• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2016 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #ifndef OBOE_STREAM_H_
18 #define OBOE_STREAM_H_
19 
20 #include <atomic>
21 #include <cstdint>
22 #include <ctime>
23 #include <mutex>
24 #include "oboe/Definitions.h"
25 #include "oboe/ResultWithValue.h"
26 #include "oboe/AudioStreamBuilder.h"
27 #include "oboe/AudioStreamBase.h"
28 
29 /** WARNING - UNDER CONSTRUCTION - THIS API WILL CHANGE. */
30 
31 namespace oboe {
32 
33 /**
34  * The default number of nanoseconds to wait for when performing state change operations on the
35  * stream, such as `start` and `stop`.
36  *
37  * @see oboe::AudioStream::start
38  */
39 constexpr int64_t kDefaultTimeoutNanos = (2000 * kNanosPerMillisecond);
40 
41 /**
42  * Base class for Oboe C++ audio stream.
43  */
44 class AudioStream : public AudioStreamBase {
45     friend class AudioStreamBuilder; // allow access to setWeakThis() and lockWeakThis()
46 public:
47 
AudioStream()48     AudioStream() {}
49 
50     /**
51      * Construct an `AudioStream` using the given `AudioStreamBuilder`
52      *
53      * @param builder containing all the stream's attributes
54      */
55     explicit AudioStream(const AudioStreamBuilder &builder);
56 
57     virtual ~AudioStream() = default;
58 
59     /**
60      * Open a stream based on the current settings.
61      *
62      * Note that we do not recommend re-opening a stream that has been closed.
63      * TODO Should we prevent re-opening?
64      *
65      * @return
66      */
open()67     virtual Result open() {
68         return Result::OK; // Called by subclasses. Might do more in the future.
69     }
70 
71     /**
72      * Close the stream and deallocate any resources from the open() call.
73      */
74     virtual Result close();
75 
76     /**
77      * Start the stream. This will block until the stream has been started, an error occurs
78      * or `timeoutNanoseconds` has been reached.
79      */
80     virtual Result start(int64_t timeoutNanoseconds = kDefaultTimeoutNanos);
81 
82     /**
83      * Pause the stream. This will block until the stream has been paused, an error occurs
84      * or `timeoutNanoseconds` has been reached.
85      */
86     virtual Result pause(int64_t timeoutNanoseconds = kDefaultTimeoutNanos);
87 
88     /**
89      * Flush the stream. This will block until the stream has been flushed, an error occurs
90      * or `timeoutNanoseconds` has been reached.
91      */
92     virtual Result flush(int64_t timeoutNanoseconds = kDefaultTimeoutNanos);
93 
94     /**
95      * Stop the stream. This will block until the stream has been stopped, an error occurs
96      * or `timeoutNanoseconds` has been reached.
97      */
98     virtual Result stop(int64_t timeoutNanoseconds = kDefaultTimeoutNanos);
99 
100     /* Asynchronous requests.
101      * Use waitForStateChange() if you need to wait for completion.
102      */
103 
104     /**
105      * Start the stream asynchronously. Returns immediately (does not block). Equivalent to calling
106      * `start(0)`.
107      */
108     virtual Result requestStart() = 0;
109 
110     /**
111      * Pause the stream asynchronously. Returns immediately (does not block). Equivalent to calling
112      * `pause(0)`.
113      */
114     virtual Result requestPause() = 0;
115 
116     /**
117      * Flush the stream asynchronously. Returns immediately (does not block). Equivalent to calling
118      * `flush(0)`.
119      */
120     virtual Result requestFlush() = 0;
121 
122     /**
123      * Stop the stream asynchronously. Returns immediately (does not block). Equivalent to calling
124      * `stop(0)`.
125      */
126     virtual Result requestStop() = 0;
127 
128     /**
129      * Query the current state, eg. StreamState::Pausing
130      *
131      * @return state or a negative error.
132      */
133     virtual StreamState getState() const = 0;
134 
135     /**
136      * Wait until the stream's current state no longer matches the input state.
137      * The input state is passed to avoid race conditions caused by the state
138      * changing between calls.
139      *
140      * Note that generally applications do not need to call this. It is considered
141      * an advanced technique and is mostly used for testing.
142      *
143      * <pre><code>
144      * int64_t timeoutNanos = 500 * kNanosPerMillisecond; // arbitrary 1/2 second
145      * StreamState currentState = stream->getState();
146      * StreamState nextState = StreamState::Unknown;
147      * while (result == Result::OK && currentState != StreamState::Paused) {
148      *     result = stream->waitForStateChange(
149      *                                   currentState, &nextState, timeoutNanos);
150      *     currentState = nextState;
151      * }
152      * </code></pre>
153      *
154      * If the state does not change within the timeout period then it will
155      * return ErrorTimeout. This is true even if timeoutNanoseconds is zero.
156      *
157      * @param inputState The state we want to change away from.
158      * @param nextState Pointer to a variable that will be set to the new state.
159      * @param timeoutNanoseconds The maximum time to wait in nanoseconds.
160      * @return Result::OK or a Result::Error.
161      */
162     virtual Result waitForStateChange(StreamState inputState,
163                                           StreamState *nextState,
164                                           int64_t timeoutNanoseconds) = 0;
165 
166     /**
167     * This can be used to adjust the latency of the buffer by changing
168     * the threshold where blocking will occur.
169     * By combining this with getXRunCount(), the latency can be tuned
170     * at run-time for each device.
171     *
172     * This cannot be set higher than getBufferCapacity().
173     *
174     * @param requestedFrames requested number of frames that can be filled without blocking
175     * @return the resulting buffer size in frames (obtained using value()) or an error (obtained
176     * using error())
177     */
setBufferSizeInFrames(int32_t)178     virtual ResultWithValue<int32_t> setBufferSizeInFrames(int32_t /* requestedFrames  */) {
179         return Result::ErrorUnimplemented;
180     }
181 
182     /**
183      * An XRun is an Underrun or an Overrun.
184      * During playing, an underrun will occur if the stream is not written in time
185      * and the system runs out of valid data.
186      * During recording, an overrun will occur if the stream is not read in time
187      * and there is no place to put the incoming data so it is discarded.
188      *
189      * An underrun or overrun can cause an audible "pop" or "glitch".
190      *
191      * @return a result which is either Result::OK with the xRun count as the value, or a
192      * Result::Error* code
193      */
getXRunCount()194     virtual ResultWithValue<int32_t> getXRunCount() const {
195         return ResultWithValue<int32_t>(Result::ErrorUnimplemented);
196     }
197 
198     /**
199      * @return true if XRun counts are supported on the stream
200      */
201     virtual bool isXRunCountSupported() const = 0;
202 
203     /**
204      * Query the number of frames that are read or written by the endpoint at one time.
205      *
206      * @return burst size
207      */
208     virtual int32_t getFramesPerBurst() = 0;
209 
210     /**
211      * Get the number of bytes in each audio frame. This is calculated using the channel count
212      * and the sample format. For example, a 2 channel floating point stream will have
213      * 2 * 4 = 8 bytes per frame.
214      *
215      * @return number of bytes in each audio frame.
216      */
getBytesPerFrame()217     int32_t getBytesPerFrame() const { return mChannelCount * getBytesPerSample(); }
218 
219     /**
220      * Get the number of bytes per sample. This is calculated using the sample format. For example,
221      * a stream using 16-bit integer samples will have 2 bytes per sample.
222      *
223      * @return the number of bytes per sample.
224      */
225     int32_t getBytesPerSample() const;
226 
227     /**
228      * The number of audio frames written into the stream.
229      * This monotonic counter will never get reset.
230      *
231      * @return the number of frames written so far
232      */
233     virtual int64_t getFramesWritten();
234 
235     /**
236      * The number of audio frames read from the stream.
237      * This monotonic counter will never get reset.
238      *
239      * @return the number of frames read so far
240      */
241     virtual int64_t getFramesRead();
242 
243     /**
244      * Calculate the latency of a stream based on getTimestamp().
245      *
246      * Output latency is the time it takes for a given frame to travel from the
247      * app to some type of digital-to-analog converter. If the DAC is external, for example
248      * in a USB interface or a TV connected by HDMI, then there may be additional latency
249      * that the Android device is unaware of.
250      *
251      * Input latency is the time it takes to a given frame to travel from an analog-to-digital
252      * converter (ADC) to the app.
253      *
254      * Note that the latency of an OUTPUT stream will increase abruptly when you write data to it
255      * and then decrease slowly over time as the data is consumed.
256      *
257      * The latency of an INPUT stream will decrease abruptly when you read data from it
258      * and then increase slowly over time as more data arrives.
259      *
260      * The latency of an OUTPUT stream is generally higher than the INPUT latency
261      * because an app generally tries to keep the OUTPUT buffer full and the INPUT buffer empty.
262      *
263      * @return a ResultWithValue which has a result of Result::OK and a value containing the latency
264      * in milliseconds, or a result of Result::Error*.
265      */
calculateLatencyMillis()266     virtual ResultWithValue<double> calculateLatencyMillis() {
267         return ResultWithValue<double>(Result::ErrorUnimplemented);
268     }
269 
270     /**
271      * Get the estimated time that the frame at `framePosition` entered or left the audio processing
272      * pipeline.
273      *
274      * This can be used to coordinate events and interactions with the external environment, and to
275      * estimate the latency of an audio stream. An example of usage can be found in the hello-oboe
276      * sample (search for "calculateCurrentOutputLatencyMillis").
277      *
278      * The time is based on the implementation's best effort, using whatever knowledge is available
279      * to the system, but cannot account for any delay unknown to the implementation.
280      *
281      * @deprecated since 1.0, use AudioStream::getTimestamp(clockid_t clockId) instead, which
282      * returns ResultWithValue
283      * @param clockId the type of clock to use e.g. CLOCK_MONOTONIC
284      * @param framePosition the frame number to query
285      * @param timeNanoseconds an output parameter which will contain the presentation timestamp
286      */
getTimestamp(clockid_t,int64_t *,int64_t *)287     virtual Result getTimestamp(clockid_t /* clockId  */,
288                                 int64_t* /* framePosition */,
289                                 int64_t* /* timeNanoseconds */) {
290         return Result::ErrorUnimplemented;
291     }
292 
293     /**
294      * Get the estimated time that the frame at `framePosition` entered or left the audio processing
295      * pipeline.
296      *
297      * This can be used to coordinate events and interactions with the external environment, and to
298      * estimate the latency of an audio stream. An example of usage can be found in the hello-oboe
299      * sample (search for "calculateCurrentOutputLatencyMillis").
300      *
301      * The time is based on the implementation's best effort, using whatever knowledge is available
302      * to the system, but cannot account for any delay unknown to the implementation.
303      *
304      * @param clockId the type of clock to use e.g. CLOCK_MONOTONIC
305      * @return a FrameTimestamp containing the position and time at which a particular audio frame
306      * entered or left the audio processing pipeline, or an error if the operation failed.
307      */
308     virtual ResultWithValue<FrameTimestamp> getTimestamp(clockid_t /* clockId */);
309 
310     // ============== I/O ===========================
311     /**
312      * Write data from the supplied buffer into the stream. This method will block until the write
313      * is complete or it runs out of time.
314      *
315      * If `timeoutNanoseconds` is zero then this call will not wait.
316      *
317      * @param buffer The address of the first sample.
318      * @param numFrames Number of frames to write. Only complete frames will be written.
319      * @param timeoutNanoseconds Maximum number of nanoseconds to wait for completion.
320      * @return a ResultWithValue which has a result of Result::OK and a value containing the number
321      * of frames actually written, or result of Result::Error*.
322      */
write(const void *,int32_t,int64_t)323     virtual ResultWithValue<int32_t> write(const void* /* buffer */,
324                              int32_t /* numFrames */,
325                              int64_t /* timeoutNanoseconds */ ) {
326         return ResultWithValue<int32_t>(Result::ErrorUnimplemented);
327     }
328 
329     /**
330      * Read data into the supplied buffer from the stream. This method will block until the read
331      * is complete or it runs out of time.
332      *
333      * If `timeoutNanoseconds` is zero then this call will not wait.
334      *
335      * @param buffer The address of the first sample.
336      * @param numFrames Number of frames to read. Only complete frames will be read.
337      * @param timeoutNanoseconds Maximum number of nanoseconds to wait for completion.
338      * @return a ResultWithValue which has a result of Result::OK and a value containing the number
339      * of frames actually read, or result of Result::Error*.
340      */
read(void *,int32_t,int64_t)341     virtual ResultWithValue<int32_t> read(void* /* buffer */,
342                             int32_t /* numFrames */,
343                             int64_t /* timeoutNanoseconds */) {
344         return ResultWithValue<int32_t>(Result::ErrorUnimplemented);
345     }
346 
347     /**
348      * Get the underlying audio API which the stream uses.
349      *
350      * @return the API that this stream uses.
351      */
352     virtual AudioApi getAudioApi() const = 0;
353 
354     /**
355      * Returns true if the underlying audio API is AAudio.
356      *
357      * @return true if this stream is implemented using the AAudio API.
358      */
usesAAudio()359     bool usesAAudio() const {
360         return getAudioApi() == AudioApi::AAudio;
361     }
362 
363     /**
364      * Only for debugging. Do not use in production.
365      * If you need to call this method something is wrong.
366      * If you think you need it for production then please let us know
367      * so we can modify Oboe so that you don't need this.
368      *
369      * @return nullptr or a pointer to a stream from the system API
370      */
getUnderlyingStream()371     virtual void *getUnderlyingStream() const {
372         return nullptr;
373     }
374 
375     /**
376      * Launch a thread that will stop the stream.
377      */
378     void launchStopThread();
379 
380     /**
381      * Update mFramesWritten.
382      * For internal use only.
383      */
384     virtual void updateFramesWritten() = 0;
385 
386     /**
387      * Update mFramesRead.
388      * For internal use only.
389      */
390     virtual void updateFramesRead() = 0;
391 
392     /*
393      * Swap old callback for new callback.
394      * This not atomic.
395      * This should only be used internally.
396      * @param streamCallback
397      * @return previous streamCallback
398      */
swapCallback(AudioStreamCallback * streamCallback)399     AudioStreamCallback *swapCallback(AudioStreamCallback *streamCallback) {
400         AudioStreamCallback *previousCallback = mStreamCallback;
401         mStreamCallback = streamCallback;
402         return previousCallback;
403     }
404 
405     /**
406      * @return number of frames of data currently in the buffer
407      */
408     ResultWithValue<int32_t> getAvailableFrames();
409 
410     /**
411      * Wait until the stream has a minimum amount of data available in its buffer.
412      * This can be used with an EXCLUSIVE MMAP input stream to avoid reading data too close to
413      * the DSP write position, which may cause glitches.
414      *
415      * @param numFrames minimum frames available
416      * @param timeoutNanoseconds
417      * @return number of frames available, ErrorTimeout
418      */
419     ResultWithValue<int32_t> waitForAvailableFrames(int32_t numFrames,
420                                                     int64_t timeoutNanoseconds);
421 
422 protected:
423 
424     /**
425      * This is used to detect more than one error callback from a stream.
426      * These were bugs in some versions of Android that caused multiple error callbacks.
427      * Internal bug b/63087953
428      *
429      * Calling this sets an atomic<bool> true and returns the previous value.
430      *
431      * @return false on first call, true on subsequent calls
432      */
wasErrorCallbackCalled()433     bool wasErrorCallbackCalled() {
434         return mErrorCallbackCalled.exchange(true);
435     }
436 
437     /**
438      * Wait for a transition from one state to another.
439      * @return OK if the endingState was observed, or ErrorUnexpectedState
440      *   if any state that was not the startingState or endingState was observed
441      *   or ErrorTimeout.
442      */
443     virtual Result waitForStateTransition(StreamState startingState,
444                                           StreamState endingState,
445                                           int64_t timeoutNanoseconds);
446 
447     /**
448      * Override this to provide a default for when the application did not specify a callback.
449      *
450      * @param audioData
451      * @param numFrames
452      * @return result
453      */
onDefaultCallback(void *,int)454     virtual DataCallbackResult onDefaultCallback(void* /* audioData  */, int /* numFrames */) {
455         return DataCallbackResult::Stop;
456     }
457 
458     /**
459      * Override this to provide your own behaviour for the audio callback
460      *
461      * @param audioData container array which audio frames will be written into or read from
462      * @param numFrames number of frames which were read/written
463      * @return the result of the callback: stop or continue
464      *
465      */
466     DataCallbackResult fireDataCallback(void *audioData, int numFrames);
467 
468     /**
469      * @return true if callbacks may be called
470      */
isDataCallbackEnabled()471     bool isDataCallbackEnabled() {
472         return mDataCallbackEnabled;
473     }
474 
475     /**
476      * This can be set false internally to prevent callbacks
477      * after DataCallbackResult::Stop has been returned.
478      */
setDataCallbackEnabled(bool enabled)479     void setDataCallbackEnabled(bool enabled) {
480         mDataCallbackEnabled = enabled;
481     }
482 
483     /*
484      * Set a weak_ptr to this stream from the shared_ptr so that we can
485      * later use a shared_ptr in the error callback.
486      */
setWeakThis(std::shared_ptr<oboe::AudioStream> & sharedStream)487     void setWeakThis(std::shared_ptr<oboe::AudioStream> &sharedStream) {
488         mWeakThis = sharedStream;
489     }
490 
491     /*
492      * Make a shared_ptr that will prevent this stream from being deleted.
493      */
lockWeakThis()494     std::shared_ptr<oboe::AudioStream> lockWeakThis() {
495         return mWeakThis.lock();
496     }
497 
498     std::weak_ptr<AudioStream> mWeakThis; // weak pointer to this object
499 
500     /**
501      * Number of frames which have been written into the stream
502      *
503      * This is signed integer to match the counters in AAudio.
504      * At audio rates, the counter will overflow in about six million years.
505      */
506     std::atomic<int64_t> mFramesWritten{};
507 
508     /**
509      * Number of frames which have been read from the stream.
510      *
511      * This is signed integer to match the counters in AAudio.
512      * At audio rates, the counter will overflow in about six million years.
513      */
514     std::atomic<int64_t> mFramesRead{};
515 
516     std::mutex           mLock; // for synchronizing start/stop/close
517 
518 
519 private:
520     // Log the scheduler if it changes.
521     void                 checkScheduler();
522     int                  mPreviousScheduler = -1;
523 
524     std::atomic<bool>    mDataCallbackEnabled{false};
525     std::atomic<bool>    mErrorCallbackCalled{false};
526 
527 };
528 
529 /**
530  * This struct is a stateless functor which closes an AudioStream prior to its deletion.
531  * This means it can be used to safely delete a smart pointer referring to an open stream.
532  */
533     struct StreamDeleterFunctor {
operatorStreamDeleterFunctor534         void operator()(AudioStream  *audioStream) {
535             if (audioStream) {
536                 audioStream->close();
537             }
538             delete audioStream;
539         }
540     };
541 } // namespace oboe
542 
543 #endif /* OBOE_STREAM_H_ */
544