• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2012 Advanced Micro Devices, Inc.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * on the rights to use, copy, modify, merge, publish, distribute, sub
9  * license, and/or sell copies of the Software, and to permit persons to whom
10  * the Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
20  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
21  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
22  * USE OR OTHER DEALINGS IN THE SOFTWARE.
23  */
24 
25 #include "si_build_pm4.h"
26 #include "util/u_upload_mgr.h"
27 #include "util/u_viewport.h"
28 
29 #define SI_MAX_SCISSOR 16384
30 
si_get_small_prim_cull_info(struct si_context * sctx,struct si_small_prim_cull_info * out)31 void si_get_small_prim_cull_info(struct si_context *sctx, struct si_small_prim_cull_info *out)
32 {
33    /* This is needed by the small primitive culling, because it's done
34     * in screen space.
35     */
36    struct si_small_prim_cull_info info;
37    unsigned num_samples = si_get_num_coverage_samples(sctx);
38    assert(num_samples >= 1);
39 
40    info.scale[0] = sctx->viewports.states[0].scale[0];
41    info.scale[1] = sctx->viewports.states[0].scale[1];
42    info.translate[0] = sctx->viewports.states[0].translate[0];
43    info.translate[1] = sctx->viewports.states[0].translate[1];
44 
45    /* The viewport shouldn't flip the X axis for the small prim culling to work. */
46    assert(-info.scale[0] + info.translate[0] <= info.scale[0] + info.translate[0]);
47 
48    /* If the Y axis is inverted (OpenGL default framebuffer), reverse it.
49     * This is because the viewport transformation inverts the clip space
50     * bounding box, so min becomes max, which breaks small primitive
51     * culling.
52     */
53    if (sctx->viewport0_y_inverted) {
54       info.scale[1] = -info.scale[1];
55       info.translate[1] = -info.translate[1];
56    }
57 
58    /* Scale the framebuffer up, so that samples become pixels and small
59     * primitive culling is the same for all sample counts.
60     * This only works with the standard DX sample positions, because
61     * the samples are evenly spaced on both X and Y axes.
62     */
63    for (unsigned i = 0; i < 2; i++) {
64       info.scale[i] *= num_samples;
65       info.translate[i] *= num_samples;
66    }
67 
68    /* Better subpixel precision increases the efficiency of small
69     * primitive culling. (more precision means a tighter bounding box
70     * around primitives and more accurate elimination)
71     */
72    unsigned quant_mode = sctx->viewports.as_scissor[0].quant_mode;
73 
74    if (quant_mode == SI_QUANT_MODE_12_12_FIXED_POINT_1_4096TH)
75       info.small_prim_precision = num_samples / 4096.0;
76    else if (quant_mode == SI_QUANT_MODE_14_10_FIXED_POINT_1_1024TH)
77       info.small_prim_precision = num_samples / 1024.0;
78    else
79       info.small_prim_precision = num_samples / 256.0;
80 
81    *out = info;
82 }
83 
si_emit_cull_state(struct si_context * sctx)84 static void si_emit_cull_state(struct si_context *sctx)
85 {
86    assert(sctx->screen->use_ngg_culling);
87 
88    struct si_small_prim_cull_info info;
89    si_get_small_prim_cull_info(sctx, &info);
90 
91    if (!sctx->small_prim_cull_info_buf ||
92        memcmp(&info, &sctx->last_small_prim_cull_info, sizeof(info))) {
93       unsigned offset = 0;
94 
95       /* Align to 256, because the address is shifted by 8 bits. */
96       u_upload_data(sctx->b.const_uploader, 0, sizeof(info), 256, &info, &offset,
97                     (struct pipe_resource **)&sctx->small_prim_cull_info_buf);
98 
99       sctx->small_prim_cull_info_address = sctx->small_prim_cull_info_buf->gpu_address + offset;
100       sctx->last_small_prim_cull_info = info;
101    }
102 
103    /* This will end up in SGPR6 as (value << 8), shifted by the hw. */
104    radeon_add_to_buffer_list(sctx, &sctx->gfx_cs, sctx->small_prim_cull_info_buf,
105                              RADEON_USAGE_READ, RADEON_PRIO_CONST_BUFFER);
106    radeon_begin(&sctx->gfx_cs);
107    radeon_set_sh_reg(R_00B220_SPI_SHADER_PGM_LO_GS,
108                      sctx->small_prim_cull_info_address >> 8);
109    radeon_end();
110 
111    /* Set VS_STATE.SMALL_PRIM_PRECISION for NGG culling.
112     *
113     * small_prim_precision is 1 / 2^n. We only need n between 5 (1/32) and 12 (1/4096).
114     * Such a floating point value can be packed into 4 bits as follows:
115     * If we pass the first 4 bits of the exponent to the shader and set the next 3 bits
116     * to 1, we'll get the number exactly because all other bits are always 0. See:
117     *                                                               1
118     * value  =  (0x70 | value.exponent[0:3]) << 23  =  ------------------------------
119     *                                                  2 ^ (15 - value.exponent[0:3])
120     *
121     * So pass only the first 4 bits of the float exponent to the shader.
122     */
123    sctx->current_vs_state &= C_VS_STATE_SMALL_PRIM_PRECISION;
124    sctx->current_vs_state |= S_VS_STATE_SMALL_PRIM_PRECISION(fui(info.small_prim_precision) >> 23);
125 }
126 
si_set_scissor_states(struct pipe_context * pctx,unsigned start_slot,unsigned num_scissors,const struct pipe_scissor_state * state)127 static void si_set_scissor_states(struct pipe_context *pctx, unsigned start_slot,
128                                   unsigned num_scissors, const struct pipe_scissor_state *state)
129 {
130    struct si_context *ctx = (struct si_context *)pctx;
131    int i;
132 
133    for (i = 0; i < num_scissors; i++)
134       ctx->scissors[start_slot + i] = state[i];
135 
136    if (!ctx->queued.named.rasterizer->scissor_enable)
137       return;
138 
139    si_mark_atom_dirty(ctx, &ctx->atoms.s.scissors);
140 }
141 
142 /* Since the guard band disables clipping, we have to clip per-pixel
143  * using a scissor.
144  */
si_get_scissor_from_viewport(struct si_context * ctx,const struct pipe_viewport_state * vp,struct si_signed_scissor * scissor)145 static void si_get_scissor_from_viewport(struct si_context *ctx,
146                                          const struct pipe_viewport_state *vp,
147                                          struct si_signed_scissor *scissor)
148 {
149    float tmp, minx, miny, maxx, maxy;
150 
151    /* Convert (-1, -1) and (1, 1) from clip space into window space. */
152    minx = -vp->scale[0] + vp->translate[0];
153    miny = -vp->scale[1] + vp->translate[1];
154    maxx = vp->scale[0] + vp->translate[0];
155    maxy = vp->scale[1] + vp->translate[1];
156 
157    /* Handle inverted viewports. */
158    if (minx > maxx) {
159       tmp = minx;
160       minx = maxx;
161       maxx = tmp;
162    }
163    if (miny > maxy) {
164       tmp = miny;
165       miny = maxy;
166       maxy = tmp;
167    }
168 
169    /* Convert to integer and round up the max bounds. */
170    scissor->minx = minx;
171    scissor->miny = miny;
172    scissor->maxx = ceilf(maxx);
173    scissor->maxy = ceilf(maxy);
174 }
175 
si_clamp_scissor(struct si_context * ctx,struct pipe_scissor_state * out,struct si_signed_scissor * scissor)176 static void si_clamp_scissor(struct si_context *ctx, struct pipe_scissor_state *out,
177                              struct si_signed_scissor *scissor)
178 {
179    out->minx = CLAMP(scissor->minx, 0, SI_MAX_SCISSOR);
180    out->miny = CLAMP(scissor->miny, 0, SI_MAX_SCISSOR);
181    out->maxx = CLAMP(scissor->maxx, 0, SI_MAX_SCISSOR);
182    out->maxy = CLAMP(scissor->maxy, 0, SI_MAX_SCISSOR);
183 }
184 
si_clip_scissor(struct pipe_scissor_state * out,struct pipe_scissor_state * clip)185 static void si_clip_scissor(struct pipe_scissor_state *out, struct pipe_scissor_state *clip)
186 {
187    out->minx = MAX2(out->minx, clip->minx);
188    out->miny = MAX2(out->miny, clip->miny);
189    out->maxx = MIN2(out->maxx, clip->maxx);
190    out->maxy = MIN2(out->maxy, clip->maxy);
191 }
192 
si_scissor_make_union(struct si_signed_scissor * out,struct si_signed_scissor * in)193 static void si_scissor_make_union(struct si_signed_scissor *out, struct si_signed_scissor *in)
194 {
195    out->minx = MIN2(out->minx, in->minx);
196    out->miny = MIN2(out->miny, in->miny);
197    out->maxx = MAX2(out->maxx, in->maxx);
198    out->maxy = MAX2(out->maxy, in->maxy);
199    out->quant_mode = MIN2(out->quant_mode, in->quant_mode);
200 }
201 
si_emit_one_scissor(struct si_context * ctx,struct radeon_cmdbuf * cs,struct si_signed_scissor * vp_scissor,struct pipe_scissor_state * scissor)202 static void si_emit_one_scissor(struct si_context *ctx, struct radeon_cmdbuf *cs,
203                                 struct si_signed_scissor *vp_scissor,
204                                 struct pipe_scissor_state *scissor)
205 {
206    struct pipe_scissor_state final;
207 
208    if (ctx->vs_disables_clipping_viewport) {
209       final.minx = final.miny = 0;
210       final.maxx = final.maxy = SI_MAX_SCISSOR;
211    } else {
212       si_clamp_scissor(ctx, &final, vp_scissor);
213    }
214 
215    if (scissor)
216       si_clip_scissor(&final, scissor);
217 
218    radeon_begin(cs);
219 
220    /* Workaround for a hw bug on GFX6 that occurs when PA_SU_HARDWARE_-
221     * SCREEN_OFFSET != 0 and any_scissor.BR_X/Y <= 0.
222     */
223    if (ctx->chip_class == GFX6 && (final.maxx == 0 || final.maxy == 0)) {
224       radeon_emit(S_028250_TL_X(1) | S_028250_TL_Y(1) | S_028250_WINDOW_OFFSET_DISABLE(1));
225       radeon_emit(S_028254_BR_X(1) | S_028254_BR_Y(1));
226       radeon_end();
227       return;
228    }
229 
230    radeon_emit(S_028250_TL_X(final.minx) | S_028250_TL_Y(final.miny) |
231                   S_028250_WINDOW_OFFSET_DISABLE(1));
232    radeon_emit(S_028254_BR_X(final.maxx) | S_028254_BR_Y(final.maxy));
233    radeon_end();
234 }
235 
236 #define MAX_PA_SU_HARDWARE_SCREEN_OFFSET 8176
237 
si_emit_guardband(struct si_context * ctx)238 static void si_emit_guardband(struct si_context *ctx)
239 {
240    const struct si_state_rasterizer *rs = ctx->queued.named.rasterizer;
241    struct si_signed_scissor vp_as_scissor;
242    struct pipe_viewport_state vp;
243    float left, top, right, bottom, max_range, guardband_x, guardband_y;
244    float discard_x, discard_y;
245 
246    if (ctx->vs_writes_viewport_index) {
247       /* Shaders can draw to any viewport. Make a union of all
248        * viewports. */
249       vp_as_scissor = ctx->viewports.as_scissor[0];
250       for (unsigned i = 1; i < SI_MAX_VIEWPORTS; i++) {
251          si_scissor_make_union(&vp_as_scissor, &ctx->viewports.as_scissor[i]);
252       }
253    } else {
254       vp_as_scissor = ctx->viewports.as_scissor[0];
255    }
256 
257    /* Blits don't set the viewport state. The vertex shader determines
258     * the viewport size by scaling the coordinates, so we don't know
259     * how large the viewport is. Assume the worst case.
260     */
261    if (ctx->vs_disables_clipping_viewport)
262       vp_as_scissor.quant_mode = SI_QUANT_MODE_16_8_FIXED_POINT_1_256TH;
263 
264    /* Determine the optimal hardware screen offset to center the viewport
265     * within the viewport range in order to maximize the guardband size.
266     */
267    int hw_screen_offset_x = (vp_as_scissor.maxx + vp_as_scissor.minx) / 2;
268    int hw_screen_offset_y = (vp_as_scissor.maxy + vp_as_scissor.miny) / 2;
269 
270    /* GFX6-GFX7 need to align the offset to an ubertile consisting of all SEs. */
271    const unsigned hw_screen_offset_alignment =
272       ctx->chip_class >= GFX8 ? 16 : MAX2(ctx->screen->se_tile_repeat, 16);
273 
274    /* Indexed by quantization modes */
275    static int max_viewport_size[] = {65535, 16383, 4095};
276 
277    /* Ensure that the whole viewport stays representable in
278     * absolute coordinates.
279     * See comment in si_set_viewport_states.
280     */
281    assert(vp_as_scissor.maxx <= max_viewport_size[vp_as_scissor.quant_mode] &&
282           vp_as_scissor.maxy <= max_viewport_size[vp_as_scissor.quant_mode]);
283 
284    hw_screen_offset_x = CLAMP(hw_screen_offset_x, 0, MAX_PA_SU_HARDWARE_SCREEN_OFFSET);
285    hw_screen_offset_y = CLAMP(hw_screen_offset_y, 0, MAX_PA_SU_HARDWARE_SCREEN_OFFSET);
286 
287    /* Align the screen offset by dropping the low bits. */
288    hw_screen_offset_x &= ~(hw_screen_offset_alignment - 1);
289    hw_screen_offset_y &= ~(hw_screen_offset_alignment - 1);
290 
291    /* Apply the offset to center the viewport and maximize the guardband. */
292    vp_as_scissor.minx -= hw_screen_offset_x;
293    vp_as_scissor.maxx -= hw_screen_offset_x;
294    vp_as_scissor.miny -= hw_screen_offset_y;
295    vp_as_scissor.maxy -= hw_screen_offset_y;
296 
297    /* Reconstruct the viewport transformation from the scissor. */
298    vp.translate[0] = (vp_as_scissor.minx + vp_as_scissor.maxx) / 2.0;
299    vp.translate[1] = (vp_as_scissor.miny + vp_as_scissor.maxy) / 2.0;
300    vp.scale[0] = vp_as_scissor.maxx - vp.translate[0];
301    vp.scale[1] = vp_as_scissor.maxy - vp.translate[1];
302 
303    /* Treat a 0x0 viewport as 1x1 to prevent division by zero. */
304    if (vp_as_scissor.minx == vp_as_scissor.maxx)
305       vp.scale[0] = 0.5;
306    if (vp_as_scissor.miny == vp_as_scissor.maxy)
307       vp.scale[1] = 0.5;
308 
309    /* Find the biggest guard band that is inside the supported viewport
310     * range. The guard band is specified as a horizontal and vertical
311     * distance from (0,0) in clip space.
312     *
313     * This is done by applying the inverse viewport transformation
314     * on the viewport limits to get those limits in clip space.
315     *
316     * The viewport range is [-max_viewport_size/2 - 1, max_viewport_size/2].
317     * (-1 to the min coord because max_viewport_size is odd and ViewportBounds
318     * Min/Max are -32768, 32767).
319     */
320    assert(vp_as_scissor.quant_mode < ARRAY_SIZE(max_viewport_size));
321    max_range = max_viewport_size[vp_as_scissor.quant_mode] / 2;
322    left = (-max_range - 1 - vp.translate[0]) / vp.scale[0];
323    right = (max_range - vp.translate[0]) / vp.scale[0];
324    top = (-max_range - 1 - vp.translate[1]) / vp.scale[1];
325    bottom = (max_range - vp.translate[1]) / vp.scale[1];
326 
327    assert(left <= -1 && top <= -1 && right >= 1 && bottom >= 1);
328 
329    guardband_x = MIN2(-left, right);
330    guardband_y = MIN2(-top, bottom);
331 
332    discard_x = 1.0;
333    discard_y = 1.0;
334 
335    if (unlikely(util_prim_is_points_or_lines(ctx->current_rast_prim))) {
336       /* When rendering wide points or lines, we need to be more
337        * conservative about when to discard them entirely. */
338       float pixels;
339 
340       if (ctx->current_rast_prim == PIPE_PRIM_POINTS)
341          pixels = rs->max_point_size;
342       else
343          pixels = rs->line_width;
344 
345       /* Add half the point size / line width */
346       discard_x += pixels / (2.0 * vp.scale[0]);
347       discard_y += pixels / (2.0 * vp.scale[1]);
348 
349       /* Discard primitives that would lie entirely outside the clip
350        * region. */
351       discard_x = MIN2(discard_x, guardband_x);
352       discard_y = MIN2(discard_y, guardband_y);
353    }
354 
355    /* If any of the GB registers is updated, all of them must be updated.
356     * R_028BE8_PA_CL_GB_VERT_CLIP_ADJ, R_028BEC_PA_CL_GB_VERT_DISC_ADJ
357     * R_028BF0_PA_CL_GB_HORZ_CLIP_ADJ, R_028BF4_PA_CL_GB_HORZ_DISC_ADJ
358     */
359    radeon_begin(&ctx->gfx_cs);
360    radeon_opt_set_context_reg4(ctx, R_028BE8_PA_CL_GB_VERT_CLIP_ADJ,
361                                SI_TRACKED_PA_CL_GB_VERT_CLIP_ADJ, fui(guardband_y), fui(discard_y),
362                                fui(guardband_x), fui(discard_x));
363    radeon_opt_set_context_reg(ctx, R_028234_PA_SU_HARDWARE_SCREEN_OFFSET,
364                               SI_TRACKED_PA_SU_HARDWARE_SCREEN_OFFSET,
365                               S_028234_HW_SCREEN_OFFSET_X(hw_screen_offset_x >> 4) |
366                                  S_028234_HW_SCREEN_OFFSET_Y(hw_screen_offset_y >> 4));
367    radeon_opt_set_context_reg(
368       ctx, R_028BE4_PA_SU_VTX_CNTL, SI_TRACKED_PA_SU_VTX_CNTL,
369       S_028BE4_PIX_CENTER(rs->half_pixel_center) |
370          S_028BE4_QUANT_MODE(V_028BE4_X_16_8_FIXED_POINT_1_256TH + vp_as_scissor.quant_mode));
371    radeon_end_update_context_roll(ctx);
372 }
373 
si_emit_scissors(struct si_context * ctx)374 static void si_emit_scissors(struct si_context *ctx)
375 {
376    struct radeon_cmdbuf *cs = &ctx->gfx_cs;
377    struct pipe_scissor_state *states = ctx->scissors;
378    bool scissor_enabled = ctx->queued.named.rasterizer->scissor_enable;
379 
380    /* The simple case: Only 1 viewport is active. */
381    if (!ctx->vs_writes_viewport_index) {
382       struct si_signed_scissor *vp = &ctx->viewports.as_scissor[0];
383 
384       radeon_begin(cs);
385       radeon_set_context_reg_seq(R_028250_PA_SC_VPORT_SCISSOR_0_TL, 2);
386       radeon_end();
387 
388       si_emit_one_scissor(ctx, cs, vp, scissor_enabled ? &states[0] : NULL);
389       return;
390    }
391 
392    /* All registers in the array need to be updated if any of them is changed.
393     * This is a hardware requirement.
394     */
395    radeon_begin(cs);
396    radeon_set_context_reg_seq(R_028250_PA_SC_VPORT_SCISSOR_0_TL, SI_MAX_VIEWPORTS * 2);
397    radeon_end();
398 
399    for (unsigned i = 0; i < SI_MAX_VIEWPORTS; i++) {
400       si_emit_one_scissor(ctx, cs, &ctx->viewports.as_scissor[i],
401                           scissor_enabled ? &states[i] : NULL);
402    }
403 }
404 
si_set_viewport_states(struct pipe_context * pctx,unsigned start_slot,unsigned num_viewports,const struct pipe_viewport_state * state)405 static void si_set_viewport_states(struct pipe_context *pctx, unsigned start_slot,
406                                    unsigned num_viewports, const struct pipe_viewport_state *state)
407 {
408    struct si_context *ctx = (struct si_context *)pctx;
409    int i;
410 
411    for (i = 0; i < num_viewports; i++) {
412       unsigned index = start_slot + i;
413       struct si_signed_scissor *scissor = &ctx->viewports.as_scissor[index];
414 
415       ctx->viewports.states[index] = state[i];
416 
417       si_get_scissor_from_viewport(ctx, &state[i], scissor);
418 
419       int max_corner = MAX2(
420          MAX2(abs(scissor->maxx), abs(scissor->maxy)),
421          MAX2(abs(scissor->minx), abs(scissor->miny)));
422 
423       /* Determine the best quantization mode (subpixel precision),
424        * but also leave enough space for the guardband.
425        *
426        * Note that primitive binning requires QUANT_MODE == 16_8 on Vega10
427        * and Raven1 for line and rectangle primitive types to work correctly.
428        * Always use 16_8 if primitive binning is possible to occur.
429        */
430       if ((ctx->family == CHIP_VEGA10 || ctx->family == CHIP_RAVEN) && ctx->screen->dpbb_allowed)
431          max_corner = 16384; /* Use QUANT_MODE == 16_8. */
432 
433       /* Another constraint is that all coordinates in the viewport
434        * are representable in fixed point with respect to the
435        * surface origin.
436        *
437        * It means that PA_SU_HARDWARE_SCREEN_OFFSET can't be given
438        * an offset that would make the upper corner of the viewport
439        * greater than the maximum representable number post
440        * quantization, ie 2^quant_bits.
441        *
442        * This does not matter for 14.10 and 16.8 formats since the
443        * offset is already limited at 8k, but it means we can't use
444        * 12.12 if we are drawing to some pixels outside the lower
445        * 4k x 4k of the render target.
446        */
447 
448       if (max_corner <= 1024) /* 4K scanline area for guardband */
449          scissor->quant_mode = SI_QUANT_MODE_12_12_FIXED_POINT_1_4096TH;
450       else if (max_corner <= 4096) /* 16K scanline area for guardband */
451          scissor->quant_mode = SI_QUANT_MODE_14_10_FIXED_POINT_1_1024TH;
452       else /* 64K scanline area for guardband */
453          scissor->quant_mode = SI_QUANT_MODE_16_8_FIXED_POINT_1_256TH;
454    }
455 
456    if (start_slot == 0) {
457       ctx->viewport0_y_inverted =
458          -state->scale[1] + state->translate[1] > state->scale[1] + state->translate[1];
459 
460       /* NGG cull state uses the viewport and quant mode. */
461       if (ctx->screen->use_ngg_culling)
462          si_mark_atom_dirty(ctx, &ctx->atoms.s.ngg_cull_state);
463    }
464 
465    si_mark_atom_dirty(ctx, &ctx->atoms.s.viewports);
466    si_mark_atom_dirty(ctx, &ctx->atoms.s.guardband);
467    si_mark_atom_dirty(ctx, &ctx->atoms.s.scissors);
468 }
469 
si_emit_one_viewport(struct si_context * ctx,struct pipe_viewport_state * state)470 static void si_emit_one_viewport(struct si_context *ctx, struct pipe_viewport_state *state)
471 {
472    struct radeon_cmdbuf *cs = &ctx->gfx_cs;
473 
474    radeon_begin(cs);
475    radeon_emit(fui(state->scale[0]));
476    radeon_emit(fui(state->translate[0]));
477    radeon_emit(fui(state->scale[1]));
478    radeon_emit(fui(state->translate[1]));
479    radeon_emit(fui(state->scale[2]));
480    radeon_emit(fui(state->translate[2]));
481    radeon_end();
482 }
483 
si_emit_viewports(struct si_context * ctx)484 static void si_emit_viewports(struct si_context *ctx)
485 {
486    struct radeon_cmdbuf *cs = &ctx->gfx_cs;
487    struct pipe_viewport_state *states = ctx->viewports.states;
488 
489    /* The simple case: Only 1 viewport is active. */
490    if (!ctx->vs_writes_viewport_index) {
491       radeon_begin(cs);
492       radeon_set_context_reg_seq(R_02843C_PA_CL_VPORT_XSCALE, 6);
493       radeon_end();
494 
495       si_emit_one_viewport(ctx, &states[0]);
496       return;
497    }
498 
499    /* All registers in the array need to be updated if any of them is changed.
500     * This is a hardware requirement.
501     */
502    radeon_begin(cs);
503    radeon_set_context_reg_seq(R_02843C_PA_CL_VPORT_XSCALE + 0, SI_MAX_VIEWPORTS * 6);
504    radeon_end();
505 
506    for (unsigned i = 0; i < SI_MAX_VIEWPORTS; i++)
507       si_emit_one_viewport(ctx, &states[i]);
508 }
509 
si_viewport_zmin_zmax(const struct pipe_viewport_state * vp,bool halfz,bool window_space_position,float * zmin,float * zmax)510 static inline void si_viewport_zmin_zmax(const struct pipe_viewport_state *vp, bool halfz,
511                                          bool window_space_position, float *zmin, float *zmax)
512 {
513    if (window_space_position) {
514       *zmin = 0;
515       *zmax = 1;
516       return;
517    }
518    util_viewport_zmin_zmax(vp, halfz, zmin, zmax);
519 }
520 
si_emit_depth_ranges(struct si_context * ctx)521 static void si_emit_depth_ranges(struct si_context *ctx)
522 {
523    struct radeon_cmdbuf *cs = &ctx->gfx_cs;
524    struct pipe_viewport_state *states = ctx->viewports.states;
525    bool clip_halfz = ctx->queued.named.rasterizer->clip_halfz;
526    bool window_space = ctx->vs_disables_clipping_viewport;
527    float zmin, zmax;
528 
529    /* The simple case: Only 1 viewport is active. */
530    if (!ctx->vs_writes_viewport_index) {
531       si_viewport_zmin_zmax(&states[0], clip_halfz, window_space, &zmin, &zmax);
532 
533       radeon_begin(cs);
534       radeon_set_context_reg_seq(R_0282D0_PA_SC_VPORT_ZMIN_0, 2);
535       radeon_emit(fui(zmin));
536       radeon_emit(fui(zmax));
537       radeon_end();
538       return;
539    }
540 
541    /* All registers in the array need to be updated if any of them is changed.
542     * This is a hardware requirement.
543     */
544    radeon_begin(cs);
545    radeon_set_context_reg_seq(R_0282D0_PA_SC_VPORT_ZMIN_0, SI_MAX_VIEWPORTS * 2);
546    for (unsigned i = 0; i < SI_MAX_VIEWPORTS; i++) {
547       si_viewport_zmin_zmax(&states[i], clip_halfz, window_space, &zmin, &zmax);
548       radeon_emit(fui(zmin));
549       radeon_emit(fui(zmax));
550    }
551    radeon_end();
552 }
553 
si_emit_viewport_states(struct si_context * ctx)554 static void si_emit_viewport_states(struct si_context *ctx)
555 {
556    si_emit_viewports(ctx);
557    si_emit_depth_ranges(ctx);
558 }
559 
560 /**
561  * This reacts to 2 state changes:
562  * - VS.writes_viewport_index
563  * - VS output position in window space (enable/disable)
564  *
565  * Normally, we only emit 1 viewport and 1 scissor if no shader is using
566  * the VIEWPORT_INDEX output, and emitting the other viewports and scissors
567  * is delayed. When a shader with VIEWPORT_INDEX appears, this should be
568  * called to emit the rest.
569  */
si_update_vs_viewport_state(struct si_context * ctx)570 void si_update_vs_viewport_state(struct si_context *ctx)
571 {
572    struct si_shader_info *info = si_get_vs_info(ctx);
573    bool vs_window_space;
574 
575    if (!info)
576       return;
577 
578    /* When the VS disables clipping and viewport transformation. */
579    vs_window_space = info->stage == MESA_SHADER_VERTEX && info->base.vs.window_space_position;
580 
581    if (ctx->vs_disables_clipping_viewport != vs_window_space) {
582       ctx->vs_disables_clipping_viewport = vs_window_space;
583       si_mark_atom_dirty(ctx, &ctx->atoms.s.scissors);
584       si_mark_atom_dirty(ctx, &ctx->atoms.s.viewports);
585    }
586 
587    /* Viewport index handling. */
588    if (ctx->vs_writes_viewport_index == info->writes_viewport_index)
589       return;
590 
591    /* This changes how the guardband is computed. */
592    ctx->vs_writes_viewport_index = info->writes_viewport_index;
593    si_mark_atom_dirty(ctx, &ctx->atoms.s.guardband);
594 
595    /* Emit scissors and viewports that were enabled by having
596     * the ViewportIndex output.
597     */
598    if (info->writes_viewport_index) {
599       si_mark_atom_dirty(ctx, &ctx->atoms.s.scissors);
600       si_mark_atom_dirty(ctx, &ctx->atoms.s.viewports);
601    }
602 }
603 
si_emit_window_rectangles(struct si_context * sctx)604 static void si_emit_window_rectangles(struct si_context *sctx)
605 {
606    /* There are four clipping rectangles. Their corner coordinates are inclusive.
607     * Every pixel is assigned a number from 0 and 15 by setting bits 0-3 depending
608     * on whether the pixel is inside cliprects 0-3, respectively. For example,
609     * if a pixel is inside cliprects 0 and 1, but outside 2 and 3, it is assigned
610     * the number 3 (binary 0011).
611     *
612     * If CLIPRECT_RULE & (1 << number), the pixel is rasterized.
613     */
614    struct radeon_cmdbuf *cs = &sctx->gfx_cs;
615    static const unsigned outside[4] = {
616       /* outside rectangle 0 */
617       V_02820C_OUT | V_02820C_IN_1 | V_02820C_IN_2 | V_02820C_IN_21 | V_02820C_IN_3 |
618          V_02820C_IN_31 | V_02820C_IN_32 | V_02820C_IN_321,
619       /* outside rectangles 0, 1 */
620       V_02820C_OUT | V_02820C_IN_2 | V_02820C_IN_3 | V_02820C_IN_32,
621       /* outside rectangles 0, 1, 2 */
622       V_02820C_OUT | V_02820C_IN_3,
623       /* outside rectangles 0, 1, 2, 3 */
624       V_02820C_OUT,
625    };
626    const unsigned disabled = 0xffff; /* all inside and outside cases */
627    unsigned num_rectangles = sctx->num_window_rectangles;
628    struct pipe_scissor_state *rects = sctx->window_rectangles;
629    unsigned rule;
630 
631    assert(num_rectangles <= 4);
632 
633    if (num_rectangles == 0)
634       rule = disabled;
635    else if (sctx->window_rectangles_include)
636       rule = ~outside[num_rectangles - 1];
637    else
638       rule = outside[num_rectangles - 1];
639 
640    radeon_begin(cs);
641    radeon_opt_set_context_reg(sctx, R_02820C_PA_SC_CLIPRECT_RULE, SI_TRACKED_PA_SC_CLIPRECT_RULE,
642                               rule);
643    if (num_rectangles == 0) {
644       radeon_end();
645       return;
646    }
647 
648    radeon_set_context_reg_seq(R_028210_PA_SC_CLIPRECT_0_TL, num_rectangles * 2);
649    for (unsigned i = 0; i < num_rectangles; i++) {
650       radeon_emit(S_028210_TL_X(rects[i].minx) | S_028210_TL_Y(rects[i].miny));
651       radeon_emit(S_028214_BR_X(rects[i].maxx) | S_028214_BR_Y(rects[i].maxy));
652    }
653    radeon_end();
654 }
655 
si_set_window_rectangles(struct pipe_context * ctx,bool include,unsigned num_rectangles,const struct pipe_scissor_state * rects)656 static void si_set_window_rectangles(struct pipe_context *ctx, bool include,
657                                      unsigned num_rectangles,
658                                      const struct pipe_scissor_state *rects)
659 {
660    struct si_context *sctx = (struct si_context *)ctx;
661 
662    sctx->num_window_rectangles = num_rectangles;
663    sctx->window_rectangles_include = include;
664    if (num_rectangles) {
665       memcpy(sctx->window_rectangles, rects, sizeof(*rects) * num_rectangles);
666    }
667 
668    si_mark_atom_dirty(sctx, &sctx->atoms.s.window_rectangles);
669 }
670 
si_init_viewport_functions(struct si_context * ctx)671 void si_init_viewport_functions(struct si_context *ctx)
672 {
673    ctx->atoms.s.guardband.emit = si_emit_guardband;
674    ctx->atoms.s.scissors.emit = si_emit_scissors;
675    ctx->atoms.s.viewports.emit = si_emit_viewport_states;
676    ctx->atoms.s.window_rectangles.emit = si_emit_window_rectangles;
677    ctx->atoms.s.ngg_cull_state.emit = si_emit_cull_state;
678 
679    ctx->b.set_scissor_states = si_set_scissor_states;
680    ctx->b.set_viewport_states = si_set_viewport_states;
681    ctx->b.set_window_rectangles = si_set_window_rectangles;
682 
683    for (unsigned i = 0; i < 16; i++)
684       ctx->viewports.as_scissor[i].quant_mode = SI_QUANT_MODE_16_8_FIXED_POINT_1_256TH;
685 }
686