• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- AArch64FrameLowering.cpp - AArch64 Frame Lowering -------*- C++ -*-====//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the AArch64 implementation of TargetFrameLowering class.
10 //
11 // On AArch64, stack frames are structured as follows:
12 //
13 // The stack grows downward.
14 //
15 // All of the individual frame areas on the frame below are optional, i.e. it's
16 // possible to create a function so that the particular area isn't present
17 // in the frame.
18 //
19 // At function entry, the "frame" looks as follows:
20 //
21 // |                                   | Higher address
22 // |-----------------------------------|
23 // |                                   |
24 // | arguments passed on the stack     |
25 // |                                   |
26 // |-----------------------------------| <- sp
27 // |                                   | Lower address
28 //
29 //
30 // After the prologue has run, the frame has the following general structure.
31 // Note that this doesn't depict the case where a red-zone is used. Also,
32 // technically the last frame area (VLAs) doesn't get created until in the
33 // main function body, after the prologue is run. However, it's depicted here
34 // for completeness.
35 //
36 // |                                   | Higher address
37 // |-----------------------------------|
38 // |                                   |
39 // | arguments passed on the stack     |
40 // |                                   |
41 // |-----------------------------------|
42 // |                                   |
43 // | (Win64 only) varargs from reg     |
44 // |                                   |
45 // |-----------------------------------|
46 // |                                   |
47 // | callee-saved gpr registers        | <--.
48 // |                                   |    | On Darwin platforms these
49 // |- - - - - - - - - - - - - - - - - -|    | callee saves are swapped,
50 // |                                   |    | (frame record first)
51 // | prev_fp, prev_lr                  | <--'
52 // | (a.k.a. "frame record")           |
53 // |-----------------------------------| <- fp(=x29)
54 // |                                   |
55 // | callee-saved fp/simd/SVE regs     |
56 // |                                   |
57 // |-----------------------------------|
58 // |                                   |
59 // |        SVE stack objects          |
60 // |                                   |
61 // |-----------------------------------|
62 // |.empty.space.to.make.part.below....|
63 // |.aligned.in.case.it.needs.more.than| (size of this area is unknown at
64 // |.the.standard.16-byte.alignment....|  compile time; if present)
65 // |-----------------------------------|
66 // |                                   |
67 // | local variables of fixed size     |
68 // | including spill slots             |
69 // |-----------------------------------| <- bp(not defined by ABI,
70 // |.variable-sized.local.variables....|       LLVM chooses X19)
71 // |.(VLAs)............................| (size of this area is unknown at
72 // |...................................|  compile time)
73 // |-----------------------------------| <- sp
74 // |                                   | Lower address
75 //
76 //
77 // To access the data in a frame, at-compile time, a constant offset must be
78 // computable from one of the pointers (fp, bp, sp) to access it. The size
79 // of the areas with a dotted background cannot be computed at compile-time
80 // if they are present, making it required to have all three of fp, bp and
81 // sp to be set up to be able to access all contents in the frame areas,
82 // assuming all of the frame areas are non-empty.
83 //
84 // For most functions, some of the frame areas are empty. For those functions,
85 // it may not be necessary to set up fp or bp:
86 // * A base pointer is definitely needed when there are both VLAs and local
87 //   variables with more-than-default alignment requirements.
88 // * A frame pointer is definitely needed when there are local variables with
89 //   more-than-default alignment requirements.
90 //
91 // For Darwin platforms the frame-record (fp, lr) is stored at the top of the
92 // callee-saved area, since the unwind encoding does not allow for encoding
93 // this dynamically and existing tools depend on this layout. For other
94 // platforms, the frame-record is stored at the bottom of the (gpr) callee-saved
95 // area to allow SVE stack objects (allocated directly below the callee-saves,
96 // if available) to be accessed directly from the framepointer.
97 // The SVE spill/fill instructions have VL-scaled addressing modes such
98 // as:
99 //    ldr z8, [fp, #-7 mul vl]
100 // For SVE the size of the vector length (VL) is not known at compile-time, so
101 // '#-7 mul vl' is an offset that can only be evaluated at runtime. With this
102 // layout, we don't need to add an unscaled offset to the framepointer before
103 // accessing the SVE object in the frame.
104 //
105 // In some cases when a base pointer is not strictly needed, it is generated
106 // anyway when offsets from the frame pointer to access local variables become
107 // so large that the offset can't be encoded in the immediate fields of loads
108 // or stores.
109 //
110 // FIXME: also explain the redzone concept.
111 // FIXME: also explain the concept of reserved call frames.
112 //
113 //===----------------------------------------------------------------------===//
114 
115 #include "AArch64FrameLowering.h"
116 #include "AArch64InstrInfo.h"
117 #include "AArch64MachineFunctionInfo.h"
118 #include "AArch64RegisterInfo.h"
119 #include "AArch64StackOffset.h"
120 #include "AArch64Subtarget.h"
121 #include "AArch64TargetMachine.h"
122 #include "MCTargetDesc/AArch64AddressingModes.h"
123 #include "llvm/ADT/ScopeExit.h"
124 #include "llvm/ADT/SmallVector.h"
125 #include "llvm/ADT/Statistic.h"
126 #include "llvm/CodeGen/LivePhysRegs.h"
127 #include "llvm/CodeGen/MachineBasicBlock.h"
128 #include "llvm/CodeGen/MachineFrameInfo.h"
129 #include "llvm/CodeGen/MachineFunction.h"
130 #include "llvm/CodeGen/MachineInstr.h"
131 #include "llvm/CodeGen/MachineInstrBuilder.h"
132 #include "llvm/CodeGen/MachineMemOperand.h"
133 #include "llvm/CodeGen/MachineModuleInfo.h"
134 #include "llvm/CodeGen/MachineOperand.h"
135 #include "llvm/CodeGen/MachineRegisterInfo.h"
136 #include "llvm/CodeGen/RegisterScavenging.h"
137 #include "llvm/CodeGen/TargetInstrInfo.h"
138 #include "llvm/CodeGen/TargetRegisterInfo.h"
139 #include "llvm/CodeGen/TargetSubtargetInfo.h"
140 #include "llvm/CodeGen/WinEHFuncInfo.h"
141 #include "llvm/IR/Attributes.h"
142 #include "llvm/IR/CallingConv.h"
143 #include "llvm/IR/DataLayout.h"
144 #include "llvm/IR/DebugLoc.h"
145 #include "llvm/IR/Function.h"
146 #include "llvm/MC/MCAsmInfo.h"
147 #include "llvm/MC/MCDwarf.h"
148 #include "llvm/Support/CommandLine.h"
149 #include "llvm/Support/Debug.h"
150 #include "llvm/Support/ErrorHandling.h"
151 #include "llvm/Support/MathExtras.h"
152 #include "llvm/Support/raw_ostream.h"
153 #include "llvm/Target/TargetMachine.h"
154 #include "llvm/Target/TargetOptions.h"
155 #include <cassert>
156 #include <cstdint>
157 #include <iterator>
158 #include <vector>
159 
160 using namespace llvm;
161 
162 #define DEBUG_TYPE "frame-info"
163 
164 static cl::opt<bool> EnableRedZone("aarch64-redzone",
165                                    cl::desc("enable use of redzone on AArch64"),
166                                    cl::init(false), cl::Hidden);
167 
168 static cl::opt<bool>
169     ReverseCSRRestoreSeq("reverse-csr-restore-seq",
170                          cl::desc("reverse the CSR restore sequence"),
171                          cl::init(false), cl::Hidden);
172 
173 STATISTIC(NumRedZoneFunctions, "Number of functions using red zone");
174 
175 /// This is the biggest offset to the stack pointer we can encode in aarch64
176 /// instructions (without using a separate calculation and a temp register).
177 /// Note that the exception here are vector stores/loads which cannot encode any
178 /// displacements (see estimateRSStackSizeLimit(), isAArch64FrameOffsetLegal()).
179 static const unsigned DefaultSafeSPDisplacement = 255;
180 
181 /// Look at each instruction that references stack frames and return the stack
182 /// size limit beyond which some of these instructions will require a scratch
183 /// register during their expansion later.
estimateRSStackSizeLimit(MachineFunction & MF)184 static unsigned estimateRSStackSizeLimit(MachineFunction &MF) {
185   // FIXME: For now, just conservatively guestimate based on unscaled indexing
186   // range. We'll end up allocating an unnecessary spill slot a lot, but
187   // realistically that's not a big deal at this stage of the game.
188   for (MachineBasicBlock &MBB : MF) {
189     for (MachineInstr &MI : MBB) {
190       if (MI.isDebugInstr() || MI.isPseudo() ||
191           MI.getOpcode() == AArch64::ADDXri ||
192           MI.getOpcode() == AArch64::ADDSXri)
193         continue;
194 
195       for (const MachineOperand &MO : MI.operands()) {
196         if (!MO.isFI())
197           continue;
198 
199         StackOffset Offset;
200         if (isAArch64FrameOffsetLegal(MI, Offset, nullptr, nullptr, nullptr) ==
201             AArch64FrameOffsetCannotUpdate)
202           return 0;
203       }
204     }
205   }
206   return DefaultSafeSPDisplacement;
207 }
208 
209 TargetStackID::Value
getStackIDForScalableVectors() const210 AArch64FrameLowering::getStackIDForScalableVectors() const {
211   return TargetStackID::SVEVector;
212 }
213 
214 /// Returns the size of the entire SVE stackframe (calleesaves + spills).
getSVEStackSize(const MachineFunction & MF)215 static StackOffset getSVEStackSize(const MachineFunction &MF) {
216   const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
217   return {(int64_t)AFI->getStackSizeSVE(), MVT::nxv1i8};
218 }
219 
canUseRedZone(const MachineFunction & MF) const220 bool AArch64FrameLowering::canUseRedZone(const MachineFunction &MF) const {
221   if (!EnableRedZone)
222     return false;
223   // Don't use the red zone if the function explicitly asks us not to.
224   // This is typically used for kernel code.
225   if (MF.getFunction().hasFnAttribute(Attribute::NoRedZone))
226     return false;
227 
228   const MachineFrameInfo &MFI = MF.getFrameInfo();
229   const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
230   uint64_t NumBytes = AFI->getLocalStackSize();
231 
232   return !(MFI.hasCalls() || hasFP(MF) || NumBytes > 128 ||
233            getSVEStackSize(MF));
234 }
235 
236 /// hasFP - Return true if the specified function should have a dedicated frame
237 /// pointer register.
hasFP(const MachineFunction & MF) const238 bool AArch64FrameLowering::hasFP(const MachineFunction &MF) const {
239   const MachineFrameInfo &MFI = MF.getFrameInfo();
240   const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo();
241   // Win64 EH requires a frame pointer if funclets are present, as the locals
242   // are accessed off the frame pointer in both the parent function and the
243   // funclets.
244   if (MF.hasEHFunclets())
245     return true;
246   // Retain behavior of always omitting the FP for leaf functions when possible.
247   if (MF.getTarget().Options.DisableFramePointerElim(MF))
248     return true;
249   if (MFI.hasVarSizedObjects() || MFI.isFrameAddressTaken() ||
250       MFI.hasStackMap() || MFI.hasPatchPoint() ||
251       RegInfo->needsStackRealignment(MF))
252     return true;
253   // With large callframes around we may need to use FP to access the scavenging
254   // emergency spillslot.
255   //
256   // Unfortunately some calls to hasFP() like machine verifier ->
257   // getReservedReg() -> hasFP in the middle of global isel are too early
258   // to know the max call frame size. Hopefully conservatively returning "true"
259   // in those cases is fine.
260   // DefaultSafeSPDisplacement is fine as we only emergency spill GP regs.
261   if (!MFI.isMaxCallFrameSizeComputed() ||
262       MFI.getMaxCallFrameSize() > DefaultSafeSPDisplacement)
263     return true;
264 
265   return false;
266 }
267 
268 /// hasReservedCallFrame - Under normal circumstances, when a frame pointer is
269 /// not required, we reserve argument space for call sites in the function
270 /// immediately on entry to the current function.  This eliminates the need for
271 /// add/sub sp brackets around call sites.  Returns true if the call frame is
272 /// included as part of the stack frame.
273 bool
hasReservedCallFrame(const MachineFunction & MF) const274 AArch64FrameLowering::hasReservedCallFrame(const MachineFunction &MF) const {
275   return !MF.getFrameInfo().hasVarSizedObjects();
276 }
277 
eliminateCallFramePseudoInstr(MachineFunction & MF,MachineBasicBlock & MBB,MachineBasicBlock::iterator I) const278 MachineBasicBlock::iterator AArch64FrameLowering::eliminateCallFramePseudoInstr(
279     MachineFunction &MF, MachineBasicBlock &MBB,
280     MachineBasicBlock::iterator I) const {
281   const AArch64InstrInfo *TII =
282       static_cast<const AArch64InstrInfo *>(MF.getSubtarget().getInstrInfo());
283   DebugLoc DL = I->getDebugLoc();
284   unsigned Opc = I->getOpcode();
285   bool IsDestroy = Opc == TII->getCallFrameDestroyOpcode();
286   uint64_t CalleePopAmount = IsDestroy ? I->getOperand(1).getImm() : 0;
287 
288   if (!hasReservedCallFrame(MF)) {
289     unsigned Align = getStackAlignment();
290 
291     int64_t Amount = I->getOperand(0).getImm();
292     Amount = alignTo(Amount, Align);
293     if (!IsDestroy)
294       Amount = -Amount;
295 
296     // N.b. if CalleePopAmount is valid but zero (i.e. callee would pop, but it
297     // doesn't have to pop anything), then the first operand will be zero too so
298     // this adjustment is a no-op.
299     if (CalleePopAmount == 0) {
300       // FIXME: in-function stack adjustment for calls is limited to 24-bits
301       // because there's no guaranteed temporary register available.
302       //
303       // ADD/SUB (immediate) has only LSL #0 and LSL #12 available.
304       // 1) For offset <= 12-bit, we use LSL #0
305       // 2) For 12-bit <= offset <= 24-bit, we use two instructions. One uses
306       // LSL #0, and the other uses LSL #12.
307       //
308       // Most call frames will be allocated at the start of a function so
309       // this is OK, but it is a limitation that needs dealing with.
310       assert(Amount > -0xffffff && Amount < 0xffffff && "call frame too large");
311       emitFrameOffset(MBB, I, DL, AArch64::SP, AArch64::SP, {Amount, MVT::i8},
312                       TII);
313     }
314   } else if (CalleePopAmount != 0) {
315     // If the calling convention demands that the callee pops arguments from the
316     // stack, we want to add it back if we have a reserved call frame.
317     assert(CalleePopAmount < 0xffffff && "call frame too large");
318     emitFrameOffset(MBB, I, DL, AArch64::SP, AArch64::SP,
319                     {-(int64_t)CalleePopAmount, MVT::i8}, TII);
320   }
321   return MBB.erase(I);
322 }
323 
ShouldSignReturnAddress(MachineFunction & MF)324 static bool ShouldSignReturnAddress(MachineFunction &MF) {
325   // The function should be signed in the following situations:
326   // - sign-return-address=all
327   // - sign-return-address=non-leaf and the functions spills the LR
328 
329   const Function &F = MF.getFunction();
330   if (!F.hasFnAttribute("sign-return-address"))
331     return false;
332 
333   StringRef Scope = F.getFnAttribute("sign-return-address").getValueAsString();
334   if (Scope.equals("none"))
335     return false;
336 
337   if (Scope.equals("all"))
338     return true;
339 
340   assert(Scope.equals("non-leaf") && "Expected all, none or non-leaf");
341 
342   for (const auto &Info : MF.getFrameInfo().getCalleeSavedInfo())
343     if (Info.getReg() == AArch64::LR)
344       return true;
345 
346   return false;
347 }
348 
emitCalleeSavedFrameMoves(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI) const349 void AArch64FrameLowering::emitCalleeSavedFrameMoves(
350     MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI) const {
351   MachineFunction &MF = *MBB.getParent();
352   MachineFrameInfo &MFI = MF.getFrameInfo();
353   const TargetSubtargetInfo &STI = MF.getSubtarget();
354   const MCRegisterInfo *MRI = STI.getRegisterInfo();
355   const TargetInstrInfo *TII = STI.getInstrInfo();
356   DebugLoc DL = MBB.findDebugLoc(MBBI);
357 
358   // Add callee saved registers to move list.
359   const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
360   if (CSI.empty())
361     return;
362 
363   for (const auto &Info : CSI) {
364     unsigned Reg = Info.getReg();
365     int64_t Offset =
366         MFI.getObjectOffset(Info.getFrameIdx()) - getOffsetOfLocalArea();
367     unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true);
368     unsigned CFIIndex = MF.addFrameInst(
369         MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset));
370     BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
371         .addCFIIndex(CFIIndex)
372         .setMIFlags(MachineInstr::FrameSetup);
373   }
374 }
375 
376 // Find a scratch register that we can use at the start of the prologue to
377 // re-align the stack pointer.  We avoid using callee-save registers since they
378 // may appear to be free when this is called from canUseAsPrologue (during
379 // shrink wrapping), but then no longer be free when this is called from
380 // emitPrologue.
381 //
382 // FIXME: This is a bit conservative, since in the above case we could use one
383 // of the callee-save registers as a scratch temp to re-align the stack pointer,
384 // but we would then have to make sure that we were in fact saving at least one
385 // callee-save register in the prologue, which is additional complexity that
386 // doesn't seem worth the benefit.
findScratchNonCalleeSaveRegister(MachineBasicBlock * MBB)387 static unsigned findScratchNonCalleeSaveRegister(MachineBasicBlock *MBB) {
388   MachineFunction *MF = MBB->getParent();
389 
390   // If MBB is an entry block, use X9 as the scratch register
391   if (&MF->front() == MBB)
392     return AArch64::X9;
393 
394   const AArch64Subtarget &Subtarget = MF->getSubtarget<AArch64Subtarget>();
395   const AArch64RegisterInfo &TRI = *Subtarget.getRegisterInfo();
396   LivePhysRegs LiveRegs(TRI);
397   LiveRegs.addLiveIns(*MBB);
398 
399   // Mark callee saved registers as used so we will not choose them.
400   const MCPhysReg *CSRegs = MF->getRegInfo().getCalleeSavedRegs();
401   for (unsigned i = 0; CSRegs[i]; ++i)
402     LiveRegs.addReg(CSRegs[i]);
403 
404   // Prefer X9 since it was historically used for the prologue scratch reg.
405   const MachineRegisterInfo &MRI = MF->getRegInfo();
406   if (LiveRegs.available(MRI, AArch64::X9))
407     return AArch64::X9;
408 
409   for (unsigned Reg : AArch64::GPR64RegClass) {
410     if (LiveRegs.available(MRI, Reg))
411       return Reg;
412   }
413   return AArch64::NoRegister;
414 }
415 
canUseAsPrologue(const MachineBasicBlock & MBB) const416 bool AArch64FrameLowering::canUseAsPrologue(
417     const MachineBasicBlock &MBB) const {
418   const MachineFunction *MF = MBB.getParent();
419   MachineBasicBlock *TmpMBB = const_cast<MachineBasicBlock *>(&MBB);
420   const AArch64Subtarget &Subtarget = MF->getSubtarget<AArch64Subtarget>();
421   const AArch64RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
422 
423   // Don't need a scratch register if we're not going to re-align the stack.
424   if (!RegInfo->needsStackRealignment(*MF))
425     return true;
426   // Otherwise, we can use any block as long as it has a scratch register
427   // available.
428   return findScratchNonCalleeSaveRegister(TmpMBB) != AArch64::NoRegister;
429 }
430 
windowsRequiresStackProbe(MachineFunction & MF,uint64_t StackSizeInBytes)431 static bool windowsRequiresStackProbe(MachineFunction &MF,
432                                       uint64_t StackSizeInBytes) {
433   const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
434   if (!Subtarget.isTargetWindows())
435     return false;
436   const Function &F = MF.getFunction();
437   // TODO: When implementing stack protectors, take that into account
438   // for the probe threshold.
439   unsigned StackProbeSize = 4096;
440   if (F.hasFnAttribute("stack-probe-size"))
441     F.getFnAttribute("stack-probe-size")
442         .getValueAsString()
443         .getAsInteger(0, StackProbeSize);
444   return (StackSizeInBytes >= StackProbeSize) &&
445          !F.hasFnAttribute("no-stack-arg-probe");
446 }
447 
shouldCombineCSRLocalStackBump(MachineFunction & MF,uint64_t StackBumpBytes) const448 bool AArch64FrameLowering::shouldCombineCSRLocalStackBump(
449     MachineFunction &MF, uint64_t StackBumpBytes) const {
450   AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
451   const MachineFrameInfo &MFI = MF.getFrameInfo();
452   const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
453   const AArch64RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
454 
455   if (AFI->getLocalStackSize() == 0)
456     return false;
457 
458   // 512 is the maximum immediate for stp/ldp that will be used for
459   // callee-save save/restores
460   if (StackBumpBytes >= 512 || windowsRequiresStackProbe(MF, StackBumpBytes))
461     return false;
462 
463   if (MFI.hasVarSizedObjects())
464     return false;
465 
466   if (RegInfo->needsStackRealignment(MF))
467     return false;
468 
469   // This isn't strictly necessary, but it simplifies things a bit since the
470   // current RedZone handling code assumes the SP is adjusted by the
471   // callee-save save/restore code.
472   if (canUseRedZone(MF))
473     return false;
474 
475   // When there is an SVE area on the stack, always allocate the
476   // callee-saves and spills/locals separately.
477   if (getSVEStackSize(MF))
478     return false;
479 
480   return true;
481 }
482 
483 // Given a load or a store instruction, generate an appropriate unwinding SEH
484 // code on Windows.
InsertSEH(MachineBasicBlock::iterator MBBI,const TargetInstrInfo & TII,MachineInstr::MIFlag Flag)485 static MachineBasicBlock::iterator InsertSEH(MachineBasicBlock::iterator MBBI,
486                                              const TargetInstrInfo &TII,
487                                              MachineInstr::MIFlag Flag) {
488   unsigned Opc = MBBI->getOpcode();
489   MachineBasicBlock *MBB = MBBI->getParent();
490   MachineFunction &MF = *MBB->getParent();
491   DebugLoc DL = MBBI->getDebugLoc();
492   unsigned ImmIdx = MBBI->getNumOperands() - 1;
493   int Imm = MBBI->getOperand(ImmIdx).getImm();
494   MachineInstrBuilder MIB;
495   const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
496   const AArch64RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
497 
498   switch (Opc) {
499   default:
500     llvm_unreachable("No SEH Opcode for this instruction");
501   case AArch64::LDPDpost:
502     Imm = -Imm;
503     LLVM_FALLTHROUGH;
504   case AArch64::STPDpre: {
505     unsigned Reg0 = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg());
506     unsigned Reg1 = RegInfo->getSEHRegNum(MBBI->getOperand(2).getReg());
507     MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFRegP_X))
508               .addImm(Reg0)
509               .addImm(Reg1)
510               .addImm(Imm * 8)
511               .setMIFlag(Flag);
512     break;
513   }
514   case AArch64::LDPXpost:
515     Imm = -Imm;
516     LLVM_FALLTHROUGH;
517   case AArch64::STPXpre: {
518     Register Reg0 = MBBI->getOperand(1).getReg();
519     Register Reg1 = MBBI->getOperand(2).getReg();
520     if (Reg0 == AArch64::FP && Reg1 == AArch64::LR)
521       MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFPLR_X))
522                 .addImm(Imm * 8)
523                 .setMIFlag(Flag);
524     else
525       MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveRegP_X))
526                 .addImm(RegInfo->getSEHRegNum(Reg0))
527                 .addImm(RegInfo->getSEHRegNum(Reg1))
528                 .addImm(Imm * 8)
529                 .setMIFlag(Flag);
530     break;
531   }
532   case AArch64::LDRDpost:
533     Imm = -Imm;
534     LLVM_FALLTHROUGH;
535   case AArch64::STRDpre: {
536     unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg());
537     MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFReg_X))
538               .addImm(Reg)
539               .addImm(Imm)
540               .setMIFlag(Flag);
541     break;
542   }
543   case AArch64::LDRXpost:
544     Imm = -Imm;
545     LLVM_FALLTHROUGH;
546   case AArch64::STRXpre: {
547     unsigned Reg =  RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg());
548     MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveReg_X))
549               .addImm(Reg)
550               .addImm(Imm)
551               .setMIFlag(Flag);
552     break;
553   }
554   case AArch64::STPDi:
555   case AArch64::LDPDi: {
556     unsigned Reg0 =  RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg());
557     unsigned Reg1 =  RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg());
558     MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFRegP))
559               .addImm(Reg0)
560               .addImm(Reg1)
561               .addImm(Imm * 8)
562               .setMIFlag(Flag);
563     break;
564   }
565   case AArch64::STPXi:
566   case AArch64::LDPXi: {
567     Register Reg0 = MBBI->getOperand(0).getReg();
568     Register Reg1 = MBBI->getOperand(1).getReg();
569     if (Reg0 == AArch64::FP && Reg1 == AArch64::LR)
570       MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFPLR))
571                 .addImm(Imm * 8)
572                 .setMIFlag(Flag);
573     else
574       MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveRegP))
575                 .addImm(RegInfo->getSEHRegNum(Reg0))
576                 .addImm(RegInfo->getSEHRegNum(Reg1))
577                 .addImm(Imm * 8)
578                 .setMIFlag(Flag);
579     break;
580   }
581   case AArch64::STRXui:
582   case AArch64::LDRXui: {
583     int Reg = RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg());
584     MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveReg))
585               .addImm(Reg)
586               .addImm(Imm * 8)
587               .setMIFlag(Flag);
588     break;
589   }
590   case AArch64::STRDui:
591   case AArch64::LDRDui: {
592     unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg());
593     MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFReg))
594               .addImm(Reg)
595               .addImm(Imm * 8)
596               .setMIFlag(Flag);
597     break;
598   }
599   }
600   auto I = MBB->insertAfter(MBBI, MIB);
601   return I;
602 }
603 
604 // Fix up the SEH opcode associated with the save/restore instruction.
fixupSEHOpcode(MachineBasicBlock::iterator MBBI,unsigned LocalStackSize)605 static void fixupSEHOpcode(MachineBasicBlock::iterator MBBI,
606                            unsigned LocalStackSize) {
607   MachineOperand *ImmOpnd = nullptr;
608   unsigned ImmIdx = MBBI->getNumOperands() - 1;
609   switch (MBBI->getOpcode()) {
610   default:
611     llvm_unreachable("Fix the offset in the SEH instruction");
612   case AArch64::SEH_SaveFPLR:
613   case AArch64::SEH_SaveRegP:
614   case AArch64::SEH_SaveReg:
615   case AArch64::SEH_SaveFRegP:
616   case AArch64::SEH_SaveFReg:
617     ImmOpnd = &MBBI->getOperand(ImmIdx);
618     break;
619   }
620   if (ImmOpnd)
621     ImmOpnd->setImm(ImmOpnd->getImm() + LocalStackSize);
622 }
623 
624 // Convert callee-save register save/restore instruction to do stack pointer
625 // decrement/increment to allocate/deallocate the callee-save stack area by
626 // converting store/load to use pre/post increment version.
convertCalleeSaveRestoreToSPPrePostIncDec(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,const DebugLoc & DL,const TargetInstrInfo * TII,int CSStackSizeInc,bool NeedsWinCFI,bool * HasWinCFI,bool InProlog=true)627 static MachineBasicBlock::iterator convertCalleeSaveRestoreToSPPrePostIncDec(
628     MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
629     const DebugLoc &DL, const TargetInstrInfo *TII, int CSStackSizeInc,
630     bool NeedsWinCFI, bool *HasWinCFI, bool InProlog = true) {
631   // Ignore instructions that do not operate on SP, i.e. shadow call stack
632   // instructions and associated CFI instruction.
633   while (MBBI->getOpcode() == AArch64::STRXpost ||
634          MBBI->getOpcode() == AArch64::LDRXpre ||
635          MBBI->getOpcode() == AArch64::CFI_INSTRUCTION) {
636     if (MBBI->getOpcode() != AArch64::CFI_INSTRUCTION)
637       assert(MBBI->getOperand(0).getReg() != AArch64::SP);
638     ++MBBI;
639   }
640   unsigned NewOpc;
641   int Scale = 1;
642   switch (MBBI->getOpcode()) {
643   default:
644     llvm_unreachable("Unexpected callee-save save/restore opcode!");
645   case AArch64::STPXi:
646     NewOpc = AArch64::STPXpre;
647     Scale = 8;
648     break;
649   case AArch64::STPDi:
650     NewOpc = AArch64::STPDpre;
651     Scale = 8;
652     break;
653   case AArch64::STPQi:
654     NewOpc = AArch64::STPQpre;
655     Scale = 16;
656     break;
657   case AArch64::STRXui:
658     NewOpc = AArch64::STRXpre;
659     break;
660   case AArch64::STRDui:
661     NewOpc = AArch64::STRDpre;
662     break;
663   case AArch64::STRQui:
664     NewOpc = AArch64::STRQpre;
665     break;
666   case AArch64::LDPXi:
667     NewOpc = AArch64::LDPXpost;
668     Scale = 8;
669     break;
670   case AArch64::LDPDi:
671     NewOpc = AArch64::LDPDpost;
672     Scale = 8;
673     break;
674   case AArch64::LDPQi:
675     NewOpc = AArch64::LDPQpost;
676     Scale = 16;
677     break;
678   case AArch64::LDRXui:
679     NewOpc = AArch64::LDRXpost;
680     break;
681   case AArch64::LDRDui:
682     NewOpc = AArch64::LDRDpost;
683     break;
684   case AArch64::LDRQui:
685     NewOpc = AArch64::LDRQpost;
686     break;
687   }
688   // Get rid of the SEH code associated with the old instruction.
689   if (NeedsWinCFI) {
690     auto SEH = std::next(MBBI);
691     if (AArch64InstrInfo::isSEHInstruction(*SEH))
692       SEH->eraseFromParent();
693   }
694 
695   MachineInstrBuilder MIB = BuildMI(MBB, MBBI, DL, TII->get(NewOpc));
696   MIB.addReg(AArch64::SP, RegState::Define);
697 
698   // Copy all operands other than the immediate offset.
699   unsigned OpndIdx = 0;
700   for (unsigned OpndEnd = MBBI->getNumOperands() - 1; OpndIdx < OpndEnd;
701        ++OpndIdx)
702     MIB.add(MBBI->getOperand(OpndIdx));
703 
704   assert(MBBI->getOperand(OpndIdx).getImm() == 0 &&
705          "Unexpected immediate offset in first/last callee-save save/restore "
706          "instruction!");
707   assert(MBBI->getOperand(OpndIdx - 1).getReg() == AArch64::SP &&
708          "Unexpected base register in callee-save save/restore instruction!");
709   assert(CSStackSizeInc % Scale == 0);
710   MIB.addImm(CSStackSizeInc / Scale);
711 
712   MIB.setMIFlags(MBBI->getFlags());
713   MIB.setMemRefs(MBBI->memoperands());
714 
715   // Generate a new SEH code that corresponds to the new instruction.
716   if (NeedsWinCFI) {
717     *HasWinCFI = true;
718     InsertSEH(*MIB, *TII,
719               InProlog ? MachineInstr::FrameSetup : MachineInstr::FrameDestroy);
720   }
721 
722   return std::prev(MBB.erase(MBBI));
723 }
724 
725 // Fixup callee-save register save/restore instructions to take into account
726 // combined SP bump by adding the local stack size to the stack offsets.
fixupCalleeSaveRestoreStackOffset(MachineInstr & MI,uint64_t LocalStackSize,bool NeedsWinCFI,bool * HasWinCFI)727 static void fixupCalleeSaveRestoreStackOffset(MachineInstr &MI,
728                                               uint64_t LocalStackSize,
729                                               bool NeedsWinCFI,
730                                               bool *HasWinCFI) {
731   if (AArch64InstrInfo::isSEHInstruction(MI))
732     return;
733 
734   unsigned Opc = MI.getOpcode();
735 
736   // Ignore instructions that do not operate on SP, i.e. shadow call stack
737   // instructions and associated CFI instruction.
738   if (Opc == AArch64::STRXpost || Opc == AArch64::LDRXpre ||
739       Opc == AArch64::CFI_INSTRUCTION) {
740     if (Opc != AArch64::CFI_INSTRUCTION)
741       assert(MI.getOperand(0).getReg() != AArch64::SP);
742     return;
743   }
744 
745   unsigned Scale;
746   switch (Opc) {
747   case AArch64::STPXi:
748   case AArch64::STRXui:
749   case AArch64::STPDi:
750   case AArch64::STRDui:
751   case AArch64::LDPXi:
752   case AArch64::LDRXui:
753   case AArch64::LDPDi:
754   case AArch64::LDRDui:
755     Scale = 8;
756     break;
757   case AArch64::STPQi:
758   case AArch64::STRQui:
759   case AArch64::LDPQi:
760   case AArch64::LDRQui:
761     Scale = 16;
762     break;
763   default:
764     llvm_unreachable("Unexpected callee-save save/restore opcode!");
765   }
766 
767   unsigned OffsetIdx = MI.getNumExplicitOperands() - 1;
768   assert(MI.getOperand(OffsetIdx - 1).getReg() == AArch64::SP &&
769          "Unexpected base register in callee-save save/restore instruction!");
770   // Last operand is immediate offset that needs fixing.
771   MachineOperand &OffsetOpnd = MI.getOperand(OffsetIdx);
772   // All generated opcodes have scaled offsets.
773   assert(LocalStackSize % Scale == 0);
774   OffsetOpnd.setImm(OffsetOpnd.getImm() + LocalStackSize / Scale);
775 
776   if (NeedsWinCFI) {
777     *HasWinCFI = true;
778     auto MBBI = std::next(MachineBasicBlock::iterator(MI));
779     assert(MBBI != MI.getParent()->end() && "Expecting a valid instruction");
780     assert(AArch64InstrInfo::isSEHInstruction(*MBBI) &&
781            "Expecting a SEH instruction");
782     fixupSEHOpcode(MBBI, LocalStackSize);
783   }
784 }
785 
adaptForLdStOpt(MachineBasicBlock & MBB,MachineBasicBlock::iterator FirstSPPopI,MachineBasicBlock::iterator LastPopI)786 static void adaptForLdStOpt(MachineBasicBlock &MBB,
787                             MachineBasicBlock::iterator FirstSPPopI,
788                             MachineBasicBlock::iterator LastPopI) {
789   // Sometimes (when we restore in the same order as we save), we can end up
790   // with code like this:
791   //
792   // ldp      x26, x25, [sp]
793   // ldp      x24, x23, [sp, #16]
794   // ldp      x22, x21, [sp, #32]
795   // ldp      x20, x19, [sp, #48]
796   // add      sp, sp, #64
797   //
798   // In this case, it is always better to put the first ldp at the end, so
799   // that the load-store optimizer can run and merge the ldp and the add into
800   // a post-index ldp.
801   // If we managed to grab the first pop instruction, move it to the end.
802   if (ReverseCSRRestoreSeq)
803     MBB.splice(FirstSPPopI, &MBB, LastPopI);
804   // We should end up with something like this now:
805   //
806   // ldp      x24, x23, [sp, #16]
807   // ldp      x22, x21, [sp, #32]
808   // ldp      x20, x19, [sp, #48]
809   // ldp      x26, x25, [sp]
810   // add      sp, sp, #64
811   //
812   // and the load-store optimizer can merge the last two instructions into:
813   //
814   // ldp      x26, x25, [sp], #64
815   //
816 }
817 
ShouldSignWithAKey(MachineFunction & MF)818 static bool ShouldSignWithAKey(MachineFunction &MF) {
819   const Function &F = MF.getFunction();
820   if (!F.hasFnAttribute("sign-return-address-key"))
821     return true;
822 
823   const StringRef Key =
824       F.getFnAttribute("sign-return-address-key").getValueAsString();
825   assert(Key.equals_lower("a_key") || Key.equals_lower("b_key"));
826   return Key.equals_lower("a_key");
827 }
828 
needsWinCFI(const MachineFunction & MF)829 static bool needsWinCFI(const MachineFunction &MF) {
830   const Function &F = MF.getFunction();
831   return MF.getTarget().getMCAsmInfo()->usesWindowsCFI() &&
832          F.needsUnwindTableEntry();
833 }
834 
isTargetDarwin(const MachineFunction & MF)835 static bool isTargetDarwin(const MachineFunction &MF) {
836   return MF.getSubtarget<AArch64Subtarget>().isTargetDarwin();
837 }
838 
isTargetWindows(const MachineFunction & MF)839 static bool isTargetWindows(const MachineFunction &MF) {
840   return MF.getSubtarget<AArch64Subtarget>().isTargetWindows();
841 }
842 
843 // Convenience function to determine whether I is an SVE callee save.
IsSVECalleeSave(MachineBasicBlock::iterator I)844 static bool IsSVECalleeSave(MachineBasicBlock::iterator I) {
845   switch (I->getOpcode()) {
846   default:
847     return false;
848   case AArch64::STR_ZXI:
849   case AArch64::STR_PXI:
850   case AArch64::LDR_ZXI:
851   case AArch64::LDR_PXI:
852     return I->getFlag(MachineInstr::FrameSetup) ||
853            I->getFlag(MachineInstr::FrameDestroy);
854   }
855 }
856 
emitPrologue(MachineFunction & MF,MachineBasicBlock & MBB) const857 void AArch64FrameLowering::emitPrologue(MachineFunction &MF,
858                                         MachineBasicBlock &MBB) const {
859   MachineBasicBlock::iterator MBBI = MBB.begin();
860   const MachineFrameInfo &MFI = MF.getFrameInfo();
861   const Function &F = MF.getFunction();
862   const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
863   const AArch64RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
864   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
865   MachineModuleInfo &MMI = MF.getMMI();
866   AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
867   bool needsFrameMoves =
868       MF.needsFrameMoves() && !MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
869   bool HasFP = hasFP(MF);
870   bool NeedsWinCFI = needsWinCFI(MF);
871   bool HasWinCFI = false;
872   auto Cleanup = make_scope_exit([&]() { MF.setHasWinCFI(HasWinCFI); });
873 
874   bool IsFunclet = MBB.isEHFuncletEntry();
875 
876   // At this point, we're going to decide whether or not the function uses a
877   // redzone. In most cases, the function doesn't have a redzone so let's
878   // assume that's false and set it to true in the case that there's a redzone.
879   AFI->setHasRedZone(false);
880 
881   // Debug location must be unknown since the first debug location is used
882   // to determine the end of the prologue.
883   DebugLoc DL;
884 
885   if (ShouldSignReturnAddress(MF)) {
886     if (ShouldSignWithAKey(MF))
887       BuildMI(MBB, MBBI, DL, TII->get(AArch64::PACIASP))
888           .setMIFlag(MachineInstr::FrameSetup);
889     else {
890       BuildMI(MBB, MBBI, DL, TII->get(AArch64::EMITBKEY))
891           .setMIFlag(MachineInstr::FrameSetup);
892       BuildMI(MBB, MBBI, DL, TII->get(AArch64::PACIBSP))
893           .setMIFlag(MachineInstr::FrameSetup);
894     }
895 
896     unsigned CFIIndex =
897         MF.addFrameInst(MCCFIInstruction::createNegateRAState(nullptr));
898     BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
899         .addCFIIndex(CFIIndex)
900         .setMIFlags(MachineInstr::FrameSetup);
901   }
902 
903   // All calls are tail calls in GHC calling conv, and functions have no
904   // prologue/epilogue.
905   if (MF.getFunction().getCallingConv() == CallingConv::GHC)
906     return;
907 
908   // Set tagged base pointer to the bottom of the stack frame.
909   // Ideally it should match SP value after prologue.
910   AFI->setTaggedBasePointerOffset(MFI.getStackSize());
911 
912   const StackOffset &SVEStackSize = getSVEStackSize(MF);
913 
914   // getStackSize() includes all the locals in its size calculation. We don't
915   // include these locals when computing the stack size of a funclet, as they
916   // are allocated in the parent's stack frame and accessed via the frame
917   // pointer from the funclet.  We only save the callee saved registers in the
918   // funclet, which are really the callee saved registers of the parent
919   // function, including the funclet.
920   int64_t NumBytes = IsFunclet ? getWinEHFuncletFrameSize(MF)
921                                : MFI.getStackSize();
922   if (!AFI->hasStackFrame() && !windowsRequiresStackProbe(MF, NumBytes)) {
923     assert(!HasFP && "unexpected function without stack frame but with FP");
924     assert(!SVEStackSize &&
925            "unexpected function without stack frame but with SVE objects");
926     // All of the stack allocation is for locals.
927     AFI->setLocalStackSize(NumBytes);
928     if (!NumBytes)
929       return;
930     // REDZONE: If the stack size is less than 128 bytes, we don't need
931     // to actually allocate.
932     if (canUseRedZone(MF)) {
933       AFI->setHasRedZone(true);
934       ++NumRedZoneFunctions;
935     } else {
936       emitFrameOffset(MBB, MBBI, DL, AArch64::SP, AArch64::SP,
937                       {-NumBytes, MVT::i8}, TII, MachineInstr::FrameSetup,
938                       false, NeedsWinCFI, &HasWinCFI);
939       if (!NeedsWinCFI && needsFrameMoves) {
940         // Label used to tie together the PROLOG_LABEL and the MachineMoves.
941         MCSymbol *FrameLabel = MMI.getContext().createTempSymbol();
942           // Encode the stack size of the leaf function.
943           unsigned CFIIndex = MF.addFrameInst(
944               MCCFIInstruction::createDefCfaOffset(FrameLabel, -NumBytes));
945           BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
946               .addCFIIndex(CFIIndex)
947               .setMIFlags(MachineInstr::FrameSetup);
948       }
949     }
950 
951     if (NeedsWinCFI) {
952       HasWinCFI = true;
953       BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_PrologEnd))
954           .setMIFlag(MachineInstr::FrameSetup);
955     }
956 
957     return;
958   }
959 
960   bool IsWin64 =
961       Subtarget.isCallingConvWin64(MF.getFunction().getCallingConv());
962   // Var args are accounted for in the containing function, so don't
963   // include them for funclets.
964   unsigned FixedObject = (IsWin64 && !IsFunclet) ?
965                          alignTo(AFI->getVarArgsGPRSize(), 16) : 0;
966 
967   auto PrologueSaveSize = AFI->getCalleeSavedStackSize() + FixedObject;
968   // All of the remaining stack allocations are for locals.
969   AFI->setLocalStackSize(NumBytes - PrologueSaveSize);
970   bool CombineSPBump = shouldCombineCSRLocalStackBump(MF, NumBytes);
971   if (CombineSPBump) {
972     assert(!SVEStackSize && "Cannot combine SP bump with SVE");
973     emitFrameOffset(MBB, MBBI, DL, AArch64::SP, AArch64::SP,
974                     {-NumBytes, MVT::i8}, TII, MachineInstr::FrameSetup, false,
975                     NeedsWinCFI, &HasWinCFI);
976     NumBytes = 0;
977   } else if (PrologueSaveSize != 0) {
978     MBBI = convertCalleeSaveRestoreToSPPrePostIncDec(
979         MBB, MBBI, DL, TII, -PrologueSaveSize, NeedsWinCFI, &HasWinCFI);
980     NumBytes -= PrologueSaveSize;
981   }
982   assert(NumBytes >= 0 && "Negative stack allocation size!?");
983 
984   // Move past the saves of the callee-saved registers, fixing up the offsets
985   // and pre-inc if we decided to combine the callee-save and local stack
986   // pointer bump above.
987   MachineBasicBlock::iterator End = MBB.end();
988   while (MBBI != End && MBBI->getFlag(MachineInstr::FrameSetup) &&
989          !IsSVECalleeSave(MBBI)) {
990     if (CombineSPBump)
991       fixupCalleeSaveRestoreStackOffset(*MBBI, AFI->getLocalStackSize(),
992                                         NeedsWinCFI, &HasWinCFI);
993     ++MBBI;
994   }
995 
996   // The code below is not applicable to funclets. We have emitted all the SEH
997   // opcodes that we needed to emit.  The FP and BP belong to the containing
998   // function.
999   if (IsFunclet) {
1000     if (NeedsWinCFI) {
1001       HasWinCFI = true;
1002       BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_PrologEnd))
1003           .setMIFlag(MachineInstr::FrameSetup);
1004     }
1005 
1006     // SEH funclets are passed the frame pointer in X1.  If the parent
1007     // function uses the base register, then the base register is used
1008     // directly, and is not retrieved from X1.
1009     if (F.hasPersonalityFn()) {
1010       EHPersonality Per = classifyEHPersonality(F.getPersonalityFn());
1011       if (isAsynchronousEHPersonality(Per)) {
1012         BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::COPY), AArch64::FP)
1013             .addReg(AArch64::X1).setMIFlag(MachineInstr::FrameSetup);
1014         MBB.addLiveIn(AArch64::X1);
1015       }
1016     }
1017 
1018     return;
1019   }
1020 
1021   if (HasFP) {
1022     // Only set up FP if we actually need to.
1023     int64_t FPOffset = isTargetDarwin(MF) ? (AFI->getCalleeSavedStackSize() - 16) : 0;
1024 
1025     if (CombineSPBump)
1026       FPOffset += AFI->getLocalStackSize();
1027 
1028     // Issue    sub fp, sp, FPOffset or
1029     //          mov fp,sp          when FPOffset is zero.
1030     // Note: All stores of callee-saved registers are marked as "FrameSetup".
1031     // This code marks the instruction(s) that set the FP also.
1032     emitFrameOffset(MBB, MBBI, DL, AArch64::FP, AArch64::SP,
1033                     {FPOffset, MVT::i8}, TII, MachineInstr::FrameSetup, false,
1034                     NeedsWinCFI, &HasWinCFI);
1035   }
1036 
1037   if (windowsRequiresStackProbe(MF, NumBytes)) {
1038     uint64_t NumWords = NumBytes >> 4;
1039     if (NeedsWinCFI) {
1040       HasWinCFI = true;
1041       // alloc_l can hold at most 256MB, so assume that NumBytes doesn't
1042       // exceed this amount.  We need to move at most 2^24 - 1 into x15.
1043       // This is at most two instructions, MOVZ follwed by MOVK.
1044       // TODO: Fix to use multiple stack alloc unwind codes for stacks
1045       // exceeding 256MB in size.
1046       if (NumBytes >= (1 << 28))
1047         report_fatal_error("Stack size cannot exceed 256MB for stack "
1048                             "unwinding purposes");
1049 
1050       uint32_t LowNumWords = NumWords & 0xFFFF;
1051       BuildMI(MBB, MBBI, DL, TII->get(AArch64::MOVZXi), AArch64::X15)
1052             .addImm(LowNumWords)
1053             .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0))
1054             .setMIFlag(MachineInstr::FrameSetup);
1055       BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop))
1056             .setMIFlag(MachineInstr::FrameSetup);
1057       if ((NumWords & 0xFFFF0000) != 0) {
1058           BuildMI(MBB, MBBI, DL, TII->get(AArch64::MOVKXi), AArch64::X15)
1059               .addReg(AArch64::X15)
1060               .addImm((NumWords & 0xFFFF0000) >> 16) // High half
1061               .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 16))
1062               .setMIFlag(MachineInstr::FrameSetup);
1063           BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop))
1064             .setMIFlag(MachineInstr::FrameSetup);
1065       }
1066     } else {
1067       BuildMI(MBB, MBBI, DL, TII->get(AArch64::MOVi64imm), AArch64::X15)
1068           .addImm(NumWords)
1069           .setMIFlags(MachineInstr::FrameSetup);
1070     }
1071 
1072     switch (MF.getTarget().getCodeModel()) {
1073     case CodeModel::Tiny:
1074     case CodeModel::Small:
1075     case CodeModel::Medium:
1076     case CodeModel::Kernel:
1077       BuildMI(MBB, MBBI, DL, TII->get(AArch64::BL))
1078           .addExternalSymbol("__chkstk")
1079           .addReg(AArch64::X15, RegState::Implicit)
1080           .addReg(AArch64::X16, RegState::Implicit | RegState::Define | RegState::Dead)
1081           .addReg(AArch64::X17, RegState::Implicit | RegState::Define | RegState::Dead)
1082           .addReg(AArch64::NZCV, RegState::Implicit | RegState::Define | RegState::Dead)
1083           .setMIFlags(MachineInstr::FrameSetup);
1084       if (NeedsWinCFI) {
1085         HasWinCFI = true;
1086         BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop))
1087             .setMIFlag(MachineInstr::FrameSetup);
1088       }
1089       break;
1090     case CodeModel::Large:
1091       BuildMI(MBB, MBBI, DL, TII->get(AArch64::MOVaddrEXT))
1092           .addReg(AArch64::X16, RegState::Define)
1093           .addExternalSymbol("__chkstk")
1094           .addExternalSymbol("__chkstk")
1095           .setMIFlags(MachineInstr::FrameSetup);
1096       if (NeedsWinCFI) {
1097         HasWinCFI = true;
1098         BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop))
1099             .setMIFlag(MachineInstr::FrameSetup);
1100       }
1101 
1102       BuildMI(MBB, MBBI, DL, TII->get(AArch64::BLR))
1103           .addReg(AArch64::X16, RegState::Kill)
1104           .addReg(AArch64::X15, RegState::Implicit | RegState::Define)
1105           .addReg(AArch64::X16, RegState::Implicit | RegState::Define | RegState::Dead)
1106           .addReg(AArch64::X17, RegState::Implicit | RegState::Define | RegState::Dead)
1107           .addReg(AArch64::NZCV, RegState::Implicit | RegState::Define | RegState::Dead)
1108           .setMIFlags(MachineInstr::FrameSetup);
1109       if (NeedsWinCFI) {
1110         HasWinCFI = true;
1111         BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop))
1112             .setMIFlag(MachineInstr::FrameSetup);
1113       }
1114       break;
1115     }
1116 
1117     BuildMI(MBB, MBBI, DL, TII->get(AArch64::SUBXrx64), AArch64::SP)
1118         .addReg(AArch64::SP, RegState::Kill)
1119         .addReg(AArch64::X15, RegState::Kill)
1120         .addImm(AArch64_AM::getArithExtendImm(AArch64_AM::UXTX, 4))
1121         .setMIFlags(MachineInstr::FrameSetup);
1122     if (NeedsWinCFI) {
1123       HasWinCFI = true;
1124       BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_StackAlloc))
1125           .addImm(NumBytes)
1126           .setMIFlag(MachineInstr::FrameSetup);
1127     }
1128     NumBytes = 0;
1129   }
1130 
1131   StackOffset AllocateBefore = SVEStackSize, AllocateAfter = {};
1132   MachineBasicBlock::iterator CalleeSavesBegin = MBBI, CalleeSavesEnd = MBBI;
1133 
1134   // Process the SVE callee-saves to determine what space needs to be
1135   // allocated.
1136   if (AFI->getSVECalleeSavedStackSize()) {
1137     // Find callee save instructions in frame.
1138     CalleeSavesBegin = MBBI;
1139     assert(IsSVECalleeSave(CalleeSavesBegin) && "Unexpected instruction");
1140     while (IsSVECalleeSave(MBBI) && MBBI != MBB.getFirstTerminator())
1141       ++MBBI;
1142     CalleeSavesEnd = MBBI;
1143 
1144     int64_t OffsetToFirstCalleeSaveFromSP =
1145         MFI.getObjectOffset(AFI->getMaxSVECSFrameIndex());
1146     StackOffset OffsetToCalleeSavesFromSP =
1147         StackOffset(OffsetToFirstCalleeSaveFromSP, MVT::nxv1i8) + SVEStackSize;
1148     AllocateBefore -= OffsetToCalleeSavesFromSP;
1149     AllocateAfter = SVEStackSize - AllocateBefore;
1150   }
1151 
1152   // Allocate space for the callee saves (if any).
1153   emitFrameOffset(MBB, CalleeSavesBegin, DL, AArch64::SP, AArch64::SP,
1154                   -AllocateBefore, TII,
1155                   MachineInstr::FrameSetup);
1156 
1157   // Finally allocate remaining SVE stack space.
1158   emitFrameOffset(MBB, CalleeSavesEnd, DL, AArch64::SP, AArch64::SP,
1159                   -AllocateAfter, TII,
1160                   MachineInstr::FrameSetup);
1161 
1162   // Allocate space for the rest of the frame.
1163   if (NumBytes) {
1164     const bool NeedsRealignment = RegInfo->needsStackRealignment(MF);
1165     unsigned scratchSPReg = AArch64::SP;
1166 
1167     if (NeedsRealignment) {
1168       scratchSPReg = findScratchNonCalleeSaveRegister(&MBB);
1169       assert(scratchSPReg != AArch64::NoRegister);
1170     }
1171 
1172     // If we're a leaf function, try using the red zone.
1173     if (!canUseRedZone(MF))
1174       // FIXME: in the case of dynamic re-alignment, NumBytes doesn't have
1175       // the correct value here, as NumBytes also includes padding bytes,
1176       // which shouldn't be counted here.
1177       emitFrameOffset(MBB, MBBI, DL, scratchSPReg, AArch64::SP,
1178                       {-NumBytes, MVT::i8}, TII, MachineInstr::FrameSetup,
1179                       false, NeedsWinCFI, &HasWinCFI);
1180 
1181     if (NeedsRealignment) {
1182       const unsigned Alignment = MFI.getMaxAlignment();
1183       const unsigned NrBitsToZero = countTrailingZeros(Alignment);
1184       assert(NrBitsToZero > 1);
1185       assert(scratchSPReg != AArch64::SP);
1186 
1187       // SUB X9, SP, NumBytes
1188       //   -- X9 is temporary register, so shouldn't contain any live data here,
1189       //   -- free to use. This is already produced by emitFrameOffset above.
1190       // AND SP, X9, 0b11111...0000
1191       // The logical immediates have a non-trivial encoding. The following
1192       // formula computes the encoded immediate with all ones but
1193       // NrBitsToZero zero bits as least significant bits.
1194       uint32_t andMaskEncoded = (1 << 12)                         // = N
1195                                 | ((64 - NrBitsToZero) << 6)      // immr
1196                                 | ((64 - NrBitsToZero - 1) << 0); // imms
1197 
1198       BuildMI(MBB, MBBI, DL, TII->get(AArch64::ANDXri), AArch64::SP)
1199           .addReg(scratchSPReg, RegState::Kill)
1200           .addImm(andMaskEncoded);
1201       AFI->setStackRealigned(true);
1202       if (NeedsWinCFI) {
1203         HasWinCFI = true;
1204         BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_StackAlloc))
1205             .addImm(NumBytes & andMaskEncoded)
1206             .setMIFlag(MachineInstr::FrameSetup);
1207       }
1208     }
1209   }
1210 
1211   // If we need a base pointer, set it up here. It's whatever the value of the
1212   // stack pointer is at this point. Any variable size objects will be allocated
1213   // after this, so we can still use the base pointer to reference locals.
1214   //
1215   // FIXME: Clarify FrameSetup flags here.
1216   // Note: Use emitFrameOffset() like above for FP if the FrameSetup flag is
1217   // needed.
1218   if (RegInfo->hasBasePointer(MF)) {
1219     TII->copyPhysReg(MBB, MBBI, DL, RegInfo->getBaseRegister(), AArch64::SP,
1220                      false);
1221     if (NeedsWinCFI) {
1222       HasWinCFI = true;
1223       BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop))
1224           .setMIFlag(MachineInstr::FrameSetup);
1225     }
1226   }
1227 
1228   // The very last FrameSetup instruction indicates the end of prologue. Emit a
1229   // SEH opcode indicating the prologue end.
1230   if (NeedsWinCFI && HasWinCFI) {
1231     BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_PrologEnd))
1232         .setMIFlag(MachineInstr::FrameSetup);
1233   }
1234 
1235   if (needsFrameMoves) {
1236     const DataLayout &TD = MF.getDataLayout();
1237     const int StackGrowth = isTargetDarwin(MF)
1238                                 ? (2 * -TD.getPointerSize(0))
1239                                 : -AFI->getCalleeSavedStackSize();
1240     Register FramePtr = RegInfo->getFrameRegister(MF);
1241     // An example of the prologue:
1242     //
1243     //     .globl __foo
1244     //     .align 2
1245     //  __foo:
1246     // Ltmp0:
1247     //     .cfi_startproc
1248     //     .cfi_personality 155, ___gxx_personality_v0
1249     // Leh_func_begin:
1250     //     .cfi_lsda 16, Lexception33
1251     //
1252     //     stp  xa,bx, [sp, -#offset]!
1253     //     ...
1254     //     stp  x28, x27, [sp, #offset-32]
1255     //     stp  fp, lr, [sp, #offset-16]
1256     //     add  fp, sp, #offset - 16
1257     //     sub  sp, sp, #1360
1258     //
1259     // The Stack:
1260     //       +-------------------------------------------+
1261     // 10000 | ........ | ........ | ........ | ........ |
1262     // 10004 | ........ | ........ | ........ | ........ |
1263     //       +-------------------------------------------+
1264     // 10008 | ........ | ........ | ........ | ........ |
1265     // 1000c | ........ | ........ | ........ | ........ |
1266     //       +===========================================+
1267     // 10010 |                X28 Register               |
1268     // 10014 |                X28 Register               |
1269     //       +-------------------------------------------+
1270     // 10018 |                X27 Register               |
1271     // 1001c |                X27 Register               |
1272     //       +===========================================+
1273     // 10020 |                Frame Pointer              |
1274     // 10024 |                Frame Pointer              |
1275     //       +-------------------------------------------+
1276     // 10028 |                Link Register              |
1277     // 1002c |                Link Register              |
1278     //       +===========================================+
1279     // 10030 | ........ | ........ | ........ | ........ |
1280     // 10034 | ........ | ........ | ........ | ........ |
1281     //       +-------------------------------------------+
1282     // 10038 | ........ | ........ | ........ | ........ |
1283     // 1003c | ........ | ........ | ........ | ........ |
1284     //       +-------------------------------------------+
1285     //
1286     //     [sp] = 10030        ::    >>initial value<<
1287     //     sp = 10020          ::  stp fp, lr, [sp, #-16]!
1288     //     fp = sp == 10020    ::  mov fp, sp
1289     //     [sp] == 10020       ::  stp x28, x27, [sp, #-16]!
1290     //     sp == 10010         ::    >>final value<<
1291     //
1292     // The frame pointer (w29) points to address 10020. If we use an offset of
1293     // '16' from 'w29', we get the CFI offsets of -8 for w30, -16 for w29, -24
1294     // for w27, and -32 for w28:
1295     //
1296     //  Ltmp1:
1297     //     .cfi_def_cfa w29, 16
1298     //  Ltmp2:
1299     //     .cfi_offset w30, -8
1300     //  Ltmp3:
1301     //     .cfi_offset w29, -16
1302     //  Ltmp4:
1303     //     .cfi_offset w27, -24
1304     //  Ltmp5:
1305     //     .cfi_offset w28, -32
1306 
1307     if (HasFP) {
1308       // Define the current CFA rule to use the provided FP.
1309       unsigned Reg = RegInfo->getDwarfRegNum(FramePtr, true);
1310       unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::createDefCfa(
1311           nullptr, Reg, StackGrowth - FixedObject));
1312       BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
1313           .addCFIIndex(CFIIndex)
1314           .setMIFlags(MachineInstr::FrameSetup);
1315     } else {
1316       // Encode the stack size of the leaf function.
1317       unsigned CFIIndex = MF.addFrameInst(
1318           MCCFIInstruction::createDefCfaOffset(nullptr, -MFI.getStackSize()));
1319       BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
1320           .addCFIIndex(CFIIndex)
1321           .setMIFlags(MachineInstr::FrameSetup);
1322     }
1323 
1324     // Now emit the moves for whatever callee saved regs we have (including FP,
1325     // LR if those are saved).
1326     emitCalleeSavedFrameMoves(MBB, MBBI);
1327   }
1328 }
1329 
InsertReturnAddressAuth(MachineFunction & MF,MachineBasicBlock & MBB)1330 static void InsertReturnAddressAuth(MachineFunction &MF,
1331                                     MachineBasicBlock &MBB) {
1332   if (!ShouldSignReturnAddress(MF))
1333     return;
1334   const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
1335   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
1336 
1337   MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator();
1338   DebugLoc DL;
1339   if (MBBI != MBB.end())
1340     DL = MBBI->getDebugLoc();
1341 
1342   // The AUTIASP instruction assembles to a hint instruction before v8.3a so
1343   // this instruction can safely used for any v8a architecture.
1344   // From v8.3a onwards there are optimised authenticate LR and return
1345   // instructions, namely RETA{A,B}, that can be used instead.
1346   if (Subtarget.hasV8_3aOps() && MBBI != MBB.end() &&
1347       MBBI->getOpcode() == AArch64::RET_ReallyLR) {
1348     BuildMI(MBB, MBBI, DL,
1349             TII->get(ShouldSignWithAKey(MF) ? AArch64::RETAA : AArch64::RETAB))
1350         .copyImplicitOps(*MBBI);
1351     MBB.erase(MBBI);
1352   } else {
1353     BuildMI(
1354         MBB, MBBI, DL,
1355         TII->get(ShouldSignWithAKey(MF) ? AArch64::AUTIASP : AArch64::AUTIBSP))
1356         .setMIFlag(MachineInstr::FrameDestroy);
1357   }
1358 }
1359 
isFuncletReturnInstr(const MachineInstr & MI)1360 static bool isFuncletReturnInstr(const MachineInstr &MI) {
1361   switch (MI.getOpcode()) {
1362   default:
1363     return false;
1364   case AArch64::CATCHRET:
1365   case AArch64::CLEANUPRET:
1366     return true;
1367   }
1368 }
1369 
emitEpilogue(MachineFunction & MF,MachineBasicBlock & MBB) const1370 void AArch64FrameLowering::emitEpilogue(MachineFunction &MF,
1371                                         MachineBasicBlock &MBB) const {
1372   MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr();
1373   MachineFrameInfo &MFI = MF.getFrameInfo();
1374   const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
1375   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
1376   DebugLoc DL;
1377   bool IsTailCallReturn = false;
1378   bool NeedsWinCFI = needsWinCFI(MF);
1379   bool HasWinCFI = false;
1380   bool IsFunclet = false;
1381   auto WinCFI = make_scope_exit([&]() {
1382     if (!MF.hasWinCFI())
1383       MF.setHasWinCFI(HasWinCFI);
1384   });
1385 
1386   if (MBB.end() != MBBI) {
1387     DL = MBBI->getDebugLoc();
1388     unsigned RetOpcode = MBBI->getOpcode();
1389     IsTailCallReturn = RetOpcode == AArch64::TCRETURNdi ||
1390                        RetOpcode == AArch64::TCRETURNri ||
1391                        RetOpcode == AArch64::TCRETURNriBTI;
1392     IsFunclet = isFuncletReturnInstr(*MBBI);
1393   }
1394 
1395   int64_t NumBytes = IsFunclet ? getWinEHFuncletFrameSize(MF)
1396                                : MFI.getStackSize();
1397   AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
1398 
1399   // All calls are tail calls in GHC calling conv, and functions have no
1400   // prologue/epilogue.
1401   if (MF.getFunction().getCallingConv() == CallingConv::GHC)
1402     return;
1403 
1404   // Initial and residual are named for consistency with the prologue. Note that
1405   // in the epilogue, the residual adjustment is executed first.
1406   uint64_t ArgumentPopSize = 0;
1407   if (IsTailCallReturn) {
1408     MachineOperand &StackAdjust = MBBI->getOperand(1);
1409 
1410     // For a tail-call in a callee-pops-arguments environment, some or all of
1411     // the stack may actually be in use for the call's arguments, this is
1412     // calculated during LowerCall and consumed here...
1413     ArgumentPopSize = StackAdjust.getImm();
1414   } else {
1415     // ... otherwise the amount to pop is *all* of the argument space,
1416     // conveniently stored in the MachineFunctionInfo by
1417     // LowerFormalArguments. This will, of course, be zero for the C calling
1418     // convention.
1419     ArgumentPopSize = AFI->getArgumentStackToRestore();
1420   }
1421 
1422   // The stack frame should be like below,
1423   //
1424   //      ----------------------                     ---
1425   //      |                    |                      |
1426   //      | BytesInStackArgArea|              CalleeArgStackSize
1427   //      | (NumReusableBytes) |                (of tail call)
1428   //      |                    |                     ---
1429   //      |                    |                      |
1430   //      ---------------------|        ---           |
1431   //      |                    |         |            |
1432   //      |   CalleeSavedReg   |         |            |
1433   //      | (CalleeSavedStackSize)|      |            |
1434   //      |                    |         |            |
1435   //      ---------------------|         |         NumBytes
1436   //      |                    |     StackSize  (StackAdjustUp)
1437   //      |   LocalStackSize   |         |            |
1438   //      | (covering callee   |         |            |
1439   //      |       args)        |         |            |
1440   //      |                    |         |            |
1441   //      ----------------------        ---          ---
1442   //
1443   // So NumBytes = StackSize + BytesInStackArgArea - CalleeArgStackSize
1444   //             = StackSize + ArgumentPopSize
1445   //
1446   // AArch64TargetLowering::LowerCall figures out ArgumentPopSize and keeps
1447   // it as the 2nd argument of AArch64ISD::TC_RETURN.
1448 
1449   auto Cleanup = make_scope_exit([&] { InsertReturnAddressAuth(MF, MBB); });
1450 
1451   bool IsWin64 =
1452       Subtarget.isCallingConvWin64(MF.getFunction().getCallingConv());
1453   // Var args are accounted for in the containing function, so don't
1454   // include them for funclets.
1455   unsigned FixedObject =
1456       (IsWin64 && !IsFunclet) ? alignTo(AFI->getVarArgsGPRSize(), 16) : 0;
1457 
1458   uint64_t AfterCSRPopSize = ArgumentPopSize;
1459   auto PrologueSaveSize = AFI->getCalleeSavedStackSize() + FixedObject;
1460   // We cannot rely on the local stack size set in emitPrologue if the function
1461   // has funclets, as funclets have different local stack size requirements, and
1462   // the current value set in emitPrologue may be that of the containing
1463   // function.
1464   if (MF.hasEHFunclets())
1465     AFI->setLocalStackSize(NumBytes - PrologueSaveSize);
1466   bool CombineSPBump = shouldCombineCSRLocalStackBump(MF, NumBytes);
1467   // Assume we can't combine the last pop with the sp restore.
1468 
1469   if (!CombineSPBump && PrologueSaveSize != 0) {
1470     MachineBasicBlock::iterator Pop = std::prev(MBB.getFirstTerminator());
1471     while (AArch64InstrInfo::isSEHInstruction(*Pop))
1472       Pop = std::prev(Pop);
1473     // Converting the last ldp to a post-index ldp is valid only if the last
1474     // ldp's offset is 0.
1475     const MachineOperand &OffsetOp = Pop->getOperand(Pop->getNumOperands() - 1);
1476     // If the offset is 0, convert it to a post-index ldp.
1477     if (OffsetOp.getImm() == 0)
1478       convertCalleeSaveRestoreToSPPrePostIncDec(
1479           MBB, Pop, DL, TII, PrologueSaveSize, NeedsWinCFI, &HasWinCFI, false);
1480     else {
1481       // If not, make sure to emit an add after the last ldp.
1482       // We're doing this by transfering the size to be restored from the
1483       // adjustment *before* the CSR pops to the adjustment *after* the CSR
1484       // pops.
1485       AfterCSRPopSize += PrologueSaveSize;
1486     }
1487   }
1488 
1489   // Move past the restores of the callee-saved registers.
1490   // If we plan on combining the sp bump of the local stack size and the callee
1491   // save stack size, we might need to adjust the CSR save and restore offsets.
1492   MachineBasicBlock::iterator LastPopI = MBB.getFirstTerminator();
1493   MachineBasicBlock::iterator Begin = MBB.begin();
1494   while (LastPopI != Begin) {
1495     --LastPopI;
1496     if (!LastPopI->getFlag(MachineInstr::FrameDestroy) ||
1497         IsSVECalleeSave(LastPopI)) {
1498       ++LastPopI;
1499       break;
1500     } else if (CombineSPBump)
1501       fixupCalleeSaveRestoreStackOffset(*LastPopI, AFI->getLocalStackSize(),
1502                                         NeedsWinCFI, &HasWinCFI);
1503   }
1504 
1505   if (NeedsWinCFI) {
1506     HasWinCFI = true;
1507     BuildMI(MBB, LastPopI, DL, TII->get(AArch64::SEH_EpilogStart))
1508         .setMIFlag(MachineInstr::FrameDestroy);
1509   }
1510 
1511   const StackOffset &SVEStackSize = getSVEStackSize(MF);
1512 
1513   // If there is a single SP update, insert it before the ret and we're done.
1514   if (CombineSPBump) {
1515     assert(!SVEStackSize && "Cannot combine SP bump with SVE");
1516     emitFrameOffset(MBB, MBB.getFirstTerminator(), DL, AArch64::SP, AArch64::SP,
1517                     {NumBytes + (int64_t)AfterCSRPopSize, MVT::i8}, TII,
1518                     MachineInstr::FrameDestroy, false, NeedsWinCFI, &HasWinCFI);
1519     if (NeedsWinCFI && HasWinCFI)
1520       BuildMI(MBB, MBB.getFirstTerminator(), DL,
1521               TII->get(AArch64::SEH_EpilogEnd))
1522           .setMIFlag(MachineInstr::FrameDestroy);
1523     return;
1524   }
1525 
1526   NumBytes -= PrologueSaveSize;
1527   assert(NumBytes >= 0 && "Negative stack allocation size!?");
1528 
1529   // Process the SVE callee-saves to determine what space needs to be
1530   // deallocated.
1531   StackOffset DeallocateBefore = {}, DeallocateAfter = SVEStackSize;
1532   MachineBasicBlock::iterator RestoreBegin = LastPopI, RestoreEnd = LastPopI;
1533   if (AFI->getSVECalleeSavedStackSize()) {
1534     RestoreBegin = std::prev(RestoreEnd);;
1535     while (IsSVECalleeSave(RestoreBegin) &&
1536            RestoreBegin != MBB.begin())
1537       --RestoreBegin;
1538     ++RestoreBegin;
1539 
1540     assert(IsSVECalleeSave(RestoreBegin) &&
1541            IsSVECalleeSave(std::prev(RestoreEnd)) && "Unexpected instruction");
1542 
1543     int64_t OffsetToFirstCalleeSaveFromSP =
1544         MFI.getObjectOffset(AFI->getMaxSVECSFrameIndex());
1545     StackOffset OffsetToCalleeSavesFromSP =
1546         StackOffset(OffsetToFirstCalleeSaveFromSP, MVT::nxv1i8) + SVEStackSize;
1547     DeallocateBefore = OffsetToCalleeSavesFromSP;
1548     DeallocateAfter = SVEStackSize - DeallocateBefore;
1549   }
1550 
1551   // Deallocate the SVE area.
1552   if (SVEStackSize) {
1553     if (AFI->isStackRealigned()) {
1554       if (AFI->getSVECalleeSavedStackSize())
1555         // Set SP to start of SVE area, from which the callee-save reloads
1556         // can be done. The code below will deallocate the stack space
1557         // space by moving FP -> SP.
1558         emitFrameOffset(MBB, RestoreBegin, DL, AArch64::SP, AArch64::FP,
1559                         -SVEStackSize, TII, MachineInstr::FrameDestroy);
1560     } else {
1561       if (AFI->getSVECalleeSavedStackSize()) {
1562         // Deallocate the non-SVE locals first before we can deallocate (and
1563         // restore callee saves) from the SVE area.
1564         emitFrameOffset(MBB, RestoreBegin, DL, AArch64::SP, AArch64::SP,
1565                         {NumBytes, MVT::i8}, TII, MachineInstr::FrameDestroy);
1566         NumBytes = 0;
1567       }
1568 
1569       emitFrameOffset(MBB, RestoreBegin, DL, AArch64::SP, AArch64::SP,
1570                       DeallocateBefore, TII, MachineInstr::FrameDestroy);
1571 
1572       emitFrameOffset(MBB, RestoreEnd, DL, AArch64::SP, AArch64::SP,
1573                       DeallocateAfter, TII, MachineInstr::FrameDestroy);
1574     }
1575   }
1576 
1577   if (!hasFP(MF)) {
1578     bool RedZone = canUseRedZone(MF);
1579     // If this was a redzone leaf function, we don't need to restore the
1580     // stack pointer (but we may need to pop stack args for fastcc).
1581     if (RedZone && AfterCSRPopSize == 0)
1582       return;
1583 
1584     bool NoCalleeSaveRestore = PrologueSaveSize == 0;
1585     int64_t StackRestoreBytes = RedZone ? 0 : NumBytes;
1586     if (NoCalleeSaveRestore)
1587       StackRestoreBytes += AfterCSRPopSize;
1588 
1589     // If we were able to combine the local stack pop with the argument pop,
1590     // then we're done.
1591     bool Done = NoCalleeSaveRestore || AfterCSRPopSize == 0;
1592 
1593     // If we're done after this, make sure to help the load store optimizer.
1594     if (Done)
1595       adaptForLdStOpt(MBB, MBB.getFirstTerminator(), LastPopI);
1596 
1597     emitFrameOffset(MBB, LastPopI, DL, AArch64::SP, AArch64::SP,
1598                     {StackRestoreBytes, MVT::i8}, TII,
1599                     MachineInstr::FrameDestroy, false, NeedsWinCFI, &HasWinCFI);
1600     if (Done) {
1601       if (NeedsWinCFI) {
1602         HasWinCFI = true;
1603         BuildMI(MBB, MBB.getFirstTerminator(), DL,
1604                 TII->get(AArch64::SEH_EpilogEnd))
1605             .setMIFlag(MachineInstr::FrameDestroy);
1606       }
1607       return;
1608     }
1609 
1610     NumBytes = 0;
1611   }
1612 
1613   // Restore the original stack pointer.
1614   // FIXME: Rather than doing the math here, we should instead just use
1615   // non-post-indexed loads for the restores if we aren't actually going to
1616   // be able to save any instructions.
1617   if (!IsFunclet && (MFI.hasVarSizedObjects() || AFI->isStackRealigned())) {
1618     int64_t OffsetToFrameRecord =
1619         isTargetDarwin(MF) ? (-(int64_t)AFI->getCalleeSavedStackSize() + 16) : 0;
1620     emitFrameOffset(MBB, LastPopI, DL, AArch64::SP, AArch64::FP,
1621                     {OffsetToFrameRecord, MVT::i8},
1622                     TII, MachineInstr::FrameDestroy, false, NeedsWinCFI);
1623   } else if (NumBytes)
1624     emitFrameOffset(MBB, LastPopI, DL, AArch64::SP, AArch64::SP,
1625                     {NumBytes, MVT::i8}, TII, MachineInstr::FrameDestroy, false,
1626                     NeedsWinCFI);
1627 
1628   // This must be placed after the callee-save restore code because that code
1629   // assumes the SP is at the same location as it was after the callee-save save
1630   // code in the prologue.
1631   if (AfterCSRPopSize) {
1632     // Find an insertion point for the first ldp so that it goes before the
1633     // shadow call stack epilog instruction. This ensures that the restore of
1634     // lr from x18 is placed after the restore from sp.
1635     auto FirstSPPopI = MBB.getFirstTerminator();
1636     while (FirstSPPopI != Begin) {
1637       auto Prev = std::prev(FirstSPPopI);
1638       if (Prev->getOpcode() != AArch64::LDRXpre ||
1639           Prev->getOperand(0).getReg() == AArch64::SP)
1640         break;
1641       FirstSPPopI = Prev;
1642     }
1643 
1644     adaptForLdStOpt(MBB, FirstSPPopI, LastPopI);
1645 
1646     emitFrameOffset(MBB, FirstSPPopI, DL, AArch64::SP, AArch64::SP,
1647                     {(int64_t)AfterCSRPopSize, MVT::i8}, TII,
1648                     MachineInstr::FrameDestroy, false, NeedsWinCFI, &HasWinCFI);
1649   }
1650   if (NeedsWinCFI && HasWinCFI)
1651     BuildMI(MBB, MBB.getFirstTerminator(), DL, TII->get(AArch64::SEH_EpilogEnd))
1652         .setMIFlag(MachineInstr::FrameDestroy);
1653 
1654   MF.setHasWinCFI(HasWinCFI);
1655 }
1656 
1657 /// getFrameIndexReference - Provide a base+offset reference to an FI slot for
1658 /// debug info.  It's the same as what we use for resolving the code-gen
1659 /// references for now.  FIXME: This can go wrong when references are
1660 /// SP-relative and simple call frames aren't used.
getFrameIndexReference(const MachineFunction & MF,int FI,unsigned & FrameReg) const1661 int AArch64FrameLowering::getFrameIndexReference(const MachineFunction &MF,
1662                                                  int FI,
1663                                                  unsigned &FrameReg) const {
1664   return resolveFrameIndexReference(
1665              MF, FI, FrameReg,
1666              /*PreferFP=*/
1667              MF.getFunction().hasFnAttribute(Attribute::SanitizeHWAddress),
1668              /*ForSimm=*/false)
1669       .getBytes();
1670 }
1671 
getNonLocalFrameIndexReference(const MachineFunction & MF,int FI) const1672 int AArch64FrameLowering::getNonLocalFrameIndexReference(
1673   const MachineFunction &MF, int FI) const {
1674   return getSEHFrameIndexOffset(MF, FI);
1675 }
1676 
getFPOffset(const MachineFunction & MF,int64_t ObjectOffset)1677 static StackOffset getFPOffset(const MachineFunction &MF, int64_t ObjectOffset) {
1678   const auto *AFI = MF.getInfo<AArch64FunctionInfo>();
1679   const auto &Subtarget = MF.getSubtarget<AArch64Subtarget>();
1680   bool IsWin64 =
1681       Subtarget.isCallingConvWin64(MF.getFunction().getCallingConv());
1682   unsigned FixedObject = IsWin64 ? alignTo(AFI->getVarArgsGPRSize(), 16) : 0;
1683   unsigned FPAdjust = isTargetDarwin(MF)
1684                         ? 16 : AFI->getCalleeSavedStackSize(MF.getFrameInfo());
1685   return {ObjectOffset + FixedObject + FPAdjust, MVT::i8};
1686 }
1687 
getStackOffset(const MachineFunction & MF,int64_t ObjectOffset)1688 static StackOffset getStackOffset(const MachineFunction &MF, int64_t ObjectOffset) {
1689   const auto &MFI = MF.getFrameInfo();
1690   return {ObjectOffset + (int64_t)MFI.getStackSize(), MVT::i8};
1691 }
1692 
getSEHFrameIndexOffset(const MachineFunction & MF,int FI) const1693 int AArch64FrameLowering::getSEHFrameIndexOffset(const MachineFunction &MF,
1694                                                  int FI) const {
1695   const auto *RegInfo = static_cast<const AArch64RegisterInfo *>(
1696       MF.getSubtarget().getRegisterInfo());
1697   int ObjectOffset = MF.getFrameInfo().getObjectOffset(FI);
1698   return RegInfo->getLocalAddressRegister(MF) == AArch64::FP
1699              ? getFPOffset(MF, ObjectOffset).getBytes()
1700              : getStackOffset(MF, ObjectOffset).getBytes();
1701 }
1702 
resolveFrameIndexReference(const MachineFunction & MF,int FI,unsigned & FrameReg,bool PreferFP,bool ForSimm) const1703 StackOffset AArch64FrameLowering::resolveFrameIndexReference(
1704     const MachineFunction &MF, int FI, unsigned &FrameReg, bool PreferFP,
1705     bool ForSimm) const {
1706   const auto &MFI = MF.getFrameInfo();
1707   int64_t ObjectOffset = MFI.getObjectOffset(FI);
1708   bool isFixed = MFI.isFixedObjectIndex(FI);
1709   bool isSVE = MFI.getStackID(FI) == TargetStackID::SVEVector;
1710   return resolveFrameOffsetReference(MF, ObjectOffset, isFixed, isSVE, FrameReg,
1711                                      PreferFP, ForSimm);
1712 }
1713 
resolveFrameOffsetReference(const MachineFunction & MF,int64_t ObjectOffset,bool isFixed,bool isSVE,unsigned & FrameReg,bool PreferFP,bool ForSimm) const1714 StackOffset AArch64FrameLowering::resolveFrameOffsetReference(
1715     const MachineFunction &MF, int64_t ObjectOffset, bool isFixed, bool isSVE,
1716     unsigned &FrameReg, bool PreferFP, bool ForSimm) const {
1717   const auto &MFI = MF.getFrameInfo();
1718   const auto *RegInfo = static_cast<const AArch64RegisterInfo *>(
1719       MF.getSubtarget().getRegisterInfo());
1720   const auto *AFI = MF.getInfo<AArch64FunctionInfo>();
1721   const auto &Subtarget = MF.getSubtarget<AArch64Subtarget>();
1722 
1723   int64_t FPOffset = getFPOffset(MF, ObjectOffset).getBytes();
1724   int64_t Offset = getStackOffset(MF, ObjectOffset).getBytes();
1725   bool isCSR =
1726       !isFixed && ObjectOffset >= -((int)AFI->getCalleeSavedStackSize(MFI));
1727 
1728   const StackOffset &SVEStackSize = getSVEStackSize(MF);
1729 
1730   // Use frame pointer to reference fixed objects. Use it for locals if
1731   // there are VLAs or a dynamically realigned SP (and thus the SP isn't
1732   // reliable as a base). Make sure useFPForScavengingIndex() does the
1733   // right thing for the emergency spill slot.
1734   bool UseFP = false;
1735   if (AFI->hasStackFrame() && !isSVE) {
1736     // We shouldn't prefer using the FP when there is an SVE area
1737     // in between the FP and the non-SVE locals/spills.
1738     PreferFP &= !SVEStackSize;
1739 
1740     // Note: Keeping the following as multiple 'if' statements rather than
1741     // merging to a single expression for readability.
1742     //
1743     // Argument access should always use the FP.
1744     if (isFixed) {
1745       UseFP = hasFP(MF);
1746     } else if (isCSR && RegInfo->needsStackRealignment(MF)) {
1747       // References to the CSR area must use FP if we're re-aligning the stack
1748       // since the dynamically-sized alignment padding is between the SP/BP and
1749       // the CSR area.
1750       assert(hasFP(MF) && "Re-aligned stack must have frame pointer");
1751       UseFP = true;
1752     } else if (hasFP(MF) && !RegInfo->needsStackRealignment(MF)) {
1753       // If the FPOffset is negative and we're producing a signed immediate, we
1754       // have to keep in mind that the available offset range for negative
1755       // offsets is smaller than for positive ones. If an offset is available
1756       // via the FP and the SP, use whichever is closest.
1757       bool FPOffsetFits = !ForSimm || FPOffset >= -256;
1758       PreferFP |= Offset > -FPOffset;
1759 
1760       if (MFI.hasVarSizedObjects()) {
1761         // If we have variable sized objects, we can use either FP or BP, as the
1762         // SP offset is unknown. We can use the base pointer if we have one and
1763         // FP is not preferred. If not, we're stuck with using FP.
1764         bool CanUseBP = RegInfo->hasBasePointer(MF);
1765         if (FPOffsetFits && CanUseBP) // Both are ok. Pick the best.
1766           UseFP = PreferFP;
1767         else if (!CanUseBP) { // Can't use BP. Forced to use FP.
1768           assert(!SVEStackSize && "Expected BP to be available");
1769           UseFP = true;
1770         }
1771         // else we can use BP and FP, but the offset from FP won't fit.
1772         // That will make us scavenge registers which we can probably avoid by
1773         // using BP. If it won't fit for BP either, we'll scavenge anyway.
1774       } else if (FPOffset >= 0) {
1775         // Use SP or FP, whichever gives us the best chance of the offset
1776         // being in range for direct access. If the FPOffset is positive,
1777         // that'll always be best, as the SP will be even further away.
1778         UseFP = true;
1779       } else if (MF.hasEHFunclets() && !RegInfo->hasBasePointer(MF)) {
1780         // Funclets access the locals contained in the parent's stack frame
1781         // via the frame pointer, so we have to use the FP in the parent
1782         // function.
1783         (void) Subtarget;
1784         assert(
1785             Subtarget.isCallingConvWin64(MF.getFunction().getCallingConv()) &&
1786             "Funclets should only be present on Win64");
1787         UseFP = true;
1788       } else {
1789         // We have the choice between FP and (SP or BP).
1790         if (FPOffsetFits && PreferFP) // If FP is the best fit, use it.
1791           UseFP = true;
1792       }
1793     }
1794   }
1795 
1796   assert(((isFixed || isCSR) || !RegInfo->needsStackRealignment(MF) || !UseFP) &&
1797          "In the presence of dynamic stack pointer realignment, "
1798          "non-argument/CSR objects cannot be accessed through the frame pointer");
1799 
1800   if (isSVE) {
1801     int64_t OffsetToSVEArea =
1802         MFI.getStackSize() - AFI->getCalleeSavedStackSize();
1803     StackOffset FPOffset = {ObjectOffset, MVT::nxv1i8};
1804     StackOffset SPOffset = SVEStackSize +
1805                            StackOffset(ObjectOffset, MVT::nxv1i8) +
1806                            StackOffset(OffsetToSVEArea, MVT::i8);
1807     // Always use the FP for SVE spills if available and beneficial.
1808     if (hasFP(MF) &&
1809         (SPOffset.getBytes() ||
1810          FPOffset.getScalableBytes() < SPOffset.getScalableBytes() ||
1811          RegInfo->needsStackRealignment(MF))) {
1812       FrameReg = RegInfo->getFrameRegister(MF);
1813       return FPOffset;
1814     }
1815 
1816     FrameReg = RegInfo->hasBasePointer(MF) ? RegInfo->getBaseRegister()
1817                                            : (unsigned)AArch64::SP;
1818     return SPOffset;
1819   }
1820 
1821   StackOffset ScalableOffset = {};
1822   if (UseFP && !(isFixed || isCSR))
1823     ScalableOffset = -SVEStackSize;
1824   if (!UseFP && (isFixed || isCSR))
1825     ScalableOffset = SVEStackSize;
1826 
1827   if (UseFP) {
1828     FrameReg = RegInfo->getFrameRegister(MF);
1829     return StackOffset(FPOffset, MVT::i8) + ScalableOffset;
1830   }
1831 
1832   // Use the base pointer if we have one.
1833   if (RegInfo->hasBasePointer(MF))
1834     FrameReg = RegInfo->getBaseRegister();
1835   else {
1836     assert(!MFI.hasVarSizedObjects() &&
1837            "Can't use SP when we have var sized objects.");
1838     FrameReg = AArch64::SP;
1839     // If we're using the red zone for this function, the SP won't actually
1840     // be adjusted, so the offsets will be negative. They're also all
1841     // within range of the signed 9-bit immediate instructions.
1842     if (canUseRedZone(MF))
1843       Offset -= AFI->getLocalStackSize();
1844   }
1845 
1846   return StackOffset(Offset, MVT::i8) + ScalableOffset;
1847 }
1848 
getPrologueDeath(MachineFunction & MF,unsigned Reg)1849 static unsigned getPrologueDeath(MachineFunction &MF, unsigned Reg) {
1850   // Do not set a kill flag on values that are also marked as live-in. This
1851   // happens with the @llvm-returnaddress intrinsic and with arguments passed in
1852   // callee saved registers.
1853   // Omitting the kill flags is conservatively correct even if the live-in
1854   // is not used after all.
1855   bool IsLiveIn = MF.getRegInfo().isLiveIn(Reg);
1856   return getKillRegState(!IsLiveIn);
1857 }
1858 
produceCompactUnwindFrame(MachineFunction & MF)1859 static bool produceCompactUnwindFrame(MachineFunction &MF) {
1860   const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
1861   AttributeList Attrs = MF.getFunction().getAttributes();
1862   return Subtarget.isTargetMachO() &&
1863          !(Subtarget.getTargetLowering()->supportSwiftError() &&
1864            Attrs.hasAttrSomewhere(Attribute::SwiftError));
1865 }
1866 
invalidateWindowsRegisterPairing(unsigned Reg1,unsigned Reg2,bool NeedsWinCFI)1867 static bool invalidateWindowsRegisterPairing(unsigned Reg1, unsigned Reg2,
1868                                              bool NeedsWinCFI) {
1869   // If we are generating register pairs for a Windows function that requires
1870   // EH support, then pair consecutive registers only.  There are no unwind
1871   // opcodes for saves/restores of non-consectuve register pairs.
1872   // The unwind opcodes are save_regp, save_regp_x, save_fregp, save_frepg_x.
1873   // https://docs.microsoft.com/en-us/cpp/build/arm64-exception-handling
1874 
1875   // TODO: LR can be paired with any register.  We don't support this yet in
1876   // the MCLayer.  We need to add support for the save_lrpair unwind code.
1877   if (Reg2 == AArch64::FP)
1878     return true;
1879   if (!NeedsWinCFI)
1880     return false;
1881   if (Reg2 == Reg1 + 1)
1882     return false;
1883   return true;
1884 }
1885 
1886 /// Returns true if Reg1 and Reg2 cannot be paired using a ldp/stp instruction.
1887 /// WindowsCFI requires that only consecutive registers can be paired.
1888 /// LR and FP need to be allocated together when the frame needs to save
1889 /// the frame-record. This means any other register pairing with LR is invalid.
invalidateRegisterPairing(unsigned Reg1,unsigned Reg2,bool UsesWinAAPCS,bool NeedsWinCFI,bool NeedsFrameRecord)1890 static bool invalidateRegisterPairing(unsigned Reg1, unsigned Reg2,
1891                                       bool UsesWinAAPCS, bool NeedsWinCFI, bool NeedsFrameRecord) {
1892   if (UsesWinAAPCS)
1893     return invalidateWindowsRegisterPairing(Reg1, Reg2, NeedsWinCFI);
1894 
1895   // If we need to store the frame record, don't pair any register
1896   // with LR other than FP.
1897   if (NeedsFrameRecord)
1898     return Reg2 == AArch64::LR;
1899 
1900   return false;
1901 }
1902 
1903 namespace {
1904 
1905 struct RegPairInfo {
1906   unsigned Reg1 = AArch64::NoRegister;
1907   unsigned Reg2 = AArch64::NoRegister;
1908   int FrameIdx;
1909   int Offset;
1910   enum RegType { GPR, FPR64, FPR128, PPR, ZPR } Type;
1911 
1912   RegPairInfo() = default;
1913 
isPaired__anonb826af230411::RegPairInfo1914   bool isPaired() const { return Reg2 != AArch64::NoRegister; }
1915 
getScale__anonb826af230411::RegPairInfo1916   unsigned getScale() const {
1917     switch (Type) {
1918     case PPR:
1919       return 2;
1920     case GPR:
1921     case FPR64:
1922       return 8;
1923     case ZPR:
1924     case FPR128:
1925       return 16;
1926     }
1927     llvm_unreachable("Unsupported type");
1928   }
1929 
isScalable__anonb826af230411::RegPairInfo1930   bool isScalable() const { return Type == PPR || Type == ZPR; }
1931 };
1932 
1933 } // end anonymous namespace
1934 
computeCalleeSaveRegisterPairs(MachineFunction & MF,const std::vector<CalleeSavedInfo> & CSI,const TargetRegisterInfo * TRI,SmallVectorImpl<RegPairInfo> & RegPairs,bool & NeedShadowCallStackProlog,bool NeedsFrameRecord)1935 static void computeCalleeSaveRegisterPairs(
1936     MachineFunction &MF, const std::vector<CalleeSavedInfo> &CSI,
1937     const TargetRegisterInfo *TRI, SmallVectorImpl<RegPairInfo> &RegPairs,
1938     bool &NeedShadowCallStackProlog, bool NeedsFrameRecord) {
1939 
1940   if (CSI.empty())
1941     return;
1942 
1943   bool IsWindows = isTargetWindows(MF);
1944   bool NeedsWinCFI = needsWinCFI(MF);
1945   AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
1946   MachineFrameInfo &MFI = MF.getFrameInfo();
1947   CallingConv::ID CC = MF.getFunction().getCallingConv();
1948   unsigned Count = CSI.size();
1949   (void)CC;
1950   // MachO's compact unwind format relies on all registers being stored in
1951   // pairs.
1952   assert((!produceCompactUnwindFrame(MF) ||
1953           CC == CallingConv::PreserveMost ||
1954           (Count & 1) == 0) &&
1955          "Odd number of callee-saved regs to spill!");
1956   int ByteOffset = AFI->getCalleeSavedStackSize();
1957   int ScalableByteOffset = AFI->getSVECalleeSavedStackSize();
1958   // On Linux, we will have either one or zero non-paired register.  On Windows
1959   // with CFI, we can have multiple unpaired registers in order to utilize the
1960   // available unwind codes.  This flag assures that the alignment fixup is done
1961   // only once, as intened.
1962   bool FixupDone = false;
1963   for (unsigned i = 0; i < Count; ++i) {
1964     RegPairInfo RPI;
1965     RPI.Reg1 = CSI[i].getReg();
1966 
1967     if (AArch64::GPR64RegClass.contains(RPI.Reg1))
1968       RPI.Type = RegPairInfo::GPR;
1969     else if (AArch64::FPR64RegClass.contains(RPI.Reg1))
1970       RPI.Type = RegPairInfo::FPR64;
1971     else if (AArch64::FPR128RegClass.contains(RPI.Reg1))
1972       RPI.Type = RegPairInfo::FPR128;
1973     else if (AArch64::ZPRRegClass.contains(RPI.Reg1))
1974       RPI.Type = RegPairInfo::ZPR;
1975     else if (AArch64::PPRRegClass.contains(RPI.Reg1))
1976       RPI.Type = RegPairInfo::PPR;
1977     else
1978       llvm_unreachable("Unsupported register class.");
1979 
1980     // Add the next reg to the pair if it is in the same register class.
1981     if (i + 1 < Count) {
1982       unsigned NextReg = CSI[i + 1].getReg();
1983       switch (RPI.Type) {
1984       case RegPairInfo::GPR:
1985         if (AArch64::GPR64RegClass.contains(NextReg) &&
1986             !invalidateRegisterPairing(RPI.Reg1, NextReg, IsWindows, NeedsWinCFI,
1987                                        NeedsFrameRecord))
1988           RPI.Reg2 = NextReg;
1989         break;
1990       case RegPairInfo::FPR64:
1991         if (AArch64::FPR64RegClass.contains(NextReg) &&
1992             !invalidateWindowsRegisterPairing(RPI.Reg1, NextReg, NeedsWinCFI))
1993           RPI.Reg2 = NextReg;
1994         break;
1995       case RegPairInfo::FPR128:
1996         if (AArch64::FPR128RegClass.contains(NextReg))
1997           RPI.Reg2 = NextReg;
1998         break;
1999       case RegPairInfo::PPR:
2000       case RegPairInfo::ZPR:
2001         break;
2002       }
2003     }
2004 
2005     // If either of the registers to be saved is the lr register, it means that
2006     // we also need to save lr in the shadow call stack.
2007     if ((RPI.Reg1 == AArch64::LR || RPI.Reg2 == AArch64::LR) &&
2008         MF.getFunction().hasFnAttribute(Attribute::ShadowCallStack)) {
2009       if (!MF.getSubtarget<AArch64Subtarget>().isXRegisterReserved(18))
2010         report_fatal_error("Must reserve x18 to use shadow call stack");
2011       NeedShadowCallStackProlog = true;
2012     }
2013 
2014     // GPRs and FPRs are saved in pairs of 64-bit regs. We expect the CSI
2015     // list to come in sorted by frame index so that we can issue the store
2016     // pair instructions directly. Assert if we see anything otherwise.
2017     //
2018     // The order of the registers in the list is controlled by
2019     // getCalleeSavedRegs(), so they will always be in-order, as well.
2020     assert((!RPI.isPaired() ||
2021             (CSI[i].getFrameIdx() + 1 == CSI[i + 1].getFrameIdx())) &&
2022            "Out of order callee saved regs!");
2023 
2024     assert((!RPI.isPaired() || !NeedsFrameRecord || RPI.Reg2 != AArch64::FP ||
2025             RPI.Reg1 == AArch64::LR) &&
2026            "FrameRecord must be allocated together with LR");
2027 
2028     // Windows AAPCS has FP and LR reversed.
2029     assert((!RPI.isPaired() || !NeedsFrameRecord || RPI.Reg1 != AArch64::FP ||
2030             RPI.Reg2 == AArch64::LR) &&
2031            "FrameRecord must be allocated together with LR");
2032 
2033     // MachO's compact unwind format relies on all registers being stored in
2034     // adjacent register pairs.
2035     assert((!produceCompactUnwindFrame(MF) ||
2036             CC == CallingConv::PreserveMost ||
2037             (RPI.isPaired() &&
2038              ((RPI.Reg1 == AArch64::LR && RPI.Reg2 == AArch64::FP) ||
2039               RPI.Reg1 + 1 == RPI.Reg2))) &&
2040            "Callee-save registers not saved as adjacent register pair!");
2041 
2042     RPI.FrameIdx = CSI[i].getFrameIdx();
2043 
2044     int Scale = RPI.getScale();
2045     if (RPI.isScalable())
2046       ScalableByteOffset -= Scale;
2047     else
2048       ByteOffset -= RPI.isPaired() ? 2 * Scale : Scale;
2049 
2050     assert(!(RPI.isScalable() && RPI.isPaired()) &&
2051            "Paired spill/fill instructions don't exist for SVE vectors");
2052 
2053     // Round up size of non-pair to pair size if we need to pad the
2054     // callee-save area to ensure 16-byte alignment.
2055     if (AFI->hasCalleeSaveStackFreeSpace() && !FixupDone &&
2056         !RPI.isScalable() && RPI.Type != RegPairInfo::FPR128 &&
2057         !RPI.isPaired()) {
2058       FixupDone = true;
2059       ByteOffset -= 8;
2060       assert(ByteOffset % 16 == 0);
2061       assert(MFI.getObjectAlignment(RPI.FrameIdx) <= 16);
2062       MFI.setObjectAlignment(RPI.FrameIdx, 16);
2063     }
2064 
2065     int Offset = RPI.isScalable() ? ScalableByteOffset : ByteOffset;
2066     assert(Offset % Scale == 0);
2067     RPI.Offset = Offset / Scale;
2068 
2069     assert(((!RPI.isScalable() && RPI.Offset >= -64 && RPI.Offset <= 63) ||
2070             (RPI.isScalable() && RPI.Offset >= -256 && RPI.Offset <= 255)) &&
2071            "Offset out of bounds for LDP/STP immediate");
2072 
2073     RegPairs.push_back(RPI);
2074     if (RPI.isPaired())
2075       ++i;
2076   }
2077 }
2078 
spillCalleeSavedRegisters(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,const std::vector<CalleeSavedInfo> & CSI,const TargetRegisterInfo * TRI) const2079 bool AArch64FrameLowering::spillCalleeSavedRegisters(
2080     MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
2081     const std::vector<CalleeSavedInfo> &CSI,
2082     const TargetRegisterInfo *TRI) const {
2083   MachineFunction &MF = *MBB.getParent();
2084   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
2085   bool NeedsWinCFI = needsWinCFI(MF);
2086   DebugLoc DL;
2087   SmallVector<RegPairInfo, 8> RegPairs;
2088 
2089   bool NeedShadowCallStackProlog = false;
2090   computeCalleeSaveRegisterPairs(MF, CSI, TRI, RegPairs,
2091                                  NeedShadowCallStackProlog, hasFP(MF));
2092   const MachineRegisterInfo &MRI = MF.getRegInfo();
2093 
2094   if (NeedShadowCallStackProlog) {
2095     // Shadow call stack prolog: str x30, [x18], #8
2096     BuildMI(MBB, MI, DL, TII.get(AArch64::STRXpost))
2097         .addReg(AArch64::X18, RegState::Define)
2098         .addReg(AArch64::LR)
2099         .addReg(AArch64::X18)
2100         .addImm(8)
2101         .setMIFlag(MachineInstr::FrameSetup);
2102 
2103     if (NeedsWinCFI)
2104       BuildMI(MBB, MI, DL, TII.get(AArch64::SEH_Nop))
2105           .setMIFlag(MachineInstr::FrameSetup);
2106 
2107     if (!MF.getFunction().hasFnAttribute(Attribute::NoUnwind)) {
2108       // Emit a CFI instruction that causes 8 to be subtracted from the value of
2109       // x18 when unwinding past this frame.
2110       static const char CFIInst[] = {
2111           dwarf::DW_CFA_val_expression,
2112           18, // register
2113           2,  // length
2114           static_cast<char>(unsigned(dwarf::DW_OP_breg18)),
2115           static_cast<char>(-8) & 0x7f, // addend (sleb128)
2116       };
2117       unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::createEscape(
2118           nullptr, StringRef(CFIInst, sizeof(CFIInst))));
2119       BuildMI(MBB, MI, DL, TII.get(AArch64::CFI_INSTRUCTION))
2120           .addCFIIndex(CFIIndex)
2121           .setMIFlag(MachineInstr::FrameSetup);
2122     }
2123 
2124     // This instruction also makes x18 live-in to the entry block.
2125     MBB.addLiveIn(AArch64::X18);
2126   }
2127 
2128   for (auto RPII = RegPairs.rbegin(), RPIE = RegPairs.rend(); RPII != RPIE;
2129        ++RPII) {
2130     RegPairInfo RPI = *RPII;
2131     unsigned Reg1 = RPI.Reg1;
2132     unsigned Reg2 = RPI.Reg2;
2133     unsigned StrOpc;
2134 
2135     // Issue sequence of spills for cs regs.  The first spill may be converted
2136     // to a pre-decrement store later by emitPrologue if the callee-save stack
2137     // area allocation can't be combined with the local stack area allocation.
2138     // For example:
2139     //    stp     x22, x21, [sp, #0]     // addImm(+0)
2140     //    stp     x20, x19, [sp, #16]    // addImm(+2)
2141     //    stp     fp, lr, [sp, #32]      // addImm(+4)
2142     // Rationale: This sequence saves uop updates compared to a sequence of
2143     // pre-increment spills like stp xi,xj,[sp,#-16]!
2144     // Note: Similar rationale and sequence for restores in epilog.
2145     unsigned Size, Align;
2146     switch (RPI.Type) {
2147     case RegPairInfo::GPR:
2148        StrOpc = RPI.isPaired() ? AArch64::STPXi : AArch64::STRXui;
2149        Size = 8;
2150        Align = 8;
2151        break;
2152     case RegPairInfo::FPR64:
2153        StrOpc = RPI.isPaired() ? AArch64::STPDi : AArch64::STRDui;
2154        Size = 8;
2155        Align = 8;
2156        break;
2157     case RegPairInfo::FPR128:
2158        StrOpc = RPI.isPaired() ? AArch64::STPQi : AArch64::STRQui;
2159        Size = 16;
2160        Align = 16;
2161        break;
2162     case RegPairInfo::ZPR:
2163        StrOpc = AArch64::STR_ZXI;
2164        Size = 16;
2165        Align = 16;
2166        break;
2167     case RegPairInfo::PPR:
2168        StrOpc = AArch64::STR_PXI;
2169        Size = 2;
2170        Align = 2;
2171        break;
2172     }
2173     LLVM_DEBUG(dbgs() << "CSR spill: (" << printReg(Reg1, TRI);
2174                if (RPI.isPaired()) dbgs() << ", " << printReg(Reg2, TRI);
2175                dbgs() << ") -> fi#(" << RPI.FrameIdx;
2176                if (RPI.isPaired()) dbgs() << ", " << RPI.FrameIdx + 1;
2177                dbgs() << ")\n");
2178 
2179     assert((!NeedsWinCFI || !(Reg1 == AArch64::LR && Reg2 == AArch64::FP)) &&
2180            "Windows unwdinding requires a consecutive (FP,LR) pair");
2181     // Windows unwind codes require consecutive registers if registers are
2182     // paired.  Make the switch here, so that the code below will save (x,x+1)
2183     // and not (x+1,x).
2184     unsigned FrameIdxReg1 = RPI.FrameIdx;
2185     unsigned FrameIdxReg2 = RPI.FrameIdx + 1;
2186     if (NeedsWinCFI && RPI.isPaired()) {
2187       std::swap(Reg1, Reg2);
2188       std::swap(FrameIdxReg1, FrameIdxReg2);
2189     }
2190     MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(StrOpc));
2191     if (!MRI.isReserved(Reg1))
2192       MBB.addLiveIn(Reg1);
2193     if (RPI.isPaired()) {
2194       if (!MRI.isReserved(Reg2))
2195         MBB.addLiveIn(Reg2);
2196       MIB.addReg(Reg2, getPrologueDeath(MF, Reg2));
2197       MIB.addMemOperand(MF.getMachineMemOperand(
2198           MachinePointerInfo::getFixedStack(MF, FrameIdxReg2),
2199           MachineMemOperand::MOStore, Size, Align));
2200     }
2201     MIB.addReg(Reg1, getPrologueDeath(MF, Reg1))
2202         .addReg(AArch64::SP)
2203         .addImm(RPI.Offset) // [sp, #offset*scale],
2204                             // where factor*scale is implicit
2205         .setMIFlag(MachineInstr::FrameSetup);
2206     MIB.addMemOperand(MF.getMachineMemOperand(
2207         MachinePointerInfo::getFixedStack(MF,FrameIdxReg1),
2208         MachineMemOperand::MOStore, Size, Align));
2209     if (NeedsWinCFI)
2210       InsertSEH(MIB, TII, MachineInstr::FrameSetup);
2211 
2212     // Update the StackIDs of the SVE stack slots.
2213     MachineFrameInfo &MFI = MF.getFrameInfo();
2214     if (RPI.Type == RegPairInfo::ZPR || RPI.Type == RegPairInfo::PPR)
2215       MFI.setStackID(RPI.FrameIdx, TargetStackID::SVEVector);
2216 
2217   }
2218   return true;
2219 }
2220 
restoreCalleeSavedRegisters(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,std::vector<CalleeSavedInfo> & CSI,const TargetRegisterInfo * TRI) const2221 bool AArch64FrameLowering::restoreCalleeSavedRegisters(
2222     MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
2223     std::vector<CalleeSavedInfo> &CSI,
2224     const TargetRegisterInfo *TRI) const {
2225   MachineFunction &MF = *MBB.getParent();
2226   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
2227   DebugLoc DL;
2228   SmallVector<RegPairInfo, 8> RegPairs;
2229   bool NeedsWinCFI = needsWinCFI(MF);
2230 
2231   if (MI != MBB.end())
2232     DL = MI->getDebugLoc();
2233 
2234   bool NeedShadowCallStackProlog = false;
2235   computeCalleeSaveRegisterPairs(MF, CSI, TRI, RegPairs,
2236                                  NeedShadowCallStackProlog, hasFP(MF));
2237 
2238   auto EmitMI = [&](const RegPairInfo &RPI) {
2239     unsigned Reg1 = RPI.Reg1;
2240     unsigned Reg2 = RPI.Reg2;
2241 
2242     // Issue sequence of restores for cs regs. The last restore may be converted
2243     // to a post-increment load later by emitEpilogue if the callee-save stack
2244     // area allocation can't be combined with the local stack area allocation.
2245     // For example:
2246     //    ldp     fp, lr, [sp, #32]       // addImm(+4)
2247     //    ldp     x20, x19, [sp, #16]     // addImm(+2)
2248     //    ldp     x22, x21, [sp, #0]      // addImm(+0)
2249     // Note: see comment in spillCalleeSavedRegisters()
2250     unsigned LdrOpc;
2251     unsigned Size, Align;
2252     switch (RPI.Type) {
2253     case RegPairInfo::GPR:
2254        LdrOpc = RPI.isPaired() ? AArch64::LDPXi : AArch64::LDRXui;
2255        Size = 8;
2256        Align = 8;
2257        break;
2258     case RegPairInfo::FPR64:
2259        LdrOpc = RPI.isPaired() ? AArch64::LDPDi : AArch64::LDRDui;
2260        Size = 8;
2261        Align = 8;
2262        break;
2263     case RegPairInfo::FPR128:
2264        LdrOpc = RPI.isPaired() ? AArch64::LDPQi : AArch64::LDRQui;
2265        Size = 16;
2266        Align = 16;
2267        break;
2268     case RegPairInfo::ZPR:
2269        LdrOpc = AArch64::LDR_ZXI;
2270        Size = 16;
2271        Align = 16;
2272        break;
2273     case RegPairInfo::PPR:
2274        LdrOpc = AArch64::LDR_PXI;
2275        Size = 2;
2276        Align = 2;
2277        break;
2278     }
2279     LLVM_DEBUG(dbgs() << "CSR restore: (" << printReg(Reg1, TRI);
2280                if (RPI.isPaired()) dbgs() << ", " << printReg(Reg2, TRI);
2281                dbgs() << ") -> fi#(" << RPI.FrameIdx;
2282                if (RPI.isPaired()) dbgs() << ", " << RPI.FrameIdx + 1;
2283                dbgs() << ")\n");
2284 
2285     // Windows unwind codes require consecutive registers if registers are
2286     // paired.  Make the switch here, so that the code below will save (x,x+1)
2287     // and not (x+1,x).
2288     unsigned FrameIdxReg1 = RPI.FrameIdx;
2289     unsigned FrameIdxReg2 = RPI.FrameIdx + 1;
2290     if (NeedsWinCFI && RPI.isPaired()) {
2291       std::swap(Reg1, Reg2);
2292       std::swap(FrameIdxReg1, FrameIdxReg2);
2293     }
2294     MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(LdrOpc));
2295     if (RPI.isPaired()) {
2296       MIB.addReg(Reg2, getDefRegState(true));
2297       MIB.addMemOperand(MF.getMachineMemOperand(
2298           MachinePointerInfo::getFixedStack(MF, FrameIdxReg2),
2299           MachineMemOperand::MOLoad, Size, Align));
2300     }
2301     MIB.addReg(Reg1, getDefRegState(true))
2302         .addReg(AArch64::SP)
2303         .addImm(RPI.Offset) // [sp, #offset*scale]
2304                             // where factor*scale is implicit
2305         .setMIFlag(MachineInstr::FrameDestroy);
2306     MIB.addMemOperand(MF.getMachineMemOperand(
2307         MachinePointerInfo::getFixedStack(MF, FrameIdxReg1),
2308         MachineMemOperand::MOLoad, Size, Align));
2309     if (NeedsWinCFI)
2310       InsertSEH(MIB, TII, MachineInstr::FrameDestroy);
2311   };
2312 
2313   // SVE objects are always restored in reverse order.
2314   for (const RegPairInfo &RPI : reverse(RegPairs))
2315     if (RPI.isScalable())
2316       EmitMI(RPI);
2317 
2318   if (ReverseCSRRestoreSeq) {
2319     for (const RegPairInfo &RPI : reverse(RegPairs))
2320       if (!RPI.isScalable())
2321         EmitMI(RPI);
2322   } else
2323     for (const RegPairInfo &RPI : RegPairs)
2324       if (!RPI.isScalable())
2325         EmitMI(RPI);
2326 
2327   if (NeedShadowCallStackProlog) {
2328     // Shadow call stack epilog: ldr x30, [x18, #-8]!
2329     BuildMI(MBB, MI, DL, TII.get(AArch64::LDRXpre))
2330         .addReg(AArch64::X18, RegState::Define)
2331         .addReg(AArch64::LR, RegState::Define)
2332         .addReg(AArch64::X18)
2333         .addImm(-8)
2334         .setMIFlag(MachineInstr::FrameDestroy);
2335   }
2336 
2337   return true;
2338 }
2339 
determineCalleeSaves(MachineFunction & MF,BitVector & SavedRegs,RegScavenger * RS) const2340 void AArch64FrameLowering::determineCalleeSaves(MachineFunction &MF,
2341                                                 BitVector &SavedRegs,
2342                                                 RegScavenger *RS) const {
2343   // All calls are tail calls in GHC calling conv, and functions have no
2344   // prologue/epilogue.
2345   if (MF.getFunction().getCallingConv() == CallingConv::GHC)
2346     return;
2347 
2348   TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS);
2349   const AArch64RegisterInfo *RegInfo = static_cast<const AArch64RegisterInfo *>(
2350       MF.getSubtarget().getRegisterInfo());
2351   AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
2352   unsigned UnspilledCSGPR = AArch64::NoRegister;
2353   unsigned UnspilledCSGPRPaired = AArch64::NoRegister;
2354 
2355   MachineFrameInfo &MFI = MF.getFrameInfo();
2356   const MCPhysReg *CSRegs = MF.getRegInfo().getCalleeSavedRegs();
2357 
2358   unsigned BasePointerReg = RegInfo->hasBasePointer(MF)
2359                                 ? RegInfo->getBaseRegister()
2360                                 : (unsigned)AArch64::NoRegister;
2361 
2362   unsigned ExtraCSSpill = 0;
2363   // Figure out which callee-saved registers to save/restore.
2364   for (unsigned i = 0; CSRegs[i]; ++i) {
2365     const unsigned Reg = CSRegs[i];
2366 
2367     // Add the base pointer register to SavedRegs if it is callee-save.
2368     if (Reg == BasePointerReg)
2369       SavedRegs.set(Reg);
2370 
2371     bool RegUsed = SavedRegs.test(Reg);
2372     unsigned PairedReg = AArch64::NoRegister;
2373     if (AArch64::GPR64RegClass.contains(Reg) ||
2374         AArch64::FPR64RegClass.contains(Reg) ||
2375         AArch64::FPR128RegClass.contains(Reg))
2376       PairedReg = CSRegs[i ^ 1];
2377 
2378     if (!RegUsed) {
2379       if (AArch64::GPR64RegClass.contains(Reg) &&
2380           !RegInfo->isReservedReg(MF, Reg)) {
2381         UnspilledCSGPR = Reg;
2382         UnspilledCSGPRPaired = PairedReg;
2383       }
2384       continue;
2385     }
2386 
2387     // MachO's compact unwind format relies on all registers being stored in
2388     // pairs.
2389     // FIXME: the usual format is actually better if unwinding isn't needed.
2390     if (produceCompactUnwindFrame(MF) && PairedReg != AArch64::NoRegister &&
2391         !SavedRegs.test(PairedReg)) {
2392       SavedRegs.set(PairedReg);
2393       if (AArch64::GPR64RegClass.contains(PairedReg) &&
2394           !RegInfo->isReservedReg(MF, PairedReg))
2395         ExtraCSSpill = PairedReg;
2396     }
2397   }
2398 
2399   // Calculates the callee saved stack size.
2400   unsigned CSStackSize = 0;
2401   unsigned SVECSStackSize = 0;
2402   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
2403   const MachineRegisterInfo &MRI = MF.getRegInfo();
2404   for (unsigned Reg : SavedRegs.set_bits()) {
2405     auto RegSize = TRI->getRegSizeInBits(Reg, MRI) / 8;
2406     if (AArch64::PPRRegClass.contains(Reg) ||
2407         AArch64::ZPRRegClass.contains(Reg))
2408       SVECSStackSize += RegSize;
2409     else
2410       CSStackSize += RegSize;
2411   }
2412 
2413   // Save number of saved regs, so we can easily update CSStackSize later.
2414   unsigned NumSavedRegs = SavedRegs.count();
2415 
2416   // The frame record needs to be created by saving the appropriate registers
2417   uint64_t EstimatedStackSize = MFI.estimateStackSize(MF);
2418   if (hasFP(MF) ||
2419       windowsRequiresStackProbe(MF, EstimatedStackSize + CSStackSize + 16)) {
2420     SavedRegs.set(AArch64::FP);
2421     SavedRegs.set(AArch64::LR);
2422   }
2423 
2424   LLVM_DEBUG(dbgs() << "*** determineCalleeSaves\nSaved CSRs:";
2425              for (unsigned Reg
2426                   : SavedRegs.set_bits()) dbgs()
2427              << ' ' << printReg(Reg, RegInfo);
2428              dbgs() << "\n";);
2429 
2430   // If any callee-saved registers are used, the frame cannot be eliminated.
2431   int64_t SVEStackSize =
2432       alignTo(SVECSStackSize + estimateSVEStackObjectOffsets(MFI), 16);
2433   bool CanEliminateFrame = (SavedRegs.count() == 0) && !SVEStackSize;
2434 
2435   // The CSR spill slots have not been allocated yet, so estimateStackSize
2436   // won't include them.
2437   unsigned EstimatedStackSizeLimit = estimateRSStackSizeLimit(MF);
2438 
2439   // Conservatively always assume BigStack when there are SVE spills.
2440   bool BigStack = SVEStackSize ||
2441                   (EstimatedStackSize + CSStackSize) > EstimatedStackSizeLimit;
2442   if (BigStack || !CanEliminateFrame || RegInfo->cannotEliminateFrame(MF))
2443     AFI->setHasStackFrame(true);
2444 
2445   // Estimate if we might need to scavenge a register at some point in order
2446   // to materialize a stack offset. If so, either spill one additional
2447   // callee-saved register or reserve a special spill slot to facilitate
2448   // register scavenging. If we already spilled an extra callee-saved register
2449   // above to keep the number of spills even, we don't need to do anything else
2450   // here.
2451   if (BigStack) {
2452     if (!ExtraCSSpill && UnspilledCSGPR != AArch64::NoRegister) {
2453       LLVM_DEBUG(dbgs() << "Spilling " << printReg(UnspilledCSGPR, RegInfo)
2454                         << " to get a scratch register.\n");
2455       SavedRegs.set(UnspilledCSGPR);
2456       // MachO's compact unwind format relies on all registers being stored in
2457       // pairs, so if we need to spill one extra for BigStack, then we need to
2458       // store the pair.
2459       if (produceCompactUnwindFrame(MF))
2460         SavedRegs.set(UnspilledCSGPRPaired);
2461       ExtraCSSpill = UnspilledCSGPR;
2462     }
2463 
2464     // If we didn't find an extra callee-saved register to spill, create
2465     // an emergency spill slot.
2466     if (!ExtraCSSpill || MF.getRegInfo().isPhysRegUsed(ExtraCSSpill)) {
2467       const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
2468       const TargetRegisterClass &RC = AArch64::GPR64RegClass;
2469       unsigned Size = TRI->getSpillSize(RC);
2470       unsigned Align = TRI->getSpillAlignment(RC);
2471       int FI = MFI.CreateStackObject(Size, Align, false);
2472       RS->addScavengingFrameIndex(FI);
2473       LLVM_DEBUG(dbgs() << "No available CS registers, allocated fi#" << FI
2474                         << " as the emergency spill slot.\n");
2475     }
2476   }
2477 
2478   // Adding the size of additional 64bit GPR saves.
2479   CSStackSize += 8 * (SavedRegs.count() - NumSavedRegs);
2480   uint64_t AlignedCSStackSize = alignTo(CSStackSize, 16);
2481   LLVM_DEBUG(dbgs() << "Estimated stack frame size: "
2482                << EstimatedStackSize + AlignedCSStackSize
2483                << " bytes.\n");
2484 
2485   assert((!MFI.isCalleeSavedInfoValid() ||
2486           AFI->getCalleeSavedStackSize() == AlignedCSStackSize) &&
2487          "Should not invalidate callee saved info");
2488 
2489   // Round up to register pair alignment to avoid additional SP adjustment
2490   // instructions.
2491   AFI->setCalleeSavedStackSize(AlignedCSStackSize);
2492   AFI->setCalleeSaveStackHasFreeSpace(AlignedCSStackSize != CSStackSize);
2493   AFI->setSVECalleeSavedStackSize(alignTo(SVECSStackSize, 16));
2494 }
2495 
enableStackSlotScavenging(const MachineFunction & MF) const2496 bool AArch64FrameLowering::enableStackSlotScavenging(
2497     const MachineFunction &MF) const {
2498   const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
2499   return AFI->hasCalleeSaveStackFreeSpace();
2500 }
2501 
2502 /// returns true if there are any SVE callee saves.
getSVECalleeSaveSlotRange(const MachineFrameInfo & MFI,int & Min,int & Max)2503 static bool getSVECalleeSaveSlotRange(const MachineFrameInfo &MFI,
2504                                       int &Min, int &Max) {
2505   Min = std::numeric_limits<int>::max();
2506   Max = std::numeric_limits<int>::min();
2507 
2508   if (!MFI.isCalleeSavedInfoValid())
2509     return false;
2510 
2511   const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
2512   for (auto &CS : CSI) {
2513     if (AArch64::ZPRRegClass.contains(CS.getReg()) ||
2514         AArch64::PPRRegClass.contains(CS.getReg())) {
2515       assert((Max == std::numeric_limits<int>::min() ||
2516               Max + 1 == CS.getFrameIdx()) &&
2517              "SVE CalleeSaves are not consecutive");
2518 
2519       Min = std::min(Min, CS.getFrameIdx());
2520       Max = std::max(Max, CS.getFrameIdx());
2521     }
2522   }
2523   return Min != std::numeric_limits<int>::max();
2524 }
2525 
2526 // Process all the SVE stack objects and determine offsets for each
2527 // object. If AssignOffsets is true, the offsets get assigned.
2528 // Fills in the first and last callee-saved frame indices into
2529 // Min/MaxCSFrameIndex, respectively.
2530 // Returns the size of the stack.
determineSVEStackObjectOffsets(MachineFrameInfo & MFI,int & MinCSFrameIndex,int & MaxCSFrameIndex,bool AssignOffsets)2531 static int64_t determineSVEStackObjectOffsets(MachineFrameInfo &MFI,
2532                                               int &MinCSFrameIndex,
2533                                               int &MaxCSFrameIndex,
2534                                               bool AssignOffsets) {
2535   // First process all fixed stack objects.
2536   int64_t Offset = 0;
2537   for (int I = MFI.getObjectIndexBegin(); I != 0; ++I)
2538     if (MFI.getStackID(I) == TargetStackID::SVEVector) {
2539       int64_t FixedOffset = -MFI.getObjectOffset(I);
2540       if (FixedOffset > Offset)
2541         Offset = FixedOffset;
2542     }
2543 
2544   auto Assign = [&MFI](int FI, int64_t Offset) {
2545     LLVM_DEBUG(dbgs() << "alloc FI(" << FI << ") at SP[" << Offset << "]\n");
2546     MFI.setObjectOffset(FI, Offset);
2547   };
2548 
2549   // Then process all callee saved slots.
2550   if (getSVECalleeSaveSlotRange(MFI, MinCSFrameIndex, MaxCSFrameIndex)) {
2551     // Make sure to align the last callee save slot.
2552     MFI.setObjectAlignment(MaxCSFrameIndex, 16U);
2553 
2554     // Assign offsets to the callee save slots.
2555     for (int I = MinCSFrameIndex; I <= MaxCSFrameIndex; ++I) {
2556       Offset += MFI.getObjectSize(I);
2557       Offset = alignTo(Offset, MFI.getObjectAlignment(I));
2558       if (AssignOffsets)
2559         Assign(I, -Offset);
2560     }
2561   }
2562 
2563   // Create a buffer of SVE objects to allocate and sort it.
2564   SmallVector<int, 8> ObjectsToAllocate;
2565   for (int I = 0, E = MFI.getObjectIndexEnd(); I != E; ++I) {
2566     unsigned StackID = MFI.getStackID(I);
2567     if (StackID != TargetStackID::SVEVector)
2568       continue;
2569     if (MaxCSFrameIndex >= I && I >= MinCSFrameIndex)
2570       continue;
2571     if (MFI.isDeadObjectIndex(I))
2572       continue;
2573 
2574     ObjectsToAllocate.push_back(I);
2575   }
2576 
2577   // Allocate all SVE locals and spills
2578   for (unsigned FI : ObjectsToAllocate) {
2579     unsigned Align = MFI.getObjectAlignment(FI);
2580     // FIXME: Given that the length of SVE vectors is not necessarily a power of
2581     // two, we'd need to align every object dynamically at runtime if the
2582     // alignment is larger than 16. This is not yet supported.
2583     if (Align > 16)
2584       report_fatal_error(
2585           "Alignment of scalable vectors > 16 bytes is not yet supported");
2586 
2587     Offset = alignTo(Offset + MFI.getObjectSize(FI), Align);
2588     if (AssignOffsets)
2589       Assign(FI, -Offset);
2590   }
2591 
2592   return Offset;
2593 }
2594 
estimateSVEStackObjectOffsets(MachineFrameInfo & MFI) const2595 int64_t AArch64FrameLowering::estimateSVEStackObjectOffsets(
2596     MachineFrameInfo &MFI) const {
2597   int MinCSFrameIndex, MaxCSFrameIndex;
2598   return determineSVEStackObjectOffsets(MFI, MinCSFrameIndex, MaxCSFrameIndex, false);
2599 }
2600 
assignSVEStackObjectOffsets(MachineFrameInfo & MFI,int & MinCSFrameIndex,int & MaxCSFrameIndex) const2601 int64_t AArch64FrameLowering::assignSVEStackObjectOffsets(
2602     MachineFrameInfo &MFI, int &MinCSFrameIndex, int &MaxCSFrameIndex) const {
2603   return determineSVEStackObjectOffsets(MFI, MinCSFrameIndex, MaxCSFrameIndex,
2604                                         true);
2605 }
2606 
processFunctionBeforeFrameFinalized(MachineFunction & MF,RegScavenger * RS) const2607 void AArch64FrameLowering::processFunctionBeforeFrameFinalized(
2608     MachineFunction &MF, RegScavenger *RS) const {
2609   MachineFrameInfo &MFI = MF.getFrameInfo();
2610 
2611   assert(getStackGrowthDirection() == TargetFrameLowering::StackGrowsDown &&
2612          "Upwards growing stack unsupported");
2613 
2614   int MinCSFrameIndex, MaxCSFrameIndex;
2615   int64_t SVEStackSize =
2616       assignSVEStackObjectOffsets(MFI, MinCSFrameIndex, MaxCSFrameIndex);
2617 
2618   AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
2619   AFI->setStackSizeSVE(alignTo(SVEStackSize, 16U));
2620   AFI->setMinMaxSVECSFrameIndex(MinCSFrameIndex, MaxCSFrameIndex);
2621 
2622   // If this function isn't doing Win64-style C++ EH, we don't need to do
2623   // anything.
2624   if (!MF.hasEHFunclets())
2625     return;
2626   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
2627   WinEHFuncInfo &EHInfo = *MF.getWinEHFuncInfo();
2628 
2629   MachineBasicBlock &MBB = MF.front();
2630   auto MBBI = MBB.begin();
2631   while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup))
2632     ++MBBI;
2633 
2634   // Create an UnwindHelp object.
2635   int UnwindHelpFI =
2636       MFI.CreateStackObject(/*size*/8, /*alignment*/16, false);
2637   EHInfo.UnwindHelpFrameIdx = UnwindHelpFI;
2638   // We need to store -2 into the UnwindHelp object at the start of the
2639   // function.
2640   DebugLoc DL;
2641   RS->enterBasicBlockEnd(MBB);
2642   RS->backward(std::prev(MBBI));
2643   unsigned DstReg = RS->FindUnusedReg(&AArch64::GPR64commonRegClass);
2644   assert(DstReg && "There must be a free register after frame setup");
2645   BuildMI(MBB, MBBI, DL, TII.get(AArch64::MOVi64imm), DstReg).addImm(-2);
2646   BuildMI(MBB, MBBI, DL, TII.get(AArch64::STURXi))
2647       .addReg(DstReg, getKillRegState(true))
2648       .addFrameIndex(UnwindHelpFI)
2649       .addImm(0);
2650 }
2651 
2652 /// For Win64 AArch64 EH, the offset to the Unwind object is from the SP before
2653 /// the update.  This is easily retrieved as it is exactly the offset that is set
2654 /// in processFunctionBeforeFrameFinalized.
getFrameIndexReferencePreferSP(const MachineFunction & MF,int FI,unsigned & FrameReg,bool IgnoreSPUpdates) const2655 int AArch64FrameLowering::getFrameIndexReferencePreferSP(
2656     const MachineFunction &MF, int FI, unsigned &FrameReg,
2657     bool IgnoreSPUpdates) const {
2658   const MachineFrameInfo &MFI = MF.getFrameInfo();
2659   LLVM_DEBUG(dbgs() << "Offset from the SP for " << FI << " is "
2660                     << MFI.getObjectOffset(FI) << "\n");
2661   FrameReg = AArch64::SP;
2662   return MFI.getObjectOffset(FI);
2663 }
2664 
2665 /// The parent frame offset (aka dispFrame) is only used on X86_64 to retrieve
2666 /// the parent's frame pointer
getWinEHParentFrameOffset(const MachineFunction & MF) const2667 unsigned AArch64FrameLowering::getWinEHParentFrameOffset(
2668     const MachineFunction &MF) const {
2669   return 0;
2670 }
2671 
2672 /// Funclets only need to account for space for the callee saved registers,
2673 /// as the locals are accounted for in the parent's stack frame.
getWinEHFuncletFrameSize(const MachineFunction & MF) const2674 unsigned AArch64FrameLowering::getWinEHFuncletFrameSize(
2675     const MachineFunction &MF) const {
2676   // This is the size of the pushed CSRs.
2677   unsigned CSSize =
2678       MF.getInfo<AArch64FunctionInfo>()->getCalleeSavedStackSize();
2679   // This is the amount of stack a funclet needs to allocate.
2680   return alignTo(CSSize + MF.getFrameInfo().getMaxCallFrameSize(),
2681                  getStackAlignment());
2682 }
2683