• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * RDMA Transport Layer
4  *
5  * Copyright (c) 2014 - 2018 ProfitBricks GmbH. All rights reserved.
6  * Copyright (c) 2018 - 2019 1&1 IONOS Cloud GmbH. All rights reserved.
7  * Copyright (c) 2019 - 2020 1&1 IONOS SE. All rights reserved.
8  */
9 
10 #undef pr_fmt
11 #define pr_fmt(fmt) KBUILD_MODNAME " L" __stringify(__LINE__) ": " fmt
12 
13 #include <linux/module.h>
14 #include <linux/rculist.h>
15 #include <linux/random.h>
16 
17 #include "rtrs-clt.h"
18 #include "rtrs-log.h"
19 
20 #define RTRS_CONNECT_TIMEOUT_MS 30000
21 /*
22  * Wait a bit before trying to reconnect after a failure
23  * in order to give server time to finish clean up which
24  * leads to "false positives" failed reconnect attempts
25  */
26 #define RTRS_RECONNECT_BACKOFF 1000
27 /*
28  * Wait for additional random time between 0 and 8 seconds
29  * before starting to reconnect to avoid clients reconnecting
30  * all at once in case of a major network outage
31  */
32 #define RTRS_RECONNECT_SEED 8
33 
34 #define FIRST_CONN 0x01
35 
36 MODULE_DESCRIPTION("RDMA Transport Client");
37 MODULE_LICENSE("GPL");
38 
39 static const struct rtrs_rdma_dev_pd_ops dev_pd_ops;
40 static struct rtrs_rdma_dev_pd dev_pd = {
41 	.ops = &dev_pd_ops
42 };
43 
44 static struct workqueue_struct *rtrs_wq;
45 static struct class *rtrs_clt_dev_class;
46 
rtrs_clt_is_connected(const struct rtrs_clt * clt)47 static inline bool rtrs_clt_is_connected(const struct rtrs_clt *clt)
48 {
49 	struct rtrs_clt_sess *sess;
50 	bool connected = false;
51 
52 	rcu_read_lock();
53 	list_for_each_entry_rcu(sess, &clt->paths_list, s.entry)
54 		connected |= READ_ONCE(sess->state) == RTRS_CLT_CONNECTED;
55 	rcu_read_unlock();
56 
57 	return connected;
58 }
59 
60 static struct rtrs_permit *
__rtrs_get_permit(struct rtrs_clt * clt,enum rtrs_clt_con_type con_type)61 __rtrs_get_permit(struct rtrs_clt *clt, enum rtrs_clt_con_type con_type)
62 {
63 	size_t max_depth = clt->queue_depth;
64 	struct rtrs_permit *permit;
65 	int bit;
66 
67 	/*
68 	 * Adapted from null_blk get_tag(). Callers from different cpus may
69 	 * grab the same bit, since find_first_zero_bit is not atomic.
70 	 * But then the test_and_set_bit_lock will fail for all the
71 	 * callers but one, so that they will loop again.
72 	 * This way an explicit spinlock is not required.
73 	 */
74 	do {
75 		bit = find_first_zero_bit(clt->permits_map, max_depth);
76 		if (unlikely(bit >= max_depth))
77 			return NULL;
78 	} while (unlikely(test_and_set_bit_lock(bit, clt->permits_map)));
79 
80 	permit = get_permit(clt, bit);
81 	WARN_ON(permit->mem_id != bit);
82 	permit->cpu_id = raw_smp_processor_id();
83 	permit->con_type = con_type;
84 
85 	return permit;
86 }
87 
__rtrs_put_permit(struct rtrs_clt * clt,struct rtrs_permit * permit)88 static inline void __rtrs_put_permit(struct rtrs_clt *clt,
89 				      struct rtrs_permit *permit)
90 {
91 	clear_bit_unlock(permit->mem_id, clt->permits_map);
92 }
93 
94 /**
95  * rtrs_clt_get_permit() - allocates permit for future RDMA operation
96  * @clt:	Current session
97  * @con_type:	Type of connection to use with the permit
98  * @can_wait:	Wait type
99  *
100  * Description:
101  *    Allocates permit for the following RDMA operation.  Permit is used
102  *    to preallocate all resources and to propagate memory pressure
103  *    up earlier.
104  *
105  * Context:
106  *    Can sleep if @wait == RTRS_TAG_WAIT
107  */
rtrs_clt_get_permit(struct rtrs_clt * clt,enum rtrs_clt_con_type con_type,int can_wait)108 struct rtrs_permit *rtrs_clt_get_permit(struct rtrs_clt *clt,
109 					  enum rtrs_clt_con_type con_type,
110 					  int can_wait)
111 {
112 	struct rtrs_permit *permit;
113 	DEFINE_WAIT(wait);
114 
115 	permit = __rtrs_get_permit(clt, con_type);
116 	if (likely(permit) || !can_wait)
117 		return permit;
118 
119 	do {
120 		prepare_to_wait(&clt->permits_wait, &wait,
121 				TASK_UNINTERRUPTIBLE);
122 		permit = __rtrs_get_permit(clt, con_type);
123 		if (likely(permit))
124 			break;
125 
126 		io_schedule();
127 	} while (1);
128 
129 	finish_wait(&clt->permits_wait, &wait);
130 
131 	return permit;
132 }
133 EXPORT_SYMBOL(rtrs_clt_get_permit);
134 
135 /**
136  * rtrs_clt_put_permit() - puts allocated permit
137  * @clt:	Current session
138  * @permit:	Permit to be freed
139  *
140  * Context:
141  *    Does not matter
142  */
rtrs_clt_put_permit(struct rtrs_clt * clt,struct rtrs_permit * permit)143 void rtrs_clt_put_permit(struct rtrs_clt *clt, struct rtrs_permit *permit)
144 {
145 	if (WARN_ON(!test_bit(permit->mem_id, clt->permits_map)))
146 		return;
147 
148 	__rtrs_put_permit(clt, permit);
149 
150 	/*
151 	 * rtrs_clt_get_permit() adds itself to the &clt->permits_wait list
152 	 * before calling schedule(). So if rtrs_clt_get_permit() is sleeping
153 	 * it must have added itself to &clt->permits_wait before
154 	 * __rtrs_put_permit() finished.
155 	 * Hence it is safe to guard wake_up() with a waitqueue_active() test.
156 	 */
157 	if (waitqueue_active(&clt->permits_wait))
158 		wake_up(&clt->permits_wait);
159 }
160 EXPORT_SYMBOL(rtrs_clt_put_permit);
161 
rtrs_permit_to_pdu(struct rtrs_permit * permit)162 void *rtrs_permit_to_pdu(struct rtrs_permit *permit)
163 {
164 	return permit + 1;
165 }
166 EXPORT_SYMBOL(rtrs_permit_to_pdu);
167 
168 /**
169  * rtrs_permit_to_clt_con() - returns RDMA connection pointer by the permit
170  * @sess: client session pointer
171  * @permit: permit for the allocation of the RDMA buffer
172  * Note:
173  *     IO connection starts from 1.
174  *     0 connection is for user messages.
175  */
176 static
rtrs_permit_to_clt_con(struct rtrs_clt_sess * sess,struct rtrs_permit * permit)177 struct rtrs_clt_con *rtrs_permit_to_clt_con(struct rtrs_clt_sess *sess,
178 					    struct rtrs_permit *permit)
179 {
180 	int id = 0;
181 
182 	if (likely(permit->con_type == RTRS_IO_CON))
183 		id = (permit->cpu_id % (sess->s.con_num - 1)) + 1;
184 
185 	return to_clt_con(sess->s.con[id]);
186 }
187 
188 /**
189  * __rtrs_clt_change_state() - change the session state through session state
190  * machine.
191  *
192  * @sess: client session to change the state of.
193  * @new_state: state to change to.
194  *
195  * returns true if successful, false if the requested state can not be set.
196  *
197  * Locks:
198  * state_wq lock must be hold.
199  */
__rtrs_clt_change_state(struct rtrs_clt_sess * sess,enum rtrs_clt_state new_state)200 static bool __rtrs_clt_change_state(struct rtrs_clt_sess *sess,
201 				     enum rtrs_clt_state new_state)
202 {
203 	enum rtrs_clt_state old_state;
204 	bool changed = false;
205 
206 	lockdep_assert_held(&sess->state_wq.lock);
207 
208 	old_state = sess->state;
209 	switch (new_state) {
210 	case RTRS_CLT_CONNECTING:
211 		switch (old_state) {
212 		case RTRS_CLT_RECONNECTING:
213 			changed = true;
214 			fallthrough;
215 		default:
216 			break;
217 		}
218 		break;
219 	case RTRS_CLT_RECONNECTING:
220 		switch (old_state) {
221 		case RTRS_CLT_CONNECTED:
222 		case RTRS_CLT_CONNECTING_ERR:
223 		case RTRS_CLT_CLOSED:
224 			changed = true;
225 			fallthrough;
226 		default:
227 			break;
228 		}
229 		break;
230 	case RTRS_CLT_CONNECTED:
231 		switch (old_state) {
232 		case RTRS_CLT_CONNECTING:
233 			changed = true;
234 			fallthrough;
235 		default:
236 			break;
237 		}
238 		break;
239 	case RTRS_CLT_CONNECTING_ERR:
240 		switch (old_state) {
241 		case RTRS_CLT_CONNECTING:
242 			changed = true;
243 			fallthrough;
244 		default:
245 			break;
246 		}
247 		break;
248 	case RTRS_CLT_CLOSING:
249 		switch (old_state) {
250 		case RTRS_CLT_CONNECTING:
251 		case RTRS_CLT_CONNECTING_ERR:
252 		case RTRS_CLT_RECONNECTING:
253 		case RTRS_CLT_CONNECTED:
254 			changed = true;
255 			fallthrough;
256 		default:
257 			break;
258 		}
259 		break;
260 	case RTRS_CLT_CLOSED:
261 		switch (old_state) {
262 		case RTRS_CLT_CLOSING:
263 			changed = true;
264 			fallthrough;
265 		default:
266 			break;
267 		}
268 		break;
269 	case RTRS_CLT_DEAD:
270 		switch (old_state) {
271 		case RTRS_CLT_CLOSED:
272 			changed = true;
273 			fallthrough;
274 		default:
275 			break;
276 		}
277 		break;
278 	default:
279 		break;
280 	}
281 	if (changed) {
282 		sess->state = new_state;
283 		wake_up_locked(&sess->state_wq);
284 	}
285 
286 	return changed;
287 }
288 
rtrs_clt_change_state_from_to(struct rtrs_clt_sess * sess,enum rtrs_clt_state old_state,enum rtrs_clt_state new_state)289 static bool rtrs_clt_change_state_from_to(struct rtrs_clt_sess *sess,
290 					   enum rtrs_clt_state old_state,
291 					   enum rtrs_clt_state new_state)
292 {
293 	bool changed = false;
294 
295 	spin_lock_irq(&sess->state_wq.lock);
296 	if (sess->state == old_state)
297 		changed = __rtrs_clt_change_state(sess, new_state);
298 	spin_unlock_irq(&sess->state_wq.lock);
299 
300 	return changed;
301 }
302 
rtrs_rdma_error_recovery(struct rtrs_clt_con * con)303 static void rtrs_rdma_error_recovery(struct rtrs_clt_con *con)
304 {
305 	struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
306 
307 	if (rtrs_clt_change_state_from_to(sess,
308 					   RTRS_CLT_CONNECTED,
309 					   RTRS_CLT_RECONNECTING)) {
310 		struct rtrs_clt *clt = sess->clt;
311 		unsigned int delay_ms;
312 
313 		/*
314 		 * Normal scenario, reconnect if we were successfully connected
315 		 */
316 		delay_ms = clt->reconnect_delay_sec * 1000;
317 		queue_delayed_work(rtrs_wq, &sess->reconnect_dwork,
318 				   msecs_to_jiffies(delay_ms +
319 						    prandom_u32() % RTRS_RECONNECT_SEED));
320 	} else {
321 		/*
322 		 * Error can happen just on establishing new connection,
323 		 * so notify waiter with error state, waiter is responsible
324 		 * for cleaning the rest and reconnect if needed.
325 		 */
326 		rtrs_clt_change_state_from_to(sess,
327 					       RTRS_CLT_CONNECTING,
328 					       RTRS_CLT_CONNECTING_ERR);
329 	}
330 }
331 
rtrs_clt_fast_reg_done(struct ib_cq * cq,struct ib_wc * wc)332 static void rtrs_clt_fast_reg_done(struct ib_cq *cq, struct ib_wc *wc)
333 {
334 	struct rtrs_clt_con *con = cq->cq_context;
335 
336 	if (unlikely(wc->status != IB_WC_SUCCESS)) {
337 		rtrs_err(con->c.sess, "Failed IB_WR_REG_MR: %s\n",
338 			  ib_wc_status_msg(wc->status));
339 		rtrs_rdma_error_recovery(con);
340 	}
341 }
342 
343 static struct ib_cqe fast_reg_cqe = {
344 	.done = rtrs_clt_fast_reg_done
345 };
346 
347 static void complete_rdma_req(struct rtrs_clt_io_req *req, int errno,
348 			      bool notify, bool can_wait);
349 
rtrs_clt_inv_rkey_done(struct ib_cq * cq,struct ib_wc * wc)350 static void rtrs_clt_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
351 {
352 	struct rtrs_clt_io_req *req =
353 		container_of(wc->wr_cqe, typeof(*req), inv_cqe);
354 	struct rtrs_clt_con *con = cq->cq_context;
355 
356 	if (unlikely(wc->status != IB_WC_SUCCESS)) {
357 		rtrs_err(con->c.sess, "Failed IB_WR_LOCAL_INV: %s\n",
358 			  ib_wc_status_msg(wc->status));
359 		rtrs_rdma_error_recovery(con);
360 	}
361 	req->need_inv = false;
362 	if (likely(req->need_inv_comp))
363 		complete(&req->inv_comp);
364 	else
365 		/* Complete request from INV callback */
366 		complete_rdma_req(req, req->inv_errno, true, false);
367 }
368 
rtrs_inv_rkey(struct rtrs_clt_io_req * req)369 static int rtrs_inv_rkey(struct rtrs_clt_io_req *req)
370 {
371 	struct rtrs_clt_con *con = req->con;
372 	struct ib_send_wr wr = {
373 		.opcode		    = IB_WR_LOCAL_INV,
374 		.wr_cqe		    = &req->inv_cqe,
375 		.send_flags	    = IB_SEND_SIGNALED,
376 		.ex.invalidate_rkey = req->mr->rkey,
377 	};
378 	req->inv_cqe.done = rtrs_clt_inv_rkey_done;
379 
380 	return ib_post_send(con->c.qp, &wr, NULL);
381 }
382 
complete_rdma_req(struct rtrs_clt_io_req * req,int errno,bool notify,bool can_wait)383 static void complete_rdma_req(struct rtrs_clt_io_req *req, int errno,
384 			      bool notify, bool can_wait)
385 {
386 	struct rtrs_clt_con *con = req->con;
387 	struct rtrs_clt_sess *sess;
388 	int err;
389 
390 	if (WARN_ON(!req->in_use))
391 		return;
392 	if (WARN_ON(!req->con))
393 		return;
394 	sess = to_clt_sess(con->c.sess);
395 
396 	if (req->sg_cnt) {
397 		if (unlikely(req->dir == DMA_FROM_DEVICE && req->need_inv)) {
398 			/*
399 			 * We are here to invalidate read requests
400 			 * ourselves.  In normal scenario server should
401 			 * send INV for all read requests, but
402 			 * we are here, thus two things could happen:
403 			 *
404 			 *    1.  this is failover, when errno != 0
405 			 *        and can_wait == 1,
406 			 *
407 			 *    2.  something totally bad happened and
408 			 *        server forgot to send INV, so we
409 			 *        should do that ourselves.
410 			 */
411 
412 			if (likely(can_wait)) {
413 				req->need_inv_comp = true;
414 			} else {
415 				/* This should be IO path, so always notify */
416 				WARN_ON(!notify);
417 				/* Save errno for INV callback */
418 				req->inv_errno = errno;
419 			}
420 
421 			err = rtrs_inv_rkey(req);
422 			if (unlikely(err)) {
423 				rtrs_err(con->c.sess, "Send INV WR key=%#x: %d\n",
424 					  req->mr->rkey, err);
425 			} else if (likely(can_wait)) {
426 				wait_for_completion(&req->inv_comp);
427 			} else {
428 				/*
429 				 * Something went wrong, so request will be
430 				 * completed from INV callback.
431 				 */
432 				WARN_ON_ONCE(1);
433 
434 				return;
435 			}
436 		}
437 		ib_dma_unmap_sg(sess->s.dev->ib_dev, req->sglist,
438 				req->sg_cnt, req->dir);
439 	}
440 	if (sess->clt->mp_policy == MP_POLICY_MIN_INFLIGHT)
441 		atomic_dec(&sess->stats->inflight);
442 
443 	req->in_use = false;
444 	req->con = NULL;
445 
446 	if (notify)
447 		req->conf(req->priv, errno);
448 }
449 
rtrs_post_send_rdma(struct rtrs_clt_con * con,struct rtrs_clt_io_req * req,struct rtrs_rbuf * rbuf,u32 off,u32 imm,struct ib_send_wr * wr)450 static int rtrs_post_send_rdma(struct rtrs_clt_con *con,
451 				struct rtrs_clt_io_req *req,
452 				struct rtrs_rbuf *rbuf, u32 off,
453 				u32 imm, struct ib_send_wr *wr)
454 {
455 	struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
456 	enum ib_send_flags flags;
457 	struct ib_sge sge;
458 
459 	if (unlikely(!req->sg_size)) {
460 		rtrs_wrn(con->c.sess,
461 			 "Doing RDMA Write failed, no data supplied\n");
462 		return -EINVAL;
463 	}
464 
465 	/* user data and user message in the first list element */
466 	sge.addr   = req->iu->dma_addr;
467 	sge.length = req->sg_size;
468 	sge.lkey   = sess->s.dev->ib_pd->local_dma_lkey;
469 
470 	/*
471 	 * From time to time we have to post signalled sends,
472 	 * or send queue will fill up and only QP reset can help.
473 	 */
474 	flags = atomic_inc_return(&con->io_cnt) % sess->queue_depth ?
475 			0 : IB_SEND_SIGNALED;
476 
477 	ib_dma_sync_single_for_device(sess->s.dev->ib_dev, req->iu->dma_addr,
478 				      req->sg_size, DMA_TO_DEVICE);
479 
480 	return rtrs_iu_post_rdma_write_imm(&con->c, req->iu, &sge, 1,
481 					    rbuf->rkey, rbuf->addr + off,
482 					    imm, flags, wr);
483 }
484 
process_io_rsp(struct rtrs_clt_sess * sess,u32 msg_id,s16 errno,bool w_inval)485 static void process_io_rsp(struct rtrs_clt_sess *sess, u32 msg_id,
486 			   s16 errno, bool w_inval)
487 {
488 	struct rtrs_clt_io_req *req;
489 
490 	if (WARN_ON(msg_id >= sess->queue_depth))
491 		return;
492 
493 	req = &sess->reqs[msg_id];
494 	/* Drop need_inv if server responded with send with invalidation */
495 	req->need_inv &= !w_inval;
496 	complete_rdma_req(req, errno, true, false);
497 }
498 
rtrs_clt_recv_done(struct rtrs_clt_con * con,struct ib_wc * wc)499 static void rtrs_clt_recv_done(struct rtrs_clt_con *con, struct ib_wc *wc)
500 {
501 	struct rtrs_iu *iu;
502 	int err;
503 	struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
504 
505 	WARN_ON((sess->flags & RTRS_MSG_NEW_RKEY_F) == 0);
506 	iu = container_of(wc->wr_cqe, struct rtrs_iu,
507 			  cqe);
508 	err = rtrs_iu_post_recv(&con->c, iu);
509 	if (unlikely(err)) {
510 		rtrs_err(con->c.sess, "post iu failed %d\n", err);
511 		rtrs_rdma_error_recovery(con);
512 	}
513 }
514 
rtrs_clt_rkey_rsp_done(struct rtrs_clt_con * con,struct ib_wc * wc)515 static void rtrs_clt_rkey_rsp_done(struct rtrs_clt_con *con, struct ib_wc *wc)
516 {
517 	struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
518 	struct rtrs_msg_rkey_rsp *msg;
519 	u32 imm_type, imm_payload;
520 	bool w_inval = false;
521 	struct rtrs_iu *iu;
522 	u32 buf_id;
523 	int err;
524 
525 	WARN_ON((sess->flags & RTRS_MSG_NEW_RKEY_F) == 0);
526 
527 	iu = container_of(wc->wr_cqe, struct rtrs_iu, cqe);
528 
529 	if (unlikely(wc->byte_len < sizeof(*msg))) {
530 		rtrs_err(con->c.sess, "rkey response is malformed: size %d\n",
531 			  wc->byte_len);
532 		goto out;
533 	}
534 	ib_dma_sync_single_for_cpu(sess->s.dev->ib_dev, iu->dma_addr,
535 				   iu->size, DMA_FROM_DEVICE);
536 	msg = iu->buf;
537 	if (unlikely(le16_to_cpu(msg->type) != RTRS_MSG_RKEY_RSP)) {
538 		rtrs_err(sess->clt, "rkey response is malformed: type %d\n",
539 			  le16_to_cpu(msg->type));
540 		goto out;
541 	}
542 	buf_id = le16_to_cpu(msg->buf_id);
543 	if (WARN_ON(buf_id >= sess->queue_depth))
544 		goto out;
545 
546 	rtrs_from_imm(be32_to_cpu(wc->ex.imm_data), &imm_type, &imm_payload);
547 	if (likely(imm_type == RTRS_IO_RSP_IMM ||
548 		   imm_type == RTRS_IO_RSP_W_INV_IMM)) {
549 		u32 msg_id;
550 
551 		w_inval = (imm_type == RTRS_IO_RSP_W_INV_IMM);
552 		rtrs_from_io_rsp_imm(imm_payload, &msg_id, &err);
553 
554 		if (WARN_ON(buf_id != msg_id))
555 			goto out;
556 		sess->rbufs[buf_id].rkey = le32_to_cpu(msg->rkey);
557 		process_io_rsp(sess, msg_id, err, w_inval);
558 	}
559 	ib_dma_sync_single_for_device(sess->s.dev->ib_dev, iu->dma_addr,
560 				      iu->size, DMA_FROM_DEVICE);
561 	return rtrs_clt_recv_done(con, wc);
562 out:
563 	rtrs_rdma_error_recovery(con);
564 }
565 
566 static void rtrs_clt_rdma_done(struct ib_cq *cq, struct ib_wc *wc);
567 
568 static struct ib_cqe io_comp_cqe = {
569 	.done = rtrs_clt_rdma_done
570 };
571 
572 /*
573  * Post x2 empty WRs: first is for this RDMA with IMM,
574  * second is for RECV with INV, which happened earlier.
575  */
rtrs_post_recv_empty_x2(struct rtrs_con * con,struct ib_cqe * cqe)576 static int rtrs_post_recv_empty_x2(struct rtrs_con *con, struct ib_cqe *cqe)
577 {
578 	struct ib_recv_wr wr_arr[2], *wr;
579 	int i;
580 
581 	memset(wr_arr, 0, sizeof(wr_arr));
582 	for (i = 0; i < ARRAY_SIZE(wr_arr); i++) {
583 		wr = &wr_arr[i];
584 		wr->wr_cqe  = cqe;
585 		if (i)
586 			/* Chain backwards */
587 			wr->next = &wr_arr[i - 1];
588 	}
589 
590 	return ib_post_recv(con->qp, wr, NULL);
591 }
592 
rtrs_clt_rdma_done(struct ib_cq * cq,struct ib_wc * wc)593 static void rtrs_clt_rdma_done(struct ib_cq *cq, struct ib_wc *wc)
594 {
595 	struct rtrs_clt_con *con = cq->cq_context;
596 	struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
597 	u32 imm_type, imm_payload;
598 	bool w_inval = false;
599 	int err;
600 
601 	if (unlikely(wc->status != IB_WC_SUCCESS)) {
602 		if (wc->status != IB_WC_WR_FLUSH_ERR) {
603 			rtrs_err(sess->clt, "RDMA failed: %s\n",
604 				  ib_wc_status_msg(wc->status));
605 			rtrs_rdma_error_recovery(con);
606 		}
607 		return;
608 	}
609 	rtrs_clt_update_wc_stats(con);
610 
611 	switch (wc->opcode) {
612 	case IB_WC_RECV_RDMA_WITH_IMM:
613 		/*
614 		 * post_recv() RDMA write completions of IO reqs (read/write)
615 		 * and hb
616 		 */
617 		if (WARN_ON(wc->wr_cqe->done != rtrs_clt_rdma_done))
618 			return;
619 		rtrs_from_imm(be32_to_cpu(wc->ex.imm_data),
620 			       &imm_type, &imm_payload);
621 		if (likely(imm_type == RTRS_IO_RSP_IMM ||
622 			   imm_type == RTRS_IO_RSP_W_INV_IMM)) {
623 			u32 msg_id;
624 
625 			w_inval = (imm_type == RTRS_IO_RSP_W_INV_IMM);
626 			rtrs_from_io_rsp_imm(imm_payload, &msg_id, &err);
627 
628 			process_io_rsp(sess, msg_id, err, w_inval);
629 		} else if (imm_type == RTRS_HB_MSG_IMM) {
630 			WARN_ON(con->c.cid);
631 			rtrs_send_hb_ack(&sess->s);
632 			if (sess->flags & RTRS_MSG_NEW_RKEY_F)
633 				return  rtrs_clt_recv_done(con, wc);
634 		} else if (imm_type == RTRS_HB_ACK_IMM) {
635 			WARN_ON(con->c.cid);
636 			sess->s.hb_missed_cnt = 0;
637 			if (sess->flags & RTRS_MSG_NEW_RKEY_F)
638 				return  rtrs_clt_recv_done(con, wc);
639 		} else {
640 			rtrs_wrn(con->c.sess, "Unknown IMM type %u\n",
641 				  imm_type);
642 		}
643 		if (w_inval)
644 			/*
645 			 * Post x2 empty WRs: first is for this RDMA with IMM,
646 			 * second is for RECV with INV, which happened earlier.
647 			 */
648 			err = rtrs_post_recv_empty_x2(&con->c, &io_comp_cqe);
649 		else
650 			err = rtrs_post_recv_empty(&con->c, &io_comp_cqe);
651 		if (unlikely(err)) {
652 			rtrs_err(con->c.sess, "rtrs_post_recv_empty(): %d\n",
653 				  err);
654 			rtrs_rdma_error_recovery(con);
655 			break;
656 		}
657 		break;
658 	case IB_WC_RECV:
659 		/*
660 		 * Key invalidations from server side
661 		 */
662 		WARN_ON(!(wc->wc_flags & IB_WC_WITH_INVALIDATE ||
663 			  wc->wc_flags & IB_WC_WITH_IMM));
664 		WARN_ON(wc->wr_cqe->done != rtrs_clt_rdma_done);
665 		if (sess->flags & RTRS_MSG_NEW_RKEY_F) {
666 			if (wc->wc_flags & IB_WC_WITH_INVALIDATE)
667 				return  rtrs_clt_recv_done(con, wc);
668 
669 			return  rtrs_clt_rkey_rsp_done(con, wc);
670 		}
671 		break;
672 	case IB_WC_RDMA_WRITE:
673 		/*
674 		 * post_send() RDMA write completions of IO reqs (read/write)
675 		 */
676 		break;
677 
678 	default:
679 		rtrs_wrn(sess->clt, "Unexpected WC type: %d\n", wc->opcode);
680 		return;
681 	}
682 }
683 
post_recv_io(struct rtrs_clt_con * con,size_t q_size)684 static int post_recv_io(struct rtrs_clt_con *con, size_t q_size)
685 {
686 	int err, i;
687 	struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
688 
689 	for (i = 0; i < q_size; i++) {
690 		if (sess->flags & RTRS_MSG_NEW_RKEY_F) {
691 			struct rtrs_iu *iu = &con->rsp_ius[i];
692 
693 			err = rtrs_iu_post_recv(&con->c, iu);
694 		} else {
695 			err = rtrs_post_recv_empty(&con->c, &io_comp_cqe);
696 		}
697 		if (unlikely(err))
698 			return err;
699 	}
700 
701 	return 0;
702 }
703 
post_recv_sess(struct rtrs_clt_sess * sess)704 static int post_recv_sess(struct rtrs_clt_sess *sess)
705 {
706 	size_t q_size = 0;
707 	int err, cid;
708 
709 	for (cid = 0; cid < sess->s.con_num; cid++) {
710 		if (cid == 0)
711 			q_size = SERVICE_CON_QUEUE_DEPTH;
712 		else
713 			q_size = sess->queue_depth;
714 
715 		/*
716 		 * x2 for RDMA read responses + FR key invalidations,
717 		 * RDMA writes do not require any FR registrations.
718 		 */
719 		q_size *= 2;
720 
721 		err = post_recv_io(to_clt_con(sess->s.con[cid]), q_size);
722 		if (unlikely(err)) {
723 			rtrs_err(sess->clt, "post_recv_io(), err: %d\n", err);
724 			return err;
725 		}
726 	}
727 
728 	return 0;
729 }
730 
731 struct path_it {
732 	int i;
733 	struct list_head skip_list;
734 	struct rtrs_clt *clt;
735 	struct rtrs_clt_sess *(*next_path)(struct path_it *it);
736 };
737 
738 /**
739  * list_next_or_null_rr_rcu - get next list element in round-robin fashion.
740  * @head:	the head for the list.
741  * @ptr:        the list head to take the next element from.
742  * @type:       the type of the struct this is embedded in.
743  * @memb:       the name of the list_head within the struct.
744  *
745  * Next element returned in round-robin fashion, i.e. head will be skipped,
746  * but if list is observed as empty, NULL will be returned.
747  *
748  * This primitive may safely run concurrently with the _rcu list-mutation
749  * primitives such as list_add_rcu() as long as it's guarded by rcu_read_lock().
750  */
751 #define list_next_or_null_rr_rcu(head, ptr, type, memb) \
752 ({ \
753 	list_next_or_null_rcu(head, ptr, type, memb) ?: \
754 		list_next_or_null_rcu(head, READ_ONCE((ptr)->next), \
755 				      type, memb); \
756 })
757 
758 /**
759  * get_next_path_rr() - Returns path in round-robin fashion.
760  * @it:	the path pointer
761  *
762  * Related to @MP_POLICY_RR
763  *
764  * Locks:
765  *    rcu_read_lock() must be hold.
766  */
get_next_path_rr(struct path_it * it)767 static struct rtrs_clt_sess *get_next_path_rr(struct path_it *it)
768 {
769 	struct rtrs_clt_sess __rcu **ppcpu_path;
770 	struct rtrs_clt_sess *path;
771 	struct rtrs_clt *clt;
772 
773 	clt = it->clt;
774 
775 	/*
776 	 * Here we use two RCU objects: @paths_list and @pcpu_path
777 	 * pointer.  See rtrs_clt_remove_path_from_arr() for details
778 	 * how that is handled.
779 	 */
780 
781 	ppcpu_path = this_cpu_ptr(clt->pcpu_path);
782 	path = rcu_dereference(*ppcpu_path);
783 	if (unlikely(!path))
784 		path = list_first_or_null_rcu(&clt->paths_list,
785 					      typeof(*path), s.entry);
786 	else
787 		path = list_next_or_null_rr_rcu(&clt->paths_list,
788 						&path->s.entry,
789 						typeof(*path),
790 						s.entry);
791 	rcu_assign_pointer(*ppcpu_path, path);
792 
793 	return path;
794 }
795 
796 /**
797  * get_next_path_min_inflight() - Returns path with minimal inflight count.
798  * @it:	the path pointer
799  *
800  * Related to @MP_POLICY_MIN_INFLIGHT
801  *
802  * Locks:
803  *    rcu_read_lock() must be hold.
804  */
get_next_path_min_inflight(struct path_it * it)805 static struct rtrs_clt_sess *get_next_path_min_inflight(struct path_it *it)
806 {
807 	struct rtrs_clt_sess *min_path = NULL;
808 	struct rtrs_clt *clt = it->clt;
809 	struct rtrs_clt_sess *sess;
810 	int min_inflight = INT_MAX;
811 	int inflight;
812 
813 	list_for_each_entry_rcu(sess, &clt->paths_list, s.entry) {
814 		if (unlikely(READ_ONCE(sess->state) != RTRS_CLT_CONNECTED))
815 			continue;
816 
817 		if (unlikely(!list_empty(raw_cpu_ptr(sess->mp_skip_entry))))
818 			continue;
819 
820 		inflight = atomic_read(&sess->stats->inflight);
821 
822 		if (inflight < min_inflight) {
823 			min_inflight = inflight;
824 			min_path = sess;
825 		}
826 	}
827 
828 	/*
829 	 * add the path to the skip list, so that next time we can get
830 	 * a different one
831 	 */
832 	if (min_path)
833 		list_add(raw_cpu_ptr(min_path->mp_skip_entry), &it->skip_list);
834 
835 	return min_path;
836 }
837 
path_it_init(struct path_it * it,struct rtrs_clt * clt)838 static inline void path_it_init(struct path_it *it, struct rtrs_clt *clt)
839 {
840 	INIT_LIST_HEAD(&it->skip_list);
841 	it->clt = clt;
842 	it->i = 0;
843 
844 	if (clt->mp_policy == MP_POLICY_RR)
845 		it->next_path = get_next_path_rr;
846 	else
847 		it->next_path = get_next_path_min_inflight;
848 }
849 
path_it_deinit(struct path_it * it)850 static inline void path_it_deinit(struct path_it *it)
851 {
852 	struct list_head *skip, *tmp;
853 	/*
854 	 * The skip_list is used only for the MIN_INFLIGHT policy.
855 	 * We need to remove paths from it, so that next IO can insert
856 	 * paths (->mp_skip_entry) into a skip_list again.
857 	 */
858 	list_for_each_safe(skip, tmp, &it->skip_list)
859 		list_del_init(skip);
860 }
861 
862 /**
863  * rtrs_clt_init_req() Initialize an rtrs_clt_io_req holding information
864  * about an inflight IO.
865  * The user buffer holding user control message (not data) is copied into
866  * the corresponding buffer of rtrs_iu (req->iu->buf), which later on will
867  * also hold the control message of rtrs.
868  * @req: an io request holding information about IO.
869  * @sess: client session
870  * @conf: conformation callback function to notify upper layer.
871  * @permit: permit for allocation of RDMA remote buffer
872  * @priv: private pointer
873  * @vec: kernel vector containing control message
874  * @usr_len: length of the user message
875  * @sg: scater list for IO data
876  * @sg_cnt: number of scater list entries
877  * @data_len: length of the IO data
878  * @dir: direction of the IO.
879  */
rtrs_clt_init_req(struct rtrs_clt_io_req * req,struct rtrs_clt_sess * sess,void (* conf)(void * priv,int errno),struct rtrs_permit * permit,void * priv,const struct kvec * vec,size_t usr_len,struct scatterlist * sg,size_t sg_cnt,size_t data_len,int dir)880 static void rtrs_clt_init_req(struct rtrs_clt_io_req *req,
881 			      struct rtrs_clt_sess *sess,
882 			      void (*conf)(void *priv, int errno),
883 			      struct rtrs_permit *permit, void *priv,
884 			      const struct kvec *vec, size_t usr_len,
885 			      struct scatterlist *sg, size_t sg_cnt,
886 			      size_t data_len, int dir)
887 {
888 	struct iov_iter iter;
889 	size_t len;
890 
891 	req->permit = permit;
892 	req->in_use = true;
893 	req->usr_len = usr_len;
894 	req->data_len = data_len;
895 	req->sglist = sg;
896 	req->sg_cnt = sg_cnt;
897 	req->priv = priv;
898 	req->dir = dir;
899 	req->con = rtrs_permit_to_clt_con(sess, permit);
900 	req->conf = conf;
901 	req->need_inv = false;
902 	req->need_inv_comp = false;
903 	req->inv_errno = 0;
904 
905 	iov_iter_kvec(&iter, READ, vec, 1, usr_len);
906 	len = _copy_from_iter(req->iu->buf, usr_len, &iter);
907 	WARN_ON(len != usr_len);
908 
909 	reinit_completion(&req->inv_comp);
910 }
911 
912 static struct rtrs_clt_io_req *
rtrs_clt_get_req(struct rtrs_clt_sess * sess,void (* conf)(void * priv,int errno),struct rtrs_permit * permit,void * priv,const struct kvec * vec,size_t usr_len,struct scatterlist * sg,size_t sg_cnt,size_t data_len,int dir)913 rtrs_clt_get_req(struct rtrs_clt_sess *sess,
914 		 void (*conf)(void *priv, int errno),
915 		 struct rtrs_permit *permit, void *priv,
916 		 const struct kvec *vec, size_t usr_len,
917 		 struct scatterlist *sg, size_t sg_cnt,
918 		 size_t data_len, int dir)
919 {
920 	struct rtrs_clt_io_req *req;
921 
922 	req = &sess->reqs[permit->mem_id];
923 	rtrs_clt_init_req(req, sess, conf, permit, priv, vec, usr_len,
924 			   sg, sg_cnt, data_len, dir);
925 	return req;
926 }
927 
928 static struct rtrs_clt_io_req *
rtrs_clt_get_copy_req(struct rtrs_clt_sess * alive_sess,struct rtrs_clt_io_req * fail_req)929 rtrs_clt_get_copy_req(struct rtrs_clt_sess *alive_sess,
930 		       struct rtrs_clt_io_req *fail_req)
931 {
932 	struct rtrs_clt_io_req *req;
933 	struct kvec vec = {
934 		.iov_base = fail_req->iu->buf,
935 		.iov_len  = fail_req->usr_len
936 	};
937 
938 	req = &alive_sess->reqs[fail_req->permit->mem_id];
939 	rtrs_clt_init_req(req, alive_sess, fail_req->conf, fail_req->permit,
940 			   fail_req->priv, &vec, fail_req->usr_len,
941 			   fail_req->sglist, fail_req->sg_cnt,
942 			   fail_req->data_len, fail_req->dir);
943 	return req;
944 }
945 
rtrs_post_rdma_write_sg(struct rtrs_clt_con * con,struct rtrs_clt_io_req * req,struct rtrs_rbuf * rbuf,u32 size,u32 imm)946 static int rtrs_post_rdma_write_sg(struct rtrs_clt_con *con,
947 				    struct rtrs_clt_io_req *req,
948 				    struct rtrs_rbuf *rbuf,
949 				    u32 size, u32 imm)
950 {
951 	struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
952 	struct ib_sge *sge = req->sge;
953 	enum ib_send_flags flags;
954 	struct scatterlist *sg;
955 	size_t num_sge;
956 	int i;
957 
958 	for_each_sg(req->sglist, sg, req->sg_cnt, i) {
959 		sge[i].addr   = sg_dma_address(sg);
960 		sge[i].length = sg_dma_len(sg);
961 		sge[i].lkey   = sess->s.dev->ib_pd->local_dma_lkey;
962 	}
963 	sge[i].addr   = req->iu->dma_addr;
964 	sge[i].length = size;
965 	sge[i].lkey   = sess->s.dev->ib_pd->local_dma_lkey;
966 
967 	num_sge = 1 + req->sg_cnt;
968 
969 	/*
970 	 * From time to time we have to post signalled sends,
971 	 * or send queue will fill up and only QP reset can help.
972 	 */
973 	flags = atomic_inc_return(&con->io_cnt) % sess->queue_depth ?
974 			0 : IB_SEND_SIGNALED;
975 
976 	ib_dma_sync_single_for_device(sess->s.dev->ib_dev, req->iu->dma_addr,
977 				      size, DMA_TO_DEVICE);
978 
979 	return rtrs_iu_post_rdma_write_imm(&con->c, req->iu, sge, num_sge,
980 					    rbuf->rkey, rbuf->addr, imm,
981 					    flags, NULL);
982 }
983 
rtrs_clt_write_req(struct rtrs_clt_io_req * req)984 static int rtrs_clt_write_req(struct rtrs_clt_io_req *req)
985 {
986 	struct rtrs_clt_con *con = req->con;
987 	struct rtrs_sess *s = con->c.sess;
988 	struct rtrs_clt_sess *sess = to_clt_sess(s);
989 	struct rtrs_msg_rdma_write *msg;
990 
991 	struct rtrs_rbuf *rbuf;
992 	int ret, count = 0;
993 	u32 imm, buf_id;
994 
995 	const size_t tsize = sizeof(*msg) + req->data_len + req->usr_len;
996 
997 	if (unlikely(tsize > sess->chunk_size)) {
998 		rtrs_wrn(s, "Write request failed, size too big %zu > %d\n",
999 			  tsize, sess->chunk_size);
1000 		return -EMSGSIZE;
1001 	}
1002 	if (req->sg_cnt) {
1003 		count = ib_dma_map_sg(sess->s.dev->ib_dev, req->sglist,
1004 				      req->sg_cnt, req->dir);
1005 		if (unlikely(!count)) {
1006 			rtrs_wrn(s, "Write request failed, map failed\n");
1007 			return -EINVAL;
1008 		}
1009 	}
1010 	/* put rtrs msg after sg and user message */
1011 	msg = req->iu->buf + req->usr_len;
1012 	msg->type = cpu_to_le16(RTRS_MSG_WRITE);
1013 	msg->usr_len = cpu_to_le16(req->usr_len);
1014 
1015 	/* rtrs message on server side will be after user data and message */
1016 	imm = req->permit->mem_off + req->data_len + req->usr_len;
1017 	imm = rtrs_to_io_req_imm(imm);
1018 	buf_id = req->permit->mem_id;
1019 	req->sg_size = tsize;
1020 	rbuf = &sess->rbufs[buf_id];
1021 
1022 	/*
1023 	 * Update stats now, after request is successfully sent it is not
1024 	 * safe anymore to touch it.
1025 	 */
1026 	rtrs_clt_update_all_stats(req, WRITE);
1027 
1028 	ret = rtrs_post_rdma_write_sg(req->con, req, rbuf,
1029 				       req->usr_len + sizeof(*msg),
1030 				       imm);
1031 	if (unlikely(ret)) {
1032 		rtrs_err(s, "Write request failed: %d\n", ret);
1033 		if (sess->clt->mp_policy == MP_POLICY_MIN_INFLIGHT)
1034 			atomic_dec(&sess->stats->inflight);
1035 		if (req->sg_cnt)
1036 			ib_dma_unmap_sg(sess->s.dev->ib_dev, req->sglist,
1037 					req->sg_cnt, req->dir);
1038 	}
1039 
1040 	return ret;
1041 }
1042 
rtrs_map_sg_fr(struct rtrs_clt_io_req * req,size_t count)1043 static int rtrs_map_sg_fr(struct rtrs_clt_io_req *req, size_t count)
1044 {
1045 	int nr;
1046 
1047 	/* Align the MR to a 4K page size to match the block virt boundary */
1048 	nr = ib_map_mr_sg(req->mr, req->sglist, count, NULL, SZ_4K);
1049 	if (nr < 0)
1050 		return nr;
1051 	if (unlikely(nr < req->sg_cnt))
1052 		return -EINVAL;
1053 	ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
1054 
1055 	return nr;
1056 }
1057 
rtrs_clt_read_req(struct rtrs_clt_io_req * req)1058 static int rtrs_clt_read_req(struct rtrs_clt_io_req *req)
1059 {
1060 	struct rtrs_clt_con *con = req->con;
1061 	struct rtrs_sess *s = con->c.sess;
1062 	struct rtrs_clt_sess *sess = to_clt_sess(s);
1063 	struct rtrs_msg_rdma_read *msg;
1064 	struct rtrs_ib_dev *dev;
1065 
1066 	struct ib_reg_wr rwr;
1067 	struct ib_send_wr *wr = NULL;
1068 
1069 	int ret, count = 0;
1070 	u32 imm, buf_id;
1071 
1072 	const size_t tsize = sizeof(*msg) + req->data_len + req->usr_len;
1073 
1074 	s = &sess->s;
1075 	dev = sess->s.dev;
1076 
1077 	if (unlikely(tsize > sess->chunk_size)) {
1078 		rtrs_wrn(s,
1079 			  "Read request failed, message size is %zu, bigger than CHUNK_SIZE %d\n",
1080 			  tsize, sess->chunk_size);
1081 		return -EMSGSIZE;
1082 	}
1083 
1084 	if (req->sg_cnt) {
1085 		count = ib_dma_map_sg(dev->ib_dev, req->sglist, req->sg_cnt,
1086 				      req->dir);
1087 		if (unlikely(!count)) {
1088 			rtrs_wrn(s,
1089 				  "Read request failed, dma map failed\n");
1090 			return -EINVAL;
1091 		}
1092 	}
1093 	/* put our message into req->buf after user message*/
1094 	msg = req->iu->buf + req->usr_len;
1095 	msg->type = cpu_to_le16(RTRS_MSG_READ);
1096 	msg->usr_len = cpu_to_le16(req->usr_len);
1097 
1098 	if (count) {
1099 		ret = rtrs_map_sg_fr(req, count);
1100 		if (ret < 0) {
1101 			rtrs_err_rl(s,
1102 				     "Read request failed, failed to map  fast reg. data, err: %d\n",
1103 				     ret);
1104 			ib_dma_unmap_sg(dev->ib_dev, req->sglist, req->sg_cnt,
1105 					req->dir);
1106 			return ret;
1107 		}
1108 		rwr = (struct ib_reg_wr) {
1109 			.wr.opcode = IB_WR_REG_MR,
1110 			.wr.wr_cqe = &fast_reg_cqe,
1111 			.mr = req->mr,
1112 			.key = req->mr->rkey,
1113 			.access = (IB_ACCESS_LOCAL_WRITE |
1114 				   IB_ACCESS_REMOTE_WRITE),
1115 		};
1116 		wr = &rwr.wr;
1117 
1118 		msg->sg_cnt = cpu_to_le16(1);
1119 		msg->flags = cpu_to_le16(RTRS_MSG_NEED_INVAL_F);
1120 
1121 		msg->desc[0].addr = cpu_to_le64(req->mr->iova);
1122 		msg->desc[0].key = cpu_to_le32(req->mr->rkey);
1123 		msg->desc[0].len = cpu_to_le32(req->mr->length);
1124 
1125 		/* Further invalidation is required */
1126 		req->need_inv = !!RTRS_MSG_NEED_INVAL_F;
1127 
1128 	} else {
1129 		msg->sg_cnt = 0;
1130 		msg->flags = 0;
1131 	}
1132 	/*
1133 	 * rtrs message will be after the space reserved for disk data and
1134 	 * user message
1135 	 */
1136 	imm = req->permit->mem_off + req->data_len + req->usr_len;
1137 	imm = rtrs_to_io_req_imm(imm);
1138 	buf_id = req->permit->mem_id;
1139 
1140 	req->sg_size  = sizeof(*msg);
1141 	req->sg_size += le16_to_cpu(msg->sg_cnt) * sizeof(struct rtrs_sg_desc);
1142 	req->sg_size += req->usr_len;
1143 
1144 	/*
1145 	 * Update stats now, after request is successfully sent it is not
1146 	 * safe anymore to touch it.
1147 	 */
1148 	rtrs_clt_update_all_stats(req, READ);
1149 
1150 	ret = rtrs_post_send_rdma(req->con, req, &sess->rbufs[buf_id],
1151 				   req->data_len, imm, wr);
1152 	if (unlikely(ret)) {
1153 		rtrs_err(s, "Read request failed: %d\n", ret);
1154 		if (sess->clt->mp_policy == MP_POLICY_MIN_INFLIGHT)
1155 			atomic_dec(&sess->stats->inflight);
1156 		req->need_inv = false;
1157 		if (req->sg_cnt)
1158 			ib_dma_unmap_sg(dev->ib_dev, req->sglist,
1159 					req->sg_cnt, req->dir);
1160 	}
1161 
1162 	return ret;
1163 }
1164 
1165 /**
1166  * rtrs_clt_failover_req() Try to find an active path for a failed request
1167  * @clt: clt context
1168  * @fail_req: a failed io request.
1169  */
rtrs_clt_failover_req(struct rtrs_clt * clt,struct rtrs_clt_io_req * fail_req)1170 static int rtrs_clt_failover_req(struct rtrs_clt *clt,
1171 				 struct rtrs_clt_io_req *fail_req)
1172 {
1173 	struct rtrs_clt_sess *alive_sess;
1174 	struct rtrs_clt_io_req *req;
1175 	int err = -ECONNABORTED;
1176 	struct path_it it;
1177 
1178 	rcu_read_lock();
1179 	for (path_it_init(&it, clt);
1180 	     (alive_sess = it.next_path(&it)) && it.i < it.clt->paths_num;
1181 	     it.i++) {
1182 		if (unlikely(READ_ONCE(alive_sess->state) !=
1183 			     RTRS_CLT_CONNECTED))
1184 			continue;
1185 		req = rtrs_clt_get_copy_req(alive_sess, fail_req);
1186 		if (req->dir == DMA_TO_DEVICE)
1187 			err = rtrs_clt_write_req(req);
1188 		else
1189 			err = rtrs_clt_read_req(req);
1190 		if (unlikely(err)) {
1191 			req->in_use = false;
1192 			continue;
1193 		}
1194 		/* Success path */
1195 		rtrs_clt_inc_failover_cnt(alive_sess->stats);
1196 		break;
1197 	}
1198 	path_it_deinit(&it);
1199 	rcu_read_unlock();
1200 
1201 	return err;
1202 }
1203 
fail_all_outstanding_reqs(struct rtrs_clt_sess * sess)1204 static void fail_all_outstanding_reqs(struct rtrs_clt_sess *sess)
1205 {
1206 	struct rtrs_clt *clt = sess->clt;
1207 	struct rtrs_clt_io_req *req;
1208 	int i, err;
1209 
1210 	if (!sess->reqs)
1211 		return;
1212 	for (i = 0; i < sess->queue_depth; ++i) {
1213 		req = &sess->reqs[i];
1214 		if (!req->in_use)
1215 			continue;
1216 
1217 		/*
1218 		 * Safely (without notification) complete failed request.
1219 		 * After completion this request is still useble and can
1220 		 * be failovered to another path.
1221 		 */
1222 		complete_rdma_req(req, -ECONNABORTED, false, true);
1223 
1224 		err = rtrs_clt_failover_req(clt, req);
1225 		if (unlikely(err))
1226 			/* Failover failed, notify anyway */
1227 			req->conf(req->priv, err);
1228 	}
1229 }
1230 
free_sess_reqs(struct rtrs_clt_sess * sess)1231 static void free_sess_reqs(struct rtrs_clt_sess *sess)
1232 {
1233 	struct rtrs_clt_io_req *req;
1234 	int i;
1235 
1236 	if (!sess->reqs)
1237 		return;
1238 	for (i = 0; i < sess->queue_depth; ++i) {
1239 		req = &sess->reqs[i];
1240 		if (req->mr)
1241 			ib_dereg_mr(req->mr);
1242 		kfree(req->sge);
1243 		rtrs_iu_free(req->iu, sess->s.dev->ib_dev, 1);
1244 	}
1245 	kfree(sess->reqs);
1246 	sess->reqs = NULL;
1247 }
1248 
alloc_sess_reqs(struct rtrs_clt_sess * sess)1249 static int alloc_sess_reqs(struct rtrs_clt_sess *sess)
1250 {
1251 	struct rtrs_clt_io_req *req;
1252 	struct rtrs_clt *clt = sess->clt;
1253 	int i, err = -ENOMEM;
1254 
1255 	sess->reqs = kcalloc(sess->queue_depth, sizeof(*sess->reqs),
1256 			     GFP_KERNEL);
1257 	if (!sess->reqs)
1258 		return -ENOMEM;
1259 
1260 	for (i = 0; i < sess->queue_depth; ++i) {
1261 		req = &sess->reqs[i];
1262 		req->iu = rtrs_iu_alloc(1, sess->max_hdr_size, GFP_KERNEL,
1263 					 sess->s.dev->ib_dev,
1264 					 DMA_TO_DEVICE,
1265 					 rtrs_clt_rdma_done);
1266 		if (!req->iu)
1267 			goto out;
1268 
1269 		req->sge = kmalloc_array(clt->max_segments + 1,
1270 					 sizeof(*req->sge), GFP_KERNEL);
1271 		if (!req->sge)
1272 			goto out;
1273 
1274 		req->mr = ib_alloc_mr(sess->s.dev->ib_pd, IB_MR_TYPE_MEM_REG,
1275 				      sess->max_pages_per_mr);
1276 		if (IS_ERR(req->mr)) {
1277 			err = PTR_ERR(req->mr);
1278 			req->mr = NULL;
1279 			pr_err("Failed to alloc sess->max_pages_per_mr %d\n",
1280 			       sess->max_pages_per_mr);
1281 			goto out;
1282 		}
1283 
1284 		init_completion(&req->inv_comp);
1285 	}
1286 
1287 	return 0;
1288 
1289 out:
1290 	free_sess_reqs(sess);
1291 
1292 	return err;
1293 }
1294 
alloc_permits(struct rtrs_clt * clt)1295 static int alloc_permits(struct rtrs_clt *clt)
1296 {
1297 	unsigned int chunk_bits;
1298 	int err, i;
1299 
1300 	clt->permits_map = kcalloc(BITS_TO_LONGS(clt->queue_depth),
1301 				   sizeof(long), GFP_KERNEL);
1302 	if (!clt->permits_map) {
1303 		err = -ENOMEM;
1304 		goto out_err;
1305 	}
1306 	clt->permits = kcalloc(clt->queue_depth, permit_size(clt), GFP_KERNEL);
1307 	if (!clt->permits) {
1308 		err = -ENOMEM;
1309 		goto err_map;
1310 	}
1311 	chunk_bits = ilog2(clt->queue_depth - 1) + 1;
1312 	for (i = 0; i < clt->queue_depth; i++) {
1313 		struct rtrs_permit *permit;
1314 
1315 		permit = get_permit(clt, i);
1316 		permit->mem_id = i;
1317 		permit->mem_off = i << (MAX_IMM_PAYL_BITS - chunk_bits);
1318 	}
1319 
1320 	return 0;
1321 
1322 err_map:
1323 	kfree(clt->permits_map);
1324 	clt->permits_map = NULL;
1325 out_err:
1326 	return err;
1327 }
1328 
free_permits(struct rtrs_clt * clt)1329 static void free_permits(struct rtrs_clt *clt)
1330 {
1331 	kfree(clt->permits_map);
1332 	clt->permits_map = NULL;
1333 	kfree(clt->permits);
1334 	clt->permits = NULL;
1335 }
1336 
query_fast_reg_mode(struct rtrs_clt_sess * sess)1337 static void query_fast_reg_mode(struct rtrs_clt_sess *sess)
1338 {
1339 	struct ib_device *ib_dev;
1340 	u64 max_pages_per_mr;
1341 	int mr_page_shift;
1342 
1343 	ib_dev = sess->s.dev->ib_dev;
1344 
1345 	/*
1346 	 * Use the smallest page size supported by the HCA, down to a
1347 	 * minimum of 4096 bytes. We're unlikely to build large sglists
1348 	 * out of smaller entries.
1349 	 */
1350 	mr_page_shift      = max(12, ffs(ib_dev->attrs.page_size_cap) - 1);
1351 	max_pages_per_mr   = ib_dev->attrs.max_mr_size;
1352 	do_div(max_pages_per_mr, (1ull << mr_page_shift));
1353 	sess->max_pages_per_mr =
1354 		min3(sess->max_pages_per_mr, (u32)max_pages_per_mr,
1355 		     ib_dev->attrs.max_fast_reg_page_list_len);
1356 	sess->max_send_sge = ib_dev->attrs.max_send_sge;
1357 }
1358 
rtrs_clt_change_state_get_old(struct rtrs_clt_sess * sess,enum rtrs_clt_state new_state,enum rtrs_clt_state * old_state)1359 static bool rtrs_clt_change_state_get_old(struct rtrs_clt_sess *sess,
1360 					   enum rtrs_clt_state new_state,
1361 					   enum rtrs_clt_state *old_state)
1362 {
1363 	bool changed;
1364 
1365 	spin_lock_irq(&sess->state_wq.lock);
1366 	*old_state = sess->state;
1367 	changed = __rtrs_clt_change_state(sess, new_state);
1368 	spin_unlock_irq(&sess->state_wq.lock);
1369 
1370 	return changed;
1371 }
1372 
rtrs_clt_change_state(struct rtrs_clt_sess * sess,enum rtrs_clt_state new_state)1373 static bool rtrs_clt_change_state(struct rtrs_clt_sess *sess,
1374 				   enum rtrs_clt_state new_state)
1375 {
1376 	enum rtrs_clt_state old_state;
1377 
1378 	return rtrs_clt_change_state_get_old(sess, new_state, &old_state);
1379 }
1380 
rtrs_clt_hb_err_handler(struct rtrs_con * c)1381 static void rtrs_clt_hb_err_handler(struct rtrs_con *c)
1382 {
1383 	struct rtrs_clt_con *con = container_of(c, typeof(*con), c);
1384 
1385 	rtrs_rdma_error_recovery(con);
1386 }
1387 
rtrs_clt_init_hb(struct rtrs_clt_sess * sess)1388 static void rtrs_clt_init_hb(struct rtrs_clt_sess *sess)
1389 {
1390 	rtrs_init_hb(&sess->s, &io_comp_cqe,
1391 		      RTRS_HB_INTERVAL_MS,
1392 		      RTRS_HB_MISSED_MAX,
1393 		      rtrs_clt_hb_err_handler,
1394 		      rtrs_wq);
1395 }
1396 
rtrs_clt_start_hb(struct rtrs_clt_sess * sess)1397 static void rtrs_clt_start_hb(struct rtrs_clt_sess *sess)
1398 {
1399 	rtrs_start_hb(&sess->s);
1400 }
1401 
rtrs_clt_stop_hb(struct rtrs_clt_sess * sess)1402 static void rtrs_clt_stop_hb(struct rtrs_clt_sess *sess)
1403 {
1404 	rtrs_stop_hb(&sess->s);
1405 }
1406 
1407 static void rtrs_clt_reconnect_work(struct work_struct *work);
1408 static void rtrs_clt_close_work(struct work_struct *work);
1409 
alloc_sess(struct rtrs_clt * clt,const struct rtrs_addr * path,size_t con_num,u16 max_segments,size_t max_segment_size)1410 static struct rtrs_clt_sess *alloc_sess(struct rtrs_clt *clt,
1411 					 const struct rtrs_addr *path,
1412 					 size_t con_num, u16 max_segments,
1413 					 size_t max_segment_size)
1414 {
1415 	struct rtrs_clt_sess *sess;
1416 	int err = -ENOMEM;
1417 	int cpu;
1418 
1419 	sess = kzalloc(sizeof(*sess), GFP_KERNEL);
1420 	if (!sess)
1421 		goto err;
1422 
1423 	/* Extra connection for user messages */
1424 	con_num += 1;
1425 
1426 	sess->s.con = kcalloc(con_num, sizeof(*sess->s.con), GFP_KERNEL);
1427 	if (!sess->s.con)
1428 		goto err_free_sess;
1429 
1430 	sess->stats = kzalloc(sizeof(*sess->stats), GFP_KERNEL);
1431 	if (!sess->stats)
1432 		goto err_free_con;
1433 
1434 	mutex_init(&sess->init_mutex);
1435 	uuid_gen(&sess->s.uuid);
1436 	memcpy(&sess->s.dst_addr, path->dst,
1437 	       rdma_addr_size((struct sockaddr *)path->dst));
1438 
1439 	/*
1440 	 * rdma_resolve_addr() passes src_addr to cma_bind_addr, which
1441 	 * checks the sa_family to be non-zero. If user passed src_addr=NULL
1442 	 * the sess->src_addr will contain only zeros, which is then fine.
1443 	 */
1444 	if (path->src)
1445 		memcpy(&sess->s.src_addr, path->src,
1446 		       rdma_addr_size((struct sockaddr *)path->src));
1447 	strlcpy(sess->s.sessname, clt->sessname, sizeof(sess->s.sessname));
1448 	sess->s.con_num = con_num;
1449 	sess->clt = clt;
1450 	sess->max_pages_per_mr = max_segments * max_segment_size >> 12;
1451 	init_waitqueue_head(&sess->state_wq);
1452 	sess->state = RTRS_CLT_CONNECTING;
1453 	atomic_set(&sess->connected_cnt, 0);
1454 	INIT_WORK(&sess->close_work, rtrs_clt_close_work);
1455 	INIT_DELAYED_WORK(&sess->reconnect_dwork, rtrs_clt_reconnect_work);
1456 	rtrs_clt_init_hb(sess);
1457 
1458 	sess->mp_skip_entry = alloc_percpu(typeof(*sess->mp_skip_entry));
1459 	if (!sess->mp_skip_entry)
1460 		goto err_free_stats;
1461 
1462 	for_each_possible_cpu(cpu)
1463 		INIT_LIST_HEAD(per_cpu_ptr(sess->mp_skip_entry, cpu));
1464 
1465 	err = rtrs_clt_init_stats(sess->stats);
1466 	if (err)
1467 		goto err_free_percpu;
1468 
1469 	return sess;
1470 
1471 err_free_percpu:
1472 	free_percpu(sess->mp_skip_entry);
1473 err_free_stats:
1474 	kfree(sess->stats);
1475 err_free_con:
1476 	kfree(sess->s.con);
1477 err_free_sess:
1478 	kfree(sess);
1479 err:
1480 	return ERR_PTR(err);
1481 }
1482 
free_sess(struct rtrs_clt_sess * sess)1483 void free_sess(struct rtrs_clt_sess *sess)
1484 {
1485 	free_percpu(sess->mp_skip_entry);
1486 	mutex_destroy(&sess->init_mutex);
1487 	kfree(sess->s.con);
1488 	kfree(sess->rbufs);
1489 	kfree(sess);
1490 }
1491 
create_con(struct rtrs_clt_sess * sess,unsigned int cid)1492 static int create_con(struct rtrs_clt_sess *sess, unsigned int cid)
1493 {
1494 	struct rtrs_clt_con *con;
1495 
1496 	con = kzalloc(sizeof(*con), GFP_KERNEL);
1497 	if (!con)
1498 		return -ENOMEM;
1499 
1500 	/* Map first two connections to the first CPU */
1501 	con->cpu  = (cid ? cid - 1 : 0) % nr_cpu_ids;
1502 	con->c.cid = cid;
1503 	con->c.sess = &sess->s;
1504 	atomic_set(&con->io_cnt, 0);
1505 
1506 	sess->s.con[cid] = &con->c;
1507 
1508 	return 0;
1509 }
1510 
destroy_con(struct rtrs_clt_con * con)1511 static void destroy_con(struct rtrs_clt_con *con)
1512 {
1513 	struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
1514 
1515 	sess->s.con[con->c.cid] = NULL;
1516 	kfree(con);
1517 }
1518 
create_con_cq_qp(struct rtrs_clt_con * con)1519 static int create_con_cq_qp(struct rtrs_clt_con *con)
1520 {
1521 	struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
1522 	u32 max_send_wr, max_recv_wr, cq_size;
1523 	int err, cq_vector;
1524 	struct rtrs_msg_rkey_rsp *rsp;
1525 
1526 	/*
1527 	 * This function can fail, but still destroy_con_cq_qp() should
1528 	 * be called, this is because create_con_cq_qp() is called on cm
1529 	 * event path, thus caller/waiter never knows: have we failed before
1530 	 * create_con_cq_qp() or after.  To solve this dilemma without
1531 	 * creating any additional flags just allow destroy_con_cq_qp() be
1532 	 * called many times.
1533 	 */
1534 
1535 	if (con->c.cid == 0) {
1536 		/*
1537 		 * One completion for each receive and two for each send
1538 		 * (send request + registration)
1539 		 * + 2 for drain and heartbeat
1540 		 * in case qp gets into error state
1541 		 */
1542 		max_send_wr = SERVICE_CON_QUEUE_DEPTH * 2 + 2;
1543 		max_recv_wr = SERVICE_CON_QUEUE_DEPTH * 2 + 2;
1544 		/* We must be the first here */
1545 		if (WARN_ON(sess->s.dev))
1546 			return -EINVAL;
1547 
1548 		/*
1549 		 * The whole session uses device from user connection.
1550 		 * Be careful not to close user connection before ib dev
1551 		 * is gracefully put.
1552 		 */
1553 		sess->s.dev = rtrs_ib_dev_find_or_add(con->c.cm_id->device,
1554 						       &dev_pd);
1555 		if (!sess->s.dev) {
1556 			rtrs_wrn(sess->clt,
1557 				  "rtrs_ib_dev_find_get_or_add(): no memory\n");
1558 			return -ENOMEM;
1559 		}
1560 		sess->s.dev_ref = 1;
1561 		query_fast_reg_mode(sess);
1562 	} else {
1563 		/*
1564 		 * Here we assume that session members are correctly set.
1565 		 * This is always true if user connection (cid == 0) is
1566 		 * established first.
1567 		 */
1568 		if (WARN_ON(!sess->s.dev))
1569 			return -EINVAL;
1570 		if (WARN_ON(!sess->queue_depth))
1571 			return -EINVAL;
1572 
1573 		/* Shared between connections */
1574 		sess->s.dev_ref++;
1575 		max_send_wr =
1576 			min_t(int, sess->s.dev->ib_dev->attrs.max_qp_wr,
1577 			      /* QD * (REQ + RSP + FR REGS or INVS) + drain */
1578 			      sess->queue_depth * 3 + 1);
1579 		max_recv_wr =
1580 			min_t(int, sess->s.dev->ib_dev->attrs.max_qp_wr,
1581 			      sess->queue_depth * 3 + 1);
1582 	}
1583 	/* alloc iu to recv new rkey reply when server reports flags set */
1584 	if (sess->flags & RTRS_MSG_NEW_RKEY_F || con->c.cid == 0) {
1585 		con->rsp_ius = rtrs_iu_alloc(max_recv_wr, sizeof(*rsp),
1586 					      GFP_KERNEL, sess->s.dev->ib_dev,
1587 					      DMA_FROM_DEVICE,
1588 					      rtrs_clt_rdma_done);
1589 		if (!con->rsp_ius)
1590 			return -ENOMEM;
1591 		con->queue_size = max_recv_wr;
1592 	}
1593 	cq_size = max_send_wr + max_recv_wr;
1594 	cq_vector = con->cpu % sess->s.dev->ib_dev->num_comp_vectors;
1595 	err = rtrs_cq_qp_create(&sess->s, &con->c, sess->max_send_sge,
1596 				 cq_vector, cq_size, max_send_wr,
1597 				 max_recv_wr, IB_POLL_SOFTIRQ);
1598 	/*
1599 	 * In case of error we do not bother to clean previous allocations,
1600 	 * since destroy_con_cq_qp() must be called.
1601 	 */
1602 	return err;
1603 }
1604 
destroy_con_cq_qp(struct rtrs_clt_con * con)1605 static void destroy_con_cq_qp(struct rtrs_clt_con *con)
1606 {
1607 	struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
1608 
1609 	/*
1610 	 * Be careful here: destroy_con_cq_qp() can be called even
1611 	 * create_con_cq_qp() failed, see comments there.
1612 	 */
1613 
1614 	rtrs_cq_qp_destroy(&con->c);
1615 	if (con->rsp_ius) {
1616 		rtrs_iu_free(con->rsp_ius, sess->s.dev->ib_dev, con->queue_size);
1617 		con->rsp_ius = NULL;
1618 		con->queue_size = 0;
1619 	}
1620 	if (sess->s.dev_ref && !--sess->s.dev_ref) {
1621 		rtrs_ib_dev_put(sess->s.dev);
1622 		sess->s.dev = NULL;
1623 	}
1624 }
1625 
stop_cm(struct rtrs_clt_con * con)1626 static void stop_cm(struct rtrs_clt_con *con)
1627 {
1628 	rdma_disconnect(con->c.cm_id);
1629 	if (con->c.qp)
1630 		ib_drain_qp(con->c.qp);
1631 }
1632 
destroy_cm(struct rtrs_clt_con * con)1633 static void destroy_cm(struct rtrs_clt_con *con)
1634 {
1635 	rdma_destroy_id(con->c.cm_id);
1636 	con->c.cm_id = NULL;
1637 }
1638 
rtrs_rdma_addr_resolved(struct rtrs_clt_con * con)1639 static int rtrs_rdma_addr_resolved(struct rtrs_clt_con *con)
1640 {
1641 	struct rtrs_sess *s = con->c.sess;
1642 	int err;
1643 
1644 	err = create_con_cq_qp(con);
1645 	if (err) {
1646 		rtrs_err(s, "create_con_cq_qp(), err: %d\n", err);
1647 		return err;
1648 	}
1649 	err = rdma_resolve_route(con->c.cm_id, RTRS_CONNECT_TIMEOUT_MS);
1650 	if (err)
1651 		rtrs_err(s, "Resolving route failed, err: %d\n", err);
1652 
1653 	return err;
1654 }
1655 
rtrs_rdma_route_resolved(struct rtrs_clt_con * con)1656 static int rtrs_rdma_route_resolved(struct rtrs_clt_con *con)
1657 {
1658 	struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
1659 	struct rtrs_clt *clt = sess->clt;
1660 	struct rtrs_msg_conn_req msg;
1661 	struct rdma_conn_param param;
1662 
1663 	int err;
1664 
1665 	param = (struct rdma_conn_param) {
1666 		.retry_count = 7,
1667 		.rnr_retry_count = 7,
1668 		.private_data = &msg,
1669 		.private_data_len = sizeof(msg),
1670 	};
1671 
1672 	msg = (struct rtrs_msg_conn_req) {
1673 		.magic = cpu_to_le16(RTRS_MAGIC),
1674 		.version = cpu_to_le16(RTRS_PROTO_VER),
1675 		.cid = cpu_to_le16(con->c.cid),
1676 		.cid_num = cpu_to_le16(sess->s.con_num),
1677 		.recon_cnt = cpu_to_le16(sess->s.recon_cnt),
1678 	};
1679 	msg.first_conn = sess->for_new_clt ? FIRST_CONN : 0;
1680 	uuid_copy(&msg.sess_uuid, &sess->s.uuid);
1681 	uuid_copy(&msg.paths_uuid, &clt->paths_uuid);
1682 
1683 	err = rdma_connect_locked(con->c.cm_id, &param);
1684 	if (err)
1685 		rtrs_err(clt, "rdma_connect_locked(): %d\n", err);
1686 
1687 	return err;
1688 }
1689 
rtrs_rdma_conn_established(struct rtrs_clt_con * con,struct rdma_cm_event * ev)1690 static int rtrs_rdma_conn_established(struct rtrs_clt_con *con,
1691 				       struct rdma_cm_event *ev)
1692 {
1693 	struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
1694 	struct rtrs_clt *clt = sess->clt;
1695 	const struct rtrs_msg_conn_rsp *msg;
1696 	u16 version, queue_depth;
1697 	int errno;
1698 	u8 len;
1699 
1700 	msg = ev->param.conn.private_data;
1701 	len = ev->param.conn.private_data_len;
1702 	if (len < sizeof(*msg)) {
1703 		rtrs_err(clt, "Invalid RTRS connection response\n");
1704 		return -ECONNRESET;
1705 	}
1706 	if (le16_to_cpu(msg->magic) != RTRS_MAGIC) {
1707 		rtrs_err(clt, "Invalid RTRS magic\n");
1708 		return -ECONNRESET;
1709 	}
1710 	version = le16_to_cpu(msg->version);
1711 	if (version >> 8 != RTRS_PROTO_VER_MAJOR) {
1712 		rtrs_err(clt, "Unsupported major RTRS version: %d, expected %d\n",
1713 			  version >> 8, RTRS_PROTO_VER_MAJOR);
1714 		return -ECONNRESET;
1715 	}
1716 	errno = le16_to_cpu(msg->errno);
1717 	if (errno) {
1718 		rtrs_err(clt, "Invalid RTRS message: errno %d\n",
1719 			  errno);
1720 		return -ECONNRESET;
1721 	}
1722 	if (con->c.cid == 0) {
1723 		queue_depth = le16_to_cpu(msg->queue_depth);
1724 
1725 		if (queue_depth > MAX_SESS_QUEUE_DEPTH) {
1726 			rtrs_err(clt, "Invalid RTRS message: queue=%d\n",
1727 				  queue_depth);
1728 			return -ECONNRESET;
1729 		}
1730 		if (sess->queue_depth > 0 && queue_depth != sess->queue_depth) {
1731 			rtrs_err(clt, "Error: queue depth changed\n");
1732 
1733 			/*
1734 			 * Stop any more reconnection attempts
1735 			 */
1736 			sess->reconnect_attempts = -1;
1737 			rtrs_err(clt,
1738 				"Disabling auto-reconnect. Trigger a manual reconnect after issue is resolved\n");
1739 			return -ECONNRESET;
1740 		}
1741 
1742 		if (!sess->rbufs) {
1743 			kfree(sess->rbufs);
1744 			sess->rbufs = kcalloc(queue_depth, sizeof(*sess->rbufs),
1745 					      GFP_KERNEL);
1746 			if (!sess->rbufs)
1747 				return -ENOMEM;
1748 		}
1749 		sess->queue_depth = queue_depth;
1750 		sess->max_hdr_size = le32_to_cpu(msg->max_hdr_size);
1751 		sess->max_io_size = le32_to_cpu(msg->max_io_size);
1752 		sess->flags = le32_to_cpu(msg->flags);
1753 		sess->chunk_size = sess->max_io_size + sess->max_hdr_size;
1754 
1755 		/*
1756 		 * Global IO size is always a minimum.
1757 		 * If while a reconnection server sends us a value a bit
1758 		 * higher - client does not care and uses cached minimum.
1759 		 *
1760 		 * Since we can have several sessions (paths) restablishing
1761 		 * connections in parallel, use lock.
1762 		 */
1763 		mutex_lock(&clt->paths_mutex);
1764 		clt->queue_depth = sess->queue_depth;
1765 		clt->max_io_size = min_not_zero(sess->max_io_size,
1766 						clt->max_io_size);
1767 		mutex_unlock(&clt->paths_mutex);
1768 
1769 		/*
1770 		 * Cache the hca_port and hca_name for sysfs
1771 		 */
1772 		sess->hca_port = con->c.cm_id->port_num;
1773 		scnprintf(sess->hca_name, sizeof(sess->hca_name),
1774 			  sess->s.dev->ib_dev->name);
1775 		sess->s.src_addr = con->c.cm_id->route.addr.src_addr;
1776 		/* set for_new_clt, to allow future reconnect on any path */
1777 		sess->for_new_clt = 1;
1778 	}
1779 
1780 	return 0;
1781 }
1782 
flag_success_on_conn(struct rtrs_clt_con * con)1783 static inline void flag_success_on_conn(struct rtrs_clt_con *con)
1784 {
1785 	struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
1786 
1787 	atomic_inc(&sess->connected_cnt);
1788 	con->cm_err = 1;
1789 }
1790 
rtrs_rdma_conn_rejected(struct rtrs_clt_con * con,struct rdma_cm_event * ev)1791 static int rtrs_rdma_conn_rejected(struct rtrs_clt_con *con,
1792 				    struct rdma_cm_event *ev)
1793 {
1794 	struct rtrs_sess *s = con->c.sess;
1795 	const struct rtrs_msg_conn_rsp *msg;
1796 	const char *rej_msg;
1797 	int status, errno;
1798 	u8 data_len;
1799 
1800 	status = ev->status;
1801 	rej_msg = rdma_reject_msg(con->c.cm_id, status);
1802 	msg = rdma_consumer_reject_data(con->c.cm_id, ev, &data_len);
1803 
1804 	if (msg && data_len >= sizeof(*msg)) {
1805 		errno = (int16_t)le16_to_cpu(msg->errno);
1806 		if (errno == -EBUSY)
1807 			rtrs_err(s,
1808 				  "Previous session is still exists on the server, please reconnect later\n");
1809 		else
1810 			rtrs_err(s,
1811 				  "Connect rejected: status %d (%s), rtrs errno %d\n",
1812 				  status, rej_msg, errno);
1813 	} else {
1814 		rtrs_err(s,
1815 			  "Connect rejected but with malformed message: status %d (%s)\n",
1816 			  status, rej_msg);
1817 	}
1818 
1819 	return -ECONNRESET;
1820 }
1821 
rtrs_clt_close_conns(struct rtrs_clt_sess * sess,bool wait)1822 static void rtrs_clt_close_conns(struct rtrs_clt_sess *sess, bool wait)
1823 {
1824 	if (rtrs_clt_change_state(sess, RTRS_CLT_CLOSING))
1825 		queue_work(rtrs_wq, &sess->close_work);
1826 	if (wait)
1827 		flush_work(&sess->close_work);
1828 }
1829 
flag_error_on_conn(struct rtrs_clt_con * con,int cm_err)1830 static inline void flag_error_on_conn(struct rtrs_clt_con *con, int cm_err)
1831 {
1832 	if (con->cm_err == 1) {
1833 		struct rtrs_clt_sess *sess;
1834 
1835 		sess = to_clt_sess(con->c.sess);
1836 		if (atomic_dec_and_test(&sess->connected_cnt))
1837 
1838 			wake_up(&sess->state_wq);
1839 	}
1840 	con->cm_err = cm_err;
1841 }
1842 
rtrs_clt_rdma_cm_handler(struct rdma_cm_id * cm_id,struct rdma_cm_event * ev)1843 static int rtrs_clt_rdma_cm_handler(struct rdma_cm_id *cm_id,
1844 				     struct rdma_cm_event *ev)
1845 {
1846 	struct rtrs_clt_con *con = cm_id->context;
1847 	struct rtrs_sess *s = con->c.sess;
1848 	struct rtrs_clt_sess *sess = to_clt_sess(s);
1849 	int cm_err = 0;
1850 
1851 	switch (ev->event) {
1852 	case RDMA_CM_EVENT_ADDR_RESOLVED:
1853 		cm_err = rtrs_rdma_addr_resolved(con);
1854 		break;
1855 	case RDMA_CM_EVENT_ROUTE_RESOLVED:
1856 		cm_err = rtrs_rdma_route_resolved(con);
1857 		break;
1858 	case RDMA_CM_EVENT_ESTABLISHED:
1859 		cm_err = rtrs_rdma_conn_established(con, ev);
1860 		if (likely(!cm_err)) {
1861 			/*
1862 			 * Report success and wake up. Here we abuse state_wq,
1863 			 * i.e. wake up without state change, but we set cm_err.
1864 			 */
1865 			flag_success_on_conn(con);
1866 			wake_up(&sess->state_wq);
1867 			return 0;
1868 		}
1869 		break;
1870 	case RDMA_CM_EVENT_REJECTED:
1871 		cm_err = rtrs_rdma_conn_rejected(con, ev);
1872 		break;
1873 	case RDMA_CM_EVENT_CONNECT_ERROR:
1874 	case RDMA_CM_EVENT_UNREACHABLE:
1875 		rtrs_wrn(s, "CM error event %d\n", ev->event);
1876 		cm_err = -ECONNRESET;
1877 		break;
1878 	case RDMA_CM_EVENT_ADDR_ERROR:
1879 	case RDMA_CM_EVENT_ROUTE_ERROR:
1880 		cm_err = -EHOSTUNREACH;
1881 		break;
1882 	case RDMA_CM_EVENT_DISCONNECTED:
1883 	case RDMA_CM_EVENT_ADDR_CHANGE:
1884 	case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1885 		cm_err = -ECONNRESET;
1886 		break;
1887 	case RDMA_CM_EVENT_DEVICE_REMOVAL:
1888 		/*
1889 		 * Device removal is a special case.  Queue close and return 0.
1890 		 */
1891 		rtrs_clt_close_conns(sess, false);
1892 		return 0;
1893 	default:
1894 		rtrs_err(s, "Unexpected RDMA CM event (%d)\n", ev->event);
1895 		cm_err = -ECONNRESET;
1896 		break;
1897 	}
1898 
1899 	if (cm_err) {
1900 		/*
1901 		 * cm error makes sense only on connection establishing,
1902 		 * in other cases we rely on normal procedure of reconnecting.
1903 		 */
1904 		flag_error_on_conn(con, cm_err);
1905 		rtrs_rdma_error_recovery(con);
1906 	}
1907 
1908 	return 0;
1909 }
1910 
create_cm(struct rtrs_clt_con * con)1911 static int create_cm(struct rtrs_clt_con *con)
1912 {
1913 	struct rtrs_sess *s = con->c.sess;
1914 	struct rtrs_clt_sess *sess = to_clt_sess(s);
1915 	struct rdma_cm_id *cm_id;
1916 	int err;
1917 
1918 	cm_id = rdma_create_id(&init_net, rtrs_clt_rdma_cm_handler, con,
1919 			       sess->s.dst_addr.ss_family == AF_IB ?
1920 			       RDMA_PS_IB : RDMA_PS_TCP, IB_QPT_RC);
1921 	if (IS_ERR(cm_id)) {
1922 		err = PTR_ERR(cm_id);
1923 		rtrs_err(s, "Failed to create CM ID, err: %d\n", err);
1924 
1925 		return err;
1926 	}
1927 	con->c.cm_id = cm_id;
1928 	con->cm_err = 0;
1929 	/* allow the port to be reused */
1930 	err = rdma_set_reuseaddr(cm_id, 1);
1931 	if (err != 0) {
1932 		rtrs_err(s, "Set address reuse failed, err: %d\n", err);
1933 		goto destroy_cm;
1934 	}
1935 	err = rdma_resolve_addr(cm_id, (struct sockaddr *)&sess->s.src_addr,
1936 				(struct sockaddr *)&sess->s.dst_addr,
1937 				RTRS_CONNECT_TIMEOUT_MS);
1938 	if (err) {
1939 		rtrs_err(s, "Failed to resolve address, err: %d\n", err);
1940 		goto destroy_cm;
1941 	}
1942 	/*
1943 	 * Combine connection status and session events. This is needed
1944 	 * for waiting two possible cases: cm_err has something meaningful
1945 	 * or session state was really changed to error by device removal.
1946 	 */
1947 	err = wait_event_interruptible_timeout(
1948 			sess->state_wq,
1949 			con->cm_err || sess->state != RTRS_CLT_CONNECTING,
1950 			msecs_to_jiffies(RTRS_CONNECT_TIMEOUT_MS));
1951 	if (err == 0 || err == -ERESTARTSYS) {
1952 		if (err == 0)
1953 			err = -ETIMEDOUT;
1954 		/* Timedout or interrupted */
1955 		goto errr;
1956 	}
1957 	if (con->cm_err < 0) {
1958 		err = con->cm_err;
1959 		goto errr;
1960 	}
1961 	if (READ_ONCE(sess->state) != RTRS_CLT_CONNECTING) {
1962 		/* Device removal */
1963 		err = -ECONNABORTED;
1964 		goto errr;
1965 	}
1966 
1967 	return 0;
1968 
1969 errr:
1970 	stop_cm(con);
1971 	/* Is safe to call destroy if cq_qp is not inited */
1972 	destroy_con_cq_qp(con);
1973 destroy_cm:
1974 	destroy_cm(con);
1975 
1976 	return err;
1977 }
1978 
rtrs_clt_sess_up(struct rtrs_clt_sess * sess)1979 static void rtrs_clt_sess_up(struct rtrs_clt_sess *sess)
1980 {
1981 	struct rtrs_clt *clt = sess->clt;
1982 	int up;
1983 
1984 	/*
1985 	 * We can fire RECONNECTED event only when all paths were
1986 	 * connected on rtrs_clt_open(), then each was disconnected
1987 	 * and the first one connected again.  That's why this nasty
1988 	 * game with counter value.
1989 	 */
1990 
1991 	mutex_lock(&clt->paths_ev_mutex);
1992 	up = ++clt->paths_up;
1993 	/*
1994 	 * Here it is safe to access paths num directly since up counter
1995 	 * is greater than MAX_PATHS_NUM only while rtrs_clt_open() is
1996 	 * in progress, thus paths removals are impossible.
1997 	 */
1998 	if (up > MAX_PATHS_NUM && up == MAX_PATHS_NUM + clt->paths_num)
1999 		clt->paths_up = clt->paths_num;
2000 	else if (up == 1)
2001 		clt->link_ev(clt->priv, RTRS_CLT_LINK_EV_RECONNECTED);
2002 	mutex_unlock(&clt->paths_ev_mutex);
2003 
2004 	/* Mark session as established */
2005 	sess->established = true;
2006 	sess->reconnect_attempts = 0;
2007 	sess->stats->reconnects.successful_cnt++;
2008 }
2009 
rtrs_clt_sess_down(struct rtrs_clt_sess * sess)2010 static void rtrs_clt_sess_down(struct rtrs_clt_sess *sess)
2011 {
2012 	struct rtrs_clt *clt = sess->clt;
2013 
2014 	if (!sess->established)
2015 		return;
2016 
2017 	sess->established = false;
2018 	mutex_lock(&clt->paths_ev_mutex);
2019 	WARN_ON(!clt->paths_up);
2020 	if (--clt->paths_up == 0)
2021 		clt->link_ev(clt->priv, RTRS_CLT_LINK_EV_DISCONNECTED);
2022 	mutex_unlock(&clt->paths_ev_mutex);
2023 }
2024 
rtrs_clt_stop_and_destroy_conns(struct rtrs_clt_sess * sess)2025 static void rtrs_clt_stop_and_destroy_conns(struct rtrs_clt_sess *sess)
2026 {
2027 	struct rtrs_clt_con *con;
2028 	unsigned int cid;
2029 
2030 	WARN_ON(READ_ONCE(sess->state) == RTRS_CLT_CONNECTED);
2031 
2032 	/*
2033 	 * Possible race with rtrs_clt_open(), when DEVICE_REMOVAL comes
2034 	 * exactly in between.  Start destroying after it finishes.
2035 	 */
2036 	mutex_lock(&sess->init_mutex);
2037 	mutex_unlock(&sess->init_mutex);
2038 
2039 	/*
2040 	 * All IO paths must observe !CONNECTED state before we
2041 	 * free everything.
2042 	 */
2043 	synchronize_rcu();
2044 
2045 	rtrs_clt_stop_hb(sess);
2046 
2047 	/*
2048 	 * The order it utterly crucial: firstly disconnect and complete all
2049 	 * rdma requests with error (thus set in_use=false for requests),
2050 	 * then fail outstanding requests checking in_use for each, and
2051 	 * eventually notify upper layer about session disconnection.
2052 	 */
2053 
2054 	for (cid = 0; cid < sess->s.con_num; cid++) {
2055 		if (!sess->s.con[cid])
2056 			break;
2057 		con = to_clt_con(sess->s.con[cid]);
2058 		stop_cm(con);
2059 	}
2060 	fail_all_outstanding_reqs(sess);
2061 	free_sess_reqs(sess);
2062 	rtrs_clt_sess_down(sess);
2063 
2064 	/*
2065 	 * Wait for graceful shutdown, namely when peer side invokes
2066 	 * rdma_disconnect(). 'connected_cnt' is decremented only on
2067 	 * CM events, thus if other side had crashed and hb has detected
2068 	 * something is wrong, here we will stuck for exactly timeout ms,
2069 	 * since CM does not fire anything.  That is fine, we are not in
2070 	 * hurry.
2071 	 */
2072 	wait_event_timeout(sess->state_wq, !atomic_read(&sess->connected_cnt),
2073 			   msecs_to_jiffies(RTRS_CONNECT_TIMEOUT_MS));
2074 
2075 	for (cid = 0; cid < sess->s.con_num; cid++) {
2076 		if (!sess->s.con[cid])
2077 			break;
2078 		con = to_clt_con(sess->s.con[cid]);
2079 		destroy_con_cq_qp(con);
2080 		destroy_cm(con);
2081 		destroy_con(con);
2082 	}
2083 }
2084 
xchg_sessions(struct rtrs_clt_sess __rcu ** rcu_ppcpu_path,struct rtrs_clt_sess * sess,struct rtrs_clt_sess * next)2085 static inline bool xchg_sessions(struct rtrs_clt_sess __rcu **rcu_ppcpu_path,
2086 				 struct rtrs_clt_sess *sess,
2087 				 struct rtrs_clt_sess *next)
2088 {
2089 	struct rtrs_clt_sess **ppcpu_path;
2090 
2091 	/* Call cmpxchg() without sparse warnings */
2092 	ppcpu_path = (typeof(ppcpu_path))rcu_ppcpu_path;
2093 	return sess == cmpxchg(ppcpu_path, sess, next);
2094 }
2095 
rtrs_clt_remove_path_from_arr(struct rtrs_clt_sess * sess)2096 static void rtrs_clt_remove_path_from_arr(struct rtrs_clt_sess *sess)
2097 {
2098 	struct rtrs_clt *clt = sess->clt;
2099 	struct rtrs_clt_sess *next;
2100 	bool wait_for_grace = false;
2101 	int cpu;
2102 
2103 	mutex_lock(&clt->paths_mutex);
2104 	list_del_rcu(&sess->s.entry);
2105 
2106 	/* Make sure everybody observes path removal. */
2107 	synchronize_rcu();
2108 
2109 	/*
2110 	 * At this point nobody sees @sess in the list, but still we have
2111 	 * dangling pointer @pcpu_path which _can_ point to @sess.  Since
2112 	 * nobody can observe @sess in the list, we guarantee that IO path
2113 	 * will not assign @sess to @pcpu_path, i.e. @pcpu_path can be equal
2114 	 * to @sess, but can never again become @sess.
2115 	 */
2116 
2117 	/*
2118 	 * Decrement paths number only after grace period, because
2119 	 * caller of do_each_path() must firstly observe list without
2120 	 * path and only then decremented paths number.
2121 	 *
2122 	 * Otherwise there can be the following situation:
2123 	 *    o Two paths exist and IO is coming.
2124 	 *    o One path is removed:
2125 	 *      CPU#0                          CPU#1
2126 	 *      do_each_path():                rtrs_clt_remove_path_from_arr():
2127 	 *          path = get_next_path()
2128 	 *          ^^^                            list_del_rcu(path)
2129 	 *          [!CONNECTED path]              clt->paths_num--
2130 	 *                                              ^^^^^^^^^
2131 	 *          load clt->paths_num                 from 2 to 1
2132 	 *                    ^^^^^^^^^
2133 	 *                    sees 1
2134 	 *
2135 	 *      path is observed as !CONNECTED, but do_each_path() loop
2136 	 *      ends, because expression i < clt->paths_num is false.
2137 	 */
2138 	clt->paths_num--;
2139 
2140 	/*
2141 	 * Get @next connection from current @sess which is going to be
2142 	 * removed.  If @sess is the last element, then @next is NULL.
2143 	 */
2144 	rcu_read_lock();
2145 	next = list_next_or_null_rr_rcu(&clt->paths_list, &sess->s.entry,
2146 					typeof(*next), s.entry);
2147 	rcu_read_unlock();
2148 
2149 	/*
2150 	 * @pcpu paths can still point to the path which is going to be
2151 	 * removed, so change the pointer manually.
2152 	 */
2153 	for_each_possible_cpu(cpu) {
2154 		struct rtrs_clt_sess __rcu **ppcpu_path;
2155 
2156 		ppcpu_path = per_cpu_ptr(clt->pcpu_path, cpu);
2157 		if (rcu_dereference_protected(*ppcpu_path,
2158 			lockdep_is_held(&clt->paths_mutex)) != sess)
2159 			/*
2160 			 * synchronize_rcu() was called just after deleting
2161 			 * entry from the list, thus IO code path cannot
2162 			 * change pointer back to the pointer which is going
2163 			 * to be removed, we are safe here.
2164 			 */
2165 			continue;
2166 
2167 		/*
2168 		 * We race with IO code path, which also changes pointer,
2169 		 * thus we have to be careful not to overwrite it.
2170 		 */
2171 		if (xchg_sessions(ppcpu_path, sess, next))
2172 			/*
2173 			 * @ppcpu_path was successfully replaced with @next,
2174 			 * that means that someone could also pick up the
2175 			 * @sess and dereferencing it right now, so wait for
2176 			 * a grace period is required.
2177 			 */
2178 			wait_for_grace = true;
2179 	}
2180 	if (wait_for_grace)
2181 		synchronize_rcu();
2182 
2183 	mutex_unlock(&clt->paths_mutex);
2184 }
2185 
rtrs_clt_add_path_to_arr(struct rtrs_clt_sess * sess,struct rtrs_addr * addr)2186 static void rtrs_clt_add_path_to_arr(struct rtrs_clt_sess *sess,
2187 				      struct rtrs_addr *addr)
2188 {
2189 	struct rtrs_clt *clt = sess->clt;
2190 
2191 	mutex_lock(&clt->paths_mutex);
2192 	clt->paths_num++;
2193 
2194 	list_add_tail_rcu(&sess->s.entry, &clt->paths_list);
2195 	mutex_unlock(&clt->paths_mutex);
2196 }
2197 
rtrs_clt_close_work(struct work_struct * work)2198 static void rtrs_clt_close_work(struct work_struct *work)
2199 {
2200 	struct rtrs_clt_sess *sess;
2201 
2202 	sess = container_of(work, struct rtrs_clt_sess, close_work);
2203 
2204 	cancel_delayed_work_sync(&sess->reconnect_dwork);
2205 	rtrs_clt_stop_and_destroy_conns(sess);
2206 	rtrs_clt_change_state(sess, RTRS_CLT_CLOSED);
2207 }
2208 
init_conns(struct rtrs_clt_sess * sess)2209 static int init_conns(struct rtrs_clt_sess *sess)
2210 {
2211 	unsigned int cid;
2212 	int err;
2213 
2214 	/*
2215 	 * On every new session connections increase reconnect counter
2216 	 * to avoid clashes with previous sessions not yet closed
2217 	 * sessions on a server side.
2218 	 */
2219 	sess->s.recon_cnt++;
2220 
2221 	/* Establish all RDMA connections  */
2222 	for (cid = 0; cid < sess->s.con_num; cid++) {
2223 		err = create_con(sess, cid);
2224 		if (err)
2225 			goto destroy;
2226 
2227 		err = create_cm(to_clt_con(sess->s.con[cid]));
2228 		if (err) {
2229 			destroy_con(to_clt_con(sess->s.con[cid]));
2230 			goto destroy;
2231 		}
2232 	}
2233 	err = alloc_sess_reqs(sess);
2234 	if (err)
2235 		goto destroy;
2236 
2237 	rtrs_clt_start_hb(sess);
2238 
2239 	return 0;
2240 
2241 destroy:
2242 	while (cid--) {
2243 		struct rtrs_clt_con *con = to_clt_con(sess->s.con[cid]);
2244 
2245 		stop_cm(con);
2246 		destroy_con_cq_qp(con);
2247 		destroy_cm(con);
2248 		destroy_con(con);
2249 	}
2250 	/*
2251 	 * If we've never taken async path and got an error, say,
2252 	 * doing rdma_resolve_addr(), switch to CONNECTION_ERR state
2253 	 * manually to keep reconnecting.
2254 	 */
2255 	rtrs_clt_change_state(sess, RTRS_CLT_CONNECTING_ERR);
2256 
2257 	return err;
2258 }
2259 
rtrs_clt_info_req_done(struct ib_cq * cq,struct ib_wc * wc)2260 static void rtrs_clt_info_req_done(struct ib_cq *cq, struct ib_wc *wc)
2261 {
2262 	struct rtrs_clt_con *con = cq->cq_context;
2263 	struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
2264 	struct rtrs_iu *iu;
2265 
2266 	iu = container_of(wc->wr_cqe, struct rtrs_iu, cqe);
2267 	rtrs_iu_free(iu, sess->s.dev->ib_dev, 1);
2268 
2269 	if (unlikely(wc->status != IB_WC_SUCCESS)) {
2270 		rtrs_err(sess->clt, "Sess info request send failed: %s\n",
2271 			  ib_wc_status_msg(wc->status));
2272 		rtrs_clt_change_state(sess, RTRS_CLT_CONNECTING_ERR);
2273 		return;
2274 	}
2275 
2276 	rtrs_clt_update_wc_stats(con);
2277 }
2278 
process_info_rsp(struct rtrs_clt_sess * sess,const struct rtrs_msg_info_rsp * msg)2279 static int process_info_rsp(struct rtrs_clt_sess *sess,
2280 			    const struct rtrs_msg_info_rsp *msg)
2281 {
2282 	unsigned int sg_cnt, total_len;
2283 	int i, sgi;
2284 
2285 	sg_cnt = le16_to_cpu(msg->sg_cnt);
2286 	if (unlikely(!sg_cnt))
2287 		return -EINVAL;
2288 	/*
2289 	 * Check if IB immediate data size is enough to hold the mem_id and
2290 	 * the offset inside the memory chunk.
2291 	 */
2292 	if (unlikely((ilog2(sg_cnt - 1) + 1) +
2293 		     (ilog2(sess->chunk_size - 1) + 1) >
2294 		     MAX_IMM_PAYL_BITS)) {
2295 		rtrs_err(sess->clt,
2296 			  "RDMA immediate size (%db) not enough to encode %d buffers of size %dB\n",
2297 			  MAX_IMM_PAYL_BITS, sg_cnt, sess->chunk_size);
2298 		return -EINVAL;
2299 	}
2300 	if (unlikely(!sg_cnt || (sess->queue_depth % sg_cnt))) {
2301 		rtrs_err(sess->clt, "Incorrect sg_cnt %d, is not multiple\n",
2302 			  sg_cnt);
2303 		return -EINVAL;
2304 	}
2305 	total_len = 0;
2306 	for (sgi = 0, i = 0; sgi < sg_cnt && i < sess->queue_depth; sgi++) {
2307 		const struct rtrs_sg_desc *desc = &msg->desc[sgi];
2308 		u32 len, rkey;
2309 		u64 addr;
2310 
2311 		addr = le64_to_cpu(desc->addr);
2312 		rkey = le32_to_cpu(desc->key);
2313 		len  = le32_to_cpu(desc->len);
2314 
2315 		total_len += len;
2316 
2317 		if (unlikely(!len || (len % sess->chunk_size))) {
2318 			rtrs_err(sess->clt, "Incorrect [%d].len %d\n", sgi,
2319 				  len);
2320 			return -EINVAL;
2321 		}
2322 		for ( ; len && i < sess->queue_depth; i++) {
2323 			sess->rbufs[i].addr = addr;
2324 			sess->rbufs[i].rkey = rkey;
2325 
2326 			len  -= sess->chunk_size;
2327 			addr += sess->chunk_size;
2328 		}
2329 	}
2330 	/* Sanity check */
2331 	if (unlikely(sgi != sg_cnt || i != sess->queue_depth)) {
2332 		rtrs_err(sess->clt, "Incorrect sg vector, not fully mapped\n");
2333 		return -EINVAL;
2334 	}
2335 	if (unlikely(total_len != sess->chunk_size * sess->queue_depth)) {
2336 		rtrs_err(sess->clt, "Incorrect total_len %d\n", total_len);
2337 		return -EINVAL;
2338 	}
2339 
2340 	return 0;
2341 }
2342 
rtrs_clt_info_rsp_done(struct ib_cq * cq,struct ib_wc * wc)2343 static void rtrs_clt_info_rsp_done(struct ib_cq *cq, struct ib_wc *wc)
2344 {
2345 	struct rtrs_clt_con *con = cq->cq_context;
2346 	struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
2347 	struct rtrs_msg_info_rsp *msg;
2348 	enum rtrs_clt_state state;
2349 	struct rtrs_iu *iu;
2350 	size_t rx_sz;
2351 	int err;
2352 
2353 	state = RTRS_CLT_CONNECTING_ERR;
2354 
2355 	WARN_ON(con->c.cid);
2356 	iu = container_of(wc->wr_cqe, struct rtrs_iu, cqe);
2357 	if (unlikely(wc->status != IB_WC_SUCCESS)) {
2358 		rtrs_err(sess->clt, "Sess info response recv failed: %s\n",
2359 			  ib_wc_status_msg(wc->status));
2360 		goto out;
2361 	}
2362 	WARN_ON(wc->opcode != IB_WC_RECV);
2363 
2364 	if (unlikely(wc->byte_len < sizeof(*msg))) {
2365 		rtrs_err(sess->clt, "Sess info response is malformed: size %d\n",
2366 			  wc->byte_len);
2367 		goto out;
2368 	}
2369 	ib_dma_sync_single_for_cpu(sess->s.dev->ib_dev, iu->dma_addr,
2370 				   iu->size, DMA_FROM_DEVICE);
2371 	msg = iu->buf;
2372 	if (unlikely(le16_to_cpu(msg->type) != RTRS_MSG_INFO_RSP)) {
2373 		rtrs_err(sess->clt, "Sess info response is malformed: type %d\n",
2374 			  le16_to_cpu(msg->type));
2375 		goto out;
2376 	}
2377 	rx_sz  = sizeof(*msg);
2378 	rx_sz += sizeof(msg->desc[0]) * le16_to_cpu(msg->sg_cnt);
2379 	if (unlikely(wc->byte_len < rx_sz)) {
2380 		rtrs_err(sess->clt, "Sess info response is malformed: size %d\n",
2381 			  wc->byte_len);
2382 		goto out;
2383 	}
2384 	err = process_info_rsp(sess, msg);
2385 	if (unlikely(err))
2386 		goto out;
2387 
2388 	err = post_recv_sess(sess);
2389 	if (unlikely(err))
2390 		goto out;
2391 
2392 	state = RTRS_CLT_CONNECTED;
2393 
2394 out:
2395 	rtrs_clt_update_wc_stats(con);
2396 	rtrs_iu_free(iu, sess->s.dev->ib_dev, 1);
2397 	rtrs_clt_change_state(sess, state);
2398 }
2399 
rtrs_send_sess_info(struct rtrs_clt_sess * sess)2400 static int rtrs_send_sess_info(struct rtrs_clt_sess *sess)
2401 {
2402 	struct rtrs_clt_con *usr_con = to_clt_con(sess->s.con[0]);
2403 	struct rtrs_msg_info_req *msg;
2404 	struct rtrs_iu *tx_iu, *rx_iu;
2405 	size_t rx_sz;
2406 	int err;
2407 
2408 	rx_sz  = sizeof(struct rtrs_msg_info_rsp);
2409 	rx_sz += sizeof(u64) * MAX_SESS_QUEUE_DEPTH;
2410 
2411 	tx_iu = rtrs_iu_alloc(1, sizeof(struct rtrs_msg_info_req), GFP_KERNEL,
2412 			       sess->s.dev->ib_dev, DMA_TO_DEVICE,
2413 			       rtrs_clt_info_req_done);
2414 	rx_iu = rtrs_iu_alloc(1, rx_sz, GFP_KERNEL, sess->s.dev->ib_dev,
2415 			       DMA_FROM_DEVICE, rtrs_clt_info_rsp_done);
2416 	if (unlikely(!tx_iu || !rx_iu)) {
2417 		err = -ENOMEM;
2418 		goto out;
2419 	}
2420 	/* Prepare for getting info response */
2421 	err = rtrs_iu_post_recv(&usr_con->c, rx_iu);
2422 	if (unlikely(err)) {
2423 		rtrs_err(sess->clt, "rtrs_iu_post_recv(), err: %d\n", err);
2424 		goto out;
2425 	}
2426 	rx_iu = NULL;
2427 
2428 	msg = tx_iu->buf;
2429 	msg->type = cpu_to_le16(RTRS_MSG_INFO_REQ);
2430 	memcpy(msg->sessname, sess->s.sessname, sizeof(msg->sessname));
2431 
2432 	ib_dma_sync_single_for_device(sess->s.dev->ib_dev, tx_iu->dma_addr,
2433 				      tx_iu->size, DMA_TO_DEVICE);
2434 
2435 	/* Send info request */
2436 	err = rtrs_iu_post_send(&usr_con->c, tx_iu, sizeof(*msg), NULL);
2437 	if (unlikely(err)) {
2438 		rtrs_err(sess->clt, "rtrs_iu_post_send(), err: %d\n", err);
2439 		goto out;
2440 	}
2441 	tx_iu = NULL;
2442 
2443 	/* Wait for state change */
2444 	wait_event_interruptible_timeout(sess->state_wq,
2445 					 sess->state != RTRS_CLT_CONNECTING,
2446 					 msecs_to_jiffies(
2447 						 RTRS_CONNECT_TIMEOUT_MS));
2448 	if (unlikely(READ_ONCE(sess->state) != RTRS_CLT_CONNECTED)) {
2449 		if (READ_ONCE(sess->state) == RTRS_CLT_CONNECTING_ERR)
2450 			err = -ECONNRESET;
2451 		else
2452 			err = -ETIMEDOUT;
2453 		goto out;
2454 	}
2455 
2456 out:
2457 	if (tx_iu)
2458 		rtrs_iu_free(tx_iu, sess->s.dev->ib_dev, 1);
2459 	if (rx_iu)
2460 		rtrs_iu_free(rx_iu, sess->s.dev->ib_dev, 1);
2461 	if (unlikely(err))
2462 		/* If we've never taken async path because of malloc problems */
2463 		rtrs_clt_change_state(sess, RTRS_CLT_CONNECTING_ERR);
2464 
2465 	return err;
2466 }
2467 
2468 /**
2469  * init_sess() - establishes all session connections and does handshake
2470  * @sess: client session.
2471  * In case of error full close or reconnect procedure should be taken,
2472  * because reconnect or close async works can be started.
2473  */
init_sess(struct rtrs_clt_sess * sess)2474 static int init_sess(struct rtrs_clt_sess *sess)
2475 {
2476 	int err;
2477 
2478 	mutex_lock(&sess->init_mutex);
2479 	err = init_conns(sess);
2480 	if (err) {
2481 		rtrs_err(sess->clt, "init_conns(), err: %d\n", err);
2482 		goto out;
2483 	}
2484 	err = rtrs_send_sess_info(sess);
2485 	if (err) {
2486 		rtrs_err(sess->clt, "rtrs_send_sess_info(), err: %d\n", err);
2487 		goto out;
2488 	}
2489 	rtrs_clt_sess_up(sess);
2490 out:
2491 	mutex_unlock(&sess->init_mutex);
2492 
2493 	return err;
2494 }
2495 
rtrs_clt_reconnect_work(struct work_struct * work)2496 static void rtrs_clt_reconnect_work(struct work_struct *work)
2497 {
2498 	struct rtrs_clt_sess *sess;
2499 	struct rtrs_clt *clt;
2500 	unsigned int delay_ms;
2501 	int err;
2502 
2503 	sess = container_of(to_delayed_work(work), struct rtrs_clt_sess,
2504 			    reconnect_dwork);
2505 	clt = sess->clt;
2506 
2507 	if (READ_ONCE(sess->state) != RTRS_CLT_RECONNECTING)
2508 		return;
2509 
2510 	if (sess->reconnect_attempts >= clt->max_reconnect_attempts) {
2511 		/* Close a session completely if max attempts is reached */
2512 		rtrs_clt_close_conns(sess, false);
2513 		return;
2514 	}
2515 	sess->reconnect_attempts++;
2516 
2517 	/* Stop everything */
2518 	rtrs_clt_stop_and_destroy_conns(sess);
2519 	msleep(RTRS_RECONNECT_BACKOFF);
2520 	if (rtrs_clt_change_state(sess, RTRS_CLT_CONNECTING)) {
2521 		err = init_sess(sess);
2522 		if (err)
2523 			goto reconnect_again;
2524 	}
2525 
2526 	return;
2527 
2528 reconnect_again:
2529 	if (rtrs_clt_change_state(sess, RTRS_CLT_RECONNECTING)) {
2530 		sess->stats->reconnects.fail_cnt++;
2531 		delay_ms = clt->reconnect_delay_sec * 1000;
2532 		queue_delayed_work(rtrs_wq, &sess->reconnect_dwork,
2533 				   msecs_to_jiffies(delay_ms +
2534 						    prandom_u32() %
2535 						    RTRS_RECONNECT_SEED));
2536 	}
2537 }
2538 
rtrs_clt_dev_release(struct device * dev)2539 static void rtrs_clt_dev_release(struct device *dev)
2540 {
2541 	struct rtrs_clt *clt = container_of(dev, struct rtrs_clt, dev);
2542 
2543 	mutex_destroy(&clt->paths_ev_mutex);
2544 	mutex_destroy(&clt->paths_mutex);
2545 	kfree(clt);
2546 }
2547 
alloc_clt(const char * sessname,size_t paths_num,u16 port,size_t pdu_sz,void * priv,void (* link_ev)(void * priv,enum rtrs_clt_link_ev ev),unsigned int max_segments,size_t max_segment_size,unsigned int reconnect_delay_sec,unsigned int max_reconnect_attempts)2548 static struct rtrs_clt *alloc_clt(const char *sessname, size_t paths_num,
2549 				  u16 port, size_t pdu_sz, void *priv,
2550 				  void	(*link_ev)(void *priv,
2551 						   enum rtrs_clt_link_ev ev),
2552 				  unsigned int max_segments,
2553 				  size_t max_segment_size,
2554 				  unsigned int reconnect_delay_sec,
2555 				  unsigned int max_reconnect_attempts)
2556 {
2557 	struct rtrs_clt *clt;
2558 	int err;
2559 
2560 	if (!paths_num || paths_num > MAX_PATHS_NUM)
2561 		return ERR_PTR(-EINVAL);
2562 
2563 	if (strlen(sessname) >= sizeof(clt->sessname))
2564 		return ERR_PTR(-EINVAL);
2565 
2566 	clt = kzalloc(sizeof(*clt), GFP_KERNEL);
2567 	if (!clt)
2568 		return ERR_PTR(-ENOMEM);
2569 
2570 	clt->pcpu_path = alloc_percpu(typeof(*clt->pcpu_path));
2571 	if (!clt->pcpu_path) {
2572 		kfree(clt);
2573 		return ERR_PTR(-ENOMEM);
2574 	}
2575 
2576 	clt->dev.class = rtrs_clt_dev_class;
2577 	clt->dev.release = rtrs_clt_dev_release;
2578 	uuid_gen(&clt->paths_uuid);
2579 	INIT_LIST_HEAD_RCU(&clt->paths_list);
2580 	clt->paths_num = paths_num;
2581 	clt->paths_up = MAX_PATHS_NUM;
2582 	clt->port = port;
2583 	clt->pdu_sz = pdu_sz;
2584 	clt->max_segments = max_segments;
2585 	clt->max_segment_size = max_segment_size;
2586 	clt->reconnect_delay_sec = reconnect_delay_sec;
2587 	clt->max_reconnect_attempts = max_reconnect_attempts;
2588 	clt->priv = priv;
2589 	clt->link_ev = link_ev;
2590 	clt->mp_policy = MP_POLICY_MIN_INFLIGHT;
2591 	strlcpy(clt->sessname, sessname, sizeof(clt->sessname));
2592 	init_waitqueue_head(&clt->permits_wait);
2593 	mutex_init(&clt->paths_ev_mutex);
2594 	mutex_init(&clt->paths_mutex);
2595 	device_initialize(&clt->dev);
2596 
2597 	err = dev_set_name(&clt->dev, "%s", sessname);
2598 	if (err)
2599 		goto err_put;
2600 
2601 	/*
2602 	 * Suppress user space notification until
2603 	 * sysfs files are created
2604 	 */
2605 	dev_set_uevent_suppress(&clt->dev, true);
2606 	err = device_add(&clt->dev);
2607 	if (err)
2608 		goto err_put;
2609 
2610 	clt->kobj_paths = kobject_create_and_add("paths", &clt->dev.kobj);
2611 	if (!clt->kobj_paths) {
2612 		err = -ENOMEM;
2613 		goto err_del;
2614 	}
2615 	err = rtrs_clt_create_sysfs_root_files(clt);
2616 	if (err) {
2617 		kobject_del(clt->kobj_paths);
2618 		kobject_put(clt->kobj_paths);
2619 		goto err_del;
2620 	}
2621 	dev_set_uevent_suppress(&clt->dev, false);
2622 	kobject_uevent(&clt->dev.kobj, KOBJ_ADD);
2623 
2624 	return clt;
2625 err_del:
2626 	device_del(&clt->dev);
2627 err_put:
2628 	free_percpu(clt->pcpu_path);
2629 	put_device(&clt->dev);
2630 	return ERR_PTR(err);
2631 }
2632 
wait_for_inflight_permits(struct rtrs_clt * clt)2633 static void wait_for_inflight_permits(struct rtrs_clt *clt)
2634 {
2635 	if (clt->permits_map) {
2636 		size_t sz = clt->queue_depth;
2637 
2638 		wait_event(clt->permits_wait,
2639 			   find_first_bit(clt->permits_map, sz) >= sz);
2640 	}
2641 }
2642 
free_clt(struct rtrs_clt * clt)2643 static void free_clt(struct rtrs_clt *clt)
2644 {
2645 	wait_for_inflight_permits(clt);
2646 	free_permits(clt);
2647 	free_percpu(clt->pcpu_path);
2648 
2649 	/*
2650 	 * release callback will free clt and destroy mutexes in last put
2651 	 */
2652 	device_unregister(&clt->dev);
2653 }
2654 
2655 /**
2656  * rtrs_clt_open() - Open a session to an RTRS server
2657  * @ops: holds the link event callback and the private pointer.
2658  * @sessname: name of the session
2659  * @paths: Paths to be established defined by their src and dst addresses
2660  * @paths_num: Number of elements in the @paths array
2661  * @port: port to be used by the RTRS session
2662  * @pdu_sz: Size of extra payload which can be accessed after permit allocation.
2663  * @reconnect_delay_sec: time between reconnect tries
2664  * @max_segments: Max. number of segments per IO request
2665  * @max_segment_size: Max. size of one segment
2666  * @max_reconnect_attempts: Number of times to reconnect on error before giving
2667  *			    up, 0 for * disabled, -1 for forever
2668  *
2669  * Starts session establishment with the rtrs_server. The function can block
2670  * up to ~2000ms before it returns.
2671  *
2672  * Return a valid pointer on success otherwise PTR_ERR.
2673  */
rtrs_clt_open(struct rtrs_clt_ops * ops,const char * sessname,const struct rtrs_addr * paths,size_t paths_num,u16 port,size_t pdu_sz,u8 reconnect_delay_sec,u16 max_segments,size_t max_segment_size,s16 max_reconnect_attempts)2674 struct rtrs_clt *rtrs_clt_open(struct rtrs_clt_ops *ops,
2675 				 const char *sessname,
2676 				 const struct rtrs_addr *paths,
2677 				 size_t paths_num, u16 port,
2678 				 size_t pdu_sz, u8 reconnect_delay_sec,
2679 				 u16 max_segments,
2680 				 size_t max_segment_size,
2681 				 s16 max_reconnect_attempts)
2682 {
2683 	struct rtrs_clt_sess *sess, *tmp;
2684 	struct rtrs_clt *clt;
2685 	int err, i;
2686 
2687 	clt = alloc_clt(sessname, paths_num, port, pdu_sz, ops->priv,
2688 			ops->link_ev,
2689 			max_segments, max_segment_size, reconnect_delay_sec,
2690 			max_reconnect_attempts);
2691 	if (IS_ERR(clt)) {
2692 		err = PTR_ERR(clt);
2693 		goto out;
2694 	}
2695 	for (i = 0; i < paths_num; i++) {
2696 		struct rtrs_clt_sess *sess;
2697 
2698 		sess = alloc_sess(clt, &paths[i], nr_cpu_ids,
2699 				  max_segments, max_segment_size);
2700 		if (IS_ERR(sess)) {
2701 			err = PTR_ERR(sess);
2702 			goto close_all_sess;
2703 		}
2704 		if (!i)
2705 			sess->for_new_clt = 1;
2706 		list_add_tail_rcu(&sess->s.entry, &clt->paths_list);
2707 
2708 		err = init_sess(sess);
2709 		if (err) {
2710 			list_del_rcu(&sess->s.entry);
2711 			rtrs_clt_close_conns(sess, true);
2712 			free_percpu(sess->stats->pcpu_stats);
2713 			kfree(sess->stats);
2714 			free_sess(sess);
2715 			goto close_all_sess;
2716 		}
2717 
2718 		err = rtrs_clt_create_sess_files(sess);
2719 		if (err) {
2720 			list_del_rcu(&sess->s.entry);
2721 			rtrs_clt_close_conns(sess, true);
2722 			free_percpu(sess->stats->pcpu_stats);
2723 			kfree(sess->stats);
2724 			free_sess(sess);
2725 			goto close_all_sess;
2726 		}
2727 	}
2728 	err = alloc_permits(clt);
2729 	if (err)
2730 		goto close_all_sess;
2731 
2732 	return clt;
2733 
2734 close_all_sess:
2735 	list_for_each_entry_safe(sess, tmp, &clt->paths_list, s.entry) {
2736 		rtrs_clt_destroy_sess_files(sess, NULL);
2737 		rtrs_clt_close_conns(sess, true);
2738 		kobject_put(&sess->kobj);
2739 	}
2740 	rtrs_clt_destroy_sysfs_root_files(clt);
2741 	rtrs_clt_destroy_sysfs_root_folders(clt);
2742 	free_clt(clt);
2743 
2744 out:
2745 	return ERR_PTR(err);
2746 }
2747 EXPORT_SYMBOL(rtrs_clt_open);
2748 
2749 /**
2750  * rtrs_clt_close() - Close a session
2751  * @clt: Session handle. Session is freed upon return.
2752  */
rtrs_clt_close(struct rtrs_clt * clt)2753 void rtrs_clt_close(struct rtrs_clt *clt)
2754 {
2755 	struct rtrs_clt_sess *sess, *tmp;
2756 
2757 	/* Firstly forbid sysfs access */
2758 	rtrs_clt_destroy_sysfs_root_files(clt);
2759 	rtrs_clt_destroy_sysfs_root_folders(clt);
2760 
2761 	/* Now it is safe to iterate over all paths without locks */
2762 	list_for_each_entry_safe(sess, tmp, &clt->paths_list, s.entry) {
2763 		rtrs_clt_close_conns(sess, true);
2764 		rtrs_clt_destroy_sess_files(sess, NULL);
2765 		kobject_put(&sess->kobj);
2766 	}
2767 	free_clt(clt);
2768 }
2769 EXPORT_SYMBOL(rtrs_clt_close);
2770 
rtrs_clt_reconnect_from_sysfs(struct rtrs_clt_sess * sess)2771 int rtrs_clt_reconnect_from_sysfs(struct rtrs_clt_sess *sess)
2772 {
2773 	enum rtrs_clt_state old_state;
2774 	int err = -EBUSY;
2775 	bool changed;
2776 
2777 	changed = rtrs_clt_change_state_get_old(sess, RTRS_CLT_RECONNECTING,
2778 						 &old_state);
2779 	if (changed) {
2780 		sess->reconnect_attempts = 0;
2781 		queue_delayed_work(rtrs_wq, &sess->reconnect_dwork, 0);
2782 	}
2783 	if (changed || old_state == RTRS_CLT_RECONNECTING) {
2784 		/*
2785 		 * flush_delayed_work() queues pending work for immediate
2786 		 * execution, so do the flush if we have queued something
2787 		 * right now or work is pending.
2788 		 */
2789 		flush_delayed_work(&sess->reconnect_dwork);
2790 		err = (READ_ONCE(sess->state) ==
2791 		       RTRS_CLT_CONNECTED ? 0 : -ENOTCONN);
2792 	}
2793 
2794 	return err;
2795 }
2796 
rtrs_clt_disconnect_from_sysfs(struct rtrs_clt_sess * sess)2797 int rtrs_clt_disconnect_from_sysfs(struct rtrs_clt_sess *sess)
2798 {
2799 	rtrs_clt_close_conns(sess, true);
2800 
2801 	return 0;
2802 }
2803 
rtrs_clt_remove_path_from_sysfs(struct rtrs_clt_sess * sess,const struct attribute * sysfs_self)2804 int rtrs_clt_remove_path_from_sysfs(struct rtrs_clt_sess *sess,
2805 				     const struct attribute *sysfs_self)
2806 {
2807 	enum rtrs_clt_state old_state;
2808 	bool changed;
2809 
2810 	/*
2811 	 * Continue stopping path till state was changed to DEAD or
2812 	 * state was observed as DEAD:
2813 	 * 1. State was changed to DEAD - we were fast and nobody
2814 	 *    invoked rtrs_clt_reconnect(), which can again start
2815 	 *    reconnecting.
2816 	 * 2. State was observed as DEAD - we have someone in parallel
2817 	 *    removing the path.
2818 	 */
2819 	do {
2820 		rtrs_clt_close_conns(sess, true);
2821 		changed = rtrs_clt_change_state_get_old(sess,
2822 							RTRS_CLT_DEAD,
2823 							&old_state);
2824 	} while (!changed && old_state != RTRS_CLT_DEAD);
2825 
2826 	if (likely(changed)) {
2827 		rtrs_clt_remove_path_from_arr(sess);
2828 		rtrs_clt_destroy_sess_files(sess, sysfs_self);
2829 		kobject_put(&sess->kobj);
2830 	}
2831 
2832 	return 0;
2833 }
2834 
rtrs_clt_set_max_reconnect_attempts(struct rtrs_clt * clt,int value)2835 void rtrs_clt_set_max_reconnect_attempts(struct rtrs_clt *clt, int value)
2836 {
2837 	clt->max_reconnect_attempts = (unsigned int)value;
2838 }
2839 
rtrs_clt_get_max_reconnect_attempts(const struct rtrs_clt * clt)2840 int rtrs_clt_get_max_reconnect_attempts(const struct rtrs_clt *clt)
2841 {
2842 	return (int)clt->max_reconnect_attempts;
2843 }
2844 
2845 /**
2846  * rtrs_clt_request() - Request data transfer to/from server via RDMA.
2847  *
2848  * @dir:	READ/WRITE
2849  * @ops:	callback function to be called as confirmation, and the pointer.
2850  * @clt:	Session
2851  * @permit:	Preallocated permit
2852  * @vec:	Message that is sent to server together with the request.
2853  *		Sum of len of all @vec elements limited to <= IO_MSG_SIZE.
2854  *		Since the msg is copied internally it can be allocated on stack.
2855  * @nr:		Number of elements in @vec.
2856  * @data_len:	length of data sent to/from server
2857  * @sg:		Pages to be sent/received to/from server.
2858  * @sg_cnt:	Number of elements in the @sg
2859  *
2860  * Return:
2861  * 0:		Success
2862  * <0:		Error
2863  *
2864  * On dir=READ rtrs client will request a data transfer from Server to client.
2865  * The data that the server will respond with will be stored in @sg when
2866  * the user receives an %RTRS_CLT_RDMA_EV_RDMA_REQUEST_WRITE_COMPL event.
2867  * On dir=WRITE rtrs client will rdma write data in sg to server side.
2868  */
rtrs_clt_request(int dir,struct rtrs_clt_req_ops * ops,struct rtrs_clt * clt,struct rtrs_permit * permit,const struct kvec * vec,size_t nr,size_t data_len,struct scatterlist * sg,unsigned int sg_cnt)2869 int rtrs_clt_request(int dir, struct rtrs_clt_req_ops *ops,
2870 		     struct rtrs_clt *clt, struct rtrs_permit *permit,
2871 		      const struct kvec *vec, size_t nr, size_t data_len,
2872 		      struct scatterlist *sg, unsigned int sg_cnt)
2873 {
2874 	struct rtrs_clt_io_req *req;
2875 	struct rtrs_clt_sess *sess;
2876 
2877 	enum dma_data_direction dma_dir;
2878 	int err = -ECONNABORTED, i;
2879 	size_t usr_len, hdr_len;
2880 	struct path_it it;
2881 
2882 	/* Get kvec length */
2883 	for (i = 0, usr_len = 0; i < nr; i++)
2884 		usr_len += vec[i].iov_len;
2885 
2886 	if (dir == READ) {
2887 		hdr_len = sizeof(struct rtrs_msg_rdma_read) +
2888 			  sg_cnt * sizeof(struct rtrs_sg_desc);
2889 		dma_dir = DMA_FROM_DEVICE;
2890 	} else {
2891 		hdr_len = sizeof(struct rtrs_msg_rdma_write);
2892 		dma_dir = DMA_TO_DEVICE;
2893 	}
2894 
2895 	rcu_read_lock();
2896 	for (path_it_init(&it, clt);
2897 	     (sess = it.next_path(&it)) && it.i < it.clt->paths_num; it.i++) {
2898 		if (unlikely(READ_ONCE(sess->state) != RTRS_CLT_CONNECTED))
2899 			continue;
2900 
2901 		if (unlikely(usr_len + hdr_len > sess->max_hdr_size)) {
2902 			rtrs_wrn_rl(sess->clt,
2903 				     "%s request failed, user message size is %zu and header length %zu, but max size is %u\n",
2904 				     dir == READ ? "Read" : "Write",
2905 				     usr_len, hdr_len, sess->max_hdr_size);
2906 			err = -EMSGSIZE;
2907 			break;
2908 		}
2909 		req = rtrs_clt_get_req(sess, ops->conf_fn, permit, ops->priv,
2910 				       vec, usr_len, sg, sg_cnt, data_len,
2911 				       dma_dir);
2912 		if (dir == READ)
2913 			err = rtrs_clt_read_req(req);
2914 		else
2915 			err = rtrs_clt_write_req(req);
2916 		if (unlikely(err)) {
2917 			req->in_use = false;
2918 			continue;
2919 		}
2920 		/* Success path */
2921 		break;
2922 	}
2923 	path_it_deinit(&it);
2924 	rcu_read_unlock();
2925 
2926 	return err;
2927 }
2928 EXPORT_SYMBOL(rtrs_clt_request);
2929 
2930 /**
2931  * rtrs_clt_query() - queries RTRS session attributes
2932  *@clt: session pointer
2933  *@attr: query results for session attributes.
2934  * Returns:
2935  *    0 on success
2936  *    -ECOMM		no connection to the server
2937  */
rtrs_clt_query(struct rtrs_clt * clt,struct rtrs_attrs * attr)2938 int rtrs_clt_query(struct rtrs_clt *clt, struct rtrs_attrs *attr)
2939 {
2940 	if (!rtrs_clt_is_connected(clt))
2941 		return -ECOMM;
2942 
2943 	attr->queue_depth      = clt->queue_depth;
2944 	attr->max_io_size      = clt->max_io_size;
2945 	attr->sess_kobj	       = &clt->dev.kobj;
2946 	strlcpy(attr->sessname, clt->sessname, sizeof(attr->sessname));
2947 
2948 	return 0;
2949 }
2950 EXPORT_SYMBOL(rtrs_clt_query);
2951 
rtrs_clt_create_path_from_sysfs(struct rtrs_clt * clt,struct rtrs_addr * addr)2952 int rtrs_clt_create_path_from_sysfs(struct rtrs_clt *clt,
2953 				     struct rtrs_addr *addr)
2954 {
2955 	struct rtrs_clt_sess *sess;
2956 	int err;
2957 
2958 	sess = alloc_sess(clt, addr, nr_cpu_ids, clt->max_segments,
2959 			  clt->max_segment_size);
2960 	if (IS_ERR(sess))
2961 		return PTR_ERR(sess);
2962 
2963 	/*
2964 	 * It is totally safe to add path in CONNECTING state: coming
2965 	 * IO will never grab it.  Also it is very important to add
2966 	 * path before init, since init fires LINK_CONNECTED event.
2967 	 */
2968 	rtrs_clt_add_path_to_arr(sess, addr);
2969 
2970 	err = init_sess(sess);
2971 	if (err)
2972 		goto close_sess;
2973 
2974 	err = rtrs_clt_create_sess_files(sess);
2975 	if (err)
2976 		goto close_sess;
2977 
2978 	return 0;
2979 
2980 close_sess:
2981 	rtrs_clt_remove_path_from_arr(sess);
2982 	rtrs_clt_close_conns(sess, true);
2983 	free_percpu(sess->stats->pcpu_stats);
2984 	kfree(sess->stats);
2985 	free_sess(sess);
2986 
2987 	return err;
2988 }
2989 
rtrs_clt_ib_dev_init(struct rtrs_ib_dev * dev)2990 static int rtrs_clt_ib_dev_init(struct rtrs_ib_dev *dev)
2991 {
2992 	if (!(dev->ib_dev->attrs.device_cap_flags &
2993 	      IB_DEVICE_MEM_MGT_EXTENSIONS)) {
2994 		pr_err("Memory registrations not supported.\n");
2995 		return -ENOTSUPP;
2996 	}
2997 
2998 	return 0;
2999 }
3000 
3001 static const struct rtrs_rdma_dev_pd_ops dev_pd_ops = {
3002 	.init = rtrs_clt_ib_dev_init
3003 };
3004 
rtrs_client_init(void)3005 static int __init rtrs_client_init(void)
3006 {
3007 	rtrs_rdma_dev_pd_init(0, &dev_pd);
3008 
3009 	rtrs_clt_dev_class = class_create(THIS_MODULE, "rtrs-client");
3010 	if (IS_ERR(rtrs_clt_dev_class)) {
3011 		pr_err("Failed to create rtrs-client dev class\n");
3012 		return PTR_ERR(rtrs_clt_dev_class);
3013 	}
3014 	rtrs_wq = alloc_workqueue("rtrs_client_wq", 0, 0);
3015 	if (!rtrs_wq) {
3016 		class_destroy(rtrs_clt_dev_class);
3017 		return -ENOMEM;
3018 	}
3019 
3020 	return 0;
3021 }
3022 
rtrs_client_exit(void)3023 static void __exit rtrs_client_exit(void)
3024 {
3025 	destroy_workqueue(rtrs_wq);
3026 	class_destroy(rtrs_clt_dev_class);
3027 	rtrs_rdma_dev_pd_deinit(&dev_pd);
3028 }
3029 
3030 module_init(rtrs_client_init);
3031 module_exit(rtrs_client_exit);
3032