the disclaimer of warranties.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. The name of the author may not be used to endorse or promote
22  *    products derived from this software without specific prior
23  *    written permission.
24  *
25  * ALTERNATIVELY, this product may be distributed under the terms of
26  * the GNU General Public License, in which case the provisions of the GPL are
27  * required INSTEAD OF the above restrictions.  (This clause is
28  * necessary due to a potential bad interaction between the GPL and
29  * the restrictions contained in a BSD-style copyright.)
30  *
31  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
32  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
33  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
34  * WHICH ARE HEREBY DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE
35  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
36  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
37  * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
38  * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
39  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
40  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
41  * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
42  * DAMAGE.
43  */
44 
45 /*
46  * (now, with legal B.S. out of the way.....)
47  *
48  * This routine gathers environmental noise from device drivers, etc.,
49  * and returns good random numbers, suitable for cryptographic use.
50  * Besides the obvious cryptographic uses, these numbers are also good
51  * for seeding TCP sequence numbers, and other places where it is
52  * desirable to have numbers which are not only random, but hard to
53  * predict by an attacker.
54  *
55  * Theory of operation
56  * ===================
57  *
58  * Computers are very predictable devices.  Hence it is extremely hard
59  * to produce truly random numbers on a computer --- as opposed to
60  * pseudo-random numbers, which can easily generated by using a
61  * algorithm.  Unfortunately, it is very easy for attackers to guess
62  * the sequence of pseudo-random number generators, and for some
63  * applications this is not acceptable.  So instead, we must try to
64  * gather "environmental noise" from the computer's environment, which
65  * must be hard for outside attackers to observe, and use that to
66  * generate random numbers.  In a Unix environment, this is best done
67  * from inside the kernel.
68  *
69  * Sources of randomness from the environment include inter-keyboard
70  * timings, inter-interrupt timings from some interrupts, and other
71  * events which are both (a) non-deterministic and (b) hard for an
72  * outside observer to measure.  Randomness from these sources are
73  * added to an "entropy pool", which is mixed using a CRC-like function.
74  * This is not cryptographically strong, but it is adequate assuming
75  * the randomness is not chosen maliciously, and it is fast enough that
76  * the overhead of doing it on every interrupt is very reasonable.
77  * As random bytes are mixed into the entropy pool, the routines keep
78  * an *estimate* of how many bits of randomness have been stored into
79  * the random number generator's internal state.
80  *
81  * When random bytes are desired, they are obtained by taking the SHA
82  * hash of the contents of the "entropy pool".  The SHA hash avoids
83  * exposing the internal state of the entropy pool.  It is believed to
84  * be computationally infeasible to derive any useful information
85  * about the input of SHA from its output.  Even if it is possible to
86  * analyze SHA in some clever way, as long as the amount of data
87  * returned from the generator is less than the inherent entropy in
88  * the pool, the output data is totally unpredictable.  For this
89  * reason, the routine decreases its internal estimate of how many
90  * bits of "true randomness" are contained in the entropy pool as it
91  * outputs random numbers.
92  *
93  * If this estimate goes to zero, the routine can still generate
94  * random numbers; however, an attacker may (at least in theory) be
95  * able to infer the future output of the generator from prior
96  * outputs.  This requires successful cryptanalysis of SHA, which is
97  * not believed to be feasible, but there is a remote possibility.
98  * Nonetheless, these numbers should be useful for the vast majority
99  * of purposes.
100  *
101  * Exported interfaces ---- output
102  * ===============================
103  *
104  * There are four exported interfaces; two for use within the kernel,
105  * and two or use from userspace.
106  *
107  * Exported interfaces ---- userspace output
108  * -----------------------------------------
109  *
110  * The userspace interfaces are two character devices /dev/random and
111  * /dev/urandom.  /dev/random is suitable for use when very high
112  * quality randomness is desired (for example, for key generation or
113  * one-time pads), as it will only return a maximum of the number of
114  * bits of randomness (as estimated by the random number generator)
115  * contained in the entropy pool.
116  *
117  * The /dev/urandom device does not have this limit, and will return
118  * as many bytes as are requested.  As more and more random bytes are
119  * requested without giving time for the entropy pool to recharge,
120  * this will result in random numbers that are merely cryptographically
121  * strong.  For many applications, however, this is acceptable.
122  *
123  * Exported interfaces ---- kernel output
124  * --------------------------------------
125  *
126  * The primary kernel interface is
127  *
128  * 	void get_random_bytes(void *buf, int nbytes);
129  *
130  * This interface will return the requested number of random bytes,
131  * and place it in the requested buffer.  This is equivalent to a
132  * read from /dev/urandom.
133  *
134  * For less critical applications, there are the functions:
135  *
136  * 	u32 get_random_u32()
137  * 	u64 get_random_u64()
138  * 	unsigned int get_random_int()
139  * 	unsigned long get_random_long()
140  *
141  * These are produced by a cryptographic RNG seeded from get_random_bytes,
142  * and so do not deplete the entropy pool as much.  These are recommended
143  * for most in-kernel operations *if the result is going to be stored in
144  * the kernel*.
145  *
146  * Specifically, the get_random_int() family do not attempt to do
147  * "anti-backtracking".  If you capture the state of the kernel (e.g.
148  * by snapshotting the VM), you can figure out previous get_random_int()
149  * return values.  But if the value is stored in the kernel anyway,
150  * this is not a problem.
151  *
152  * It *is* safe to expose get_random_int() output to attackers (e.g. as
153  * network cookies); given outputs 1..n, it's not feasible to predict
154  * outputs 0 or n+1.  The only concern is an attacker who breaks into
155  * the kernel later; the get_random_int() engine is not reseeded as
156  * often as the get_random_bytes() one.
157  *
158  * get_random_bytes() is needed for keys that need to stay secret after
159  * they are erased from the kernel.  For example, any key that will
160  * be wrapped and stored encrypted.  And session encryption keys: we'd
161  * like to know that after the session is closed and the keys erased,
162  * the plaintext is unrecoverable to someone who recorded the ciphertext.
163  *
164  * But for network ports/cookies, stack canaries, PRNG seeds, address
165  * space layout randomization, session *authentication* keys, or other
166  * applications where the sensitive data is stored in the kernel in
167  * plaintext for as long as it's sensitive, the get_random_int() family
168  * is just fine.
169  *
170  * Consider ASLR.  We want to keep the address space secret from an
171  * outside attacker while the process is running, but once the address
172  * space is torn down, it's of no use to an attacker any more.  And it's
173  * stored in kernel data structures as long as it's alive, so worrying
174  * about an attacker's ability to extrapolate it from the get_random_int()
175  * CRNG is silly.
176  *
177  * Even some cryptographic keys are safe to generate with get_random_int().
178  * In particular, keys for SipHash are generally fine.  Here, knowledge
179  * of the key authorizes you to do something to a kernel object (inject
180  * packets to a network connection, or flood a hash table), and the
181  * key is stored with the object being protected.  Once it goes away,
182  * we no longer care if anyone knows the key.
183  *
184  * prandom_u32()
185  * -------------
186  *
187  * For even weaker applications, see the pseudorandom generator
188  * prandom_u32(), prandom_max(), and prandom_bytes().  If the random
189  * numbers aren't security-critical at all, these are *far* cheaper.
190  * Useful for self-tests, random error simulation, randomized backoffs,
191  * and any other application where you trust that nobody is trying to
192  * maliciously mess with you by guessing the "random" numbers.
193  *
194  * Exported interfaces ---- input
195  * ==============================
196  *
197  * The current exported interfaces for gathering environmental noise
198  * from the devices are:
199  *
200  *	void add_device_randomness(const void *buf, unsigned int size);
201  * 	void add_input_randomness(unsigned int type, unsigned int code,
202  *                                unsigned int value);
203  *	void add_interrupt_randomness(int irq, int irq_flags);
204  * 	void add_disk_randomness(struct gendisk *disk);
205  *
206  * add_device_randomness() is for adding data to the random pool that
207  * is likely to differ between two devices (or possibly even per boot).
208  * This would be things like MAC addresses or serial numbers, or the
209  * read-out of the RTC. This does *not* add any actual entropy to the
210  * pool, but it initializes the pool to different values for devices
211  * that might otherwise be identical and have very little entropy
212  * available to them (particularly common in the embedded world).
213  *
214  * add_input_randomness() uses the input layer interrupt timing, as well as
215  * the event type information from the hardware.
216  *
217  * add_interrupt_randomness() uses the interrupt timing as random
218  * inputs to the entropy pool. Using the cycle counters and the irq source
219  * as inputs, it feeds the randomness roughly once a second.
220  *
221  * add_disk_randomness() uses what amounts to the seek time of block
222  * layer request events, on a per-disk_devt basis, as input to the
223  * entropy pool. Note that high-speed solid state drives with very low
224  * seek times do not make for good sources of entropy, as their seek
225  * times are usually fairly consistent.
226  *
227  * All of these routines try to estimate how many bits of randomness a
228  * particular randomness source.  They do this by keeping track of the
229  * first and second order deltas of the event timings.
230  *
231  * Ensuring unpredictability at system startup
232  * ============================================
233  *
234  * When any operating system starts up, it will go through a sequence
235  * of actions that are fairly predictable by an adversary, especially
236  * if the start-up does not involve interaction with a human operator.
237  * This reduces the actual number of bits of unpredictability in the
238  * entropy pool below the value in entropy_count.  In order to
239  * counteract this effect, it helps to carry information in the
240  * entropy pool across shut-downs and start-ups.  To do this, put the
241  * following lines an appropriate script which is run during the boot
242  * sequence:
243  *
244  *	echo "Initializing random number generator..."
245  *	random_seed=/var/run/random-seed
246  *	# Carry a random seed from start-up to start-up
247  *	# Load and then save the whole entropy pool
248  *	if [ -f $random_seed ]; then
249  *		cat $random_seed >/dev/urandom
250  *	else
251  *		touch $random_seed
252  *	fi
253  *	chmod 600 $random_seed
254  *	dd if=/dev/urandom of=$random_seed count=1 bs=512
255  *
256  * and the following lines in an appropriate script which is run as
257  * the system is shutdown:
258  *
259  *	# Carry a random seed from shut-down to start-up
260  *	# Save the whole entropy pool
261  *	echo "Saving random seed..."
262  *	random_seed=/var/run/random-seed
263  *	touch $random_seed
264  *	chmod 600 $random_seed
265  *	dd if=/dev/urandom of=$random_seed count=1 bs=512
266  *
267  * For example, on most modern systems using the System V init
268  * scripts, such code fragments would be found in
269  * /etc/rc.d/init.d/random.  On older Linux systems, the correct script
270  * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
271  *
272  * Effectively, these commands cause the contents of the entropy pool
273  * to be saved at shut-down time and reloaded into the entropy pool at
274  * start-up.  (The 'dd' in the addition to the bootup script is to
275  * make sure that /etc/random-seed is different for every start-up,
276  * even if the system crashes without executing rc.0.)  Even with
277  * complete knowledge of the start-up activities, predicting the state
278  * of the entropy pool requires knowledge of the previous history of
279  * the system.
280  *
281  * Configuring the /dev/random driver under Linux
282  * ==============================================
283  *
284  * The /dev/random driver under Linux uses minor numbers 8 and 9 of
285  * the /dev/mem major number (#1).  So if your system does not have
286  * /dev/random and /dev/urandom created already, they can be created
287  * by using the commands:
288  *
289  * 	mknod /dev/random c 1 8
290  * 	mknod /dev/urandom c 1 9
291  *
292  * Acknowledgements:
293  * =================
294  *
295  * Ideas for constructing this random number generator were derived
296  * from Pretty Good Privacy's random number generator, and from private
297  * discussions with Phil Karn.  Colin Plumb provided a faster random
298  * number generator, which speed up the mixing function of the entropy
299  * pool, taken from PGPfone.  Dale Worley has also contributed many
300  * useful ideas and suggestions to improve this driver.
301  *
302  * Any flaws in the design are solely my responsibility, and should
303  * not be attributed to the Phil, Colin, or any of authors of PGP.
304  *
305  * Further background information on this topic may be obtained from
306  * RFC 1750, "Randomness Recommendations for Security", by Donald
307  * Eastlake, Steve Crocker, and Jeff Schiller.
308  */
309 
310 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
311 
312 #include <linux/utsname.h>
313 #include <linux/module.h>
314 #include <linux/kernel.h>
315 #include <linux/major.h>
316 #include <linux/string.h>
317 #include <linux/fcntl.h>
318 #include <linux/slab.h>
319 #include <linux/random.h>
320 #include <linux/poll.h>
321 #include <linux/init.h>
322 #include <linux/fs.h>
323 #include <linux/genhd.h>
324 #include <linux/interrupt.h>
325 #include <linux/mm.h>
326 #include <linux/nodemask.h>
327 #include <linux/spinlock.h>
328 #include <linux/kthread.h>
329 #include <linux/percpu.h>
330 #include <linux/fips.h>
331 #include <linux/ptrace.h>
332 #include <linux/workqueue.h>
333 #include <linux/irq.h>
334 #include <linux/ratelimit.h>
335 #include <linux/syscalls.h>
336 #include <linux/completion.h>
337 #include <linux/uuid.h>
338 #include <crypto/chacha.h>
339 #include <crypto/sha.h>
340 
341 #include <asm/processor.h>
342 #include <linux/uaccess.h>
343 #include <asm/irq.h>
344 #include <asm/irq_regs.h>
345 #include <asm/io.h>
346 
347 #define CREATE_TRACE_POINTS
348 #include <trace/events/random.h>
349 
350 /* #define ADD_INTERRUPT_BENCH */
351 
352 /*
353  * Configuration information
354  */
355 #define INPUT_POOL_SHIFT	12
356 #define INPUT_POOL_WORDS	(1 << (INPUT_POOL_SHIFT-5))
357 #define OUTPUT_POOL_SHIFT	10
358 #define OUTPUT_POOL_WORDS	(1 << (OUTPUT_POOL_SHIFT-5))
359 #define EXTRACT_SIZE		10
360 
361 
362 #define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long))
363 
364 /*
365  * To allow fractional bits to be tracked, the entropy_count field is
366  * denominated in units of 1/8th bits.
367  *
368  * 2*(ENTROPY_SHIFT + poolbitshift) must <= 31, or the multiply in
369  * credit_entropy_bits() needs to be 64 bits wide.
370  */
371 #define ENTROPY_SHIFT 3
372 #define ENTROPY_BITS(r) ((r)->entropy_count >> ENTROPY_SHIFT)
373 
374 /*
375  * If the entropy count falls under this number of bits, then we
376  * should wake up processes which are selecting or polling on write
377  * access to /dev/random.
378  */
379 static int random_write_wakeup_bits = 28 * OUTPUT_POOL_WORDS;
380 
381 /*
382  * Originally, we used a primitive polynomial of degree .poolwords
383  * over GF(2).  The taps for various sizes are defined below.  They
384  * were chosen to be evenly spaced except for the last tap, which is 1
385  * to get the twisting happening as fast as possible.
386  *
387  * For the purposes of better mixing, we use the CRC-32 polynomial as
388  * well to make a (modified) twisted Generalized Feedback Shift
389  * Register.  (See M. Matsumoto & Y. Kurita, 1992.  Twisted GFSR
390  * generators.  ACM Transactions on Modeling and Computer Simulation
391  * 2(3):179-194.  Also see M. Matsumoto & Y. Kurita, 1994.  Twisted
392  * GFSR generators II.  ACM Transactions on Modeling and Computer
393  * Simulation 4:254-266)
394  *
395  * Thanks to Colin Plumb for suggesting this.
396  *
397  * The mixing operation is much less sensitive than the output hash,
398  * where we use SHA-1.  All that we want of mixing operation is that
399  * it be a good non-cryptographic hash; i.e. it not produce collisions
400  * when fed "random" data of the sort we expect to see.  As long as
401  * the pool state differs for different inputs, we have preserved the
402  * input entropy and done a good job.  The fact that an intelligent
403  * attacker can construct inputs that will produce controlled
404  * alterations to the pool's state is not important because we don't
405  * consider such inputs to contribute any randomness.  The only
406  * property we need with respect to them is that the attacker can't
407  * increase his/her knowledge of the pool's state.  Since all
408  * additions are reversible (knowing the final state and the input,
409  * you can reconstruct the initial state), if an attacker has any
410  * uncertainty about the initial state, he/she can only shuffle that
411  * uncertainty about, but never cause any collisions (which would
412  * decrease the uncertainty).
413  *
414  * Our mixing functions were analyzed by Lacharme, Roeck, Strubel, and
415  * Videau in their paper, "The Linux Pseudorandom Number Generator
416  * Revisited" (see: http://eprint.iacr.org/2012/251.pdf).  In their
417  * paper, they point out that we are not using a true Twisted GFSR,
418  * since Matsumoto & Kurita used a trinomial feedback polynomial (that
419  * is, with only three taps, instead of the six that we are using).
420  * As a result, the resulting polynomial is neither primitive nor
421  * irreducible, and hence does not have a maximal period over
422  * GF(2**32).  They suggest a slight change to the generator
423  * polynomial which improves the resulting TGFSR polynomial to be
424  * irreducible, which we have made here.
425  */
426 static const struct poolinfo {
427 	int poolbitshift, poolwords, poolbytes, poolfracbits;
428 #define S(x) ilog2(x)+5, (x), (x)*4, (x) << (ENTROPY_SHIFT+5)
429 	int tap1, tap2, tap3, tap4, tap5;
430 } poolinfo_table[] = {
431 	/* was: x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 */
432 	/* x^128 + x^104 + x^76 + x^51 +x^25 + x + 1 */
433 	{ S(128),	104,	76,	51,	25,	1 },
434 };
435 
436 /*
437  * Static global variables
438  */
439 static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
440 static struct fasync_struct *fasync;
441 
442 static DEFINE_SPINLOCK(random_ready_list_lock);
443 static LIST_HEAD(random_ready_list);
444 
445 struct crng_state {
446 	__u32		state[16];
447 	unsigned long	init_time;
448 	spinlock_t	lock;
449 };
450 
451 static struct crng_state primary_crng = {
452 	.lock = __SPIN_LOCK_UNLOCKED(primary_crng.lock),
453 };
454 
455 /*
456  * crng_init =  0 --> Uninitialized
457  *		1 --> Initialized
458  *		2 --> Initialized from input_pool
459  *
460  * crng_init is protected by primary_crng->lock, and only increases
461  * its value (from 0->1->2).
462  */
463 static int crng_init = 0;
464 static bool crng_need_final_init = false;
465 #define crng_ready() (likely(crng_init > 1))
466 static int crng_init_cnt = 0;
467 static unsigned long crng_global_init_time = 0;
468 #define CRNG_INIT_CNT_THRESH (2*CHACHA_KEY_SIZE)
469 static void _extract_crng(struct crng_state *crng, __u8 out[CHACHA_BLOCK_SIZE]);
470 static void _crng_backtrack_protect(struct crng_state *crng,
471 				    __u8 tmp[CHACHA_BLOCK_SIZE], int used);
472 static void process_random_ready_list(void);
473 static void _get_random_bytes(void *buf, int nbytes);
474 
475 static struct ratelimit_state unseeded_warning =
476 	RATELIMIT_STATE_INIT("warn_unseeded_randomness", HZ, 3);
477 static struct ratelimit_state urandom_warning =
478 	RATELIMIT_STATE_INIT("warn_urandom_randomness", HZ, 3);
479 
480 static int ratelimit_disable __read_mostly;
481 
482 module_param_named(ratelimit_disable, ratelimit_disable, int, 0644);
483 MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression");
484 
485 /**********************************************************************
486  *
487  * OS independent entropy store.   Here are the functions which handle
488  * storing entropy in an entropy pool.
489  *
490  **********************************************************************/
491 
492 struct entropy_store;
493 struct entropy_store {
494 	/* read-only data: */
495 	const struct poolinfo *poolinfo;
496 	__u32 *pool;
497 	const char *name;
498 
499 	/* read-write data: */
500 	spinlock_t lock;
501 	unsigned short add_ptr;
502 	unsigned short input_rotate;
503 	int entropy_count;
504 	unsigned int initialized:1;
505 	unsigned int last_data_init:1;
506 	__u8 last_data[EXTRACT_SIZE];
507 };
508 
509 static ssize_t extract_entropy(struct entropy_store *r, void *buf,
510 			       size_t nbytes, int min, int rsvd);
511 static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
512 				size_t nbytes, int fips);
513 
514 static void crng_reseed(struct crng_state *crng, struct entropy_store *r);
515 static __u32 input_pool_data[INPUT_POOL_WORDS] __latent_entropy;
516 
517 static struct entropy_store input_pool = {
518 	.poolinfo = &poolinfo_table[0],
519 	.name = "input",
520 	.lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
521 	.pool = input_pool_data
522 };
523 
524 static __u32 const twist_table[8] = {
525 	0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
526 	0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
527 
528 /*
529  * This function adds bytes into the entropy "pool".  It does not
530  * update the entropy estimate.  The caller should call
531  * credit_entropy_bits if this is appropriate.
532  *
533  * The pool is stirred with a primitive polynomial of the appropriate
534  * degree, and then twisted.  We twist by three bits at a time because
535  * it's cheap to do so and helps slightly in the expected case where
536  * the entropy is concentrated in the low-order bits.
537  */
_mix_pool_bytes(struct entropy_store * r,const void * in,int nbytes)538 static void _mix_pool_bytes(struct entropy_store *r, const void *in,
539 			    int nbytes)
540 {
541 	unsigned long i, tap1, tap2, tap3, tap4, tap5;
542 	int input_rotate;
543 	int wordmask = r->poolinfo->poolwords - 1;
544 	const char *bytes = in;
545 	__u32 w;
546 
547 	tap1 = r->poolinfo->tap1;
548 	tap2 = r->poolinfo->tap2;
549 	tap3 = r->poolinfo->tap3;
550 	tap4 = r->poolinfo->tap4;
551 	tap5 = r->poolinfo->tap5;
552 
553 	input_rotate = r->input_rotate;
554 	i = r->add_ptr;
555 
556 	/* mix one byte at a time to simplify size handling and churn faster */
557 	while (nbytes--) {
558 		w = rol32(*bytes++, input_rotate);
559 		i = (i - 1) & wordmask;
560 
561 		/* XOR in the various taps */
562 		w ^= r->pool[i];
563 		w ^= r->pool[(i + tap1) & wordmask];
564 		w ^= r->pool[(i + tap2) & wordmask];
565 		w ^= r->pool[(i + tap3) & wordmask];
566 		w ^= r->pool[(i + tap4) & wordmask];
567 		w ^= r->pool[(i + tap5) & wordmask];
568 
569 		/* Mix the result back in with a twist */
570 		r->pool[i] = (w >> 3) ^ twist_table[w & 7];
571 
572 		/*
573 		 * Normally, we add 7 bits of rotation to the pool.
574 		 * At the beginning of the pool, add an extra 7 bits
575 		 * rotation, so that successive passes spread the
576 		 * input bits across the pool evenly.
577 		 */
578 		input_rotate = (input_rotate + (i ? 7 : 14)) & 31;
579 	}
580 
581 	r->input_rotate = input_rotate;
582 	r->add_ptr = i;
583 }
584 
__mix_pool_bytes(struct entropy_store * r,const void * in,int nbytes)585 static void __mix_pool_bytes(struct entropy_store *r, const void *in,
586 			     int nbytes)
587 {
588 	trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_);
589 	_mix_pool_bytes(r, in, nbytes);
590 }
591 
mix_pool_bytes(struct entropy_store * r,const void * in,int nbytes)592 static void mix_pool_bytes(struct entropy_store *r, const void *in,
593 			   int nbytes)
594 {
595 	unsigned long flags;
596 
597 	trace_mix_pool_bytes(r->name, nbytes, _RET_IP_);
598 	spin_lock_irqsave(&r->lock, flags);
599 	_mix_pool_bytes(r, in, nbytes);
600 	spin_unlock_irqrestore(&r->lock, flags);
601 }
602 
603 struct fast_pool {
604 	__u32		pool[4];
605 	unsigned long	last;
606 	unsigned short	reg_idx;
607 	unsigned char	count;
608 };
609 
610 /*
611  * This is a fast mixing routine used by the interrupt randomness
612  * collector.  It's hardcoded for an 128 bit pool and assumes that any
613  * locks that might be needed are taken by the caller.
614  */
fast_mix(struct fast_pool * f)615 static void fast_mix(struct fast_pool *f)
616 {
617 	__u32 a = f->pool[0],	b = f->pool[1];
618 	__u32 c = f->pool[2],	d = f->pool[3];
619 
620 	a += b;			c += d;
621 	b = rol32(b, 6);	d = rol32(d, 27);
622 	d ^= a;			b ^= c;
623 
624 	a += b;			c += d;
625 	b = rol32(b, 16);	d = rol32(d, 14);
626 	d ^= a;			b ^= c;
627 
628 	a += b;			c += d;
629 	b = rol32(b, 6);	d = rol32(d, 27);
630 	d ^= a;			b ^= c;
631 
632 	a += b;			c += d;
633 	b = rol32(b, 16);	d = rol32(d, 14);
634 	d ^= a;			b ^= c;
635 
636 	f->pool[0] = a;  f->pool[1] = b;
637 	f->pool[2] = c;  f->pool[3] = d;
638 	f->count++;
639 }
640 
process_random_ready_list(void)641 static void process_random_ready_list(void)
642 {
643 	unsigned long flags;
644 	struct random_ready_callback *rdy, *tmp;
645 
646 	spin_lock_irqsave(&random_ready_list_lock, flags);
647 	list_for_each_entry_safe(rdy, tmp, &random_ready_list, list) {
648 		struct module *owner = rdy->owner;
649 
650 		list_del_init(&rdy->list);
651 		rdy->func(rdy);
652 		module_put(owner);
653 	}
654 	spin_unlock_irqrestore(&random_ready_list_lock, flags);
655 }
656 
657 /*
658  * Credit (or debit) the entropy store with n bits of entropy.
659  * Use credit_entropy_bits_safe() if the value comes from userspace
660  * or otherwise should be checked for extreme values.
661  */
credit_entropy_bits(struct entropy_store * r,int nbits)662 static void credit_entropy_bits(struct entropy_store *r, int nbits)
663 {
664 	int entropy_count, orig, has_initialized = 0;
665 	const int pool_size = r->poolinfo->poolfracbits;
666 	int nfrac = nbits << ENTROPY_SHIFT;
667 
668 	if (!nbits)
669 		return;
670 
671 retry:
672 	entropy_count = orig = READ_ONCE(r->entropy_count);
673 	if (nfrac < 0) {
674 		/* Debit */
675 		entropy_count += nfrac;
676 	} else {
677 		/*
678 		 * Credit: we have to account for the possibility of
679 		 * overwriting already present entropy.	 Even in the
680 		 * ideal case of pure Shannon entropy, new contributions
681 		 * approach the full value asymptotically:
682 		 *
683 		 * entropy <- entropy + (pool_size - entropy) *
684 		 *	(1 - exp(-add_entropy/pool_size))
685 		 *
686 		 * For add_entropy <= pool_size/2 then
687 		 * (1 - exp(-add_entropy/pool_size)) >=
688 		 *    (add_entropy/pool_size)*0.7869...
689 		 * so we can approximate the exponential with
690 		 * 3/4*add_entropy/pool_size and still be on the
691 		 * safe side by adding at most pool_size/2 at a time.
692 		 *
693 		 * The use of pool_size-2 in the while statement is to
694 		 * prevent rounding artifacts from making the loop
695 		 * arbitrarily long; this limits the loop to log2(pool_size)*2
696 		 * turns no matter how large nbits is.
697 		 */
698 		int pnfrac = nfrac;
699 		const int s = r->poolinfo->poolbitshift + ENTROPY_SHIFT + 2;
700 		/* The +2 corresponds to the /4 in the denominator */
701 
702 		do {
703 			unsigned int anfrac = min(pnfrac, pool_size/2);
704 			unsigned int add =
705 				((pool_size - entropy_count)*anfrac*3) >> s;
706 
707 			entropy_count += add;
708 			pnfrac -= anfrac;
709 		} while (unlikely(entropy_count < pool_size-2 && pnfrac));
710 	}
711 
712 	if (WARN_ON(entropy_count < 0)) {
713 		pr_warn("negative entropy/overflow: pool %s count %d\n",
714 			r->name, entropy_count);
715 		entropy_count = 0;
716 	} else if (entropy_count > pool_size)
717 		entropy_count = pool_size;
718 	if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
719 		goto retry;
720 
721 	if (has_initialized) {
722 		r->initialized = 1;
723 		kill_fasync(&fasync, SIGIO, POLL_IN);
724 	}
725 
726 	trace_credit_entropy_bits(r->name, nbits,
727 				  entropy_count >> ENTROPY_SHIFT, _RET_IP_);
728 
729 	if (r == &input_pool) {
730 		int entropy_bits = entropy_count >> ENTROPY_SHIFT;
731 
732 		if (crng_init < 2) {
733 			if (entropy_bits < 128)
734 				return;
735 			crng_reseed(&primary_crng, r);
736 			entropy_bits = ENTROPY_BITS(r);
737 		}
738 	}
739 }
740 
credit_entropy_bits_safe(struct entropy_store * r,int nbits)741 static int credit_entropy_bits_safe(struct entropy_store *r, int nbits)
742 {
743 	const int nbits_max = r->poolinfo->poolwords * 32;
744 
745 	if (nbits < 0)
746 		return -EINVAL;
747 
748 	/* Cap the value to avoid overflows */
749 	nbits = min(nbits,  nbits_max);
750 
751 	credit_entropy_bits(r, nbits);
752 	return 0;
753 }
754 
755 /*********************************************************************
756  *
757  * CRNG using CHACHA20
758  *
759  *********************************************************************/
760 
761 #define CRNG_RESEED_INTERVAL (300*HZ)
762 
763 static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);
764 
765 #ifdef CONFIG_NUMA
766 /*
767  * Hack to deal with crazy userspace progams when they are all trying
768  * to access /dev/urandom in parallel.  The programs are almost
769  * certainly doing something terribly wrong, but we'll work around
770  * their brain damage.
771  */
772 static struct crng_state **crng_node_pool __read_mostly;
773 #endif
774 
775 static void invalidate_batched_entropy(void);
776 static void numa_crng_init(void);
777 
778 static bool trust_cpu __ro_after_init = IS_ENABLED(CONFIG_RANDOM_TRUST_CPU);
parse_trust_cpu(char * arg)779 static int __init parse_trust_cpu(char *arg)
780 {
781 	return kstrtobool(arg, &trust_cpu);
782 }
783 early_param("random.trust_cpu", parse_trust_cpu);
784 
crng_init_try_arch(struct crng_state * crng)785 static bool crng_init_try_arch(struct crng_state *crng)
786 {
787 	int		i;
788 	bool		arch_init = true;
789 	unsigned long	rv;
790 
791 	for (i = 4; i < 16; i++) {
792 		if (!arch_get_random_seed_long(&rv) &&
793 		    !arch_get_random_long(&rv)) {
794 			rv = random_get_entropy();
795 			arch_init = false;
796 		}
797 		crng->state[i] ^= rv;
798 	}
799 
800 	return arch_init;
801 }
802 
crng_init_try_arch_early(struct crng_state * crng)803 static bool __init crng_init_try_arch_early(struct crng_state *crng)
804 {
805 	int		i;
806 	bool		arch_init = true;
807 	unsigned long	rv;
808 
809 	for (i = 4; i < 16; i++) {
810 		if (!arch_get_random_seed_long_early(&rv) &&
811 		    !arch_get_random_long_early(&rv)) {
812 			rv = random_get_entropy();
813 			arch_init = false;
814 		}
815 		crng->state[i] ^= rv;
816 	}
817 
818 	return arch_init;
819 }
820 
crng_initialize_secondary(struct crng_state * crng)821 static void __maybe_unused crng_initialize_secondary(struct crng_state *crng)
822 {
823 	chacha_init_consts(crng->state);
824 	_get_random_bytes(&crng->state[4], sizeof(__u32) * 12);
825 	crng_init_try_arch(crng);
826 	crng->init_time = jiffies - CRNG_RESEED_INTERVAL - 1;
827 }
828 
crng_initialize_primary(struct crng_state * crng)829 static void __init crng_initialize_primary(struct crng_state *crng)
830 {
831 	chacha_init_consts(crng->state);
832 	_extract_entropy(&input_pool, &crng->state[4], sizeof(__u32) * 12, 0);
833 	if (crng_init_try_arch_early(crng) && trust_cpu) {
834 		invalidate_batched_entropy();
835 		numa_crng_init();
836 		crng_init = 2;
837 		pr_notice("crng done (trusting CPU's manufacturer)\n");
838 	}
839 	crng->init_time = jiffies - CRNG_RESEED_INTERVAL - 1;
840 }
841 
crng_finalize_init(struct crng_state * crng)842 static void crng_finalize_init(struct crng_state *crng)
843 {
844 	if (crng != &primary_crng || crng_init >= 2)
845 		return;
846 	if (!system_wq) {
847 		/* We can't call numa_crng_init until we have workqueues,
848 		 * so mark this for processing later. */
849 		crng_need_final_init = true;
850 		return;
851 	}
852 
853 	invalidate_batched_entropy();
854 	numa_crng_init();
855 	crng_init = 2;
856 	process_random_ready_list();
857 	wake_up_interruptible(&crng_init_wait);
858 	kill_fasync(&fasync, SIGIO, POLL_IN);
859 	pr_notice("crng init done\n");
860 	if (unseeded_warning.missed) {
861 		pr_notice("%d get_random_xx warning(s) missed due to ratelimiting\n",
862 			  unseeded_warning.missed);
863 		unseeded_warning.missed = 0;
864 	}
865 	if (urandom_warning.missed) {
866 		pr_notice("%d urandom warning(s) missed due to ratelimiting\n",
867 			  urandom_warning.missed);
868 		urandom_warning.missed = 0;
869 	}
870 }
871 
872 #ifdef CONFIG_NUMA
do_numa_crng_init(struct work_struct * work)873 static void do_numa_crng_init(struct work_struct *work)
874 {
875 	int i;
876 	struct crng_state *crng;
877 	struct crng_state **pool;
878 
879 	pool = kcalloc(nr_node_ids, sizeof(*pool), GFP_KERNEL|__GFP_NOFAIL);
880 	for_each_online_node(i) {
881 		crng = kmalloc_node(sizeof(struct crng_state),
882 				    GFP_KERNEL | __GFP_NOFAIL, i);
883 		spin_lock_init(&crng->lock);
884 		crng_initialize_secondary(crng);
885 		pool[i] = crng;
886 	}
887 	/* pairs with READ_ONCE() in select_crng() */
888 	if (cmpxchg_release(&crng_node_pool, NULL, pool) != NULL) {
889 		for_each_node(i)
890 			kfree(pool[i]);
891 		kfree(pool);
892 	}
893 }
894 
895 static DECLARE_WORK(numa_crng_init_work, do_numa_crng_init);
896 
numa_crng_init(void)897 static void numa_crng_init(void)
898 {
899 	schedule_work(&numa_crng_init_work);
900 }
901 
select_crng(void)902 static struct crng_state *select_crng(void)
903 {
904 	struct crng_state **pool;
905 	int nid = numa_node_id();
906 
907 	/* pairs with cmpxchg_release() in do_numa_crng_init() */
908 	pool = READ_ONCE(crng_node_pool);
909 	if (pool && pool[nid])
910 		return pool[nid];
911 
912 	return &primary_crng;
913 }
914 #else
numa_crng_init(void)915 static void numa_crng_init(void) {}
916 
select_crng(void)917 static struct crng_state *select_crng(void)
918 {
919 	return &primary_crng;
920 }
921 #endif
922 
923 /*
924  * crng_fast_load() can be called by code in the interrupt service
925  * path.  So we can't afford to dilly-dally. Returns the number of
926  * bytes processed from cp.
927  */
crng_fast_load(const char * cp,size_t len)928 static size_t crng_fast_load(const char *cp, size_t len)
929 {
930 	unsigned long flags;
931 	char *p;
932 	size_t ret = 0;
933 
934 	if (!spin_trylock_irqsave(&primary_crng.lock, flags))
935 		return 0;
936 	if (crng_init != 0) {
937 		spin_unlock_irqrestore(&primary_crng.lock, flags);
938 		return 0;
939 	}
940 	p = (unsigned char *) &primary_crng.state[4];
941 	while (len > 0 && crng_init_cnt < CRNG_INIT_CNT_THRESH) {
942 		p[crng_init_cnt % CHACHA_KEY_SIZE] ^= *cp;
943 		cp++; crng_init_cnt++; len--; ret++;
944 	}
945 	spin_unlock_irqrestore(&primary_crng.lock, flags);
946 	if (crng_init_cnt >= CRNG_INIT_CNT_THRESH) {
947 		invalidate_batched_entropy();
948 		crng_init = 1;
949 		pr_notice("fast init done\n");
950 	}
951 	return ret;
952 }
953 
954 /*
955  * crng_slow_load() is called by add_device_randomness, which has two
956  * attributes.  (1) We can't trust the buffer passed to it is
957  * guaranteed to be unpredictable (so it might not have any entropy at
958  * all), and (2) it doesn't have the performance constraints of
959  * crng_fast_load().
960  *
961  * So we do something more comprehensive which is guaranteed to touch
962  * all of the primary_crng's state, and which uses a LFSR with a
963  * period of 255 as part of the mixing algorithm.  Finally, we do
964  * *not* advance crng_init_cnt since buffer we may get may be something
965  * like a fixed DMI table (for example), which might very well be
966  * unique to the machine, but is otherwise unvarying.
967  */
crng_slow_load(const char * cp,size_t len)968 static int crng_slow_load(const char *cp, size_t len)
969 {
970 	unsigned long		flags;
971 	static unsigned char	lfsr = 1;
972 	unsigned char		tmp;
973 	unsigned		i, max = CHACHA_KEY_SIZE;
974 	const char *		src_buf = cp;
975 	char *			dest_buf = (char *) &primary_crng.state[4];
976 
977 	if (!spin_trylock_irqsave(&primary_crng.lock, flags))
978 		return 0;
979 	if (crng_init != 0) {
980 		spin_unlock_irqrestore(&primary_crng.lock, flags);
981 		return 0;
982 	}
983 	if (len > max)
984 		max = len;
985 
986 	for (i = 0; i < max ; i++) {
987 		tmp = lfsr;
988 		lfsr >>= 1;
989 		if (tmp & 1)
990 			lfsr ^= 0xE1;
991 		tmp = dest_buf[i % CHACHA_KEY_SIZE];
992 		dest_buf[i % CHACHA_KEY_SIZE] ^= src_buf[i % len] ^ lfsr;
993 		lfsr += (tmp << 3) | (tmp >> 5);
994 	}
995 	spin_unlock_irqrestore(&primary_crng.lock, flags);
996 	return 1;
997 }
998 
crng_reseed(struct crng_state * crng,struct entropy_store * r)999 static void crng_reseed(struct crng_state *crng, struct entropy_store *r)
1000 {
1001 	unsigned long	flags;
1002 	int		i, num;
1003 	union {
1004 		__u8	block[CHACHA_BLOCK_SIZE];
1005 		__u32	key[8];
1006 	} buf;
1007 
1008 	if (r) {
1009 		num = extract_entropy(r, &buf, 32, 16, 0);
1010 		if (num == 0)
1011 			return;
1012 	} else {
1013 		_extract_crng(&primary_crng, buf.block);
1014 		_crng_backtrack_protect(&primary_crng, buf.block,
1015 					CHACHA_KEY_SIZE);
1016 	}
1017 	spin_lock_irqsave(&crng->lock, flags);
1018 	for (i = 0; i < 8; i++) {
1019 		unsigned long	rv;
1020 		if (!arch_get_random_seed_long(&rv) &&
1021 		    !arch_get_random_long(&rv))
1022 			rv = random_get_entropy();
1023 		crng->state[i+4] ^= buf.key[i] ^ rv;
1024 	}
1025 	memzero_explicit(&buf, sizeof(buf));
1026 	WRITE_ONCE(crng->init_time, jiffies);
1027 	spin_unlock_irqrestore(&crng->lock, flags);
1028 	crng_finalize_init(crng);
1029 }
1030 
_extract_crng(struct crng_state * crng,__u8 out[CHACHA_BLOCK_SIZE])1031 static void _extract_crng(struct crng_state *crng,
1032 			  __u8 out[CHACHA_BLOCK_SIZE])
1033 {
1034 	unsigned long v, flags, init_time;
1035 
1036 	if (crng_ready()) {
1037 		init_time = READ_ONCE(crng->init_time);
1038 		if (time_after(READ_ONCE(crng_global_init_time), init_time) ||
1039 		    time_after(jiffies, init_time + CRNG_RESEED_INTERVAL))
1040 			crng_reseed(crng, crng == &primary_crng ?
1041 				    &input_pool : NULL);
1042 	}
1043 	spin_lock_irqsave(&crng->lock, flags);
1044 	if (arch_get_random_long(&v))
1045 		crng->state[14] ^= v;
1046 	chacha20_block(&crng->state[0], out);
1047 	if (crng->state[12] == 0)
1048 		crng->state[13]++;
1049 	spin_unlock_irqrestore(&crng->lock, flags);
1050 }
1051 
extract_crng(__u8 out[CHACHA_BLOCK_SIZE])1052 static void extract_crng(__u8 out[CHACHA_BLOCK_SIZE])
1053 {
1054 	_extract_crng(select_crng(), out);
1055 }
1056 
1057 /*
1058  * Use the leftover bytes from the CRNG block output (if there is
1059  * enough) to mutate the CRNG key to provide backtracking protection.
1060  */
_crng_backtrack_protect(struct crng_state * crng,__u8 tmp[CHACHA_BLOCK_SIZE],int used)1061 static void _crng_backtrack_protect(struct crng_state *crng,
1062 				    __u8 tmp[CHACHA_BLOCK_SIZE], int used)
1063 {
1064 	unsigned long	flags;
1065 	__u32		*s, *d;
1066 	int		i;
1067 
1068 	used = round_up(used, sizeof(__u32));
1069 	if (used + CHACHA_KEY_SIZE > CHACHA_BLOCK_SIZE) {
1070 		extract_crng(tmp);
1071 		used = 0;
1072 	}
1073 	spin_lock_irqsave(&crng->lock, flags);
1074 	s = (__u32 *) &tmp[used];
1075 	d = &crng->state[4];
1076 	for (i=0; i < 8; i++)
1077 		*d++ ^= *s++;
1078 	spin_unlock_irqrestore(&crng->lock, flags);
1079 }
1080 
crng_backtrack_protect(__u8 tmp[CHACHA_BLOCK_SIZE],int used)1081 static void crng_backtrack_protect(__u8 tmp[CHACHA_BLOCK_SIZE], int used)
1082 {
1083 	_crng_backtrack_protect(select_crng(), tmp, used);
1084 }
1085 
extract_crng_user(void __user * buf,size_t nbytes)1086 static ssize_t extract_crng_user(void __user *buf, size_t nbytes)
1087 {
1088 	ssize_t ret = 0, i = CHACHA_BLOCK_SIZE;
1089 	__u8 tmp[CHACHA_BLOCK_SIZE] __aligned(4);
1090 	int large_request = (nbytes > 256);
1091 
1092 	while (nbytes) {
1093 		if (large_request && need_resched()) {
1094 			if (signal_pending(current)) {
1095 				if (ret == 0)
1096 					ret = -ERESTARTSYS;
1097 				break;
1098 			}
1099 			schedule();
1100 		}
1101 
1102 		extract_crng(tmp);
1103 		i = min_t(int, nbytes, CHACHA_BLOCK_SIZE);
1104 		if (copy_to_user(buf, tmp, i)) {
1105 			ret = -EFAULT;
1106 			break;
1107 		}
1108 
1109 		nbytes -= i;
1110 		buf += i;
1111 		ret += i;
1112 	}
1113 	crng_backtrack_protect(tmp, i);
1114 
1115 	/* Wipe data just written to memory */
1116 	memzero_explicit(tmp, sizeof(tmp));
1117 
1118 	return ret;
1119 }
1120 
1121 
1122 /*********************************************************************
1123  *
1124  * Entropy input management
1125  *
1126  *********************************************************************/
1127 
1128 /* There is one of these per entropy source */
1129 struct timer_rand_state {
1130 	cycles_t last_time;
1131 	long last_delta, last_delta2;
1132 };
1133 
1134 #define INIT_TIMER_RAND_STATE { INITIAL_JIFFIES, };
1135 
1136 /*
1137  * Add device- or boot-specific data to the input pool to help
1138  * initialize it.
1139  *
1140  * None of this adds any entropy; it is meant to avoid the problem of
1141  * the entropy pool having similar initial state across largely
1142  * identical devices.
1143  */
add_device_randomness(const void * buf,unsigned int size)1144 void add_device_randomness(const void *buf, unsigned int size)
1145 {
1146 	unsigned long time = random_get_entropy() ^ jiffies;
1147 	unsigned long flags;
1148 
1149 	if (!crng_ready() && size)
1150 		crng_slow_load(buf, size);
1151 
1152 	trace_add_device_randomness(size, _RET_IP_);
1153 	spin_lock_irqsave(&input_pool.lock, flags);
1154 	_mix_pool_bytes(&input_pool, buf, size);
1155 	_mix_pool_bytes(&input_pool, &time, sizeof(time));
1156 	spin_unlock_irqrestore(&input_pool.lock, flags);
1157 }
1158 EXPORT_SYMBOL(add_device_randomness);
1159 
1160 static struct timer_rand_state input_timer_state = INIT_TIMER_RAND_STATE;
1161 
1162 /*
1163  * This function adds entropy to the entropy "pool" by using timing
1164  * delays.  It uses the timer_rand_state structure to make an estimate
1165  * of how many bits of entropy this call has added to the pool.
1166  *
1167  * The number "num" is also added to the pool - it should somehow describe
1168  * the type of event which just happened.  This is currently 0-255 for
1169  * keyboard scan codes, and 256 upwards for interrupts.
1170  *
1171  */
add_timer_randomness(struct timer_rand_state * state,unsigned num)1172 static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
1173 {
1174 	struct entropy_store	*r;
1175 	struct {
1176 		long jiffies;
1177 		unsigned cycles;
1178 		unsigned num;
1179 	} sample;
1180 	long delta, delta2, delta3;
1181 
1182 	sample.jiffies = jiffies;
1183 	sample.cycles = random_get_entropy();
1184 	sample.num = num;
1185 	r = &input_pool;
1186 	mix_pool_bytes(r, &sample, sizeof(sample));
1187 
1188 	/*
1189 	 * Calculate number of bits of randomness we probably added.
1190 	 * We take into account the first, second and third-order deltas
1191 	 * in order to make our estimate.
1192 	 */
1193 	delta = sample.jiffies - READ_ONCE(state->last_time);
1194 	WRITE_ONCE(state->last_time, sample.jiffies);
1195 
1196 	delta2 = delta - READ_ONCE(state->last_delta);
1197 	WRITE_ONCE(state->last_delta, delta);
1198 
1199 	delta3 = delta2 - READ_ONCE(state->last_delta2);
1200 	WRITE_ONCE(state->last_delta2, delta2);
1201 
1202 	if (delta < 0)
1203 		delta = -delta;
1204 	if (delta2 < 0)
1205 		delta2 = -delta2;
1206 	if (delta3 < 0)
1207 		delta3 = -delta3;
1208 	if (delta > delta2)
1209 		delta = delta2;
1210 	if (delta > delta3)
1211 		delta = delta3;
1212 
1213 	/*
1214 	 * delta is now minimum absolute delta.
1215 	 * Round down by 1 bit on general principles,
1216 	 * and limit entropy estimate to 12 bits.
1217 	 */
1218 	credit_entropy_bits(r, min_t(int, fls(delta>>1), 11));
1219 }
1220 
add_input_randomness(unsigned int type,unsigned int code,unsigned int value)1221 void add_input_randomness(unsigned int type, unsigned int code,
1222 				 unsigned int value)
1223 {
1224 	static unsigned char last_value;
1225 
1226 	/* ignore autorepeat and the like */
1227 	if (value == last_value)
1228 		return;
1229 
1230 	last_value = value;
1231 	add_timer_randomness(&input_timer_state,
1232 			     (type << 4) ^ code ^ (code >> 4) ^ value);
1233 	trace_add_input_randomness(ENTROPY_BITS(&input_pool));
1234 }
1235 EXPORT_SYMBOL_GPL(add_input_randomness);
1236 
1237 static DEFINE_PER_CPU(struct fast_pool, irq_randomness);
1238 
1239 #ifdef ADD_INTERRUPT_BENCH
1240 static unsigned long avg_cycles, avg_deviation;
1241 
1242 #define AVG_SHIFT 8     /* Exponential average factor k=1/256 */
1243 #define FIXED_1_2 (1 << (AVG_SHIFT-1))
1244 
add_interrupt_bench(cycles_t start)1245 static void add_interrupt_bench(cycles_t start)
1246 {
1247         long delta = random_get_entropy() - start;
1248 
1249         /* Use a weighted moving average */
1250         delta = delta - ((avg_cycles + FIXED_1_2) >> AVG_SHIFT);
1251         avg_cycles += delta;
1252         /* And average deviation */
1253         delta = abs(delta) - ((avg_deviation + FIXED_1_2) >> AVG_SHIFT);
1254         avg_deviation += delta;
1255 }
1256 #else
1257 #define add_interrupt_bench(x)
1258 #endif
1259 
get_reg(struct fast_pool * f,struct pt_regs * regs)1260 static __u32 get_reg(struct fast_pool *f, struct pt_regs *regs)
1261 {
1262 	__u32 *ptr = (__u32 *) regs;
1263 	unsigned int idx;
1264 
1265 	if (regs == NULL)
1266 		return 0;
1267 	idx = READ_ONCE(f->reg_idx);
1268 	if (idx >= sizeof(struct pt_regs) / sizeof(__u32))
1269 		idx = 0;
1270 	ptr += idx++;
1271 	WRITE_ONCE(f->reg_idx, idx);
1272 	return *ptr;
1273 }
1274 
add_interrupt_randomness(int irq,int irq_flags)1275 void add_interrupt_randomness(int irq, int irq_flags)
1276 {
1277 	struct entropy_store	*r;
1278 	struct fast_pool	*fast_pool = this_cpu_ptr(&irq_randomness);
1279 	struct pt_regs		*regs = get_irq_regs();
1280 	unsigned long		now = jiffies;
1281 	cycles_t		cycles = random_get_entropy();
1282 	__u32			c_high, j_high;
1283 	__u64			ip;
1284 	unsigned long		seed;
1285 	int			credit = 0;
1286 
1287 	if (cycles == 0)
1288 		cycles = get_reg(fast_pool, regs);
1289 	c_high = (sizeof(cycles) > 4) ? cycles >> 32 : 0;
1290 	j_high = (sizeof(now) > 4) ? now >> 32 : 0;
1291 	fast_pool->pool[0] ^= cycles ^ j_high ^ irq;
1292 	fast_pool->pool[1] ^= now ^ c_high;
1293 	ip = regs ? instruction_pointer(regs) : _RET_IP_;
1294 	fast_pool->pool[2] ^= ip;
1295 	fast_pool->pool[3] ^= (sizeof(ip) > 4) ? ip >> 32 :
1296 		get_reg(fast_pool, regs);
1297 
1298 	fast_mix(fast_pool);
1299 	add_interrupt_bench(cycles);
1300 
1301 	if (unlikely(crng_init == 0)) {
1302 		if ((fast_pool->count >= 64) &&
1303 		    crng_fast_load((char *) fast_pool->pool,
1304 				   sizeof(fast_pool->pool)) > 0) {
1305 			fast_pool->count = 0;
1306 			fast_pool->last = now;
1307 		}
1308 		return;
1309 	}
1310 
1311 	if ((fast_pool->count < 64) &&
1312 	    !time_after(now, fast_pool->last + HZ))
1313 		return;
1314 
1315 	r = &input_pool;
1316 	if (!spin_trylock(&r->lock))
1317 		return;
1318 
1319 	fast_pool->last = now;
1320 	__mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool));
1321 
1322 	/*
1323 	 * If we have architectural seed generator, produce a seed and
1324 	 * add it to the pool.  For the sake of paranoia don't let the
1325 	 * architectural seed generator dominate the input from the
1326 	 * interrupt noise.
1327 	 */
1328 	if (arch_get_random_seed_long(&seed)) {
1329 		__mix_pool_bytes(r, &seed, sizeof(seed));
1330 		credit = 1;
1331 	}
1332 	spin_unlock(&r->lock);
1333 
1334 	fast_pool->count = 0;
1335 
1336 	/* award one bit for the contents of the fast pool */
1337 	credit_entropy_bits(r, credit + 1);
1338 }
1339 EXPORT_SYMBOL_GPL(add_interrupt_randomness);
1340 
1341 #ifdef CONFIG_BLOCK
add_disk_randomness(struct gendisk * disk)1342 void add_disk_randomness(struct gendisk *disk)
1343 {
1344 	if (!disk || !disk->random)
1345 		return;
1346 	/* first major is 1, so we get >= 0x200 here */
1347 	add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
1348 	trace_add_disk_randomness(disk_devt(disk), ENTROPY_BITS(&input_pool));
1349 }
1350 EXPORT_SYMBOL_GPL(add_disk_randomness);
1351 #endif
1352 
1353 /*********************************************************************
1354  *
1355  * Entropy extraction routines
1356  *
1357  *********************************************************************/
1358 
1359 /*
1360  * This function decides how many bytes to actually take from the
1361  * given pool, and also debits the entropy count accordingly.
1362  */
account(struct entropy_store * r,size_t nbytes,int min,int reserved)1363 static size_t account(struct entropy_store *r, size_t nbytes, int min,
1364 		      int reserved)
1365 {
1366 	int entropy_count, orig, have_bytes;
1367 	size_t ibytes, nfrac;
1368 
1369 	BUG_ON(r->entropy_count > r->poolinfo->poolfracbits);
1370 
1371 	/* Can we pull enough? */
1372 retry:
1373 	entropy_count = orig = READ_ONCE(r->entropy_count);
1374 	ibytes = nbytes;
1375 	/* never pull more than available */
1376 	have_bytes = entropy_count >> (ENTROPY_SHIFT + 3);
1377 
1378 	if ((have_bytes -= reserved) < 0)
1379 		have_bytes = 0;
1380 	ibytes = min_t(size_t, ibytes, have_bytes);
1381 	if (ibytes < min)
1382 		ibytes = 0;
1383 
1384 	if (WARN_ON(entropy_count < 0)) {
1385 		pr_warn("negative entropy count: pool %s count %d\n",
1386 			r->name, entropy_count);
1387 		entropy_count = 0;
1388 	}
1389 	nfrac = ibytes << (ENTROPY_SHIFT + 3);
1390 	if ((size_t) entropy_count > nfrac)
1391 		entropy_count -= nfrac;
1392 	else
1393 		entropy_count = 0;
1394 
1395 	if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
1396 		goto retry;
1397 
1398 	trace_debit_entropy(r->name, 8 * ibytes);
1399 	if (ibytes && ENTROPY_BITS(r) < random_write_wakeup_bits) {
1400 		wake_up_interruptible(&random_write_wait);
1401 		kill_fasync(&fasync, SIGIO, POLL_OUT);
1402 	}
1403 
1404 	return ibytes;
1405 }
1406 
1407 /*
1408  * This function does the actual extraction for extract_entropy and
1409  * extract_entropy_user.
1410  *
1411  * Note: we assume that .poolwords is a multiple of 16 words.
1412  */
extract_buf(struct entropy_store * r,__u8 * out)1413 static void extract_buf(struct entropy_store *r, __u8 *out)
1414 {
1415 	int i;
1416 	union {
1417 		__u32 w[5];
1418 		unsigned long l[LONGS(20)];
1419 	} hash;
1420 	__u32 workspace[SHA1_WORKSPACE_WORDS];
1421 	unsigned long flags;
1422 
1423 	/*
1424 	 * If we have an architectural hardware random number
1425 	 * generator, use it for SHA's initial vector
1426 	 */
1427 	sha1_init(hash.w);
1428 	for (i = 0; i < LONGS(20); i++) {
1429 		unsigned long v;
1430 		if (!arch_get_random_long(&v))
1431 			break;
1432 		hash.l[i] = v;
1433 	}
1434 
1435 	/* Generate a hash across the pool, 16 words (512 bits) at a time */
1436 	spin_lock_irqsave(&r->lock, flags);
1437 	for (i = 0; i < r->poolinfo->poolwords; i += 16)
1438 		sha1_transform(hash.w, (__u8 *)(r->pool + i), workspace);
1439 
1440 	/*
1441 	 * We mix the hash back into the pool to prevent backtracking
1442 	 * attacks (where the attacker knows the state of the pool
1443 	 * plus the current outputs, and attempts to find previous
1444 	 * ouputs), unless the hash function can be inverted. By
1445 	 * mixing at least a SHA1 worth of hash data back, we make
1446 	 * brute-forcing the feedback as hard as brute-forcing the
1447 	 * hash.
1448 	 */
1449 	__mix_pool_bytes(r, hash.w, sizeof(hash.w));
1450 	spin_unlock_irqrestore(&r->lock, flags);
1451 
1452 	memzero_explicit(workspace, sizeof(workspace));
1453 
1454 	/*
1455 	 * In case the hash function has some recognizable output
1456 	 * pattern, we fold it in half. Thus, we always feed back
1457 	 * twice as much data as we output.
1458 	 */
1459 	hash.w[0] ^= hash.w[3];
1460 	hash.w[1] ^= hash.w[4];
1461 	hash.w[2] ^= rol32(hash.w[2], 16);
1462 
1463 	memcpy(out, &hash, EXTRACT_SIZE);
1464 	memzero_explicit(&hash, sizeof(hash));
1465 }
1466 
_extract_entropy(struct entropy_store * r,void * buf,size_t nbytes,int fips)1467 static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
1468 				size_t nbytes, int fips)
1469 {
1470 	ssize_t ret = 0, i;
1471 	__u8 tmp[EXTRACT_SIZE];
1472 	unsigned long flags;
1473 
1474 	while (nbytes) {
1475 		extract_buf(r, tmp);
1476 
1477 		if (fips) {
1478 			spin_lock_irqsave(&r->lock, flags);
1479 			if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
1480 				panic("Hardware RNG duplicated output!\n");
1481 			memcpy(r->last_data, tmp, EXTRACT_SIZE);
1482 			spin_unlock_irqrestore(&r->lock, flags);
1483 		}
1484 		i = min_t(int, nbytes, EXTRACT_SIZE);
1485 		memcpy(buf, tmp, i);
1486 		nbytes -= i;
1487 		buf += i;
1488 		ret += i;
1489 	}
1490 
1491 	/* Wipe data just returned from memory */
1492 	memzero_explicit(tmp, sizeof(tmp));
1493 
1494 	return ret;
1495 }
1496 
1497 /*
1498  * This function extracts randomness from the "entropy pool", and
1499  * returns it in a buffer.
1500  *
1501  * The min parameter specifies the minimum amount we can pull before
1502  * failing to avoid races that defeat catastrophic reseeding while the
1503  * reserved parameter indicates how much entropy we must leave in the
1504  * pool after each pull to avoid starving other readers.
1505  */
extract_entropy(struct entropy_store * r,void * buf,size_t nbytes,int min,int reserved)1506 static ssize_t extract_entropy(struct entropy_store *r, void *buf,
1507 				 size_t nbytes, int min, int reserved)
1508 {
1509 	__u8 tmp[EXTRACT_SIZE];
1510 	unsigned long flags;
1511 
1512 	/* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */
1513 	if (fips_enabled) {
1514 		spin_lock_irqsave(&r->lock, flags);
1515 		if (!r->last_data_init) {
1516 			r->last_data_init = 1;
1517 			spin_unlock_irqrestore(&r->lock, flags);
1518 			trace_extract_entropy(r->name, EXTRACT_SIZE,
1519 					      ENTROPY_BITS(r), _RET_IP_);
1520 			extract_buf(r, tmp);
1521 			spin_lock_irqsave(&r->lock, flags);
1522 			memcpy(r->last_data, tmp, EXTRACT_SIZE);
1523 		}
1524 		spin_unlock_irqrestore(&r->lock, flags);
1525 	}
1526 
1527 	trace_extract_entropy(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1528 	nbytes = account(r, nbytes, min, reserved);
1529 
1530 	return _extract_entropy(r, buf, nbytes, fips_enabled);
1531 }
1532 
1533 #define warn_unseeded_randomness(previous) \
1534 	_warn_unseeded_randomness(__func__, (void *) _RET_IP_, (previous))
1535 
_warn_unseeded_randomness(const char * func_name,void * caller,void ** previous)1536 static void _warn_unseeded_randomness(const char *func_name, void *caller,
1537 				      void **previous)
1538 {
1539 #ifdef CONFIG_WARN_ALL_UNSEEDED_RANDOM
1540 	const bool print_once = false;
1541 #else
1542 	static bool print_once __read_mostly;
1543 #endif
1544 
1545 	if (print_once ||
1546 	    crng_ready() ||
1547 	    (previous && (caller == READ_ONCE(*previous))))
1548 		return;
1549 	WRITE_ONCE(*previous, caller);
1550 #ifndef CONFIG_WARN_ALL_UNSEEDED_RANDOM
1551 	print_once = true;
1552 #endif
1553 	if (__ratelimit(&unseeded_warning))
1554 		printk_deferred(KERN_NOTICE "random: %s called from %pS "
1555 				"with crng_init=%d\n", func_name, caller,
1556 				crng_init);
1557 }
1558 
1559 /*
1560  * This function is the exported kernel interface.  It returns some
1561  * number of good random numbers, suitable for key generation, seeding
1562  * TCP sequence numbers, etc.  It does not rely on the hardware random
1563  * number generator.  For random bytes direct from the hardware RNG
1564  * (when available), use get_random_bytes_arch(). In order to ensure
1565  * that the randomness provided by this function is okay, the function
1566  * wait_for_random_bytes() should be called and return 0 at least once
1567  * at any point prior.
1568  */
_get_random_bytes(void * buf,int nbytes)1569 static void _get_random_bytes(void *buf, int nbytes)
1570 {
1571 	__u8 tmp[CHACHA_BLOCK_SIZE] __aligned(4);
1572 
1573 	trace_get_random_bytes(nbytes, _RET_IP_);
1574 
1575 	while (nbytes >= CHACHA_BLOCK_SIZE) {
1576 		extract_crng(buf);
1577 		buf += CHACHA_BLOCK_SIZE;
1578 		nbytes -= CHACHA_BLOCK_SIZE;
1579 	}
1580 
1581 	if (nbytes > 0) {
1582 		extract_crng(tmp);
1583 		memcpy(buf, tmp, nbytes);
1584 		crng_backtrack_protect(tmp, nbytes);
1585 	} else
1586 		crng_backtrack_protect(tmp, CHACHA_BLOCK_SIZE);
1587 	memzero_explicit(tmp, sizeof(tmp));
1588 }
1589 
get_random_bytes(void * buf,int nbytes)1590 void get_random_bytes(void *buf, int nbytes)
1591 {
1592 	static void *previous;
1593 
1594 	warn_unseeded_randomness(&previous);
1595 	_get_random_bytes(buf, nbytes);
1596 }
1597 EXPORT_SYMBOL(get_random_bytes);
1598 
1599 
1600 /*
1601  * Each time the timer fires, we expect that we got an unpredictable
1602  * jump in the cycle counter. Even if the timer is running on another
1603  * CPU, the timer activity will be touching the stack of the CPU that is
1604  * generating entropy..
1605  *
1606  * Note that we don't re-arm the timer in the timer itself - we are
1607  * happy to be scheduled away, since that just makes the load more
1608  * complex, but we do not want the timer to keep ticking unless the
1609  * entropy loop is running.
1610  *
1611  * So the re-arming always happens in the entropy loop itself.
1612  */
entropy_timer(struct timer_list * t)1613 static void entropy_timer(struct timer_list *t)
1614 {
1615 	credit_entropy_bits(&input_pool, 1);
1616 }
1617 
1618 /*
1619  * If we have an actual cycle counter, see if we can
1620  * generate enough entropy with timing noise
1621  */
try_to_generate_entropy(void)1622 static void try_to_generate_entropy(void)
1623 {
1624 	struct {
1625 		unsigned long now;
1626 		struct timer_list timer;
1627 	} stack;
1628 
1629 	stack.now = random_get_entropy();
1630 
1631 	/* Slow counter - or none. Don't even bother */
1632 	if (stack.now == random_get_entropy())
1633 		return;
1634 
1635 	timer_setup_on_stack(&stack.timer, entropy_timer, 0);
1636 	while (!crng_ready()) {
1637 		if (!timer_pending(&stack.timer))
1638 			mod_timer(&stack.timer, jiffies+1);
1639 		mix_pool_bytes(&input_pool, &stack.now, sizeof(stack.now));
1640 		schedule();
1641 		stack.now = random_get_entropy();
1642 	}
1643 
1644 	del_timer_sync(&stack.timer);
1645 	destroy_timer_on_stack(&stack.timer);
1646 	mix_pool_bytes(&input_pool, &stack.now, sizeof(stack.now));
1647 }
1648 
1649 /*
1650  * Wait for the urandom pool to be seeded and thus guaranteed to supply
1651  * cryptographically secure random numbers. This applies to: the /dev/urandom
1652  * device, the get_random_bytes function, and the get_random_{u32,u64,int,long}
1653  * family of functions. Using any of these functions without first calling
1654  * this function forfeits the guarantee of security.
1655  *
1656  * Returns: 0 if the urandom pool has been seeded.
1657  *          -ERESTARTSYS if the function was interrupted by a signal.
1658  */
wait_for_random_bytes(void)1659 int wait_for_random_bytes(void)
1660 {
1661 	if (likely(crng_ready()))
1662 		return 0;
1663 
1664 	do {
1665 		int ret;
1666 		ret = wait_event_interruptible_timeout(crng_init_wait, crng_ready(), HZ);
1667 		if (ret)
1668 			return ret > 0 ? 0 : ret;
1669 
1670 		try_to_generate_entropy();
1671 	} while (!crng_ready());
1672 
1673 	return 0;
1674 }
1675 EXPORT_SYMBOL(wait_for_random_bytes);
1676 
1677 /*
1678  * Returns whether or not the urandom pool has been seeded and thus guaranteed
1679  * to supply cryptographically secure random numbers. This applies to: the
1680  * /dev/urandom device, the get_random_bytes function, and the get_random_{u32,
1681  * ,u64,int,long} family of functions.
1682  *
1683  * Returns: true if the urandom pool has been seeded.
1684  *          false if the urandom pool has not been seeded.
1685  */
rng_is_initialized(void)1686 bool rng_is_initialized(void)
1687 {
1688 	return crng_ready();
1689 }
1690 EXPORT_SYMBOL(rng_is_initialized);
1691 
1692 /*
1693  * Add a callback function that will be invoked when the nonblocking
1694  * pool is initialised.
1695  *
1696  * returns: 0 if callback is successfully added
1697  *	    -EALREADY if pool is already initialised (callback not called)
1698  *	    -ENOENT if module for callback is not alive
1699  */
add_random_ready_callback(struct random_ready_callback * rdy)1700 int add_random_ready_callback(struct random_ready_callback *rdy)
1701 {
1702 	struct module *owner;
1703 	unsigned long flags;
1704 	int err = -EALREADY;
1705 
1706 	if (crng_ready())
1707 		return err;
1708 
1709 	owner = rdy->owner;
1710 	if (!try_module_get(owner))
1711 		return -ENOENT;
1712 
1713 	spin_lock_irqsave(&random_ready_list_lock, flags);
1714 	if (crng_ready())
1715 		goto out;
1716 
1717 	owner = NULL;
1718 
1719 	list_add(&rdy->list, &random_ready_list);
1720 	err = 0;
1721 
1722 out:
1723 	spin_unlock_irqrestore(&random_ready_list_lock, flags);
1724 
1725 	module_put(owner);
1726 
1727 	return err;
1728 }
1729 EXPORT_SYMBOL(add_random_ready_callback);
1730 
1731 /*
1732  * Delete a previously registered readiness callback function.
1733  */
del_random_ready_callback(struct random_ready_callback * rdy)1734 void del_random_ready_callback(struct random_ready_callback *rdy)
1735 {
1736 	unsigned long flags;
1737 	struct module *owner = NULL;
1738 
1739 	spin_lock_irqsave(&random_ready_list_lock, flags);
1740 	if (!list_empty(&rdy->list)) {
1741 		list_del_init(&rdy->list);
1742 		owner = rdy->owner;
1743 	}
1744 	spin_unlock_irqrestore(&random_ready_list_lock, flags);
1745 
1746 	module_put(owner);
1747 }
1748 EXPORT_SYMBOL(del_random_ready_callback);
1749 
1750 /*
1751  * This function will use the architecture-specific hardware random
1752  * number generator if it is available.  The arch-specific hw RNG will
1753  * almost certainly be faster than what we can do in software, but it
1754  * is impossible to verify that it is implemented securely (as
1755  * opposed, to, say, the AES encryption of a sequence number using a
1756  * key known by the NSA).  So it's useful if we need the speed, but
1757  * only if we're willing to trust the hardware manufacturer not to
1758  * have put in a back door.
1759  *
1760  * Return number of bytes filled in.
1761  */
get_random_bytes_arch(void * buf,int nbytes)1762 int __must_check get_random_bytes_arch(void *buf, int nbytes)
1763 {
1764 	int left = nbytes;
1765 	char *p = buf;
1766 
1767 	trace_get_random_bytes_arch(left, _RET_IP_);
1768 	while (left) {
1769 		unsigned long v;
1770 		int chunk = min_t(int, left, sizeof(unsigned long));
1771 
1772 		if (!arch_get_random_long(&v))
1773 			break;
1774 
1775 		memcpy(p, &v, chunk);
1776 		p += chunk;
1777 		left -= chunk;
1778 	}
1779 
1780 	return nbytes - left;
1781 }
1782 EXPORT_SYMBOL(get_random_bytes_arch);
1783 
1784 /*
1785  * init_std_data - initialize pool with system data
1786  *
1787  * @r: pool to initialize
1788  *
1789  * This function clears the pool's entropy count and mixes some system
1790  * data into the pool to prepare it for use. The pool is not cleared
1791  * as that can only decrease the entropy in the pool.
1792  */
init_std_data(struct entropy_store * r)1793 static void __init init_std_data(struct entropy_store *r)
1794 {
1795 	int i;
1796 	ktime_t now = ktime_get_real();
1797 	unsigned long rv;
1798 
1799 	mix_pool_bytes(r, &now, sizeof(now));
1800 	for (i = r->poolinfo->poolbytes; i > 0; i -= sizeof(rv)) {
1801 		if (!arch_get_random_seed_long(&rv) &&
1802 		    !arch_get_random_long(&rv))
1803 			rv = random_get_entropy();
1804 		mix_pool_bytes(r, &rv, sizeof(rv));
1805 	}
1806 	mix_pool_bytes(r, utsname(), sizeof(*(utsname())));
1807 }
1808 
1809 /*
1810  * Note that setup_arch() may call add_device_randomness()
1811  * long before we get here. This allows seeding of the pools
1812  * with some platform dependent data very early in the boot
1813  * process. But it limits our options here. We must use
1814  * statically allocated structures that already have all
1815  * initializations complete at compile time. We should also
1816  * take care not to overwrite the precious per platform data
1817  * we were given.
1818  */
rand_initialize(void)1819 int __init rand_initialize(void)
1820 {
1821 	init_std_data(&input_pool);
1822 	if (crng_need_final_init)
1823 		crng_finalize_init(&primary_crng);
1824 	crng_initialize_primary(&primary_crng);
1825 	crng_global_init_time = jiffies;
1826 	if (ratelimit_disable) {
1827 		urandom_warning.interval = 0;
1828 		unseeded_warning.interval = 0;
1829 	}
1830 	return 0;
1831 }
1832 
1833 #ifdef CONFIG_BLOCK
rand_initialize_disk(struct gendisk * disk)1834 void rand_initialize_disk(struct gendisk *disk)
1835 {
1836 	struct timer_rand_state *state;
1837 
1838 	/*
1839 	 * If kzalloc returns null, we just won't use that entropy
1840 	 * source.
1841 	 */
1842 	state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
1843 	if (state) {
1844 		state->last_time = INITIAL_JIFFIES;
1845 		disk->random = state;
1846 	}
1847 }
1848 #endif
1849 
1850 static ssize_t
urandom_read_nowarn(struct file * file,char __user * buf,size_t nbytes,loff_t * ppos)1851 urandom_read_nowarn(struct file *file, char __user *buf, size_t nbytes,
1852 		    loff_t *ppos)
1853 {
1854 	int ret;
1855 
1856 	nbytes = min_t(size_t, nbytes, INT_MAX >> (ENTROPY_SHIFT + 3));
1857 	ret = extract_crng_user(buf, nbytes);
1858 	trace_urandom_read(8 * nbytes, 0, ENTROPY_BITS(&input_pool));
1859 	return ret;
1860 }
1861 
1862 static ssize_t
urandom_read(struct file * file,char __user * buf,size_t nbytes,loff_t * ppos)1863 urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1864 {
1865 	unsigned long flags;
1866 	static int maxwarn = 10;
1867 
1868 	if (!crng_ready() && maxwarn > 0) {
1869 		maxwarn--;
1870 		if (__ratelimit(&urandom_warning))
1871 			pr_notice("%s: uninitialized urandom read (%zd bytes read)\n",
1872 				  current->comm, nbytes);
1873 		spin_lock_irqsave(&primary_crng.lock, flags);
1874 		crng_init_cnt = 0;
1875 		spin_unlock_irqrestore(&primary_crng.lock, flags);
1876 	}
1877 
1878 	return urandom_read_nowarn(file, buf, nbytes, ppos);
1879 }
1880 
1881 static ssize_t
random_read(struct file * file,char __user * buf,size_t nbytes,loff_t * ppos)1882 random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1883 {
1884 	int ret;
1885 
1886 	ret = wait_for_random_bytes();
1887 	if (ret != 0)
1888 		return ret;
1889 	return urandom_read_nowarn(file, buf, nbytes, ppos);
1890 }
1891 
1892 static __poll_t
random_poll(struct file * file,poll_table * wait)1893 random_poll(struct file *file, poll_table * wait)
1894 {
1895 	__poll_t mask;
1896 
1897 	poll_wait(file, &crng_init_wait, wait);
1898 	poll_wait(file, &random_write_wait, wait);
1899 	mask = 0;
1900 	if (crng_ready())
1901 		mask |= EPOLLIN | EPOLLRDNORM;
1902 	if (ENTROPY_BITS(&input_pool) < random_write_wakeup_bits)
1903 		mask |= EPOLLOUT | EPOLLWRNORM;
1904 	return mask;
1905 }
1906 
1907 static int
write_pool(struct entropy_store * r,const char __user * buffer,size_t count)1908 write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
1909 {
1910 	size_t bytes;
1911 	__u32 t, buf[16];
1912 	const char __user *p = buffer;
1913 
1914 	while (count > 0) {
1915 		int b, i = 0;
1916 
1917 		bytes = min(count, sizeof(buf));
1918 		if (copy_from_user(&buf, p, bytes))
1919 			return -EFAULT;
1920 
1921 		for (b = bytes ; b > 0 ; b -= sizeof(__u32), i++) {
1922 			if (!arch_get_random_int(&t))
1923 				break;
1924 			buf[i] ^= t;
1925 		}
1926 
1927 		count -= bytes;
1928 		p += bytes;
1929 
1930 		mix_pool_bytes(r, buf, bytes);
1931 		cond_resched();
1932 	}
1933 
1934 	return 0;
1935 }
1936 
random_write(struct file * file,const char __user * buffer,size_t count,loff_t * ppos)1937 static ssize_t random_write(struct file *file, const char __user *buffer,
1938 			    size_t count, loff_t *ppos)
1939 {
1940 	size_t ret;
1941 
1942 	ret = write_pool(&input_pool, buffer, count);
1943 	if (ret)
1944 		return ret;
1945 
1946 	return (ssize_t)count;
1947 }
1948 
random_ioctl(struct file * f,unsigned int cmd,unsigned long arg)1949 static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1950 {
1951 	int size, ent_count;
1952 	int __user *p = (int __user *)arg;
1953 	int retval;
1954 
1955 	switch (cmd) {
1956 	case RNDGETENTCNT:
1957 		/* inherently racy, no point locking */
1958 		ent_count = ENTROPY_BITS(&input_pool);
1959 		if (put_user(ent_count, p))
1960 			return -EFAULT;
1961 		return 0;
1962 	case RNDADDTOENTCNT:
1963 		if (!capable(CAP_SYS_ADMIN))
1964 			return -EPERM;
1965 		if (get_user(ent_count, p))
1966 			return -EFAULT;
1967 		return credit_entropy_bits_safe(&input_pool, ent_count);
1968 	case RNDADDENTROPY:
1969 		if (!capable(CAP_SYS_ADMIN))
1970 			return -EPERM;
1971 		if (get_user(ent_count, p++))
1972 			return -EFAULT;
1973 		if (ent_count < 0)
1974 			return -EINVAL;
1975 		if (get_user(size, p++))
1976 			return -EFAULT;
1977 		retval = write_pool(&input_pool, (const char __user *)p,
1978 				    size);
1979 		if (retval < 0)
1980 			return retval;
1981 		return credit_entropy_bits_safe(&input_pool, ent_count);
1982 	case RNDZAPENTCNT:
1983 	case RNDCLEARPOOL:
1984 		/*
1985 		 * Clear the entropy pool counters. We no longer clear
1986 		 * the entropy pool, as that's silly.
1987 		 */
1988 		if (!capable(CAP_SYS_ADMIN))
1989 			return -EPERM;
1990 		input_pool.entropy_count = 0;
1991 		return 0;
1992 	case RNDRESEEDCRNG:
1993 		if (!capable(CAP_SYS_ADMIN))
1994 			return -EPERM;
1995 		if (crng_init < 2)
1996 			return -ENODATA;
1997 		crng_reseed(&primary_crng, &input_pool);
1998 		WRITE_ONCE(crng_global_init_time, jiffies - 1);
1999 		return 0;
2000 	default:
2001 		return -EINVAL;
2002 	}
2003 }
2004 
random_fasync(int fd,struct file * filp,int on)2005 static int random_fasync(int fd, struct file *filp, int on)
2006 {
2007 	return fasync_helper(fd, filp, on, &fasync);
2008 }
2009 
2010 const struct file_operations random_fops = {
2011 	.read  = random_read,
2012 	.write = random_write,
2013 	.poll  = random_poll,
2014 	.unlocked_ioctl = random_ioctl,
2015 	.compat_ioctl = compat_ptr_ioctl,
2016 	.fasync = random_fasync,
2017 	.llseek = noop_llseek,
2018 };
2019 
2020 const struct file_operations urandom_fops = {
2021 	.read  = urandom_read,
2022 	.write = random_write,
2023 	.unlocked_ioctl = random_ioctl,
2024 	.compat_ioctl = compat_ptr_ioctl,
2025 	.fasync = random_fasync,
2026 	.llseek = noop_llseek,
2027 };
2028 
SYSCALL_DEFINE3(getrandom,char __user *,buf,size_t,count,unsigned int,flags)2029 SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count,
2030 		unsigned int, flags)
2031 {
2032 	int ret;
2033 
2034 	if (flags & ~(GRND_NONBLOCK|GRND_RANDOM|GRND_INSECURE))
2035 		return -EINVAL;
2036 
2037 	/*
2038 	 * Requesting insecure and blocking randomness at the same time makes
2039 	 * no sense.
2040 	 */
2041 	if ((flags & (GRND_INSECURE|GRND_RANDOM)) == (GRND_INSECURE|GRND_RANDOM))
2042 		return -EINVAL;
2043 
2044 	if (count > INT_MAX)
2045 		count = INT_MAX;
2046 
2047 	if (!(flags & GRND_INSECURE) && !crng_ready()) {
2048 		if (flags & GRND_NONBLOCK)
2049 			return -EAGAIN;
2050 		ret = wait_for_random_bytes();
2051 		if (unlikely(ret))
2052 			return ret;
2053 	}
2054 	return urandom_read_nowarn(NULL, buf, count, NULL);
2055 }
2056 
2057 /********************************************************************
2058  *
2059  * Sysctl interface
2060  *
2061  ********************************************************************/
2062 
2063 #ifdef CONFIG_SYSCTL
2064 
2065 #include <linux/sysctl.h>
2066 
2067 static int min_write_thresh;
2068 static int max_write_thresh = INPUT_POOL_WORDS * 32;
2069 static int random_min_urandom_seed = 60;
2070 static char sysctl_bootid[16];
2071 
2072 /*
2073  * This function is used to return both the bootid UUID, and random
2074  * UUID.  The difference is in whether table->data is NULL; if it is,
2075  * then a new UUID is generated and returned to the user.
2076  *
2077  * If the user accesses this via the proc interface, the UUID will be
2078  * returned as an ASCII string in the standard UUID format; if via the
2079  * sysctl system call, as 16 bytes of binary data.
2080  */
proc_do_uuid(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)2081 static int proc_do_uuid(struct ctl_table *table, int write,
2082 			void *buffer, size_t *lenp, loff_t *ppos)
2083 {
2084 	struct ctl_table fake_table;
2085 	unsigned char buf[64], tmp_uuid[16], *uuid;
2086 
2087 	uuid = table->data;
2088 	if (!uuid) {
2089 		uuid = tmp_uuid;
2090 		generate_random_uuid(uuid);
2091 	} else {
2092 		static DEFINE_SPINLOCK(bootid_spinlock);
2093 
2094 		spin_lock(&bootid_spinlock);
2095 		if (!uuid[8])
2096 			generate_random_uuid(uuid);
2097 		spin_unlock(&bootid_spinlock);
2098 	}
2099 
2100 	sprintf(buf, "%pU", uuid);
2101 
2102 	fake_table.data = buf;
2103 	fake_table.maxlen = sizeof(buf);
2104 
2105 	return proc_dostring(&fake_table, write, buffer, lenp, ppos);
2106 }
2107 
2108 /*
2109  * Return entropy available scaled to integral bits
2110  */
proc_do_entropy(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)2111 static int proc_do_entropy(struct ctl_table *table, int write,
2112 			   void *buffer, size_t *lenp, loff_t *ppos)
2113 {
2114 	struct ctl_table fake_table;
2115 	int entropy_count;
2116 
2117 	entropy_count = *(int *)table->data >> ENTROPY_SHIFT;
2118 
2119 	fake_table.data = &entropy_count;
2120 	fake_table.maxlen = sizeof(entropy_count);
2121 
2122 	return proc_dointvec(&fake_table, write, buffer, lenp, ppos);
2123 }
2124 
2125 static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
2126 extern struct ctl_table random_table[];
2127 struct ctl_table random_table[] = {
2128 	{
2129 		.procname	= "poolsize",
2130 		.data		= &sysctl_poolsize,
2131 		.maxlen		= sizeof(int),
2132 		.mode		= 0444,
2133 		.proc_handler	= proc_dointvec,
2134 	},
2135 	{
2136 		.procname	= "entropy_avail",
2137 		.maxlen		= sizeof(int),
2138 		.mode		= 0444,
2139 		.proc_handler	= proc_do_entropy,
2140 		.data		= &input_pool.entropy_count,
2141 	},
2142 	{
2143 		.procname	= "write_wakeup_threshold",
2144 		.data		= &random_write_wakeup_bits,
2145 		.maxlen		= sizeof(int),
2146 		.mode		= 0644,
2147 		.proc_handler	= proc_dointvec_minmax,
2148 		.extra1		= &min_write_thresh,
2149 		.extra2		= &max_write_thresh,
2150 	},
2151 	{
2152 		.procname	= "urandom_min_reseed_secs",
2153 		.data		= &random_min_urandom_seed,
2154 		.maxlen		= sizeof(int),
2155 		.mode		= 0644,
2156 		.proc_handler	= proc_dointvec,
2157 	},
2158 	{
2159 		.procname	= "boot_id",
2160 		.data		= &sysctl_bootid,
2161 		.maxlen		= 16,
2162 		.mode		= 0444,
2163 		.proc_handler	= proc_do_uuid,
2164 	},
2165 	{
2166 		.procname	= "uuid",
2167 		.maxlen		= 16,
2168 		.mode		= 0444,
2169 		.proc_handler	= proc_do_uuid,
2170 	},
2171 #ifdef ADD_INTERRUPT_BENCH
2172 	{
2173 		.procname	= "add_interrupt_avg_cycles",
2174 		.data		= &avg_cycles,
2175 		.maxlen		= sizeof(avg_cycles),
2176 		.mode		= 0444,
2177 		.proc_handler	= proc_doulongvec_minmax,
2178 	},
2179 	{
2180 		.procname	= "add_interrupt_avg_deviation",
2181 		.data		= &avg_deviation,
2182 		.maxlen		= sizeof(avg_deviation),
2183 		.mode		= 0444,
2184 		.proc_handler	= proc_doulongvec_minmax,
2185 	},
2186 #endif
2187 	{ }
2188 };
2189 #endif 	/* CONFIG_SYSCTL */
2190 
2191 struct batched_entropy {
2192 	union {
2193 		u64 entropy_u64[CHACHA_BLOCK_SIZE / sizeof(u64)];
2194 		u32 entropy_u32[CHACHA_BLOCK_SIZE / sizeof(u32)];
2195 	};
2196 	unsigned int position;
2197 	spinlock_t batch_lock;
2198 };
2199 
2200 /*
2201  * Get a random word for internal kernel use only. The quality of the random
2202  * number is good as /dev/urandom, but there is no backtrack protection, with
2203  * the goal of being quite fast and not depleting entropy. In order to ensure
2204  * that the randomness provided by this function is okay, the function
2205  * wait_for_random_bytes() should be called and return 0 at least once at any
2206  * point prior.
2207  */
2208 static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u64) = {
2209 	.batch_lock	= __SPIN_LOCK_UNLOCKED(batched_entropy_u64.lock),
2210 };
2211 
get_random_u64(void)2212 u64 get_random_u64(void)
2213 {
2214 	u64 ret;
2215 	unsigned long flags;
2216 	struct batched_entropy *batch;
2217 	static void *previous;
2218 
2219 	warn_unseeded_randomness(&previous);
2220 
2221 	batch = raw_cpu_ptr(&batched_entropy_u64);
2222 	spin_lock_irqsave(&batch->batch_lock, flags);
2223 	if (batch->position % ARRAY_SIZE(batch->entropy_u64) == 0) {
2224 		extract_crng((u8 *)batch->entropy_u64);
2225 		batch->position = 0;
2226 	}
2227 	ret = batch->entropy_u64[batch->position++];
2228 	spin_unlock_irqrestore(&batch->batch_lock, flags);
2229 	return ret;
2230 }
2231 EXPORT_SYMBOL(get_random_u64);
2232 
2233 static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u32) = {
2234 	.batch_lock	= __SPIN_LOCK_UNLOCKED(batched_entropy_u32.lock),
2235 };
get_random_u32(void)2236 u32 get_random_u32(void)
2237 {
2238 	u32 ret;
2239 	unsigned long flags;
2240 	struct batched_entropy *batch;
2241 	static void *previous;
2242 
2243 	warn_unseeded_randomness(&previous);
2244 
2245 	batch = raw_cpu_ptr(&batched_entropy_u32);
2246 	spin_lock_irqsave(&batch->batch_lock, flags);
2247 	if (batch->position % ARRAY_SIZE(batch->entropy_u32) == 0) {
2248 		extract_crng((u8 *)batch->entropy_u32);
2249 		batch->position = 0;
2250 	}
2251 	ret = batch->entropy_u32[batch->position++];
2252 	spin_unlock_irqrestore(&batch->batch_lock, flags);
2253 	return ret;
2254 }
2255 EXPORT_SYMBOL(get_random_u32);
2256 
2257 /* It's important to invalidate all potential batched entropy that might
2258  * be stored before the crng is initialized, which we can do lazily by
2259  * simply resetting the counter to zero so that it's re-extracted on the
2260  * next usage. */
invalidate_batched_entropy(void)2261 static void invalidate_batched_entropy(void)
2262 {
2263 	int cpu;
2264 	unsigned long flags;
2265 
2266 	for_each_possible_cpu (cpu) {
2267 		struct batched_entropy *batched_entropy;
2268 
2269 		batched_entropy = per_cpu_ptr(&batched_entropy_u32, cpu);
2270 		spin_lock_irqsave(&batched_entropy->batch_lock, flags);
2271 		batched_entropy->position = 0;
2272 		spin_unlock(&batched_entropy->batch_lock);
2273 
2274 		batched_entropy = per_cpu_ptr(&batched_entropy_u64, cpu);
2275 		spin_lock(&batched_entropy->batch_lock);
2276 		batched_entropy->position = 0;
2277 		spin_unlock_irqrestore(&batched_entropy->batch_lock, flags);
2278 	}
2279 }
2280 
2281 /**
2282  * randomize_page - Generate a random, page aligned address
2283  * @start:	The smallest acceptable address the caller will take.
2284  * @range:	The size of the area, starting at @start, within which the
2285  *		random address must fall.
2286  *
2287  * If @start + @range would overflow, @range is capped.
2288  *
2289  * NOTE: Historical use of randomize_range, which this replaces, presumed that
2290  * @start was already page aligned.  We now align it regardless.
2291  *
2292  * Return: A page aligned address within [start, start + range).  On error,
2293  * @start is returned.
2294  */
2295 unsigned long
randomize_page(unsigned long start,unsigned long range)2296 randomize_page(unsigned long start, unsigned long range)
2297 {
2298 	if (!PAGE_ALIGNED(start)) {
2299 		range -= PAGE_ALIGN(start) - start;
2300 		start = PAGE_ALIGN(start);
2301 	}
2302 
2303 	if (start > ULONG_MAX - range)
2304 		range = ULONG_MAX - start;
2305 
2306 	range >>= PAGE_SHIFT;
2307 
2308 	if (range == 0)
2309 		return start;
2310 
2311 	return start + (get_random_long() % range << PAGE_SHIFT);
2312 }
2313 
2314 /* Interface for in-kernel drivers of true hardware RNGs.
2315  * Those devices may produce endless random bits and will be throttled
2316  * when our pool is full.
2317  */
add_hwgenerator_randomness(const char * buffer,size_t count,size_t entropy)2318 void add_hwgenerator_randomness(const char *buffer, size_t count,
2319 				size_t entropy)
2320 {
2321 	struct entropy_store *poolp = &input_pool;
2322 
2323 	if (unlikely(crng_init == 0)) {
2324 		size_t ret = crng_fast_load(buffer, count);
2325 		count -= ret;
2326 		buffer += ret;
2327 		if (!count || crng_init == 0)
2328 			return;
2329 	}
2330 
2331 	/* Suspend writing if we're above the trickle threshold.
2332 	 * We'll be woken up again once below random_write_wakeup_thresh,
2333 	 * or when the calling thread is about to terminate.
2334 	 */
2335 	wait_event_interruptible(random_write_wait,
2336 			!system_wq || kthread_should_stop() ||
2337 			ENTROPY_BITS(&input_pool) <= random_write_wakeup_bits);
2338 	mix_pool_bytes(poolp, buffer, count);
2339 	credit_entropy_bits(poolp, entropy);
2340 }
2341 EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);
2342 
2343 /* Handle random seed passed by bootloader.
2344  * If the seed is trustworthy, it would be regarded as hardware RNGs. Otherwise
2345  * it would be regarded as device data.
2346  * The decision is controlled by CONFIG_RANDOM_TRUST_BOOTLOADER.
2347  */
add_bootloader_randomness(const void * buf,unsigned int size)2348 void add_bootloader_randomness(const void *buf, unsigned int size)
2349 {
2350 	if (IS_ENABLED(CONFIG_RANDOM_TRUST_BOOTLOADER))
2351 		add_hwgenerator_randomness(buf, size, size * 8);
2352 	else
2353 		add_device_randomness(buf, size);
2354 }
2355 EXPORT_SYMBOL_GPL(add_bootloader_randomness);
2356