• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1  // SPDX-License-Identifier: GPL-2.0-or-later
2  /*
3  	Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
4  	Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
5  	Copyright (C) 2004 - 2009 Gertjan van Wingerde <gwingerde@gmail.com>
6  	<http://rt2x00.serialmonkey.com>
7  
8   */
9  
10  /*
11  	Module: rt2x00lib
12  	Abstract: rt2x00 queue specific routines.
13   */
14  
15  #include <linux/slab.h>
16  #include <linux/kernel.h>
17  #include <linux/module.h>
18  #include <linux/dma-mapping.h>
19  
20  #include "rt2x00.h"
21  #include "rt2x00lib.h"
22  
rt2x00queue_alloc_rxskb(struct queue_entry * entry,gfp_t gfp)23  struct sk_buff *rt2x00queue_alloc_rxskb(struct queue_entry *entry, gfp_t gfp)
24  {
25  	struct data_queue *queue = entry->queue;
26  	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
27  	struct sk_buff *skb;
28  	struct skb_frame_desc *skbdesc;
29  	unsigned int frame_size;
30  	unsigned int head_size = 0;
31  	unsigned int tail_size = 0;
32  
33  	/*
34  	 * The frame size includes descriptor size, because the
35  	 * hardware directly receive the frame into the skbuffer.
36  	 */
37  	frame_size = queue->data_size + queue->desc_size + queue->winfo_size;
38  
39  	/*
40  	 * The payload should be aligned to a 4-byte boundary,
41  	 * this means we need at least 3 bytes for moving the frame
42  	 * into the correct offset.
43  	 */
44  	head_size = 4;
45  
46  	/*
47  	 * For IV/EIV/ICV assembly we must make sure there is
48  	 * at least 8 bytes bytes available in headroom for IV/EIV
49  	 * and 8 bytes for ICV data as tailroon.
50  	 */
51  	if (rt2x00_has_cap_hw_crypto(rt2x00dev)) {
52  		head_size += 8;
53  		tail_size += 8;
54  	}
55  
56  	/*
57  	 * Allocate skbuffer.
58  	 */
59  	skb = __dev_alloc_skb(frame_size + head_size + tail_size, gfp);
60  	if (!skb)
61  		return NULL;
62  
63  	/*
64  	 * Make sure we not have a frame with the requested bytes
65  	 * available in the head and tail.
66  	 */
67  	skb_reserve(skb, head_size);
68  	skb_put(skb, frame_size);
69  
70  	/*
71  	 * Populate skbdesc.
72  	 */
73  	skbdesc = get_skb_frame_desc(skb);
74  	memset(skbdesc, 0, sizeof(*skbdesc));
75  
76  	if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DMA)) {
77  		dma_addr_t skb_dma;
78  
79  		skb_dma = dma_map_single(rt2x00dev->dev, skb->data, skb->len,
80  					 DMA_FROM_DEVICE);
81  		if (unlikely(dma_mapping_error(rt2x00dev->dev, skb_dma))) {
82  			dev_kfree_skb_any(skb);
83  			return NULL;
84  		}
85  
86  		skbdesc->skb_dma = skb_dma;
87  		skbdesc->flags |= SKBDESC_DMA_MAPPED_RX;
88  	}
89  
90  	return skb;
91  }
92  
rt2x00queue_map_txskb(struct queue_entry * entry)93  int rt2x00queue_map_txskb(struct queue_entry *entry)
94  {
95  	struct device *dev = entry->queue->rt2x00dev->dev;
96  	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
97  
98  	skbdesc->skb_dma =
99  	    dma_map_single(dev, entry->skb->data, entry->skb->len, DMA_TO_DEVICE);
100  
101  	if (unlikely(dma_mapping_error(dev, skbdesc->skb_dma)))
102  		return -ENOMEM;
103  
104  	skbdesc->flags |= SKBDESC_DMA_MAPPED_TX;
105  	rt2x00lib_dmadone(entry);
106  	return 0;
107  }
108  EXPORT_SYMBOL_GPL(rt2x00queue_map_txskb);
109  
rt2x00queue_unmap_skb(struct queue_entry * entry)110  void rt2x00queue_unmap_skb(struct queue_entry *entry)
111  {
112  	struct device *dev = entry->queue->rt2x00dev->dev;
113  	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
114  
115  	if (skbdesc->flags & SKBDESC_DMA_MAPPED_RX) {
116  		dma_unmap_single(dev, skbdesc->skb_dma, entry->skb->len,
117  				 DMA_FROM_DEVICE);
118  		skbdesc->flags &= ~SKBDESC_DMA_MAPPED_RX;
119  	} else if (skbdesc->flags & SKBDESC_DMA_MAPPED_TX) {
120  		dma_unmap_single(dev, skbdesc->skb_dma, entry->skb->len,
121  				 DMA_TO_DEVICE);
122  		skbdesc->flags &= ~SKBDESC_DMA_MAPPED_TX;
123  	}
124  }
125  EXPORT_SYMBOL_GPL(rt2x00queue_unmap_skb);
126  
rt2x00queue_free_skb(struct queue_entry * entry)127  void rt2x00queue_free_skb(struct queue_entry *entry)
128  {
129  	if (!entry->skb)
130  		return;
131  
132  	rt2x00queue_unmap_skb(entry);
133  	dev_kfree_skb_any(entry->skb);
134  	entry->skb = NULL;
135  }
136  
rt2x00queue_align_frame(struct sk_buff * skb)137  void rt2x00queue_align_frame(struct sk_buff *skb)
138  {
139  	unsigned int frame_length = skb->len;
140  	unsigned int align = ALIGN_SIZE(skb, 0);
141  
142  	if (!align)
143  		return;
144  
145  	skb_push(skb, align);
146  	memmove(skb->data, skb->data + align, frame_length);
147  	skb_trim(skb, frame_length);
148  }
149  
150  /*
151   * H/W needs L2 padding between the header and the paylod if header size
152   * is not 4 bytes aligned.
153   */
rt2x00queue_insert_l2pad(struct sk_buff * skb,unsigned int hdr_len)154  void rt2x00queue_insert_l2pad(struct sk_buff *skb, unsigned int hdr_len)
155  {
156  	unsigned int l2pad = (skb->len > hdr_len) ? L2PAD_SIZE(hdr_len) : 0;
157  
158  	if (!l2pad)
159  		return;
160  
161  	skb_push(skb, l2pad);
162  	memmove(skb->data, skb->data + l2pad, hdr_len);
163  }
164  
rt2x00queue_remove_l2pad(struct sk_buff * skb,unsigned int hdr_len)165  void rt2x00queue_remove_l2pad(struct sk_buff *skb, unsigned int hdr_len)
166  {
167  	unsigned int l2pad = (skb->len > hdr_len) ? L2PAD_SIZE(hdr_len) : 0;
168  
169  	if (!l2pad)
170  		return;
171  
172  	memmove(skb->data + l2pad, skb->data, hdr_len);
173  	skb_pull(skb, l2pad);
174  }
175  
rt2x00queue_create_tx_descriptor_seq(struct rt2x00_dev * rt2x00dev,struct sk_buff * skb,struct txentry_desc * txdesc)176  static void rt2x00queue_create_tx_descriptor_seq(struct rt2x00_dev *rt2x00dev,
177  						 struct sk_buff *skb,
178  						 struct txentry_desc *txdesc)
179  {
180  	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
181  	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
182  	struct rt2x00_intf *intf = vif_to_intf(tx_info->control.vif);
183  	u16 seqno;
184  
185  	if (!(tx_info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ))
186  		return;
187  
188  	__set_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags);
189  
190  	if (!rt2x00_has_cap_flag(rt2x00dev, REQUIRE_SW_SEQNO)) {
191  		/*
192  		 * rt2800 has a H/W (or F/W) bug, device incorrectly increase
193  		 * seqno on retransmitted data (non-QOS) and management frames.
194  		 * To workaround the problem let's generate seqno in software.
195  		 * Except for beacons which are transmitted periodically by H/W
196  		 * hence hardware has to assign seqno for them.
197  		 */
198  	    	if (ieee80211_is_beacon(hdr->frame_control)) {
199  			__set_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags);
200  			/* H/W will generate sequence number */
201  			return;
202  		}
203  
204  		__clear_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags);
205  	}
206  
207  	/*
208  	 * The hardware is not able to insert a sequence number. Assign a
209  	 * software generated one here.
210  	 *
211  	 * This is wrong because beacons are not getting sequence
212  	 * numbers assigned properly.
213  	 *
214  	 * A secondary problem exists for drivers that cannot toggle
215  	 * sequence counting per-frame, since those will override the
216  	 * sequence counter given by mac80211.
217  	 */
218  	if (test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags))
219  		seqno = atomic_add_return(0x10, &intf->seqno);
220  	else
221  		seqno = atomic_read(&intf->seqno);
222  
223  	hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
224  	hdr->seq_ctrl |= cpu_to_le16(seqno);
225  }
226  
rt2x00queue_create_tx_descriptor_plcp(struct rt2x00_dev * rt2x00dev,struct sk_buff * skb,struct txentry_desc * txdesc,const struct rt2x00_rate * hwrate)227  static void rt2x00queue_create_tx_descriptor_plcp(struct rt2x00_dev *rt2x00dev,
228  						  struct sk_buff *skb,
229  						  struct txentry_desc *txdesc,
230  						  const struct rt2x00_rate *hwrate)
231  {
232  	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
233  	struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0];
234  	unsigned int data_length;
235  	unsigned int duration;
236  	unsigned int residual;
237  
238  	/*
239  	 * Determine with what IFS priority this frame should be send.
240  	 * Set ifs to IFS_SIFS when the this is not the first fragment,
241  	 * or this fragment came after RTS/CTS.
242  	 */
243  	if (test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags))
244  		txdesc->u.plcp.ifs = IFS_BACKOFF;
245  	else
246  		txdesc->u.plcp.ifs = IFS_SIFS;
247  
248  	/* Data length + CRC + Crypto overhead (IV/EIV/ICV/MIC) */
249  	data_length = skb->len + 4;
250  	data_length += rt2x00crypto_tx_overhead(rt2x00dev, skb);
251  
252  	/*
253  	 * PLCP setup
254  	 * Length calculation depends on OFDM/CCK rate.
255  	 */
256  	txdesc->u.plcp.signal = hwrate->plcp;
257  	txdesc->u.plcp.service = 0x04;
258  
259  	if (hwrate->flags & DEV_RATE_OFDM) {
260  		txdesc->u.plcp.length_high = (data_length >> 6) & 0x3f;
261  		txdesc->u.plcp.length_low = data_length & 0x3f;
262  	} else {
263  		/*
264  		 * Convert length to microseconds.
265  		 */
266  		residual = GET_DURATION_RES(data_length, hwrate->bitrate);
267  		duration = GET_DURATION(data_length, hwrate->bitrate);
268  
269  		if (residual != 0) {
270  			duration++;
271  
272  			/*
273  			 * Check if we need to set the Length Extension
274  			 */
275  			if (hwrate->bitrate == 110 && residual <= 30)
276  				txdesc->u.plcp.service |= 0x80;
277  		}
278  
279  		txdesc->u.plcp.length_high = (duration >> 8) & 0xff;
280  		txdesc->u.plcp.length_low = duration & 0xff;
281  
282  		/*
283  		 * When preamble is enabled we should set the
284  		 * preamble bit for the signal.
285  		 */
286  		if (txrate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
287  			txdesc->u.plcp.signal |= 0x08;
288  	}
289  }
290  
rt2x00queue_create_tx_descriptor_ht(struct rt2x00_dev * rt2x00dev,struct sk_buff * skb,struct txentry_desc * txdesc,struct ieee80211_sta * sta,const struct rt2x00_rate * hwrate)291  static void rt2x00queue_create_tx_descriptor_ht(struct rt2x00_dev *rt2x00dev,
292  						struct sk_buff *skb,
293  						struct txentry_desc *txdesc,
294  						struct ieee80211_sta *sta,
295  						const struct rt2x00_rate *hwrate)
296  {
297  	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
298  	struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0];
299  	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
300  	struct rt2x00_sta *sta_priv = NULL;
301  	u8 density = 0;
302  
303  	if (sta) {
304  		sta_priv = sta_to_rt2x00_sta(sta);
305  		txdesc->u.ht.wcid = sta_priv->wcid;
306  		density = sta->ht_cap.ampdu_density;
307  	}
308  
309  	/*
310  	 * If IEEE80211_TX_RC_MCS is set txrate->idx just contains the
311  	 * mcs rate to be used
312  	 */
313  	if (txrate->flags & IEEE80211_TX_RC_MCS) {
314  		txdesc->u.ht.mcs = txrate->idx;
315  
316  		/*
317  		 * MIMO PS should be set to 1 for STA's using dynamic SM PS
318  		 * when using more then one tx stream (>MCS7).
319  		 */
320  		if (sta && txdesc->u.ht.mcs > 7 &&
321  		    sta->smps_mode == IEEE80211_SMPS_DYNAMIC)
322  			__set_bit(ENTRY_TXD_HT_MIMO_PS, &txdesc->flags);
323  	} else {
324  		txdesc->u.ht.mcs = rt2x00_get_rate_mcs(hwrate->mcs);
325  		if (txrate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
326  			txdesc->u.ht.mcs |= 0x08;
327  	}
328  
329  	if (test_bit(CONFIG_HT_DISABLED, &rt2x00dev->flags)) {
330  		if (!(tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT))
331  			txdesc->u.ht.txop = TXOP_SIFS;
332  		else
333  			txdesc->u.ht.txop = TXOP_BACKOFF;
334  
335  		/* Left zero on all other settings. */
336  		return;
337  	}
338  
339  	/*
340  	 * Only one STBC stream is supported for now.
341  	 */
342  	if (tx_info->flags & IEEE80211_TX_CTL_STBC)
343  		txdesc->u.ht.stbc = 1;
344  
345  	/*
346  	 * This frame is eligible for an AMPDU, however, don't aggregate
347  	 * frames that are intended to probe a specific tx rate.
348  	 */
349  	if (tx_info->flags & IEEE80211_TX_CTL_AMPDU &&
350  	    !(tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE)) {
351  		__set_bit(ENTRY_TXD_HT_AMPDU, &txdesc->flags);
352  		txdesc->u.ht.mpdu_density = density;
353  		txdesc->u.ht.ba_size = 7; /* FIXME: What value is needed? */
354  	}
355  
356  	/*
357  	 * Set 40Mhz mode if necessary (for legacy rates this will
358  	 * duplicate the frame to both channels).
359  	 */
360  	if (txrate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH ||
361  	    txrate->flags & IEEE80211_TX_RC_DUP_DATA)
362  		__set_bit(ENTRY_TXD_HT_BW_40, &txdesc->flags);
363  	if (txrate->flags & IEEE80211_TX_RC_SHORT_GI)
364  		__set_bit(ENTRY_TXD_HT_SHORT_GI, &txdesc->flags);
365  
366  	/*
367  	 * Determine IFS values
368  	 * - Use TXOP_BACKOFF for management frames except beacons
369  	 * - Use TXOP_SIFS for fragment bursts
370  	 * - Use TXOP_HTTXOP for everything else
371  	 *
372  	 * Note: rt2800 devices won't use CTS protection (if used)
373  	 * for frames not transmitted with TXOP_HTTXOP
374  	 */
375  	if (ieee80211_is_mgmt(hdr->frame_control) &&
376  	    !ieee80211_is_beacon(hdr->frame_control))
377  		txdesc->u.ht.txop = TXOP_BACKOFF;
378  	else if (!(tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT))
379  		txdesc->u.ht.txop = TXOP_SIFS;
380  	else
381  		txdesc->u.ht.txop = TXOP_HTTXOP;
382  }
383  
rt2x00queue_create_tx_descriptor(struct rt2x00_dev * rt2x00dev,struct sk_buff * skb,struct txentry_desc * txdesc,struct ieee80211_sta * sta)384  static void rt2x00queue_create_tx_descriptor(struct rt2x00_dev *rt2x00dev,
385  					     struct sk_buff *skb,
386  					     struct txentry_desc *txdesc,
387  					     struct ieee80211_sta *sta)
388  {
389  	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
390  	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
391  	struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0];
392  	struct ieee80211_rate *rate;
393  	const struct rt2x00_rate *hwrate = NULL;
394  
395  	memset(txdesc, 0, sizeof(*txdesc));
396  
397  	/*
398  	 * Header and frame information.
399  	 */
400  	txdesc->length = skb->len;
401  	txdesc->header_length = ieee80211_get_hdrlen_from_skb(skb);
402  
403  	/*
404  	 * Check whether this frame is to be acked.
405  	 */
406  	if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK))
407  		__set_bit(ENTRY_TXD_ACK, &txdesc->flags);
408  
409  	/*
410  	 * Check if this is a RTS/CTS frame
411  	 */
412  	if (ieee80211_is_rts(hdr->frame_control) ||
413  	    ieee80211_is_cts(hdr->frame_control)) {
414  		__set_bit(ENTRY_TXD_BURST, &txdesc->flags);
415  		if (ieee80211_is_rts(hdr->frame_control))
416  			__set_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags);
417  		else
418  			__set_bit(ENTRY_TXD_CTS_FRAME, &txdesc->flags);
419  		if (tx_info->control.rts_cts_rate_idx >= 0)
420  			rate =
421  			    ieee80211_get_rts_cts_rate(rt2x00dev->hw, tx_info);
422  	}
423  
424  	/*
425  	 * Determine retry information.
426  	 */
427  	txdesc->retry_limit = tx_info->control.rates[0].count - 1;
428  	if (txdesc->retry_limit >= rt2x00dev->long_retry)
429  		__set_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags);
430  
431  	/*
432  	 * Check if more fragments are pending
433  	 */
434  	if (ieee80211_has_morefrags(hdr->frame_control)) {
435  		__set_bit(ENTRY_TXD_BURST, &txdesc->flags);
436  		__set_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags);
437  	}
438  
439  	/*
440  	 * Check if more frames (!= fragments) are pending
441  	 */
442  	if (tx_info->flags & IEEE80211_TX_CTL_MORE_FRAMES)
443  		__set_bit(ENTRY_TXD_BURST, &txdesc->flags);
444  
445  	/*
446  	 * Beacons and probe responses require the tsf timestamp
447  	 * to be inserted into the frame.
448  	 */
449  	if (ieee80211_is_beacon(hdr->frame_control) ||
450  	    ieee80211_is_probe_resp(hdr->frame_control))
451  		__set_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags);
452  
453  	if ((tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT) &&
454  	    !test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags))
455  		__set_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags);
456  
457  	/*
458  	 * Determine rate modulation.
459  	 */
460  	if (txrate->flags & IEEE80211_TX_RC_GREEN_FIELD)
461  		txdesc->rate_mode = RATE_MODE_HT_GREENFIELD;
462  	else if (txrate->flags & IEEE80211_TX_RC_MCS)
463  		txdesc->rate_mode = RATE_MODE_HT_MIX;
464  	else {
465  		rate = ieee80211_get_tx_rate(rt2x00dev->hw, tx_info);
466  		hwrate = rt2x00_get_rate(rate->hw_value);
467  		if (hwrate->flags & DEV_RATE_OFDM)
468  			txdesc->rate_mode = RATE_MODE_OFDM;
469  		else
470  			txdesc->rate_mode = RATE_MODE_CCK;
471  	}
472  
473  	/*
474  	 * Apply TX descriptor handling by components
475  	 */
476  	rt2x00crypto_create_tx_descriptor(rt2x00dev, skb, txdesc);
477  	rt2x00queue_create_tx_descriptor_seq(rt2x00dev, skb, txdesc);
478  
479  	if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_HT_TX_DESC))
480  		rt2x00queue_create_tx_descriptor_ht(rt2x00dev, skb, txdesc,
481  						   sta, hwrate);
482  	else
483  		rt2x00queue_create_tx_descriptor_plcp(rt2x00dev, skb, txdesc,
484  						      hwrate);
485  }
486  
rt2x00queue_write_tx_data(struct queue_entry * entry,struct txentry_desc * txdesc)487  static int rt2x00queue_write_tx_data(struct queue_entry *entry,
488  				     struct txentry_desc *txdesc)
489  {
490  	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
491  
492  	/*
493  	 * This should not happen, we already checked the entry
494  	 * was ours. When the hardware disagrees there has been
495  	 * a queue corruption!
496  	 */
497  	if (unlikely(rt2x00dev->ops->lib->get_entry_state &&
498  		     rt2x00dev->ops->lib->get_entry_state(entry))) {
499  		rt2x00_err(rt2x00dev,
500  			   "Corrupt queue %d, accessing entry which is not ours\n"
501  			   "Please file bug report to %s\n",
502  			   entry->queue->qid, DRV_PROJECT);
503  		return -EINVAL;
504  	}
505  
506  	/*
507  	 * Add the requested extra tx headroom in front of the skb.
508  	 */
509  	skb_push(entry->skb, rt2x00dev->extra_tx_headroom);
510  	memset(entry->skb->data, 0, rt2x00dev->extra_tx_headroom);
511  
512  	/*
513  	 * Call the driver's write_tx_data function, if it exists.
514  	 */
515  	if (rt2x00dev->ops->lib->write_tx_data)
516  		rt2x00dev->ops->lib->write_tx_data(entry, txdesc);
517  
518  	/*
519  	 * Map the skb to DMA.
520  	 */
521  	if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DMA) &&
522  	    rt2x00queue_map_txskb(entry))
523  		return -ENOMEM;
524  
525  	return 0;
526  }
527  
rt2x00queue_write_tx_descriptor(struct queue_entry * entry,struct txentry_desc * txdesc)528  static void rt2x00queue_write_tx_descriptor(struct queue_entry *entry,
529  					    struct txentry_desc *txdesc)
530  {
531  	struct data_queue *queue = entry->queue;
532  
533  	queue->rt2x00dev->ops->lib->write_tx_desc(entry, txdesc);
534  
535  	/*
536  	 * All processing on the frame has been completed, this means
537  	 * it is now ready to be dumped to userspace through debugfs.
538  	 */
539  	rt2x00debug_dump_frame(queue->rt2x00dev, DUMP_FRAME_TX, entry);
540  }
541  
rt2x00queue_kick_tx_queue(struct data_queue * queue,struct txentry_desc * txdesc)542  static void rt2x00queue_kick_tx_queue(struct data_queue *queue,
543  				      struct txentry_desc *txdesc)
544  {
545  	/*
546  	 * Check if we need to kick the queue, there are however a few rules
547  	 *	1) Don't kick unless this is the last in frame in a burst.
548  	 *	   When the burst flag is set, this frame is always followed
549  	 *	   by another frame which in some way are related to eachother.
550  	 *	   This is true for fragments, RTS or CTS-to-self frames.
551  	 *	2) Rule 1 can be broken when the available entries
552  	 *	   in the queue are less then a certain threshold.
553  	 */
554  	if (rt2x00queue_threshold(queue) ||
555  	    !test_bit(ENTRY_TXD_BURST, &txdesc->flags))
556  		queue->rt2x00dev->ops->lib->kick_queue(queue);
557  }
558  
rt2x00queue_bar_check(struct queue_entry * entry)559  static void rt2x00queue_bar_check(struct queue_entry *entry)
560  {
561  	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
562  	struct ieee80211_bar *bar = (void *) (entry->skb->data +
563  				    rt2x00dev->extra_tx_headroom);
564  	struct rt2x00_bar_list_entry *bar_entry;
565  
566  	if (likely(!ieee80211_is_back_req(bar->frame_control)))
567  		return;
568  
569  	bar_entry = kmalloc(sizeof(*bar_entry), GFP_ATOMIC);
570  
571  	/*
572  	 * If the alloc fails we still send the BAR out but just don't track
573  	 * it in our bar list. And as a result we will report it to mac80211
574  	 * back as failed.
575  	 */
576  	if (!bar_entry)
577  		return;
578  
579  	bar_entry->entry = entry;
580  	bar_entry->block_acked = 0;
581  
582  	/*
583  	 * Copy the relevant parts of the 802.11 BAR into out check list
584  	 * such that we can use RCU for less-overhead in the RX path since
585  	 * sending BARs and processing the according BlockAck should be
586  	 * the exception.
587  	 */
588  	memcpy(bar_entry->ra, bar->ra, sizeof(bar->ra));
589  	memcpy(bar_entry->ta, bar->ta, sizeof(bar->ta));
590  	bar_entry->control = bar->control;
591  	bar_entry->start_seq_num = bar->start_seq_num;
592  
593  	/*
594  	 * Insert BAR into our BAR check list.
595  	 */
596  	spin_lock_bh(&rt2x00dev->bar_list_lock);
597  	list_add_tail_rcu(&bar_entry->list, &rt2x00dev->bar_list);
598  	spin_unlock_bh(&rt2x00dev->bar_list_lock);
599  }
600  
rt2x00queue_write_tx_frame(struct data_queue * queue,struct sk_buff * skb,struct ieee80211_sta * sta,bool local)601  int rt2x00queue_write_tx_frame(struct data_queue *queue, struct sk_buff *skb,
602  			       struct ieee80211_sta *sta, bool local)
603  {
604  	struct ieee80211_tx_info *tx_info;
605  	struct queue_entry *entry;
606  	struct txentry_desc txdesc;
607  	struct skb_frame_desc *skbdesc;
608  	u8 rate_idx, rate_flags;
609  	int ret = 0;
610  
611  	/*
612  	 * Copy all TX descriptor information into txdesc,
613  	 * after that we are free to use the skb->cb array
614  	 * for our information.
615  	 */
616  	rt2x00queue_create_tx_descriptor(queue->rt2x00dev, skb, &txdesc, sta);
617  
618  	/*
619  	 * All information is retrieved from the skb->cb array,
620  	 * now we should claim ownership of the driver part of that
621  	 * array, preserving the bitrate index and flags.
622  	 */
623  	tx_info = IEEE80211_SKB_CB(skb);
624  	rate_idx = tx_info->control.rates[0].idx;
625  	rate_flags = tx_info->control.rates[0].flags;
626  	skbdesc = get_skb_frame_desc(skb);
627  	memset(skbdesc, 0, sizeof(*skbdesc));
628  	skbdesc->tx_rate_idx = rate_idx;
629  	skbdesc->tx_rate_flags = rate_flags;
630  
631  	if (local)
632  		skbdesc->flags |= SKBDESC_NOT_MAC80211;
633  
634  	/*
635  	 * When hardware encryption is supported, and this frame
636  	 * is to be encrypted, we should strip the IV/EIV data from
637  	 * the frame so we can provide it to the driver separately.
638  	 */
639  	if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc.flags) &&
640  	    !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc.flags)) {
641  		if (rt2x00_has_cap_flag(queue->rt2x00dev, REQUIRE_COPY_IV))
642  			rt2x00crypto_tx_copy_iv(skb, &txdesc);
643  		else
644  			rt2x00crypto_tx_remove_iv(skb, &txdesc);
645  	}
646  
647  	/*
648  	 * When DMA allocation is required we should guarantee to the
649  	 * driver that the DMA is aligned to a 4-byte boundary.
650  	 * However some drivers require L2 padding to pad the payload
651  	 * rather then the header. This could be a requirement for
652  	 * PCI and USB devices, while header alignment only is valid
653  	 * for PCI devices.
654  	 */
655  	if (rt2x00_has_cap_flag(queue->rt2x00dev, REQUIRE_L2PAD))
656  		rt2x00queue_insert_l2pad(skb, txdesc.header_length);
657  	else if (rt2x00_has_cap_flag(queue->rt2x00dev, REQUIRE_DMA))
658  		rt2x00queue_align_frame(skb);
659  
660  	/*
661  	 * That function must be called with bh disabled.
662  	 */
663  	spin_lock(&queue->tx_lock);
664  
665  	if (unlikely(rt2x00queue_full(queue))) {
666  		rt2x00_dbg(queue->rt2x00dev, "Dropping frame due to full tx queue %d\n",
667  			   queue->qid);
668  		ret = -ENOBUFS;
669  		goto out;
670  	}
671  
672  	entry = rt2x00queue_get_entry(queue, Q_INDEX);
673  
674  	if (unlikely(test_and_set_bit(ENTRY_OWNER_DEVICE_DATA,
675  				      &entry->flags))) {
676  		rt2x00_err(queue->rt2x00dev,
677  			   "Arrived at non-free entry in the non-full queue %d\n"
678  			   "Please file bug report to %s\n",
679  			   queue->qid, DRV_PROJECT);
680  		ret = -EINVAL;
681  		goto out;
682  	}
683  
684  	entry->skb = skb;
685  
686  	/*
687  	 * It could be possible that the queue was corrupted and this
688  	 * call failed. Since we always return NETDEV_TX_OK to mac80211,
689  	 * this frame will simply be dropped.
690  	 */
691  	if (unlikely(rt2x00queue_write_tx_data(entry, &txdesc))) {
692  		clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
693  		entry->skb = NULL;
694  		ret = -EIO;
695  		goto out;
696  	}
697  
698  	/*
699  	 * Put BlockAckReqs into our check list for driver BA processing.
700  	 */
701  	rt2x00queue_bar_check(entry);
702  
703  	set_bit(ENTRY_DATA_PENDING, &entry->flags);
704  
705  	rt2x00queue_index_inc(entry, Q_INDEX);
706  	rt2x00queue_write_tx_descriptor(entry, &txdesc);
707  	rt2x00queue_kick_tx_queue(queue, &txdesc);
708  
709  out:
710  	/*
711  	 * Pausing queue has to be serialized with rt2x00lib_txdone(), so we
712  	 * do this under queue->tx_lock. Bottom halve was already disabled
713  	 * before ieee80211_xmit() call.
714  	 */
715  	if (rt2x00queue_threshold(queue))
716  		rt2x00queue_pause_queue(queue);
717  
718  	spin_unlock(&queue->tx_lock);
719  	return ret;
720  }
721  
rt2x00queue_clear_beacon(struct rt2x00_dev * rt2x00dev,struct ieee80211_vif * vif)722  int rt2x00queue_clear_beacon(struct rt2x00_dev *rt2x00dev,
723  			     struct ieee80211_vif *vif)
724  {
725  	struct rt2x00_intf *intf = vif_to_intf(vif);
726  
727  	if (unlikely(!intf->beacon))
728  		return -ENOBUFS;
729  
730  	/*
731  	 * Clean up the beacon skb.
732  	 */
733  	rt2x00queue_free_skb(intf->beacon);
734  
735  	/*
736  	 * Clear beacon (single bssid devices don't need to clear the beacon
737  	 * since the beacon queue will get stopped anyway).
738  	 */
739  	if (rt2x00dev->ops->lib->clear_beacon)
740  		rt2x00dev->ops->lib->clear_beacon(intf->beacon);
741  
742  	return 0;
743  }
744  
rt2x00queue_update_beacon(struct rt2x00_dev * rt2x00dev,struct ieee80211_vif * vif)745  int rt2x00queue_update_beacon(struct rt2x00_dev *rt2x00dev,
746  			      struct ieee80211_vif *vif)
747  {
748  	struct rt2x00_intf *intf = vif_to_intf(vif);
749  	struct skb_frame_desc *skbdesc;
750  	struct txentry_desc txdesc;
751  
752  	if (unlikely(!intf->beacon))
753  		return -ENOBUFS;
754  
755  	/*
756  	 * Clean up the beacon skb.
757  	 */
758  	rt2x00queue_free_skb(intf->beacon);
759  
760  	intf->beacon->skb = ieee80211_beacon_get(rt2x00dev->hw, vif);
761  	if (!intf->beacon->skb)
762  		return -ENOMEM;
763  
764  	/*
765  	 * Copy all TX descriptor information into txdesc,
766  	 * after that we are free to use the skb->cb array
767  	 * for our information.
768  	 */
769  	rt2x00queue_create_tx_descriptor(rt2x00dev, intf->beacon->skb, &txdesc, NULL);
770  
771  	/*
772  	 * Fill in skb descriptor
773  	 */
774  	skbdesc = get_skb_frame_desc(intf->beacon->skb);
775  	memset(skbdesc, 0, sizeof(*skbdesc));
776  
777  	/*
778  	 * Send beacon to hardware.
779  	 */
780  	rt2x00dev->ops->lib->write_beacon(intf->beacon, &txdesc);
781  
782  	return 0;
783  
784  }
785  
rt2x00queue_for_each_entry(struct data_queue * queue,enum queue_index start,enum queue_index end,void * data,bool (* fn)(struct queue_entry * entry,void * data))786  bool rt2x00queue_for_each_entry(struct data_queue *queue,
787  				enum queue_index start,
788  				enum queue_index end,
789  				void *data,
790  				bool (*fn)(struct queue_entry *entry,
791  					   void *data))
792  {
793  	unsigned long irqflags;
794  	unsigned int index_start;
795  	unsigned int index_end;
796  	unsigned int i;
797  
798  	if (unlikely(start >= Q_INDEX_MAX || end >= Q_INDEX_MAX)) {
799  		rt2x00_err(queue->rt2x00dev,
800  			   "Entry requested from invalid index range (%d - %d)\n",
801  			   start, end);
802  		return true;
803  	}
804  
805  	/*
806  	 * Only protect the range we are going to loop over,
807  	 * if during our loop a extra entry is set to pending
808  	 * it should not be kicked during this run, since it
809  	 * is part of another TX operation.
810  	 */
811  	spin_lock_irqsave(&queue->index_lock, irqflags);
812  	index_start = queue->index[start];
813  	index_end = queue->index[end];
814  	spin_unlock_irqrestore(&queue->index_lock, irqflags);
815  
816  	/*
817  	 * Start from the TX done pointer, this guarantees that we will
818  	 * send out all frames in the correct order.
819  	 */
820  	if (index_start < index_end) {
821  		for (i = index_start; i < index_end; i++) {
822  			if (fn(&queue->entries[i], data))
823  				return true;
824  		}
825  	} else {
826  		for (i = index_start; i < queue->limit; i++) {
827  			if (fn(&queue->entries[i], data))
828  				return true;
829  		}
830  
831  		for (i = 0; i < index_end; i++) {
832  			if (fn(&queue->entries[i], data))
833  				return true;
834  		}
835  	}
836  
837  	return false;
838  }
839  EXPORT_SYMBOL_GPL(rt2x00queue_for_each_entry);
840  
rt2x00queue_get_entry(struct data_queue * queue,enum queue_index index)841  struct queue_entry *rt2x00queue_get_entry(struct data_queue *queue,
842  					  enum queue_index index)
843  {
844  	struct queue_entry *entry;
845  	unsigned long irqflags;
846  
847  	if (unlikely(index >= Q_INDEX_MAX)) {
848  		rt2x00_err(queue->rt2x00dev, "Entry requested from invalid index type (%d)\n",
849  			   index);
850  		return NULL;
851  	}
852  
853  	spin_lock_irqsave(&queue->index_lock, irqflags);
854  
855  	entry = &queue->entries[queue->index[index]];
856  
857  	spin_unlock_irqrestore(&queue->index_lock, irqflags);
858  
859  	return entry;
860  }
861  EXPORT_SYMBOL_GPL(rt2x00queue_get_entry);
862  
rt2x00queue_index_inc(struct queue_entry * entry,enum queue_index index)863  void rt2x00queue_index_inc(struct queue_entry *entry, enum queue_index index)
864  {
865  	struct data_queue *queue = entry->queue;
866  	unsigned long irqflags;
867  
868  	if (unlikely(index >= Q_INDEX_MAX)) {
869  		rt2x00_err(queue->rt2x00dev,
870  			   "Index change on invalid index type (%d)\n", index);
871  		return;
872  	}
873  
874  	spin_lock_irqsave(&queue->index_lock, irqflags);
875  
876  	queue->index[index]++;
877  	if (queue->index[index] >= queue->limit)
878  		queue->index[index] = 0;
879  
880  	entry->last_action = jiffies;
881  
882  	if (index == Q_INDEX) {
883  		queue->length++;
884  	} else if (index == Q_INDEX_DONE) {
885  		queue->length--;
886  		queue->count++;
887  	}
888  
889  	spin_unlock_irqrestore(&queue->index_lock, irqflags);
890  }
891  
rt2x00queue_pause_queue_nocheck(struct data_queue * queue)892  static void rt2x00queue_pause_queue_nocheck(struct data_queue *queue)
893  {
894  	switch (queue->qid) {
895  	case QID_AC_VO:
896  	case QID_AC_VI:
897  	case QID_AC_BE:
898  	case QID_AC_BK:
899  		/*
900  		 * For TX queues, we have to disable the queue
901  		 * inside mac80211.
902  		 */
903  		ieee80211_stop_queue(queue->rt2x00dev->hw, queue->qid);
904  		break;
905  	default:
906  		break;
907  	}
908  }
rt2x00queue_pause_queue(struct data_queue * queue)909  void rt2x00queue_pause_queue(struct data_queue *queue)
910  {
911  	if (!test_bit(DEVICE_STATE_PRESENT, &queue->rt2x00dev->flags) ||
912  	    !test_bit(QUEUE_STARTED, &queue->flags) ||
913  	    test_and_set_bit(QUEUE_PAUSED, &queue->flags))
914  		return;
915  
916  	rt2x00queue_pause_queue_nocheck(queue);
917  }
918  EXPORT_SYMBOL_GPL(rt2x00queue_pause_queue);
919  
rt2x00queue_unpause_queue(struct data_queue * queue)920  void rt2x00queue_unpause_queue(struct data_queue *queue)
921  {
922  	if (!test_bit(DEVICE_STATE_PRESENT, &queue->rt2x00dev->flags) ||
923  	    !test_bit(QUEUE_STARTED, &queue->flags) ||
924  	    !test_and_clear_bit(QUEUE_PAUSED, &queue->flags))
925  		return;
926  
927  	switch (queue->qid) {
928  	case QID_AC_VO:
929  	case QID_AC_VI:
930  	case QID_AC_BE:
931  	case QID_AC_BK:
932  		/*
933  		 * For TX queues, we have to enable the queue
934  		 * inside mac80211.
935  		 */
936  		ieee80211_wake_queue(queue->rt2x00dev->hw, queue->qid);
937  		break;
938  	case QID_RX:
939  		/*
940  		 * For RX we need to kick the queue now in order to
941  		 * receive frames.
942  		 */
943  		queue->rt2x00dev->ops->lib->kick_queue(queue);
944  	default:
945  		break;
946  	}
947  }
948  EXPORT_SYMBOL_GPL(rt2x00queue_unpause_queue);
949  
rt2x00queue_start_queue(struct data_queue * queue)950  void rt2x00queue_start_queue(struct data_queue *queue)
951  {
952  	mutex_lock(&queue->status_lock);
953  
954  	if (!test_bit(DEVICE_STATE_PRESENT, &queue->rt2x00dev->flags) ||
955  	    test_and_set_bit(QUEUE_STARTED, &queue->flags)) {
956  		mutex_unlock(&queue->status_lock);
957  		return;
958  	}
959  
960  	set_bit(QUEUE_PAUSED, &queue->flags);
961  
962  	queue->rt2x00dev->ops->lib->start_queue(queue);
963  
964  	rt2x00queue_unpause_queue(queue);
965  
966  	mutex_unlock(&queue->status_lock);
967  }
968  EXPORT_SYMBOL_GPL(rt2x00queue_start_queue);
969  
rt2x00queue_stop_queue(struct data_queue * queue)970  void rt2x00queue_stop_queue(struct data_queue *queue)
971  {
972  	mutex_lock(&queue->status_lock);
973  
974  	if (!test_and_clear_bit(QUEUE_STARTED, &queue->flags)) {
975  		mutex_unlock(&queue->status_lock);
976  		return;
977  	}
978  
979  	rt2x00queue_pause_queue_nocheck(queue);
980  
981  	queue->rt2x00dev->ops->lib->stop_queue(queue);
982  
983  	mutex_unlock(&queue->status_lock);
984  }
985  EXPORT_SYMBOL_GPL(rt2x00queue_stop_queue);
986  
rt2x00queue_flush_queue(struct data_queue * queue,bool drop)987  void rt2x00queue_flush_queue(struct data_queue *queue, bool drop)
988  {
989  	bool tx_queue =
990  		(queue->qid == QID_AC_VO) ||
991  		(queue->qid == QID_AC_VI) ||
992  		(queue->qid == QID_AC_BE) ||
993  		(queue->qid == QID_AC_BK);
994  
995  	if (rt2x00queue_empty(queue))
996  		return;
997  
998  	/*
999  	 * If we are not supposed to drop any pending
1000  	 * frames, this means we must force a start (=kick)
1001  	 * to the queue to make sure the hardware will
1002  	 * start transmitting.
1003  	 */
1004  	if (!drop && tx_queue)
1005  		queue->rt2x00dev->ops->lib->kick_queue(queue);
1006  
1007  	/*
1008  	 * Check if driver supports flushing, if that is the case we can
1009  	 * defer the flushing to the driver. Otherwise we must use the
1010  	 * alternative which just waits for the queue to become empty.
1011  	 */
1012  	if (likely(queue->rt2x00dev->ops->lib->flush_queue))
1013  		queue->rt2x00dev->ops->lib->flush_queue(queue, drop);
1014  
1015  	/*
1016  	 * The queue flush has failed...
1017  	 */
1018  	if (unlikely(!rt2x00queue_empty(queue)))
1019  		rt2x00_warn(queue->rt2x00dev, "Queue %d failed to flush\n",
1020  			    queue->qid);
1021  }
1022  EXPORT_SYMBOL_GPL(rt2x00queue_flush_queue);
1023  
rt2x00queue_start_queues(struct rt2x00_dev * rt2x00dev)1024  void rt2x00queue_start_queues(struct rt2x00_dev *rt2x00dev)
1025  {
1026  	struct data_queue *queue;
1027  
1028  	/*
1029  	 * rt2x00queue_start_queue will call ieee80211_wake_queue
1030  	 * for each queue after is has been properly initialized.
1031  	 */
1032  	tx_queue_for_each(rt2x00dev, queue)
1033  		rt2x00queue_start_queue(queue);
1034  
1035  	rt2x00queue_start_queue(rt2x00dev->rx);
1036  }
1037  EXPORT_SYMBOL_GPL(rt2x00queue_start_queues);
1038  
rt2x00queue_stop_queues(struct rt2x00_dev * rt2x00dev)1039  void rt2x00queue_stop_queues(struct rt2x00_dev *rt2x00dev)
1040  {
1041  	struct data_queue *queue;
1042  
1043  	/*
1044  	 * rt2x00queue_stop_queue will call ieee80211_stop_queue
1045  	 * as well, but we are completely shutting doing everything
1046  	 * now, so it is much safer to stop all TX queues at once,
1047  	 * and use rt2x00queue_stop_queue for cleaning up.
1048  	 */
1049  	ieee80211_stop_queues(rt2x00dev->hw);
1050  
1051  	tx_queue_for_each(rt2x00dev, queue)
1052  		rt2x00queue_stop_queue(queue);
1053  
1054  	rt2x00queue_stop_queue(rt2x00dev->rx);
1055  }
1056  EXPORT_SYMBOL_GPL(rt2x00queue_stop_queues);
1057  
rt2x00queue_flush_queues(struct rt2x00_dev * rt2x00dev,bool drop)1058  void rt2x00queue_flush_queues(struct rt2x00_dev *rt2x00dev, bool drop)
1059  {
1060  	struct data_queue *queue;
1061  
1062  	tx_queue_for_each(rt2x00dev, queue)
1063  		rt2x00queue_flush_queue(queue, drop);
1064  
1065  	rt2x00queue_flush_queue(rt2x00dev->rx, drop);
1066  }
1067  EXPORT_SYMBOL_GPL(rt2x00queue_flush_queues);
1068  
rt2x00queue_reset(struct data_queue * queue)1069  static void rt2x00queue_reset(struct data_queue *queue)
1070  {
1071  	unsigned long irqflags;
1072  	unsigned int i;
1073  
1074  	spin_lock_irqsave(&queue->index_lock, irqflags);
1075  
1076  	queue->count = 0;
1077  	queue->length = 0;
1078  
1079  	for (i = 0; i < Q_INDEX_MAX; i++)
1080  		queue->index[i] = 0;
1081  
1082  	spin_unlock_irqrestore(&queue->index_lock, irqflags);
1083  }
1084  
rt2x00queue_init_queues(struct rt2x00_dev * rt2x00dev)1085  void rt2x00queue_init_queues(struct rt2x00_dev *rt2x00dev)
1086  {
1087  	struct data_queue *queue;
1088  	unsigned int i;
1089  
1090  	queue_for_each(rt2x00dev, queue) {
1091  		rt2x00queue_reset(queue);
1092  
1093  		for (i = 0; i < queue->limit; i++)
1094  			rt2x00dev->ops->lib->clear_entry(&queue->entries[i]);
1095  	}
1096  }
1097  
rt2x00queue_alloc_entries(struct data_queue * queue)1098  static int rt2x00queue_alloc_entries(struct data_queue *queue)
1099  {
1100  	struct queue_entry *entries;
1101  	unsigned int entry_size;
1102  	unsigned int i;
1103  
1104  	rt2x00queue_reset(queue);
1105  
1106  	/*
1107  	 * Allocate all queue entries.
1108  	 */
1109  	entry_size = sizeof(*entries) + queue->priv_size;
1110  	entries = kcalloc(queue->limit, entry_size, GFP_KERNEL);
1111  	if (!entries)
1112  		return -ENOMEM;
1113  
1114  #define QUEUE_ENTRY_PRIV_OFFSET(__base, __index, __limit, __esize, __psize) \
1115  	(((char *)(__base)) + ((__limit) * (__esize)) + \
1116  	    ((__index) * (__psize)))
1117  
1118  	for (i = 0; i < queue->limit; i++) {
1119  		entries[i].flags = 0;
1120  		entries[i].queue = queue;
1121  		entries[i].skb = NULL;
1122  		entries[i].entry_idx = i;
1123  		entries[i].priv_data =
1124  		    QUEUE_ENTRY_PRIV_OFFSET(entries, i, queue->limit,
1125  					    sizeof(*entries), queue->priv_size);
1126  	}
1127  
1128  #undef QUEUE_ENTRY_PRIV_OFFSET
1129  
1130  	queue->entries = entries;
1131  
1132  	return 0;
1133  }
1134  
rt2x00queue_free_skbs(struct data_queue * queue)1135  static void rt2x00queue_free_skbs(struct data_queue *queue)
1136  {
1137  	unsigned int i;
1138  
1139  	if (!queue->entries)
1140  		return;
1141  
1142  	for (i = 0; i < queue->limit; i++) {
1143  		rt2x00queue_free_skb(&queue->entries[i]);
1144  	}
1145  }
1146  
rt2x00queue_alloc_rxskbs(struct data_queue * queue)1147  static int rt2x00queue_alloc_rxskbs(struct data_queue *queue)
1148  {
1149  	unsigned int i;
1150  	struct sk_buff *skb;
1151  
1152  	for (i = 0; i < queue->limit; i++) {
1153  		skb = rt2x00queue_alloc_rxskb(&queue->entries[i], GFP_KERNEL);
1154  		if (!skb)
1155  			return -ENOMEM;
1156  		queue->entries[i].skb = skb;
1157  	}
1158  
1159  	return 0;
1160  }
1161  
rt2x00queue_initialize(struct rt2x00_dev * rt2x00dev)1162  int rt2x00queue_initialize(struct rt2x00_dev *rt2x00dev)
1163  {
1164  	struct data_queue *queue;
1165  	int status;
1166  
1167  	status = rt2x00queue_alloc_entries(rt2x00dev->rx);
1168  	if (status)
1169  		goto exit;
1170  
1171  	tx_queue_for_each(rt2x00dev, queue) {
1172  		status = rt2x00queue_alloc_entries(queue);
1173  		if (status)
1174  			goto exit;
1175  	}
1176  
1177  	status = rt2x00queue_alloc_entries(rt2x00dev->bcn);
1178  	if (status)
1179  		goto exit;
1180  
1181  	if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_ATIM_QUEUE)) {
1182  		status = rt2x00queue_alloc_entries(rt2x00dev->atim);
1183  		if (status)
1184  			goto exit;
1185  	}
1186  
1187  	status = rt2x00queue_alloc_rxskbs(rt2x00dev->rx);
1188  	if (status)
1189  		goto exit;
1190  
1191  	return 0;
1192  
1193  exit:
1194  	rt2x00_err(rt2x00dev, "Queue entries allocation failed\n");
1195  
1196  	rt2x00queue_uninitialize(rt2x00dev);
1197  
1198  	return status;
1199  }
1200  
rt2x00queue_uninitialize(struct rt2x00_dev * rt2x00dev)1201  void rt2x00queue_uninitialize(struct rt2x00_dev *rt2x00dev)
1202  {
1203  	struct data_queue *queue;
1204  
1205  	rt2x00queue_free_skbs(rt2x00dev->rx);
1206  
1207  	queue_for_each(rt2x00dev, queue) {
1208  		kfree(queue->entries);
1209  		queue->entries = NULL;
1210  	}
1211  }
1212  
rt2x00queue_init(struct rt2x00_dev * rt2x00dev,struct data_queue * queue,enum data_queue_qid qid)1213  static void rt2x00queue_init(struct rt2x00_dev *rt2x00dev,
1214  			     struct data_queue *queue, enum data_queue_qid qid)
1215  {
1216  	mutex_init(&queue->status_lock);
1217  	spin_lock_init(&queue->tx_lock);
1218  	spin_lock_init(&queue->index_lock);
1219  
1220  	queue->rt2x00dev = rt2x00dev;
1221  	queue->qid = qid;
1222  	queue->txop = 0;
1223  	queue->aifs = 2;
1224  	queue->cw_min = 5;
1225  	queue->cw_max = 10;
1226  
1227  	rt2x00dev->ops->queue_init(queue);
1228  
1229  	queue->threshold = DIV_ROUND_UP(queue->limit, 10);
1230  }
1231  
rt2x00queue_allocate(struct rt2x00_dev * rt2x00dev)1232  int rt2x00queue_allocate(struct rt2x00_dev *rt2x00dev)
1233  {
1234  	struct data_queue *queue;
1235  	enum data_queue_qid qid;
1236  	unsigned int req_atim =
1237  	    rt2x00_has_cap_flag(rt2x00dev, REQUIRE_ATIM_QUEUE);
1238  
1239  	/*
1240  	 * We need the following queues:
1241  	 * RX: 1
1242  	 * TX: ops->tx_queues
1243  	 * Beacon: 1
1244  	 * Atim: 1 (if required)
1245  	 */
1246  	rt2x00dev->data_queues = 2 + rt2x00dev->ops->tx_queues + req_atim;
1247  
1248  	queue = kcalloc(rt2x00dev->data_queues, sizeof(*queue), GFP_KERNEL);
1249  	if (!queue)
1250  		return -ENOMEM;
1251  
1252  	/*
1253  	 * Initialize pointers
1254  	 */
1255  	rt2x00dev->rx = queue;
1256  	rt2x00dev->tx = &queue[1];
1257  	rt2x00dev->bcn = &queue[1 + rt2x00dev->ops->tx_queues];
1258  	rt2x00dev->atim = req_atim ? &queue[2 + rt2x00dev->ops->tx_queues] : NULL;
1259  
1260  	/*
1261  	 * Initialize queue parameters.
1262  	 * RX: qid = QID_RX
1263  	 * TX: qid = QID_AC_VO + index
1264  	 * TX: cw_min: 2^5 = 32.
1265  	 * TX: cw_max: 2^10 = 1024.
1266  	 * BCN: qid = QID_BEACON
1267  	 * ATIM: qid = QID_ATIM
1268  	 */
1269  	rt2x00queue_init(rt2x00dev, rt2x00dev->rx, QID_RX);
1270  
1271  	qid = QID_AC_VO;
1272  	tx_queue_for_each(rt2x00dev, queue)
1273  		rt2x00queue_init(rt2x00dev, queue, qid++);
1274  
1275  	rt2x00queue_init(rt2x00dev, rt2x00dev->bcn, QID_BEACON);
1276  	if (req_atim)
1277  		rt2x00queue_init(rt2x00dev, rt2x00dev->atim, QID_ATIM);
1278  
1279  	return 0;
1280  }
1281  
rt2x00queue_free(struct rt2x00_dev * rt2x00dev)1282  void rt2x00queue_free(struct rt2x00_dev *rt2x00dev)
1283  {
1284  	kfree(rt2x00dev->rx);
1285  	rt2x00dev->rx = NULL;
1286  	rt2x00dev->tx = NULL;
1287  	rt2x00dev->bcn = NULL;
1288  }
1289