1 /*
2 * (C) Copyright Nick Thompson 2018.
3 * Use, modification and distribution are subject to the
4 * Boost Software License, Version 1.0. (See accompanying file
5 * LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
6 */
7
8 #include <vector>
9 #include <array>
10 #include <forward_list>
11 #include <algorithm>
12 #include <random>
13 #include <boost/core/lightweight_test.hpp>
14 #include <boost/numeric/ublas/vector.hpp>
15 #include <boost/math/constants/constants.hpp>
16 #include <boost/math/statistics/univariate_statistics.hpp>
17 #include <boost/multiprecision/cpp_bin_float.hpp>
18 #include <boost/multiprecision/cpp_complex.hpp>
19
20 using boost::multiprecision::cpp_bin_float_50;
21 using boost::multiprecision::cpp_complex_50;
22
23 /*
24 * Test checklist:
25 * 1) Does it work with multiprecision?
26 * 2) Does it work with .cbegin()/.cend() if the data is not altered?
27 * 3) Does it work with ublas and std::array? (Checking Eigen and Armadillo will make the CI system really unhappy.)
28 * 4) Does it work with std::forward_list if a forward iterator is all that is required?
29 * 5) Does it work with complex data if complex data is sensible?
30 */
31
32 // To stress test, set global_seed = 0, global_size = huge.
33 static const constexpr size_t global_seed = 0;
34 static const constexpr size_t global_size = 128;
35
36 template<class T>
generate_random_vector(size_t size,size_t seed)37 std::vector<T> generate_random_vector(size_t size, size_t seed)
38 {
39 if (seed == 0)
40 {
41 std::random_device rd;
42 seed = rd();
43 }
44 std::vector<T> v(size);
45
46 std::mt19937 gen(seed);
47
48 if constexpr (std::is_floating_point<T>::value)
49 {
50 std::normal_distribution<T> dis(0, 1);
51 for (size_t i = 0; i < v.size(); ++i)
52 {
53 v[i] = dis(gen);
54 }
55 return v;
56 }
57 else if constexpr (std::is_integral<T>::value)
58 {
59 // Rescaling by larger than 2 is UB!
60 std::uniform_int_distribution<T> dis(std::numeric_limits<T>::lowest()/2, (std::numeric_limits<T>::max)()/2);
61 for (size_t i = 0; i < v.size(); ++i)
62 {
63 v[i] = dis(gen);
64 }
65 return v;
66 }
67 else if constexpr (boost::is_complex<T>::value)
68 {
69 std::normal_distribution<typename T::value_type> dis(0, 1);
70 for (size_t i = 0; i < v.size(); ++i)
71 {
72 v[i] = {dis(gen), dis(gen)};
73 }
74 return v;
75 }
76 else if constexpr (boost::multiprecision::number_category<T>::value == boost::multiprecision::number_kind_complex)
77 {
78 std::normal_distribution<long double> dis(0, 1);
79 for (size_t i = 0; i < v.size(); ++i)
80 {
81 v[i] = {dis(gen), dis(gen)};
82 }
83 return v;
84 }
85 else if constexpr (boost::multiprecision::number_category<T>::value == boost::multiprecision::number_kind_floating_point)
86 {
87 std::normal_distribution<long double> dis(0, 1);
88 for (size_t i = 0; i < v.size(); ++i)
89 {
90 v[i] = dis(gen);
91 }
92 return v;
93 }
94 else
95 {
96 BOOST_ASSERT_MSG(false, "Could not identify type for random vector generation.");
97 return v;
98 }
99 }
100
101
102 template<class Z>
test_integer_mean()103 void test_integer_mean()
104 {
105 double tol = 100*std::numeric_limits<double>::epsilon();
106 std::vector<Z> v{1,2,3,4,5};
107 double mu = boost::math::statistics::mean(v);
108 BOOST_TEST(abs(mu - 3) < tol);
109
110 // Work with std::array?
111 std::array<Z, 5> w{1,2,3,4,5};
112 mu = boost::math::statistics::mean(w);
113 BOOST_TEST(abs(mu - 3) < tol);
114
115 v = generate_random_vector<Z>(global_size, global_seed);
116 Z scale = 2;
117
118 double m1 = scale*boost::math::statistics::mean(v);
119 for (auto & x : v)
120 {
121 x *= scale;
122 }
123 double m2 = boost::math::statistics::mean(v);
124 BOOST_TEST(abs(m1 - m2) < tol*abs(m1));
125 }
126
127 template<class RandomAccessContainer>
naive_mean(RandomAccessContainer const & v)128 auto naive_mean(RandomAccessContainer const & v)
129 {
130 typename RandomAccessContainer::value_type sum = 0;
131 for (auto & x : v)
132 {
133 sum += x;
134 }
135 return sum/v.size();
136 }
137
138 template<class Real>
test_mean()139 void test_mean()
140 {
141 Real tol = std::numeric_limits<Real>::epsilon();
142 std::vector<Real> v{1,2,3,4,5};
143 Real mu = boost::math::statistics::mean(v.begin(), v.end());
144 BOOST_TEST(abs(mu - 3) < tol);
145
146 // Does range call work?
147 mu = boost::math::statistics::mean(v);
148 BOOST_TEST(abs(mu - 3) < tol);
149
150 // Can we successfully average only part of the vector?
151 mu = boost::math::statistics::mean(v.begin(), v.begin() + 3);
152 BOOST_TEST(abs(mu - 2) < tol);
153
154 // Does it work when we const qualify?
155 mu = boost::math::statistics::mean(v.cbegin(), v.cend());
156 BOOST_TEST(abs(mu - 3) < tol);
157
158 // Does it work for std::array?
159 std::array<Real, 7> u{1,2,3,4,5,6,7};
160 mu = boost::math::statistics::mean(u.begin(), u.end());
161 BOOST_TEST(abs(mu - 4) < 10*tol);
162
163 // Does it work for a forward iterator?
164 std::forward_list<Real> l{1,2,3,4,5,6,7};
165 mu = boost::math::statistics::mean(l.begin(), l.end());
166 BOOST_TEST(abs(mu - 4) < tol);
167
168 // Does it work with ublas vectors?
169 boost::numeric::ublas::vector<Real> w(7);
170 for (size_t i = 0; i < w.size(); ++i)
171 {
172 w[i] = i+1;
173 }
174 mu = boost::math::statistics::mean(w.cbegin(), w.cend());
175 BOOST_TEST(abs(mu - 4) < tol);
176
177 v = generate_random_vector<Real>(global_size, global_seed);
178 Real scale = 2;
179 Real m1 = scale*boost::math::statistics::mean(v);
180 for (auto & x : v)
181 {
182 x *= scale;
183 }
184 Real m2 = boost::math::statistics::mean(v);
185 BOOST_TEST(abs(m1 - m2) < tol*abs(m1));
186
187 // Stress test:
188 for (size_t i = 1; i < 30; ++i)
189 {
190 v = generate_random_vector<Real>(i, 12803);
191 auto naive_ = naive_mean(v);
192 auto higham_ = boost::math::statistics::mean(v);
193 if (abs(higham_ - naive_) >= 100*tol*abs(naive_))
194 {
195 std::cout << std::hexfloat;
196 std::cout << "Terms = " << v.size() << "\n";
197 std::cout << "higham = " << higham_ << "\n";
198 std::cout << "naive_ = " << naive_ << "\n";
199 }
200 BOOST_TEST(abs(higham_ - naive_) < 100*tol*abs(naive_));
201 }
202
203 }
204
205 template<class Complex>
test_complex_mean()206 void test_complex_mean()
207 {
208 typedef typename Complex::value_type Real;
209 Real tol = std::numeric_limits<Real>::epsilon();
210 std::vector<Complex> v{{0,1},{0,2},{0,3},{0,4},{0,5}};
211 auto mu = boost::math::statistics::mean(v.begin(), v.end());
212 BOOST_TEST(abs(mu.imag() - 3) < tol);
213 BOOST_TEST(abs(mu.real()) < tol);
214
215 // Does range work?
216 mu = boost::math::statistics::mean(v);
217 BOOST_TEST(abs(mu.imag() - 3) < tol);
218 BOOST_TEST(abs(mu.real()) < tol);
219 }
220
221 template<class Real>
test_variance()222 void test_variance()
223 {
224 Real tol = std::numeric_limits<Real>::epsilon();
225 std::vector<Real> v{1,1,1,1,1,1};
226 Real sigma_sq = boost::math::statistics::variance(v.begin(), v.end());
227 BOOST_TEST(abs(sigma_sq) < tol);
228
229 sigma_sq = boost::math::statistics::variance(v);
230 BOOST_TEST(abs(sigma_sq) < tol);
231
232 Real s_sq = boost::math::statistics::sample_variance(v);
233 BOOST_TEST(abs(s_sq) < tol);
234
235 std::vector<Real> u{1};
236 sigma_sq = boost::math::statistics::variance(u.cbegin(), u.cend());
237 BOOST_TEST(abs(sigma_sq) < tol);
238
239 std::array<Real, 8> w{0,1,0,1,0,1,0,1};
240 sigma_sq = boost::math::statistics::variance(w.begin(), w.end());
241 BOOST_TEST(abs(sigma_sq - 1.0/4.0) < tol);
242
243 sigma_sq = boost::math::statistics::variance(w);
244 BOOST_TEST(abs(sigma_sq - 1.0/4.0) < tol);
245
246 std::forward_list<Real> l{0,1,0,1,0,1,0,1};
247 sigma_sq = boost::math::statistics::variance(l.begin(), l.end());
248 BOOST_TEST(abs(sigma_sq - 1.0/4.0) < tol);
249
250 v = generate_random_vector<Real>(global_size, global_seed);
251 Real scale = 2;
252 Real m1 = scale*scale*boost::math::statistics::variance(v);
253 for (auto & x : v)
254 {
255 x *= scale;
256 }
257 Real m2 = boost::math::statistics::variance(v);
258 BOOST_TEST(abs(m1 - m2) < tol*abs(m1));
259
260 // Wikipedia example for a variance of N sided die:
261 // https://en.wikipedia.org/wiki/Variance
262 for (size_t j = 16; j < 2048; j *= 2)
263 {
264 v.resize(1024);
265 Real n = v.size();
266 for (size_t i = 0; i < v.size(); ++i)
267 {
268 v[i] = i + 1;
269 }
270
271 sigma_sq = boost::math::statistics::variance(v);
272
273 BOOST_TEST(abs(sigma_sq - (n*n-1)/Real(12)) <= tol*sigma_sq);
274 }
275
276 }
277
278 template<class Z>
test_integer_variance()279 void test_integer_variance()
280 {
281 double tol = std::numeric_limits<double>::epsilon();
282 std::vector<Z> v{1,1,1,1,1,1};
283 double sigma_sq = boost::math::statistics::variance(v);
284 BOOST_TEST(abs(sigma_sq) < tol);
285
286 std::forward_list<Z> l{0,1,0,1,0,1,0,1};
287 sigma_sq = boost::math::statistics::variance(l.begin(), l.end());
288 BOOST_TEST(abs(sigma_sq - 1.0/4.0) < tol);
289
290 v = generate_random_vector<Z>(global_size, global_seed);
291 Z scale = 2;
292 double m1 = scale*scale*boost::math::statistics::variance(v);
293 for (auto & x : v)
294 {
295 x *= scale;
296 }
297 double m2 = boost::math::statistics::variance(v);
298 BOOST_TEST(abs(m1 - m2) < tol*abs(m1));
299 }
300
301 template<class Z>
test_integer_skewness()302 void test_integer_skewness()
303 {
304 double tol = std::numeric_limits<double>::epsilon();
305 std::vector<Z> v{1,1,1};
306 double skew = boost::math::statistics::skewness(v);
307 BOOST_TEST(abs(skew) < tol);
308
309 // Dataset is symmetric about the mean:
310 v = {1,2,3,4,5};
311 skew = boost::math::statistics::skewness(v);
312 BOOST_TEST(abs(skew) < tol);
313
314 v = {0,0,0,0,5};
315 // mu = 1, sigma^2 = 4, sigma = 2, skew = 3/2
316 skew = boost::math::statistics::skewness(v);
317 BOOST_TEST(abs(skew - 3.0/2.0) < tol);
318
319 std::forward_list<Z> v2{0,0,0,0,5};
320 skew = boost::math::statistics::skewness(v);
321 BOOST_TEST(abs(skew - 3.0/2.0) < tol);
322
323
324 v = generate_random_vector<Z>(global_size, global_seed);
325 Z scale = 2;
326 double m1 = boost::math::statistics::skewness(v);
327 for (auto & x : v)
328 {
329 x *= scale;
330 }
331 double m2 = boost::math::statistics::skewness(v);
332 BOOST_TEST(abs(m1 - m2) < tol*abs(m1));
333
334 }
335
336 template<class Real>
test_skewness()337 void test_skewness()
338 {
339 Real tol = std::numeric_limits<Real>::epsilon();
340 std::vector<Real> v{1,1,1};
341 Real skew = boost::math::statistics::skewness(v);
342 BOOST_TEST(abs(skew) < tol);
343
344 // Dataset is symmetric about the mean:
345 v = {1,2,3,4,5};
346 skew = boost::math::statistics::skewness(v);
347 BOOST_TEST(abs(skew) < tol);
348
349 v = {0,0,0,0,5};
350 // mu = 1, sigma^2 = 4, sigma = 2, skew = 3/2
351 skew = boost::math::statistics::skewness(v);
352 BOOST_TEST(abs(skew - Real(3)/Real(2)) < tol);
353
354 std::array<Real, 5> w1{0,0,0,0,5};
355 skew = boost::math::statistics::skewness(w1);
356 BOOST_TEST(abs(skew - Real(3)/Real(2)) < tol);
357
358 std::forward_list<Real> w2{0,0,0,0,5};
359 skew = boost::math::statistics::skewness(w2);
360 BOOST_TEST(abs(skew - Real(3)/Real(2)) < tol);
361
362 v = generate_random_vector<Real>(global_size, global_seed);
363 Real scale = 2;
364 Real m1 = boost::math::statistics::skewness(v);
365 for (auto & x : v)
366 {
367 x *= scale;
368 }
369 Real m2 = boost::math::statistics::skewness(v);
370 BOOST_TEST(abs(m1 - m2) < tol*abs(m1));
371 }
372
373 template<class Real>
test_kurtosis()374 void test_kurtosis()
375 {
376 Real tol = std::numeric_limits<Real>::epsilon();
377 std::vector<Real> v{1,1,1};
378 Real kurt = boost::math::statistics::kurtosis(v);
379 BOOST_TEST(abs(kurt) < tol);
380
381 v = {1,2,3,4,5};
382 // mu =1, sigma^2 = 2, kurtosis = 17/10
383 kurt = boost::math::statistics::kurtosis(v);
384 BOOST_TEST(abs(kurt - Real(17)/Real(10)) < 10*tol);
385
386 v = {0,0,0,0,5};
387 // mu = 1, sigma^2 = 4, sigma = 2, skew = 3/2, kurtosis = 13/4
388 kurt = boost::math::statistics::kurtosis(v);
389 BOOST_TEST(abs(kurt - Real(13)/Real(4)) < tol);
390
391 std::array<Real, 5> v1{0,0,0,0,5};
392 kurt = boost::math::statistics::kurtosis(v1);
393 BOOST_TEST(abs(kurt - Real(13)/Real(4)) < tol);
394
395 std::forward_list<Real> v2{0,0,0,0,5};
396 kurt = boost::math::statistics::kurtosis(v2);
397 BOOST_TEST(abs(kurt - Real(13)/Real(4)) < tol);
398
399 std::vector<Real> v3(10000);
400 std::mt19937 gen(42);
401 std::normal_distribution<long double> dis(0, 1);
402 for (size_t i = 0; i < v3.size(); ++i) {
403 v3[i] = dis(gen);
404 }
405 kurt = boost::math::statistics::kurtosis(v3);
406 BOOST_TEST(abs(kurt - 3) < 0.1);
407
408 std::uniform_real_distribution<long double> udis(-1, 3);
409 for (size_t i = 0; i < v3.size(); ++i) {
410 v3[i] = udis(gen);
411 }
412 auto excess_kurtosis = boost::math::statistics::excess_kurtosis(v3);
413 BOOST_TEST(abs(excess_kurtosis + 6.0/5.0) < 0.2);
414
415 v = generate_random_vector<Real>(global_size, global_seed);
416 Real scale = 2;
417 Real m1 = boost::math::statistics::kurtosis(v);
418 for (auto & x : v)
419 {
420 x *= scale;
421 }
422 Real m2 = boost::math::statistics::kurtosis(v);
423 BOOST_TEST(abs(m1 - m2) < tol*abs(m1));
424
425 // This test only passes when there are a large number of samples.
426 // Otherwise, the distribution doesn't generate enough outliers to give,
427 // or generates too many, giving pretty wildly different values of kurtosis on different runs.
428 // However, by kicking up the samples to 1,000,000, I got very close to 6 for the excess kurtosis on every run.
429 // The CI system, however, would die on a million long doubles.
430 //v3.resize(1000000);
431 //std::exponential_distribution<long double> edis(0.1);
432 //for (size_t i = 0; i < v3.size(); ++i) {
433 // v3[i] = edis(gen);
434 //}
435 //excess_kurtosis = boost::math::statistics::kurtosis(v3) - 3;
436 //BOOST_TEST(abs(excess_kurtosis - 6.0) < 0.2);
437 }
438
439 template<class Z>
test_integer_kurtosis()440 void test_integer_kurtosis()
441 {
442 double tol = std::numeric_limits<double>::epsilon();
443 std::vector<Z> v{1,1,1};
444 double kurt = boost::math::statistics::kurtosis(v);
445 BOOST_TEST(abs(kurt) < tol);
446
447 v = {1,2,3,4,5};
448 // mu =1, sigma^2 = 2, kurtosis = 17/10
449 kurt = boost::math::statistics::kurtosis(v);
450 BOOST_TEST(abs(kurt - 17.0/10.0) < 10*tol);
451
452 v = {0,0,0,0,5};
453 // mu = 1, sigma^2 = 4, sigma = 2, skew = 3/2, kurtosis = 13/4
454 kurt = boost::math::statistics::kurtosis(v);
455 BOOST_TEST(abs(kurt - 13.0/4.0) < tol);
456
457 v = generate_random_vector<Z>(global_size, global_seed);
458 Z scale = 2;
459 double m1 = boost::math::statistics::kurtosis(v);
460 for (auto & x : v)
461 {
462 x *= scale;
463 }
464 double m2 = boost::math::statistics::kurtosis(v);
465 BOOST_TEST(abs(m1 - m2) < tol*abs(m1));
466 }
467
468 template<class Real>
test_first_four_moments()469 void test_first_four_moments()
470 {
471 Real tol = 10*std::numeric_limits<Real>::epsilon();
472 std::vector<Real> v{1,1,1};
473 auto [M1_1, M2_1, M3_1, M4_1] = boost::math::statistics::first_four_moments(v);
474 BOOST_TEST(abs(M1_1 - 1) < tol);
475 BOOST_TEST(abs(M2_1) < tol);
476 BOOST_TEST(abs(M3_1) < tol);
477 BOOST_TEST(abs(M4_1) < tol);
478
479 v = {1, 2, 3, 4, 5};
480 auto [M1_2, M2_2, M3_2, M4_2] = boost::math::statistics::first_four_moments(v);
481 BOOST_TEST(abs(M1_2 - 3) < tol);
482 BOOST_TEST(abs(M2_2 - 2) < tol);
483 BOOST_TEST(abs(M3_2) < tol);
484 BOOST_TEST(abs(M4_2 - Real(34)/Real(5)) < tol);
485 }
486
487 template<class Real>
test_median()488 void test_median()
489 {
490 std::mt19937 g(12);
491 std::vector<Real> v{1,2,3,4,5,6,7};
492
493 Real m = boost::math::statistics::median(v.begin(), v.end());
494 BOOST_TEST_EQ(m, 4);
495
496 std::shuffle(v.begin(), v.end(), g);
497 // Does range call work?
498 m = boost::math::statistics::median(v);
499 BOOST_TEST_EQ(m, 4);
500
501 v = {1,2,3,3,4,5};
502 m = boost::math::statistics::median(v.begin(), v.end());
503 BOOST_TEST_EQ(m, 3);
504 std::shuffle(v.begin(), v.end(), g);
505 m = boost::math::statistics::median(v.begin(), v.end());
506 BOOST_TEST_EQ(m, 3);
507
508 v = {1};
509 m = boost::math::statistics::median(v.begin(), v.end());
510 BOOST_TEST_EQ(m, 1);
511
512 v = {1,1};
513 m = boost::math::statistics::median(v.begin(), v.end());
514 BOOST_TEST_EQ(m, 1);
515
516 v = {2,4};
517 m = boost::math::statistics::median(v.begin(), v.end());
518 BOOST_TEST_EQ(m, 3);
519
520 v = {1,1,1};
521 m = boost::math::statistics::median(v.begin(), v.end());
522 BOOST_TEST_EQ(m, 1);
523
524 v = {1,2,3};
525 m = boost::math::statistics::median(v.begin(), v.end());
526 BOOST_TEST_EQ(m, 2);
527 std::shuffle(v.begin(), v.end(), g);
528 m = boost::math::statistics::median(v.begin(), v.end());
529 BOOST_TEST_EQ(m, 2);
530
531 // Does it work with std::array?
532 std::array<Real, 3> w{1,2,3};
533 m = boost::math::statistics::median(w);
534 BOOST_TEST_EQ(m, 2);
535
536 // Does it work with ublas?
537 boost::numeric::ublas::vector<Real> w1(3);
538 w1[0] = 1;
539 w1[1] = 2;
540 w1[2] = 3;
541 m = boost::math::statistics::median(w);
542 BOOST_TEST_EQ(m, 2);
543 }
544
545 template<class Real>
test_median_absolute_deviation()546 void test_median_absolute_deviation()
547 {
548 std::vector<Real> v{-1, 2, -3, 4, -5, 6, -7};
549
550 Real m = boost::math::statistics::median_absolute_deviation(v.begin(), v.end(), 0);
551 BOOST_TEST_EQ(m, 4);
552
553 std::mt19937 g(12);
554 std::shuffle(v.begin(), v.end(), g);
555 m = boost::math::statistics::median_absolute_deviation(v, 0);
556 BOOST_TEST_EQ(m, 4);
557
558 v = {1, -2, -3, 3, -4, -5};
559 m = boost::math::statistics::median_absolute_deviation(v.begin(), v.end(), 0);
560 BOOST_TEST_EQ(m, 3);
561 std::shuffle(v.begin(), v.end(), g);
562 m = boost::math::statistics::median_absolute_deviation(v.begin(), v.end(), 0);
563 BOOST_TEST_EQ(m, 3);
564
565 v = {-1};
566 m = boost::math::statistics::median_absolute_deviation(v.begin(), v.end(), 0);
567 BOOST_TEST_EQ(m, 1);
568
569 v = {-1, 1};
570 m = boost::math::statistics::median_absolute_deviation(v.begin(), v.end(), 0);
571 BOOST_TEST_EQ(m, 1);
572 // The median is zero, so coincides with the default:
573 m = boost::math::statistics::median_absolute_deviation(v.begin(), v.end());
574 BOOST_TEST_EQ(m, 1);
575
576 m = boost::math::statistics::median_absolute_deviation(v);
577 BOOST_TEST_EQ(m, 1);
578
579
580 v = {2, -4};
581 m = boost::math::statistics::median_absolute_deviation(v.begin(), v.end(), 0);
582 BOOST_TEST_EQ(m, 3);
583
584 v = {1, -1, 1};
585 m = boost::math::statistics::median_absolute_deviation(v.begin(), v.end(), 0);
586 BOOST_TEST_EQ(m, 1);
587
588 v = {1, 2, -3};
589 m = boost::math::statistics::median_absolute_deviation(v.begin(), v.end(), 0);
590 BOOST_TEST_EQ(m, 2);
591 std::shuffle(v.begin(), v.end(), g);
592 m = boost::math::statistics::median_absolute_deviation(v.begin(), v.end(), 0);
593 BOOST_TEST_EQ(m, 2);
594
595 std::array<Real, 3> w{1, 2, -3};
596 m = boost::math::statistics::median_absolute_deviation(w, 0);
597 BOOST_TEST_EQ(m, 2);
598
599 // boost.ublas vector?
600 boost::numeric::ublas::vector<Real> u(6);
601 u[0] = 1;
602 u[1] = 2;
603 u[2] = -3;
604 u[3] = 1;
605 u[4] = 2;
606 u[5] = -3;
607 m = boost::math::statistics::median_absolute_deviation(u, 0);
608 BOOST_TEST_EQ(m, 2);
609 }
610
611
612 template<class Real>
test_sample_gini_coefficient()613 void test_sample_gini_coefficient()
614 {
615 Real tol = std::numeric_limits<Real>::epsilon();
616 std::vector<Real> v{1,0,0};
617 Real gini = boost::math::statistics::sample_gini_coefficient(v.begin(), v.end());
618 BOOST_TEST(abs(gini - 1) < tol);
619
620 gini = boost::math::statistics::sample_gini_coefficient(v);
621 BOOST_TEST(abs(gini - 1) < tol);
622
623 v[0] = 1;
624 v[1] = 1;
625 v[2] = 1;
626 gini = boost::math::statistics::sample_gini_coefficient(v.begin(), v.end());
627 BOOST_TEST(abs(gini) < tol);
628
629 v[0] = 0;
630 v[1] = 0;
631 v[2] = 0;
632 gini = boost::math::statistics::sample_gini_coefficient(v.begin(), v.end());
633 BOOST_TEST(abs(gini) < tol);
634
635 std::array<Real, 3> w{0,0,0};
636 gini = boost::math::statistics::sample_gini_coefficient(w);
637 BOOST_TEST(abs(gini) < tol);
638 }
639
640
641 template<class Real>
test_gini_coefficient()642 void test_gini_coefficient()
643 {
644 Real tol = std::numeric_limits<Real>::epsilon();
645 std::vector<Real> v{1,0,0};
646 Real gini = boost::math::statistics::gini_coefficient(v.begin(), v.end());
647 Real expected = Real(2)/Real(3);
648 BOOST_TEST(abs(gini - expected) < tol);
649
650 gini = boost::math::statistics::gini_coefficient(v);
651 BOOST_TEST(abs(gini - expected) < tol);
652
653 v[0] = 1;
654 v[1] = 1;
655 v[2] = 1;
656 gini = boost::math::statistics::gini_coefficient(v.begin(), v.end());
657 BOOST_TEST(abs(gini) < tol);
658
659 v[0] = 0;
660 v[1] = 0;
661 v[2] = 0;
662 gini = boost::math::statistics::gini_coefficient(v.begin(), v.end());
663 BOOST_TEST(abs(gini) < tol);
664
665 std::array<Real, 3> w{0,0,0};
666 gini = boost::math::statistics::gini_coefficient(w);
667 BOOST_TEST(abs(gini) < tol);
668
669 boost::numeric::ublas::vector<Real> w1(3);
670 w1[0] = 1;
671 w1[1] = 1;
672 w1[2] = 1;
673 gini = boost::math::statistics::gini_coefficient(w1);
674 BOOST_TEST(abs(gini) < tol);
675
676 std::mt19937 gen(18);
677 // Gini coefficient for a uniform distribution is (b-a)/(3*(b+a));
678 std::uniform_real_distribution<long double> dis(0, 3);
679 expected = (dis.b() - dis.a())/(3*(dis.b()+ dis.a()));
680 v.resize(1024);
681 for(size_t i = 0; i < v.size(); ++i)
682 {
683 v[i] = dis(gen);
684 }
685 gini = boost::math::statistics::gini_coefficient(v);
686 BOOST_TEST(abs(gini - expected) < 0.01);
687
688 }
689
690 template<class Z>
test_integer_gini_coefficient()691 void test_integer_gini_coefficient()
692 {
693 double tol = std::numeric_limits<double>::epsilon();
694 std::vector<Z> v{1,0,0};
695 double gini = boost::math::statistics::gini_coefficient(v.begin(), v.end());
696 double expected = 2.0/3.0;
697 BOOST_TEST(abs(gini - expected) < tol);
698
699 gini = boost::math::statistics::gini_coefficient(v);
700 BOOST_TEST(abs(gini - expected) < tol);
701
702 v[0] = 1;
703 v[1] = 1;
704 v[2] = 1;
705 gini = boost::math::statistics::gini_coefficient(v.begin(), v.end());
706 BOOST_TEST(abs(gini) < tol);
707
708 v[0] = 0;
709 v[1] = 0;
710 v[2] = 0;
711 gini = boost::math::statistics::gini_coefficient(v.begin(), v.end());
712 BOOST_TEST(abs(gini) < tol);
713
714 std::array<Z, 3> w{0,0,0};
715 gini = boost::math::statistics::gini_coefficient(w);
716 BOOST_TEST(abs(gini) < tol);
717
718 boost::numeric::ublas::vector<Z> w1(3);
719 w1[0] = 1;
720 w1[1] = 1;
721 w1[2] = 1;
722 gini = boost::math::statistics::gini_coefficient(w1);
723 BOOST_TEST(abs(gini) < tol);
724 }
725
726 template<typename Real>
test_interquartile_range()727 void test_interquartile_range()
728 {
729 std::mt19937 gen(486);
730 Real iqr;
731 // Taken from Wikipedia's example:
732 std::vector<Real> v{7, 7, 31, 31, 47, 75, 87, 115, 116, 119, 119, 155, 177};
733
734 // Q1 = 31, Q3 = 119, Q3 - Q1 = 88.
735 iqr = boost::math::statistics::interquartile_range(v);
736 BOOST_TEST_EQ(iqr, 88);
737
738 std::shuffle(v.begin(), v.end(), gen);
739 iqr = boost::math::statistics::interquartile_range(v);
740 BOOST_TEST_EQ(iqr, 88);
741
742 std::shuffle(v.begin(), v.end(), gen);
743 iqr = boost::math::statistics::interquartile_range(v);
744 BOOST_TEST_EQ(iqr, 88);
745
746 std::fill(v.begin(), v.end(), 1);
747 iqr = boost::math::statistics::interquartile_range(v);
748 BOOST_TEST_EQ(iqr, 0);
749
750 v = {1,2,3};
751 iqr = boost::math::statistics::interquartile_range(v);
752 BOOST_TEST_EQ(iqr, 2);
753 std::shuffle(v.begin(), v.end(), gen);
754 iqr = boost::math::statistics::interquartile_range(v);
755 BOOST_TEST_EQ(iqr, 2);
756
757 v = {0, 3, 5};
758 iqr = boost::math::statistics::interquartile_range(v);
759 BOOST_TEST_EQ(iqr, 5);
760 std::shuffle(v.begin(), v.end(), gen);
761 iqr = boost::math::statistics::interquartile_range(v);
762 BOOST_TEST_EQ(iqr, 5);
763
764 v = {1,2,3,4};
765 iqr = boost::math::statistics::interquartile_range(v);
766 BOOST_TEST_EQ(iqr, 2);
767 std::shuffle(v.begin(), v.end(), gen);
768 iqr = boost::math::statistics::interquartile_range(v);
769 BOOST_TEST_EQ(iqr, 2);
770
771 v = {1,2,3,4,5};
772 // Q1 = 1.5, Q3 = 4.5
773 iqr = boost::math::statistics::interquartile_range(v);
774 BOOST_TEST_EQ(iqr, 3);
775 std::shuffle(v.begin(), v.end(), gen);
776 iqr = boost::math::statistics::interquartile_range(v);
777 BOOST_TEST_EQ(iqr, 3);
778
779 v = {1,2,3,4,5,6};
780 // Q1 = 2, Q3 = 5
781 iqr = boost::math::statistics::interquartile_range(v);
782 BOOST_TEST_EQ(iqr, 3);
783 std::shuffle(v.begin(), v.end(), gen);
784 iqr = boost::math::statistics::interquartile_range(v);
785 BOOST_TEST_EQ(iqr, 3);
786
787 v = {1,2,3, 4, 5,6,7};
788 // Q1 = 2, Q3 = 6
789 iqr = boost::math::statistics::interquartile_range(v);
790 BOOST_TEST_EQ(iqr, 4);
791 std::shuffle(v.begin(), v.end(), gen);
792 iqr = boost::math::statistics::interquartile_range(v);
793 BOOST_TEST_EQ(iqr, 4);
794
795 v = {1,2,3,4,5,6,7,8};
796 // Q1 = 2.5, Q3 = 6.5
797 iqr = boost::math::statistics::interquartile_range(v);
798 BOOST_TEST_EQ(iqr, 4);
799 std::shuffle(v.begin(), v.end(), gen);
800 iqr = boost::math::statistics::interquartile_range(v);
801 BOOST_TEST_EQ(iqr, 4);
802
803 v = {1,2,3,4,5,6,7,8,9};
804 // Q1 = 2.5, Q3 = 7.5
805 iqr = boost::math::statistics::interquartile_range(v);
806 BOOST_TEST_EQ(iqr, 5);
807 std::shuffle(v.begin(), v.end(), gen);
808 iqr = boost::math::statistics::interquartile_range(v);
809 BOOST_TEST_EQ(iqr, 5);
810
811 v = {1,2,3,4,5,6,7,8,9,10};
812 // Q1 = 3, Q3 = 8
813 iqr = boost::math::statistics::interquartile_range(v);
814 BOOST_TEST_EQ(iqr, 5);
815 std::shuffle(v.begin(), v.end(), gen);
816 iqr = boost::math::statistics::interquartile_range(v);
817 BOOST_TEST_EQ(iqr, 5);
818
819 v = {1,2,3,4,5,6,7,8,9,10,11};
820 // Q1 = 3, Q3 = 9
821 iqr = boost::math::statistics::interquartile_range(v);
822 BOOST_TEST_EQ(iqr, 6);
823 std::shuffle(v.begin(), v.end(), gen);
824 iqr = boost::math::statistics::interquartile_range(v);
825 BOOST_TEST_EQ(iqr, 6);
826
827 v = {1,2,3,4,5,6,7,8,9,10,11,12};
828 // Q1 = 3.5, Q3 = 9.5
829 iqr = boost::math::statistics::interquartile_range(v);
830 BOOST_TEST_EQ(iqr, 6);
831 std::shuffle(v.begin(), v.end(), gen);
832 iqr = boost::math::statistics::interquartile_range(v);
833 BOOST_TEST_EQ(iqr, 6);
834 }
835
main()836 int main()
837 {
838 test_mean<float>();
839 test_mean<double>();
840 test_mean<long double>();
841 test_mean<cpp_bin_float_50>();
842
843 test_integer_mean<unsigned>();
844 test_integer_mean<int>();
845
846 test_complex_mean<std::complex<float>>();
847 test_complex_mean<cpp_complex_50>();
848
849 test_variance<float>();
850 test_variance<double>();
851 test_variance<long double>();
852 test_variance<cpp_bin_float_50>();
853
854 test_integer_variance<int>();
855 test_integer_variance<unsigned>();
856
857 test_skewness<float>();
858 test_skewness<double>();
859 test_skewness<long double>();
860 test_skewness<cpp_bin_float_50>();
861
862 test_integer_skewness<int>();
863 test_integer_skewness<unsigned>();
864
865 test_first_four_moments<float>();
866 test_first_four_moments<double>();
867 test_first_four_moments<long double>();
868 test_first_four_moments<cpp_bin_float_50>();
869
870 test_kurtosis<float>();
871 test_kurtosis<double>();
872 test_kurtosis<long double>();
873 // Kinda expensive:
874 //test_kurtosis<cpp_bin_float_50>();
875
876 test_integer_kurtosis<int>();
877 test_integer_kurtosis<unsigned>();
878
879 test_median<float>();
880 test_median<double>();
881 test_median<long double>();
882 test_median<cpp_bin_float_50>();
883 test_median<int>();
884
885 test_median_absolute_deviation<float>();
886 test_median_absolute_deviation<double>();
887 test_median_absolute_deviation<long double>();
888 test_median_absolute_deviation<cpp_bin_float_50>();
889
890 test_gini_coefficient<float>();
891 test_gini_coefficient<double>();
892 test_gini_coefficient<long double>();
893 test_gini_coefficient<cpp_bin_float_50>();
894
895 test_integer_gini_coefficient<unsigned>();
896 test_integer_gini_coefficient<int>();
897
898 test_sample_gini_coefficient<float>();
899 test_sample_gini_coefficient<double>();
900 test_sample_gini_coefficient<long double>();
901 test_sample_gini_coefficient<cpp_bin_float_50>();
902
903 test_interquartile_range<double>();
904 test_interquartile_range<cpp_bin_float_50>();
905 return boost::report_errors();
906 }
907