1 /*
2 * Copyright 2013-2017 Advanced Micro Devices, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 *
24 */
25
26 #include "si_build_pm4.h"
27 #include "util/os_time.h"
28 #include "util/u_memory.h"
29 #include "util/u_queue.h"
30 #include "util/u_upload_mgr.h"
31
32 #include <libsync.h>
33
34 struct si_fine_fence {
35 struct si_resource *buf;
36 unsigned offset;
37 };
38
39 struct si_fence {
40 struct pipe_reference reference;
41 struct pipe_fence_handle *gfx;
42 struct tc_unflushed_batch_token *tc_token;
43 struct util_queue_fence ready;
44
45 /* If the context wasn't flushed at fence creation, this is non-NULL. */
46 struct {
47 struct si_context *ctx;
48 unsigned ib_index;
49 } gfx_unflushed;
50
51 struct si_fine_fence fine;
52 };
53
54 /**
55 * Write an EOP event.
56 *
57 * \param event EVENT_TYPE_*
58 * \param event_flags Optional cache flush flags (TC)
59 * \param dst_sel MEM or TC_L2
60 * \param int_sel NONE or SEND_DATA_AFTER_WR_CONFIRM
61 * \param data_sel DISCARD, VALUE_32BIT, TIMESTAMP, or GDS
62 * \param buf Buffer
63 * \param va GPU address
64 * \param old_value Previous fence value (for a bug workaround)
65 * \param new_value Fence value to write for this event.
66 */
si_cp_release_mem(struct si_context * ctx,struct radeon_cmdbuf * cs,unsigned event,unsigned event_flags,unsigned dst_sel,unsigned int_sel,unsigned data_sel,struct si_resource * buf,uint64_t va,uint32_t new_fence,unsigned query_type)67 void si_cp_release_mem(struct si_context *ctx, struct radeon_cmdbuf *cs, unsigned event,
68 unsigned event_flags, unsigned dst_sel, unsigned int_sel, unsigned data_sel,
69 struct si_resource *buf, uint64_t va, uint32_t new_fence,
70 unsigned query_type)
71 {
72 unsigned op = EVENT_TYPE(event) |
73 EVENT_INDEX(event == V_028A90_CS_DONE || event == V_028A90_PS_DONE ? 6 : 5) |
74 event_flags;
75 unsigned sel = EOP_DST_SEL(dst_sel) | EOP_INT_SEL(int_sel) | EOP_DATA_SEL(data_sel);
76 bool compute_ib = !ctx->has_graphics;
77
78 radeon_begin(cs);
79
80 if (ctx->chip_class >= GFX9 || (compute_ib && ctx->chip_class >= GFX7)) {
81 /* A ZPASS_DONE or PIXEL_STAT_DUMP_EVENT (of the DB occlusion
82 * counters) must immediately precede every timestamp event to
83 * prevent a GPU hang on GFX9.
84 *
85 * Occlusion queries don't need to do it here, because they
86 * always do ZPASS_DONE before the timestamp.
87 */
88 if (ctx->chip_class == GFX9 && !compute_ib && query_type != PIPE_QUERY_OCCLUSION_COUNTER &&
89 query_type != PIPE_QUERY_OCCLUSION_PREDICATE &&
90 query_type != PIPE_QUERY_OCCLUSION_PREDICATE_CONSERVATIVE) {
91 struct si_resource *scratch = unlikely(ctx->ws->cs_is_secure(&ctx->gfx_cs)) ?
92 ctx->eop_bug_scratch_tmz : ctx->eop_bug_scratch;
93
94 assert(16 * ctx->screen->info.max_render_backends <= scratch->b.b.width0);
95 radeon_emit(PKT3(PKT3_EVENT_WRITE, 2, 0));
96 radeon_emit(EVENT_TYPE(EVENT_TYPE_ZPASS_DONE) | EVENT_INDEX(1));
97 radeon_emit(scratch->gpu_address);
98 radeon_emit(scratch->gpu_address >> 32);
99
100 radeon_add_to_buffer_list(ctx, &ctx->gfx_cs, scratch, RADEON_USAGE_WRITE,
101 RADEON_PRIO_QUERY);
102 }
103
104 radeon_emit(PKT3(PKT3_RELEASE_MEM, ctx->chip_class >= GFX9 ? 6 : 5, 0));
105 radeon_emit(op);
106 radeon_emit(sel);
107 radeon_emit(va); /* address lo */
108 radeon_emit(va >> 32); /* address hi */
109 radeon_emit(new_fence); /* immediate data lo */
110 radeon_emit(0); /* immediate data hi */
111 if (ctx->chip_class >= GFX9)
112 radeon_emit(0); /* unused */
113 } else {
114 if (ctx->chip_class == GFX7 || ctx->chip_class == GFX8) {
115 struct si_resource *scratch = ctx->eop_bug_scratch;
116 uint64_t va = scratch->gpu_address;
117
118 /* Two EOP events are required to make all engines go idle
119 * (and optional cache flushes executed) before the timestamp
120 * is written.
121 */
122 radeon_emit(PKT3(PKT3_EVENT_WRITE_EOP, 4, 0));
123 radeon_emit(op);
124 radeon_emit(va);
125 radeon_emit(((va >> 32) & 0xffff) | sel);
126 radeon_emit(0); /* immediate data */
127 radeon_emit(0); /* unused */
128
129 radeon_add_to_buffer_list(ctx, &ctx->gfx_cs, scratch, RADEON_USAGE_WRITE,
130 RADEON_PRIO_QUERY);
131 }
132
133 radeon_emit(PKT3(PKT3_EVENT_WRITE_EOP, 4, 0));
134 radeon_emit(op);
135 radeon_emit(va);
136 radeon_emit(((va >> 32) & 0xffff) | sel);
137 radeon_emit(new_fence); /* immediate data */
138 radeon_emit(0); /* unused */
139 }
140
141 radeon_end();
142
143 if (buf) {
144 radeon_add_to_buffer_list(ctx, &ctx->gfx_cs, buf, RADEON_USAGE_WRITE, RADEON_PRIO_QUERY);
145 }
146 }
147
si_cp_write_fence_dwords(struct si_screen * screen)148 unsigned si_cp_write_fence_dwords(struct si_screen *screen)
149 {
150 unsigned dwords = 6;
151
152 if (screen->info.chip_class == GFX7 || screen->info.chip_class == GFX8)
153 dwords *= 2;
154
155 return dwords;
156 }
157
si_cp_wait_mem(struct si_context * ctx,struct radeon_cmdbuf * cs,uint64_t va,uint32_t ref,uint32_t mask,unsigned flags)158 void si_cp_wait_mem(struct si_context *ctx, struct radeon_cmdbuf *cs, uint64_t va, uint32_t ref,
159 uint32_t mask, unsigned flags)
160 {
161 radeon_begin(cs);
162 radeon_emit(PKT3(PKT3_WAIT_REG_MEM, 5, 0));
163 radeon_emit(WAIT_REG_MEM_MEM_SPACE(1) | flags);
164 radeon_emit(va);
165 radeon_emit(va >> 32);
166 radeon_emit(ref); /* reference value */
167 radeon_emit(mask); /* mask */
168 radeon_emit(4); /* poll interval */
169 radeon_end();
170 }
171
si_add_fence_dependency(struct si_context * sctx,struct pipe_fence_handle * fence)172 static void si_add_fence_dependency(struct si_context *sctx, struct pipe_fence_handle *fence)
173 {
174 struct radeon_winsys *ws = sctx->ws;
175
176 ws->cs_add_fence_dependency(&sctx->gfx_cs, fence, 0);
177 }
178
si_add_syncobj_signal(struct si_context * sctx,struct pipe_fence_handle * fence)179 static void si_add_syncobj_signal(struct si_context *sctx, struct pipe_fence_handle *fence)
180 {
181 sctx->ws->cs_add_syncobj_signal(&sctx->gfx_cs, fence);
182 }
183
si_fence_reference(struct pipe_screen * screen,struct pipe_fence_handle ** dst,struct pipe_fence_handle * src)184 static void si_fence_reference(struct pipe_screen *screen, struct pipe_fence_handle **dst,
185 struct pipe_fence_handle *src)
186 {
187 struct radeon_winsys *ws = ((struct si_screen *)screen)->ws;
188 struct si_fence **sdst = (struct si_fence **)dst;
189 struct si_fence *ssrc = (struct si_fence *)src;
190
191 if (pipe_reference(&(*sdst)->reference, &ssrc->reference)) {
192 ws->fence_reference(&(*sdst)->gfx, NULL);
193 tc_unflushed_batch_token_reference(&(*sdst)->tc_token, NULL);
194 si_resource_reference(&(*sdst)->fine.buf, NULL);
195 FREE(*sdst);
196 }
197 *sdst = ssrc;
198 }
199
si_create_multi_fence()200 static struct si_fence *si_create_multi_fence()
201 {
202 struct si_fence *fence = CALLOC_STRUCT(si_fence);
203 if (!fence)
204 return NULL;
205
206 pipe_reference_init(&fence->reference, 1);
207 util_queue_fence_init(&fence->ready);
208
209 return fence;
210 }
211
si_create_fence(struct pipe_context * ctx,struct tc_unflushed_batch_token * tc_token)212 struct pipe_fence_handle *si_create_fence(struct pipe_context *ctx,
213 struct tc_unflushed_batch_token *tc_token)
214 {
215 struct si_fence *fence = si_create_multi_fence();
216 if (!fence)
217 return NULL;
218
219 util_queue_fence_reset(&fence->ready);
220 tc_unflushed_batch_token_reference(&fence->tc_token, tc_token);
221
222 return (struct pipe_fence_handle *)fence;
223 }
224
si_fine_fence_signaled(struct radeon_winsys * rws,const struct si_fine_fence * fine)225 static bool si_fine_fence_signaled(struct radeon_winsys *rws, const struct si_fine_fence *fine)
226 {
227 char *map =
228 rws->buffer_map(rws, fine->buf->buf, NULL, PIPE_MAP_READ | PIPE_MAP_UNSYNCHRONIZED);
229 if (!map)
230 return false;
231
232 uint32_t *fence = (uint32_t *)(map + fine->offset);
233 return *fence != 0;
234 }
235
si_fine_fence_set(struct si_context * ctx,struct si_fine_fence * fine,unsigned flags)236 static void si_fine_fence_set(struct si_context *ctx, struct si_fine_fence *fine, unsigned flags)
237 {
238 uint32_t *fence_ptr;
239
240 assert(util_bitcount(flags & (PIPE_FLUSH_TOP_OF_PIPE | PIPE_FLUSH_BOTTOM_OF_PIPE)) == 1);
241
242 /* Use cached system memory for the fence. */
243 u_upload_alloc(ctx->cached_gtt_allocator, 0, 4, 4, &fine->offset,
244 (struct pipe_resource **)&fine->buf, (void **)&fence_ptr);
245 if (!fine->buf)
246 return;
247
248 *fence_ptr = 0;
249
250 if (flags & PIPE_FLUSH_TOP_OF_PIPE) {
251 uint32_t value = 0x80000000;
252
253 si_cp_write_data(ctx, fine->buf, fine->offset, 4, V_370_MEM, V_370_PFP, &value);
254 } else if (flags & PIPE_FLUSH_BOTTOM_OF_PIPE) {
255 uint64_t fence_va = fine->buf->gpu_address + fine->offset;
256
257 radeon_add_to_buffer_list(ctx, &ctx->gfx_cs, fine->buf, RADEON_USAGE_WRITE, RADEON_PRIO_QUERY);
258 si_cp_release_mem(ctx, &ctx->gfx_cs, V_028A90_BOTTOM_OF_PIPE_TS, 0, EOP_DST_SEL_MEM,
259 EOP_INT_SEL_NONE, EOP_DATA_SEL_VALUE_32BIT, NULL, fence_va, 0x80000000,
260 PIPE_QUERY_GPU_FINISHED);
261 } else {
262 assert(false);
263 }
264 }
265
si_fence_finish(struct pipe_screen * screen,struct pipe_context * ctx,struct pipe_fence_handle * fence,uint64_t timeout)266 static bool si_fence_finish(struct pipe_screen *screen, struct pipe_context *ctx,
267 struct pipe_fence_handle *fence, uint64_t timeout)
268 {
269 struct radeon_winsys *rws = ((struct si_screen *)screen)->ws;
270 struct si_fence *sfence = (struct si_fence *)fence;
271 struct si_context *sctx;
272 int64_t abs_timeout = os_time_get_absolute_timeout(timeout);
273
274 ctx = threaded_context_unwrap_sync(ctx);
275 sctx = (struct si_context *)(ctx ? ctx : NULL);
276
277 if (!util_queue_fence_is_signalled(&sfence->ready)) {
278 if (sfence->tc_token) {
279 /* Ensure that si_flush_from_st will be called for
280 * this fence, but only if we're in the API thread
281 * where the context is current.
282 *
283 * Note that the batch containing the flush may already
284 * be in flight in the driver thread, so the fence
285 * may not be ready yet when this call returns.
286 */
287 threaded_context_flush(ctx, sfence->tc_token, timeout == 0);
288 }
289
290 if (!timeout)
291 return false;
292
293 if (timeout == PIPE_TIMEOUT_INFINITE) {
294 util_queue_fence_wait(&sfence->ready);
295 } else {
296 if (!util_queue_fence_wait_timeout(&sfence->ready, abs_timeout))
297 return false;
298 }
299
300 if (timeout && timeout != PIPE_TIMEOUT_INFINITE) {
301 int64_t time = os_time_get_nano();
302 timeout = abs_timeout > time ? abs_timeout - time : 0;
303 }
304 }
305
306 if (!sfence->gfx)
307 return true;
308
309 if (sfence->fine.buf && si_fine_fence_signaled(rws, &sfence->fine)) {
310 rws->fence_reference(&sfence->gfx, NULL);
311 si_resource_reference(&sfence->fine.buf, NULL);
312 return true;
313 }
314
315 /* Flush the gfx IB if it hasn't been flushed yet. */
316 if (sctx && sfence->gfx_unflushed.ctx == sctx &&
317 sfence->gfx_unflushed.ib_index == sctx->num_gfx_cs_flushes) {
318 /* Section 4.1.2 (Signaling) of the OpenGL 4.6 (Core profile)
319 * spec says:
320 *
321 * "If the sync object being blocked upon will not be
322 * signaled in finite time (for example, by an associated
323 * fence command issued previously, but not yet flushed to
324 * the graphics pipeline), then ClientWaitSync may hang
325 * forever. To help prevent this behavior, if
326 * ClientWaitSync is called and all of the following are
327 * true:
328 *
329 * * the SYNC_FLUSH_COMMANDS_BIT bit is set in flags,
330 * * sync is unsignaled when ClientWaitSync is called,
331 * * and the calls to ClientWaitSync and FenceSync were
332 * issued from the same context,
333 *
334 * then the GL will behave as if the equivalent of Flush
335 * were inserted immediately after the creation of sync."
336 *
337 * This means we need to flush for such fences even when we're
338 * not going to wait.
339 */
340 si_flush_gfx_cs(sctx, (timeout ? 0 : PIPE_FLUSH_ASYNC) | RADEON_FLUSH_START_NEXT_GFX_IB_NOW,
341 NULL);
342 sfence->gfx_unflushed.ctx = NULL;
343
344 if (!timeout)
345 return false;
346
347 /* Recompute the timeout after all that. */
348 if (timeout && timeout != PIPE_TIMEOUT_INFINITE) {
349 int64_t time = os_time_get_nano();
350 timeout = abs_timeout > time ? abs_timeout - time : 0;
351 }
352 }
353
354 if (rws->fence_wait(rws, sfence->gfx, timeout))
355 return true;
356
357 /* Re-check in case the GPU is slow or hangs, but the commands before
358 * the fine-grained fence have completed. */
359 if (sfence->fine.buf && si_fine_fence_signaled(rws, &sfence->fine))
360 return true;
361
362 return false;
363 }
364
si_create_fence_fd(struct pipe_context * ctx,struct pipe_fence_handle ** pfence,int fd,enum pipe_fd_type type)365 static void si_create_fence_fd(struct pipe_context *ctx, struct pipe_fence_handle **pfence, int fd,
366 enum pipe_fd_type type)
367 {
368 struct si_screen *sscreen = (struct si_screen *)ctx->screen;
369 struct radeon_winsys *ws = sscreen->ws;
370 struct si_fence *sfence;
371
372 *pfence = NULL;
373
374 sfence = si_create_multi_fence();
375 if (!sfence)
376 return;
377
378 switch (type) {
379 case PIPE_FD_TYPE_NATIVE_SYNC:
380 if (!sscreen->info.has_fence_to_handle)
381 goto finish;
382
383 sfence->gfx = ws->fence_import_sync_file(ws, fd);
384 break;
385
386 case PIPE_FD_TYPE_SYNCOBJ:
387 if (!sscreen->info.has_syncobj)
388 goto finish;
389
390 sfence->gfx = ws->fence_import_syncobj(ws, fd);
391 break;
392
393 default:
394 unreachable("bad fence fd type when importing");
395 }
396
397 finish:
398 if (!sfence->gfx) {
399 FREE(sfence);
400 return;
401 }
402
403 *pfence = (struct pipe_fence_handle *)sfence;
404 }
405
si_fence_get_fd(struct pipe_screen * screen,struct pipe_fence_handle * fence)406 static int si_fence_get_fd(struct pipe_screen *screen, struct pipe_fence_handle *fence)
407 {
408 struct si_screen *sscreen = (struct si_screen *)screen;
409 struct radeon_winsys *ws = sscreen->ws;
410 struct si_fence *sfence = (struct si_fence *)fence;
411 int gfx_fd = -1;
412
413 if (!sscreen->info.has_fence_to_handle)
414 return -1;
415
416 util_queue_fence_wait(&sfence->ready);
417
418 /* Deferred fences aren't supported. */
419 assert(!sfence->gfx_unflushed.ctx);
420 if (sfence->gfx_unflushed.ctx)
421 return -1;
422
423 if (sfence->gfx) {
424 gfx_fd = ws->fence_export_sync_file(ws, sfence->gfx);
425 if (gfx_fd == -1) {
426 return -1;
427 }
428 }
429
430 /* If we don't have FDs at this point, it means we don't have fences
431 * either. */
432 if (gfx_fd == -1)
433 return ws->export_signalled_sync_file(ws);
434
435 return gfx_fd;
436 }
437
si_flush_all_queues(struct pipe_context * ctx,struct pipe_fence_handle ** fence,unsigned flags,bool force_flush)438 static void si_flush_all_queues(struct pipe_context *ctx,
439 struct pipe_fence_handle **fence,
440 unsigned flags, bool force_flush)
441 {
442 struct pipe_screen *screen = ctx->screen;
443 struct si_context *sctx = (struct si_context *)ctx;
444 struct radeon_winsys *ws = sctx->ws;
445 struct pipe_fence_handle *gfx_fence = NULL;
446 bool deferred_fence = false;
447 struct si_fine_fence fine = {};
448 unsigned rflags = PIPE_FLUSH_ASYNC;
449
450 if (!(flags & PIPE_FLUSH_DEFERRED)) {
451 si_flush_implicit_resources(sctx);
452 }
453
454 if (flags & PIPE_FLUSH_END_OF_FRAME)
455 rflags |= PIPE_FLUSH_END_OF_FRAME;
456
457 if (flags & (PIPE_FLUSH_TOP_OF_PIPE | PIPE_FLUSH_BOTTOM_OF_PIPE)) {
458 assert(flags & PIPE_FLUSH_DEFERRED);
459 assert(fence);
460
461 si_fine_fence_set(sctx, &fine, flags);
462 }
463
464 if (force_flush) {
465 sctx->initial_gfx_cs_size = 0;
466 }
467
468 if (!radeon_emitted(&sctx->gfx_cs, sctx->initial_gfx_cs_size)) {
469 if (fence)
470 ws->fence_reference(&gfx_fence, sctx->last_gfx_fence);
471 if (!(flags & PIPE_FLUSH_DEFERRED))
472 ws->cs_sync_flush(&sctx->gfx_cs);
473
474 tc_driver_internal_flush_notify(sctx->tc);
475 } else {
476 /* Instead of flushing, create a deferred fence. Constraints:
477 * - the gallium frontend must allow a deferred flush.
478 * - the gallium frontend must request a fence.
479 * - fence_get_fd is not allowed.
480 * Thread safety in fence_finish must be ensured by the gallium frontend.
481 */
482 if (flags & PIPE_FLUSH_DEFERRED && !(flags & PIPE_FLUSH_FENCE_FD) && fence) {
483 gfx_fence = sctx->ws->cs_get_next_fence(&sctx->gfx_cs);
484 deferred_fence = true;
485 } else {
486 si_flush_gfx_cs(sctx, rflags, fence ? &gfx_fence : NULL);
487 }
488 }
489
490 /* Both engines can signal out of order, so we need to keep both fences. */
491 if (fence) {
492 struct si_fence *new_fence;
493
494 if (flags & TC_FLUSH_ASYNC) {
495 new_fence = (struct si_fence *)*fence;
496 assert(new_fence);
497 } else {
498 new_fence = si_create_multi_fence();
499 if (!new_fence) {
500 ws->fence_reference(&gfx_fence, NULL);
501 goto finish;
502 }
503
504 screen->fence_reference(screen, fence, NULL);
505 *fence = (struct pipe_fence_handle *)new_fence;
506 }
507
508 /* If both fences are NULL, fence_finish will always return true. */
509 new_fence->gfx = gfx_fence;
510
511 if (deferred_fence) {
512 new_fence->gfx_unflushed.ctx = sctx;
513 new_fence->gfx_unflushed.ib_index = sctx->num_gfx_cs_flushes;
514 }
515
516 new_fence->fine = fine;
517 fine.buf = NULL;
518
519 if (flags & TC_FLUSH_ASYNC) {
520 util_queue_fence_signal(&new_fence->ready);
521 tc_unflushed_batch_token_reference(&new_fence->tc_token, NULL);
522 }
523 }
524 assert(!fine.buf);
525 finish:
526 if (!(flags & (PIPE_FLUSH_DEFERRED | PIPE_FLUSH_ASYNC))) {
527 ws->cs_sync_flush(&sctx->gfx_cs);
528 }
529 }
530
si_flush_from_st(struct pipe_context * ctx,struct pipe_fence_handle ** fence,unsigned flags)531 static void si_flush_from_st(struct pipe_context *ctx, struct pipe_fence_handle **fence,
532 unsigned flags)
533 {
534 return si_flush_all_queues(ctx, fence, flags, false);
535 }
536
si_fence_server_signal(struct pipe_context * ctx,struct pipe_fence_handle * fence)537 static void si_fence_server_signal(struct pipe_context *ctx, struct pipe_fence_handle *fence)
538 {
539 struct si_context *sctx = (struct si_context *)ctx;
540 struct si_fence *sfence = (struct si_fence *)fence;
541
542 assert(sfence->gfx);
543
544 if (sfence->gfx)
545 si_add_syncobj_signal(sctx, sfence->gfx);
546
547 /**
548 * The spec does not require a flush here. We insert a flush
549 * because syncobj based signals are not directly placed into
550 * the command stream. Instead the signal happens when the
551 * submission associated with the syncobj finishes execution.
552 *
553 * Therefore, we must make sure that we flush the pipe to avoid
554 * new work being emitted and getting executed before the signal
555 * operation.
556 *
557 * Forces a flush even if the GFX CS is empty.
558 */
559 si_flush_all_queues(ctx, NULL, PIPE_FLUSH_ASYNC, true);
560 }
561
si_fence_server_sync(struct pipe_context * ctx,struct pipe_fence_handle * fence)562 static void si_fence_server_sync(struct pipe_context *ctx, struct pipe_fence_handle *fence)
563 {
564 struct si_context *sctx = (struct si_context *)ctx;
565 struct si_fence *sfence = (struct si_fence *)fence;
566
567 util_queue_fence_wait(&sfence->ready);
568
569 /* Unflushed fences from the same context are no-ops. */
570 if (sfence->gfx_unflushed.ctx && sfence->gfx_unflushed.ctx == sctx)
571 return;
572
573 /* All unflushed commands will not start execution before this fence
574 * dependency is signalled. That's fine. Flushing is very expensive
575 * if we get fence_server_sync after every draw call. (which happens
576 * with Android/SurfaceFlinger)
577 *
578 * In a nutshell, when CPU overhead is greater than GPU overhead,
579 * or when the time it takes to execute an IB on the GPU is less than
580 * the time it takes to create and submit that IB, flushing decreases
581 * performance. Therefore, DO NOT FLUSH.
582 */
583 if (sfence->gfx)
584 si_add_fence_dependency(sctx, sfence->gfx);
585 }
586
si_init_fence_functions(struct si_context * ctx)587 void si_init_fence_functions(struct si_context *ctx)
588 {
589 ctx->b.flush = si_flush_from_st;
590 ctx->b.create_fence_fd = si_create_fence_fd;
591 ctx->b.fence_server_sync = si_fence_server_sync;
592 ctx->b.fence_server_signal = si_fence_server_signal;
593 }
594
si_init_screen_fence_functions(struct si_screen * screen)595 void si_init_screen_fence_functions(struct si_screen *screen)
596 {
597 screen->b.fence_finish = si_fence_finish;
598 screen->b.fence_reference = si_fence_reference;
599 screen->b.fence_get_fd = si_fence_get_fd;
600 }
601