• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2020 Advanced Micro Devices, Inc.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * on the rights to use, copy, modify, merge, publish, distribute, sub
9  * license, and/or sell copies of the Software, and to permit persons to whom
10  * the Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
20  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
21  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
22  * USE OR OTHER DEALINGS IN THE SOFTWARE.
23  */
24 
25 #include "si_pipe.h"
26 #include "si_shader_internal.h"
27 #include "sid.h"
28 
si_get_sample_id(struct si_shader_context * ctx)29 LLVMValueRef si_get_sample_id(struct si_shader_context *ctx)
30 {
31    return si_unpack_param(ctx, ctx->args.ancillary, 8, 4);
32 }
33 
load_sample_mask_in(struct ac_shader_abi * abi)34 static LLVMValueRef load_sample_mask_in(struct ac_shader_abi *abi)
35 {
36    struct si_shader_context *ctx = si_shader_context_from_abi(abi);
37    return ac_to_integer(&ctx->ac, ac_get_arg(&ctx->ac, ctx->args.sample_coverage));
38 }
39 
load_sample_position(struct ac_shader_abi * abi,LLVMValueRef sample_id)40 static LLVMValueRef load_sample_position(struct ac_shader_abi *abi, LLVMValueRef sample_id)
41 {
42    struct si_shader_context *ctx = si_shader_context_from_abi(abi);
43    LLVMValueRef desc = ac_get_arg(&ctx->ac, ctx->internal_bindings);
44    LLVMValueRef buf_index = LLVMConstInt(ctx->ac.i32, SI_PS_CONST_SAMPLE_POSITIONS, 0);
45    LLVMValueRef resource = ac_build_load_to_sgpr(&ctx->ac, desc, buf_index);
46 
47    /* offset = sample_id * 8  (8 = 2 floats containing samplepos.xy) */
48    LLVMValueRef offset0 =
49       LLVMBuildMul(ctx->ac.builder, sample_id, LLVMConstInt(ctx->ac.i32, 8, 0), "");
50    LLVMValueRef offset1 =
51       LLVMBuildAdd(ctx->ac.builder, offset0, LLVMConstInt(ctx->ac.i32, 4, 0), "");
52 
53    LLVMValueRef pos[4] = {si_buffer_load_const(ctx, resource, offset0),
54                           si_buffer_load_const(ctx, resource, offset1),
55                           LLVMConstReal(ctx->ac.f32, 0), LLVMConstReal(ctx->ac.f32, 0)};
56 
57    return ac_build_gather_values(&ctx->ac, pos, 4);
58 }
59 
si_nir_emit_fbfetch(struct ac_shader_abi * abi)60 static LLVMValueRef si_nir_emit_fbfetch(struct ac_shader_abi *abi)
61 {
62    struct si_shader_context *ctx = si_shader_context_from_abi(abi);
63    struct ac_image_args args = {};
64    LLVMValueRef ptr, image, fmask;
65 
66    /* Ignore src0, because KHR_blend_func_extended disallows multiple render
67     * targets.
68     */
69 
70    /* Load the image descriptor. */
71    STATIC_ASSERT(SI_PS_IMAGE_COLORBUF0 % 2 == 0);
72    ptr = ac_get_arg(&ctx->ac, ctx->internal_bindings);
73    ptr =
74       LLVMBuildPointerCast(ctx->ac.builder, ptr, ac_array_in_const32_addr_space(ctx->ac.v8i32), "");
75    image =
76       ac_build_load_to_sgpr(&ctx->ac, ptr, LLVMConstInt(ctx->ac.i32, SI_PS_IMAGE_COLORBUF0 / 2, 0));
77 
78    unsigned chan = 0;
79 
80    args.coords[chan++] = si_unpack_param(ctx, ctx->pos_fixed_pt, 0, 16);
81 
82    if (!ctx->shader->key.mono.u.ps.fbfetch_is_1D)
83       args.coords[chan++] = si_unpack_param(ctx, ctx->pos_fixed_pt, 16, 16);
84 
85    /* Get the current render target layer index. */
86    if (ctx->shader->key.mono.u.ps.fbfetch_layered)
87       args.coords[chan++] = si_unpack_param(ctx, ctx->args.ancillary, 16, 11);
88 
89    if (ctx->shader->key.mono.u.ps.fbfetch_msaa)
90       args.coords[chan++] = si_get_sample_id(ctx);
91 
92    if (ctx->shader->key.mono.u.ps.fbfetch_msaa && !(ctx->screen->debug_flags & DBG(NO_FMASK))) {
93       fmask = ac_build_load_to_sgpr(&ctx->ac, ptr,
94                                     LLVMConstInt(ctx->ac.i32, SI_PS_IMAGE_COLORBUF0_FMASK / 2, 0));
95 
96       ac_apply_fmask_to_sample(&ctx->ac, fmask, args.coords,
97                                ctx->shader->key.mono.u.ps.fbfetch_layered);
98    }
99 
100    args.opcode = ac_image_load;
101    args.resource = image;
102    args.dmask = 0xf;
103    args.attributes = AC_FUNC_ATTR_READNONE;
104 
105    if (ctx->shader->key.mono.u.ps.fbfetch_msaa)
106       args.dim =
107          ctx->shader->key.mono.u.ps.fbfetch_layered ? ac_image_2darraymsaa : ac_image_2dmsaa;
108    else if (ctx->shader->key.mono.u.ps.fbfetch_is_1D)
109       args.dim = ctx->shader->key.mono.u.ps.fbfetch_layered ? ac_image_1darray : ac_image_1d;
110    else
111       args.dim = ctx->shader->key.mono.u.ps.fbfetch_layered ? ac_image_2darray : ac_image_2d;
112 
113    return ac_build_image_opcode(&ctx->ac, &args);
114 }
115 
si_build_fs_interp(struct si_shader_context * ctx,unsigned attr_index,unsigned chan,LLVMValueRef prim_mask,LLVMValueRef i,LLVMValueRef j)116 static LLVMValueRef si_build_fs_interp(struct si_shader_context *ctx, unsigned attr_index,
117                                        unsigned chan, LLVMValueRef prim_mask, LLVMValueRef i,
118                                        LLVMValueRef j)
119 {
120    if (i || j) {
121       return ac_build_fs_interp(&ctx->ac, LLVMConstInt(ctx->ac.i32, chan, 0),
122                                 LLVMConstInt(ctx->ac.i32, attr_index, 0), prim_mask, i, j);
123    }
124    return ac_build_fs_interp_mov(&ctx->ac, LLVMConstInt(ctx->ac.i32, 2, 0), /* P0 */
125                                  LLVMConstInt(ctx->ac.i32, chan, 0),
126                                  LLVMConstInt(ctx->ac.i32, attr_index, 0), prim_mask);
127 }
128 
129 /**
130  * Interpolate a fragment shader input.
131  *
132  * @param ctx		context
133  * @param input_index		index of the input in hardware
134  * @param semantic_index	semantic index
135  * @param num_interp_inputs	number of all interpolated inputs (= BCOLOR offset)
136  * @param colors_read_mask	color components read (4 bits for each color, 8 bits in total)
137  * @param interp_param		interpolation weights (i,j)
138  * @param prim_mask		SI_PARAM_PRIM_MASK
139  * @param face			SI_PARAM_FRONT_FACE
140  * @param result		the return value (4 components)
141  */
interp_fs_color(struct si_shader_context * ctx,unsigned input_index,unsigned semantic_index,unsigned num_interp_inputs,unsigned colors_read_mask,LLVMValueRef interp_param,LLVMValueRef prim_mask,LLVMValueRef face,LLVMValueRef result[4])142 static void interp_fs_color(struct si_shader_context *ctx, unsigned input_index,
143                             unsigned semantic_index, unsigned num_interp_inputs,
144                             unsigned colors_read_mask, LLVMValueRef interp_param,
145                             LLVMValueRef prim_mask, LLVMValueRef face, LLVMValueRef result[4])
146 {
147    LLVMValueRef i = NULL, j = NULL;
148    unsigned chan;
149 
150    /* fs.constant returns the param from the middle vertex, so it's not
151     * really useful for flat shading. It's meant to be used for custom
152     * interpolation (but the intrinsic can't fetch from the other two
153     * vertices).
154     *
155     * Luckily, it doesn't matter, because we rely on the FLAT_SHADE state
156     * to do the right thing. The only reason we use fs.constant is that
157     * fs.interp cannot be used on integers, because they can be equal
158     * to NaN.
159     *
160     * When interp is false we will use fs.constant or for newer llvm,
161     * amdgcn.interp.mov.
162     */
163    bool interp = interp_param != NULL;
164 
165    if (interp) {
166       interp_param =
167          LLVMBuildBitCast(ctx->ac.builder, interp_param, ctx->ac.v2f32, "");
168 
169       i = LLVMBuildExtractElement(ctx->ac.builder, interp_param, ctx->ac.i32_0, "");
170       j = LLVMBuildExtractElement(ctx->ac.builder, interp_param, ctx->ac.i32_1, "");
171    }
172 
173    if (ctx->shader->key.part.ps.prolog.color_two_side) {
174       LLVMValueRef is_face_positive;
175 
176       /* If BCOLOR0 is used, BCOLOR1 is at offset "num_inputs + 1",
177        * otherwise it's at offset "num_inputs".
178        */
179       unsigned back_attr_offset = num_interp_inputs;
180       if (semantic_index == 1 && colors_read_mask & 0xf)
181          back_attr_offset += 1;
182 
183       is_face_positive = LLVMBuildICmp(ctx->ac.builder, LLVMIntNE, face, ctx->ac.i32_0, "");
184 
185       for (chan = 0; chan < 4; chan++) {
186          LLVMValueRef front, back;
187 
188          front = si_build_fs_interp(ctx, input_index, chan, prim_mask, i, j);
189          back = si_build_fs_interp(ctx, back_attr_offset, chan, prim_mask, i, j);
190 
191          result[chan] = LLVMBuildSelect(ctx->ac.builder, is_face_positive, front, back, "");
192       }
193    } else {
194       for (chan = 0; chan < 4; chan++) {
195          result[chan] = si_build_fs_interp(ctx, input_index, chan, prim_mask, i, j);
196       }
197    }
198 }
199 
si_alpha_test(struct si_shader_context * ctx,LLVMValueRef alpha)200 static void si_alpha_test(struct si_shader_context *ctx, LLVMValueRef alpha)
201 {
202    if (ctx->shader->key.part.ps.epilog.alpha_func != PIPE_FUNC_NEVER) {
203       static LLVMRealPredicate cond_map[PIPE_FUNC_ALWAYS + 1] = {
204          [PIPE_FUNC_LESS] = LLVMRealOLT,     [PIPE_FUNC_EQUAL] = LLVMRealOEQ,
205          [PIPE_FUNC_LEQUAL] = LLVMRealOLE,   [PIPE_FUNC_GREATER] = LLVMRealOGT,
206          [PIPE_FUNC_NOTEQUAL] = LLVMRealONE, [PIPE_FUNC_GEQUAL] = LLVMRealOGE,
207       };
208       LLVMRealPredicate cond = cond_map[ctx->shader->key.part.ps.epilog.alpha_func];
209       assert(cond);
210 
211       LLVMValueRef alpha_ref = LLVMGetParam(ctx->main_fn, SI_PARAM_ALPHA_REF);
212       if (LLVMTypeOf(alpha) == ctx->ac.f16)
213          alpha_ref = LLVMBuildFPTrunc(ctx->ac.builder, alpha_ref, ctx->ac.f16, "");
214 
215       LLVMValueRef alpha_pass = LLVMBuildFCmp(ctx->ac.builder, cond, alpha, alpha_ref, "");
216       ac_build_kill_if_false(&ctx->ac, alpha_pass);
217    } else {
218       ac_build_kill_if_false(&ctx->ac, ctx->ac.i1false);
219    }
220 }
221 
si_scale_alpha_by_sample_mask(struct si_shader_context * ctx,LLVMValueRef alpha,unsigned samplemask_param)222 static LLVMValueRef si_scale_alpha_by_sample_mask(struct si_shader_context *ctx, LLVMValueRef alpha,
223                                                   unsigned samplemask_param)
224 {
225    LLVMValueRef coverage;
226 
227    /* alpha = alpha * popcount(coverage) / SI_NUM_SMOOTH_AA_SAMPLES */
228    coverage = LLVMGetParam(ctx->main_fn, samplemask_param);
229    coverage = ac_build_bit_count(&ctx->ac, ac_to_integer(&ctx->ac, coverage));
230    coverage = LLVMBuildUIToFP(ctx->ac.builder, coverage, ctx->ac.f32, "");
231 
232    coverage = LLVMBuildFMul(ctx->ac.builder, coverage,
233                             LLVMConstReal(ctx->ac.f32, 1.0 / SI_NUM_SMOOTH_AA_SAMPLES), "");
234 
235    if (LLVMTypeOf(alpha) == ctx->ac.f16)
236       coverage = LLVMBuildFPTrunc(ctx->ac.builder, coverage, ctx->ac.f16, "");
237 
238    return LLVMBuildFMul(ctx->ac.builder, alpha, coverage, "");
239 }
240 
241 struct si_ps_exports {
242    unsigned num;
243    struct ac_export_args args[10];
244 };
245 
pack_two_16bit(struct ac_llvm_context * ctx,LLVMValueRef args[2])246 static LLVMValueRef pack_two_16bit(struct ac_llvm_context *ctx, LLVMValueRef args[2])
247 {
248    LLVMValueRef tmp = ac_build_gather_values(ctx, args, 2);
249    return LLVMBuildBitCast(ctx->builder, tmp, ctx->v2f16, "");
250 }
251 
get_color_32bit(struct si_shader_context * ctx,unsigned color_type,LLVMValueRef value)252 static LLVMValueRef get_color_32bit(struct si_shader_context *ctx, unsigned color_type,
253                                     LLVMValueRef value)
254 {
255    switch (color_type) {
256    case SI_TYPE_FLOAT16:
257       return LLVMBuildFPExt(ctx->ac.builder, value, ctx->ac.f32, "");
258    case SI_TYPE_INT16:
259       value = ac_to_integer(&ctx->ac, value);
260       value = LLVMBuildSExt(ctx->ac.builder, value, ctx->ac.i32, "");
261       return ac_to_float(&ctx->ac, value);
262    case SI_TYPE_UINT16:
263       value = ac_to_integer(&ctx->ac, value);
264       value = LLVMBuildZExt(ctx->ac.builder, value, ctx->ac.i32, "");
265       return ac_to_float(&ctx->ac, value);
266    case SI_TYPE_ANY32:
267       return value;
268    }
269    return NULL;
270 }
271 
272 /* Initialize arguments for the shader export intrinsic */
si_llvm_init_ps_export_args(struct si_shader_context * ctx,LLVMValueRef * values,unsigned cbuf,unsigned compacted_mrt_index,unsigned color_type,struct ac_export_args * args)273 static void si_llvm_init_ps_export_args(struct si_shader_context *ctx, LLVMValueRef *values,
274                                         unsigned cbuf, unsigned compacted_mrt_index,
275                                         unsigned color_type, struct ac_export_args *args)
276 {
277    const struct si_shader_key *key = &ctx->shader->key;
278    unsigned col_formats = key->part.ps.epilog.spi_shader_col_format;
279    LLVMValueRef f32undef = LLVMGetUndef(ctx->ac.f32);
280    unsigned spi_shader_col_format;
281    unsigned chan;
282    bool is_int8, is_int10;
283 
284    assert(cbuf < 8);
285 
286    spi_shader_col_format = (col_formats >> (cbuf * 4)) & 0xf;
287    is_int8 = (key->part.ps.epilog.color_is_int8 >> cbuf) & 0x1;
288    is_int10 = (key->part.ps.epilog.color_is_int10 >> cbuf) & 0x1;
289 
290    /* Default is 0xf. Adjusted below depending on the format. */
291    args->enabled_channels = 0xf; /* writemask */
292 
293    /* Specify whether the EXEC mask represents the valid mask */
294    args->valid_mask = 0;
295 
296    /* Specify whether this is the last export */
297    args->done = 0;
298 
299    /* Specify the target we are exporting */
300    args->target = V_008DFC_SQ_EXP_MRT + compacted_mrt_index;
301 
302    args->compr = false;
303    args->out[0] = f32undef;
304    args->out[1] = f32undef;
305    args->out[2] = f32undef;
306    args->out[3] = f32undef;
307 
308    LLVMValueRef (*packf)(struct ac_llvm_context * ctx, LLVMValueRef args[2]) = NULL;
309    LLVMValueRef (*packi)(struct ac_llvm_context * ctx, LLVMValueRef args[2], unsigned bits,
310                          bool hi) = NULL;
311 
312    switch (spi_shader_col_format) {
313    case V_028714_SPI_SHADER_ZERO:
314       args->enabled_channels = 0; /* writemask */
315       args->target = V_008DFC_SQ_EXP_NULL;
316       break;
317 
318    case V_028714_SPI_SHADER_32_R:
319       args->enabled_channels = 1; /* writemask */
320       args->out[0] = get_color_32bit(ctx, color_type, values[0]);
321       break;
322 
323    case V_028714_SPI_SHADER_32_GR:
324       args->enabled_channels = 0x3; /* writemask */
325       args->out[0] = get_color_32bit(ctx, color_type, values[0]);
326       args->out[1] = get_color_32bit(ctx, color_type, values[1]);
327       break;
328 
329    case V_028714_SPI_SHADER_32_AR:
330       if (ctx->screen->info.chip_class >= GFX10) {
331          args->enabled_channels = 0x3; /* writemask */
332          args->out[0] = get_color_32bit(ctx, color_type, values[0]);
333          args->out[1] = get_color_32bit(ctx, color_type, values[3]);
334       } else {
335          args->enabled_channels = 0x9; /* writemask */
336          args->out[0] = get_color_32bit(ctx, color_type, values[0]);
337          args->out[3] = get_color_32bit(ctx, color_type, values[3]);
338       }
339       break;
340 
341    case V_028714_SPI_SHADER_FP16_ABGR:
342       if (color_type != SI_TYPE_ANY32)
343          packf = pack_two_16bit;
344       else
345          packf = ac_build_cvt_pkrtz_f16;
346       break;
347 
348    case V_028714_SPI_SHADER_UNORM16_ABGR:
349       if (color_type != SI_TYPE_ANY32)
350          packf = ac_build_cvt_pknorm_u16_f16;
351       else
352          packf = ac_build_cvt_pknorm_u16;
353       break;
354 
355    case V_028714_SPI_SHADER_SNORM16_ABGR:
356       if (color_type != SI_TYPE_ANY32)
357          packf = ac_build_cvt_pknorm_i16_f16;
358       else
359          packf = ac_build_cvt_pknorm_i16;
360       break;
361 
362    case V_028714_SPI_SHADER_UINT16_ABGR:
363       if (color_type != SI_TYPE_ANY32)
364          packf = pack_two_16bit;
365       else
366          packi = ac_build_cvt_pk_u16;
367       break;
368 
369    case V_028714_SPI_SHADER_SINT16_ABGR:
370       if (color_type != SI_TYPE_ANY32)
371          packf = pack_two_16bit;
372       else
373          packi = ac_build_cvt_pk_i16;
374       break;
375 
376    case V_028714_SPI_SHADER_32_ABGR:
377       for (unsigned i = 0; i < 4; i++)
378          args->out[i] = get_color_32bit(ctx, color_type, values[i]);
379       break;
380    }
381 
382    /* Pack f16 or norm_i16/u16. */
383    if (packf) {
384       for (chan = 0; chan < 2; chan++) {
385          LLVMValueRef pack_args[2] = {values[2 * chan], values[2 * chan + 1]};
386          LLVMValueRef packed;
387 
388          packed = packf(&ctx->ac, pack_args);
389          args->out[chan] = ac_to_float(&ctx->ac, packed);
390       }
391       args->compr = 1; /* COMPR flag */
392    }
393    /* Pack i16/u16. */
394    if (packi) {
395       for (chan = 0; chan < 2; chan++) {
396          LLVMValueRef pack_args[2] = {ac_to_integer(&ctx->ac, values[2 * chan]),
397                                       ac_to_integer(&ctx->ac, values[2 * chan + 1])};
398          LLVMValueRef packed;
399 
400          packed = packi(&ctx->ac, pack_args, is_int8 ? 8 : is_int10 ? 10 : 16, chan == 1);
401          args->out[chan] = ac_to_float(&ctx->ac, packed);
402       }
403       args->compr = 1; /* COMPR flag */
404    }
405 }
406 
si_export_mrt_color(struct si_shader_context * ctx,LLVMValueRef * color,unsigned index,unsigned compacted_mrt_index,unsigned samplemask_param,bool is_last,unsigned color_type,struct si_ps_exports * exp)407 static bool si_export_mrt_color(struct si_shader_context *ctx, LLVMValueRef *color, unsigned index,
408                                 unsigned compacted_mrt_index, unsigned samplemask_param,
409                                 bool is_last, unsigned color_type, struct si_ps_exports *exp)
410 {
411    int i;
412 
413    /* Clamp color */
414    if (ctx->shader->key.part.ps.epilog.clamp_color)
415       for (i = 0; i < 4; i++)
416          color[i] = ac_build_clamp(&ctx->ac, color[i]);
417 
418    /* Alpha to one */
419    if (ctx->shader->key.part.ps.epilog.alpha_to_one)
420       color[3] = LLVMConstReal(LLVMTypeOf(color[0]), 1);
421 
422    /* Alpha test */
423    if (index == 0 && ctx->shader->key.part.ps.epilog.alpha_func != PIPE_FUNC_ALWAYS)
424       si_alpha_test(ctx, color[3]);
425 
426    /* Line & polygon smoothing */
427    if (ctx->shader->key.part.ps.epilog.poly_line_smoothing)
428       color[3] = si_scale_alpha_by_sample_mask(ctx, color[3], samplemask_param);
429 
430    /* If last_cbuf > 0, FS_COLOR0_WRITES_ALL_CBUFS is true. */
431    if (ctx->shader->key.part.ps.epilog.last_cbuf > 0) {
432       struct ac_export_args args[8];
433       int c, last = -1;
434 
435       assert(compacted_mrt_index == 0);
436 
437       /* Get the export arguments, also find out what the last one is. */
438       for (c = 0; c <= ctx->shader->key.part.ps.epilog.last_cbuf; c++) {
439          si_llvm_init_ps_export_args(ctx, color, c, compacted_mrt_index,
440                                      color_type, &args[c]);
441          if (args[c].enabled_channels) {
442             compacted_mrt_index++;
443             last = c;
444          }
445       }
446       if (last == -1)
447          return false;
448 
449       /* Emit all exports. */
450       for (c = 0; c <= ctx->shader->key.part.ps.epilog.last_cbuf; c++) {
451          if (is_last && last == c) {
452             args[c].valid_mask = 1; /* whether the EXEC mask is valid */
453             args[c].done = 1;       /* DONE bit */
454          } else if (!args[c].enabled_channels)
455             continue; /* unnecessary NULL export */
456 
457          memcpy(&exp->args[exp->num++], &args[c], sizeof(args[c]));
458       }
459    } else {
460       struct ac_export_args args;
461 
462       /* Export */
463       si_llvm_init_ps_export_args(ctx, color, index, compacted_mrt_index,
464                                   color_type, &args);
465       if (is_last) {
466          args.valid_mask = 1; /* whether the EXEC mask is valid */
467          args.done = 1;       /* DONE bit */
468       } else if (!args.enabled_channels)
469          return false; /* unnecessary NULL export */
470 
471       memcpy(&exp->args[exp->num++], &args, sizeof(args));
472    }
473    return true;
474 }
475 
476 /**
477  * Return PS outputs in this order:
478  *
479  * v[0:3] = color0.xyzw
480  * v[4:7] = color1.xyzw
481  * ...
482  * vN+0 = Depth
483  * vN+1 = Stencil
484  * vN+2 = SampleMask
485  * vN+3 = SampleMaskIn (used for OpenGL smoothing)
486  *
487  * The alpha-ref SGPR is returned via its original location.
488  */
si_llvm_return_fs_outputs(struct ac_shader_abi * abi)489 static void si_llvm_return_fs_outputs(struct ac_shader_abi *abi)
490 {
491    struct si_shader_context *ctx = si_shader_context_from_abi(abi);
492    struct si_shader *shader = ctx->shader;
493    struct si_shader_info *info = &shader->selector->info;
494    LLVMBuilderRef builder = ctx->ac.builder;
495    unsigned i, j, first_vgpr, vgpr;
496    LLVMValueRef *addrs = abi->outputs;
497 
498    LLVMValueRef color[8][4] = {};
499    LLVMValueRef depth = NULL, stencil = NULL, samplemask = NULL;
500    LLVMValueRef ret;
501 
502    /* Read the output values. */
503    for (i = 0; i < info->num_outputs; i++) {
504       unsigned semantic = info->output_semantic[i];
505 
506       switch (semantic) {
507       case FRAG_RESULT_DEPTH:
508          depth = LLVMBuildLoad(builder, addrs[4 * i + 0], "");
509          break;
510       case FRAG_RESULT_STENCIL:
511          stencil = LLVMBuildLoad(builder, addrs[4 * i + 0], "");
512          break;
513       case FRAG_RESULT_SAMPLE_MASK:
514          samplemask = LLVMBuildLoad(builder, addrs[4 * i + 0], "");
515          break;
516       default:
517          if (semantic >= FRAG_RESULT_DATA0 && semantic <= FRAG_RESULT_DATA7) {
518             unsigned index = semantic - FRAG_RESULT_DATA0;
519 
520             for (j = 0; j < 4; j++) {
521                LLVMValueRef ptr = addrs[4 * i + j];
522                LLVMValueRef result = LLVMBuildLoad(builder, ptr, "");
523                color[index][j] = result;
524             }
525          } else {
526             fprintf(stderr, "Warning: Unhandled fs output type:%d\n", semantic);
527          }
528          break;
529       }
530    }
531 
532    /* Fill the return structure. */
533    ret = ctx->return_value;
534 
535    /* Set SGPRs. */
536    ret = LLVMBuildInsertValue(
537       builder, ret, ac_to_integer(&ctx->ac, LLVMGetParam(ctx->main_fn, SI_PARAM_ALPHA_REF)),
538       SI_SGPR_ALPHA_REF, "");
539 
540    /* Set VGPRs */
541    first_vgpr = vgpr = SI_SGPR_ALPHA_REF + 1;
542    for (i = 0; i < ARRAY_SIZE(color); i++) {
543       if (!color[i][0])
544          continue;
545 
546       if (LLVMTypeOf(color[i][0]) == ctx->ac.f16) {
547          for (j = 0; j < 2; j++) {
548             LLVMValueRef tmp = ac_build_gather_values(&ctx->ac, &color[i][j * 2], 2);
549             tmp = LLVMBuildBitCast(builder, tmp, ctx->ac.f32, "");
550             ret = LLVMBuildInsertValue(builder, ret, tmp, vgpr++, "");
551          }
552          vgpr += 2;
553       } else {
554          for (j = 0; j < 4; j++)
555             ret = LLVMBuildInsertValue(builder, ret, color[i][j], vgpr++, "");
556       }
557    }
558    if (depth)
559       ret = LLVMBuildInsertValue(builder, ret, depth, vgpr++, "");
560    if (stencil)
561       ret = LLVMBuildInsertValue(builder, ret, stencil, vgpr++, "");
562    if (samplemask)
563       ret = LLVMBuildInsertValue(builder, ret, samplemask, vgpr++, "");
564 
565    /* Add the input sample mask for smoothing at the end. */
566    if (vgpr < first_vgpr + PS_EPILOG_SAMPLEMASK_MIN_LOC)
567       vgpr = first_vgpr + PS_EPILOG_SAMPLEMASK_MIN_LOC;
568    ret = LLVMBuildInsertValue(builder, ret, LLVMGetParam(ctx->main_fn, SI_PARAM_SAMPLE_COVERAGE),
569                               vgpr++, "");
570 
571    ctx->return_value = ret;
572 }
573 
si_llvm_emit_polygon_stipple(struct si_shader_context * ctx,LLVMValueRef param_internal_bindings,struct ac_arg param_pos_fixed_pt)574 static void si_llvm_emit_polygon_stipple(struct si_shader_context *ctx,
575                                          LLVMValueRef param_internal_bindings,
576                                          struct ac_arg param_pos_fixed_pt)
577 {
578    LLVMBuilderRef builder = ctx->ac.builder;
579    LLVMValueRef slot, desc, offset, row, bit, address[2];
580 
581    /* Use the fixed-point gl_FragCoord input.
582     * Since the stipple pattern is 32x32 and it repeats, just get 5 bits
583     * per coordinate to get the repeating effect.
584     */
585    address[0] = si_unpack_param(ctx, param_pos_fixed_pt, 0, 5);
586    address[1] = si_unpack_param(ctx, param_pos_fixed_pt, 16, 5);
587 
588    /* Load the buffer descriptor. */
589    slot = LLVMConstInt(ctx->ac.i32, SI_PS_CONST_POLY_STIPPLE, 0);
590    desc = ac_build_load_to_sgpr(&ctx->ac, param_internal_bindings, slot);
591 
592    /* The stipple pattern is 32x32, each row has 32 bits. */
593    offset = LLVMBuildMul(builder, address[1], LLVMConstInt(ctx->ac.i32, 4, 0), "");
594    row = si_buffer_load_const(ctx, desc, offset);
595    row = ac_to_integer(&ctx->ac, row);
596    bit = LLVMBuildLShr(builder, row, address[0], "");
597    bit = LLVMBuildTrunc(builder, bit, ctx->ac.i1, "");
598    ac_build_kill_if_false(&ctx->ac, bit);
599 }
600 
601 /**
602  * Build the pixel shader prolog function. This handles:
603  * - two-side color selection and interpolation
604  * - overriding interpolation parameters for the API PS
605  * - polygon stippling
606  *
607  * All preloaded SGPRs and VGPRs are passed through unmodified unless they are
608  * overriden by other states. (e.g. per-sample interpolation)
609  * Interpolated colors are stored after the preloaded VGPRs.
610  */
si_llvm_build_ps_prolog(struct si_shader_context * ctx,union si_shader_part_key * key)611 void si_llvm_build_ps_prolog(struct si_shader_context *ctx, union si_shader_part_key *key)
612 {
613    LLVMValueRef ret, func;
614    int num_returns, i, num_color_channels;
615 
616    memset(&ctx->args, 0, sizeof(ctx->args));
617 
618    /* Declare inputs. */
619    LLVMTypeRef return_types[AC_MAX_ARGS];
620    num_returns = 0;
621    num_color_channels = util_bitcount(key->ps_prolog.colors_read);
622    assert(key->ps_prolog.num_input_sgprs + key->ps_prolog.num_input_vgprs + num_color_channels <=
623           AC_MAX_ARGS);
624    for (i = 0; i < key->ps_prolog.num_input_sgprs; i++) {
625       ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, NULL);
626       return_types[num_returns++] = ctx->ac.i32;
627    }
628 
629    struct ac_arg pos_fixed_pt;
630    struct ac_arg ancillary;
631    struct ac_arg param_sample_mask;
632    for (i = 0; i < key->ps_prolog.num_input_vgprs; i++) {
633       struct ac_arg *arg = NULL;
634       if (i == key->ps_prolog.ancillary_vgpr_index) {
635          arg = &ancillary;
636       } else if (i == key->ps_prolog.ancillary_vgpr_index + 1) {
637          arg = &param_sample_mask;
638       } else if (i == key->ps_prolog.num_input_vgprs - 1) {
639          /* POS_FIXED_PT is always last. */
640          arg = &pos_fixed_pt;
641       }
642       ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_FLOAT, arg);
643       return_types[num_returns++] = ctx->ac.f32;
644    }
645 
646    /* Declare outputs (same as inputs + add colors if needed) */
647    for (i = 0; i < num_color_channels; i++)
648       return_types[num_returns++] = ctx->ac.f32;
649 
650    /* Create the function. */
651    si_llvm_create_func(ctx, "ps_prolog", return_types, num_returns, 0);
652    func = ctx->main_fn;
653 
654    /* Copy inputs to outputs. This should be no-op, as the registers match,
655     * but it will prevent the compiler from overwriting them unintentionally.
656     */
657    ret = ctx->return_value;
658    for (i = 0; i < ctx->args.arg_count; i++) {
659       LLVMValueRef p = LLVMGetParam(func, i);
660       ret = LLVMBuildInsertValue(ctx->ac.builder, ret, p, i, "");
661    }
662 
663    /* Polygon stippling. */
664    if (key->ps_prolog.states.poly_stipple) {
665       LLVMValueRef list = si_prolog_get_internal_bindings(ctx);
666 
667       si_llvm_emit_polygon_stipple(ctx, list, pos_fixed_pt);
668    }
669 
670    if (key->ps_prolog.states.bc_optimize_for_persp ||
671        key->ps_prolog.states.bc_optimize_for_linear) {
672       unsigned i, base = key->ps_prolog.num_input_sgprs;
673       LLVMValueRef center[2], centroid[2], tmp, bc_optimize;
674 
675       /* The shader should do: if (PRIM_MASK[31]) CENTROID = CENTER;
676        * The hw doesn't compute CENTROID if the whole wave only
677        * contains fully-covered quads.
678        *
679        * PRIM_MASK is after user SGPRs.
680        */
681       bc_optimize = LLVMGetParam(func, SI_PS_NUM_USER_SGPR);
682       bc_optimize =
683          LLVMBuildLShr(ctx->ac.builder, bc_optimize, LLVMConstInt(ctx->ac.i32, 31, 0), "");
684       bc_optimize = LLVMBuildTrunc(ctx->ac.builder, bc_optimize, ctx->ac.i1, "");
685 
686       if (key->ps_prolog.states.bc_optimize_for_persp) {
687          /* Read PERSP_CENTER. */
688          for (i = 0; i < 2; i++)
689             center[i] = LLVMGetParam(func, base + 2 + i);
690          /* Read PERSP_CENTROID. */
691          for (i = 0; i < 2; i++)
692             centroid[i] = LLVMGetParam(func, base + 4 + i);
693          /* Select PERSP_CENTROID. */
694          for (i = 0; i < 2; i++) {
695             tmp = LLVMBuildSelect(ctx->ac.builder, bc_optimize, center[i], centroid[i], "");
696             ret = LLVMBuildInsertValue(ctx->ac.builder, ret, tmp, base + 4 + i, "");
697          }
698       }
699       if (key->ps_prolog.states.bc_optimize_for_linear) {
700          /* Read LINEAR_CENTER. */
701          for (i = 0; i < 2; i++)
702             center[i] = LLVMGetParam(func, base + 8 + i);
703          /* Read LINEAR_CENTROID. */
704          for (i = 0; i < 2; i++)
705             centroid[i] = LLVMGetParam(func, base + 10 + i);
706          /* Select LINEAR_CENTROID. */
707          for (i = 0; i < 2; i++) {
708             tmp = LLVMBuildSelect(ctx->ac.builder, bc_optimize, center[i], centroid[i], "");
709             ret = LLVMBuildInsertValue(ctx->ac.builder, ret, tmp, base + 10 + i, "");
710          }
711       }
712    }
713 
714    /* Force per-sample interpolation. */
715    if (key->ps_prolog.states.force_persp_sample_interp) {
716       unsigned i, base = key->ps_prolog.num_input_sgprs;
717       LLVMValueRef persp_sample[2];
718 
719       /* Read PERSP_SAMPLE. */
720       for (i = 0; i < 2; i++)
721          persp_sample[i] = LLVMGetParam(func, base + i);
722       /* Overwrite PERSP_CENTER. */
723       for (i = 0; i < 2; i++)
724          ret = LLVMBuildInsertValue(ctx->ac.builder, ret, persp_sample[i], base + 2 + i, "");
725       /* Overwrite PERSP_CENTROID. */
726       for (i = 0; i < 2; i++)
727          ret = LLVMBuildInsertValue(ctx->ac.builder, ret, persp_sample[i], base + 4 + i, "");
728    }
729    if (key->ps_prolog.states.force_linear_sample_interp) {
730       unsigned i, base = key->ps_prolog.num_input_sgprs;
731       LLVMValueRef linear_sample[2];
732 
733       /* Read LINEAR_SAMPLE. */
734       for (i = 0; i < 2; i++)
735          linear_sample[i] = LLVMGetParam(func, base + 6 + i);
736       /* Overwrite LINEAR_CENTER. */
737       for (i = 0; i < 2; i++)
738          ret = LLVMBuildInsertValue(ctx->ac.builder, ret, linear_sample[i], base + 8 + i, "");
739       /* Overwrite LINEAR_CENTROID. */
740       for (i = 0; i < 2; i++)
741          ret = LLVMBuildInsertValue(ctx->ac.builder, ret, linear_sample[i], base + 10 + i, "");
742    }
743 
744    /* Force center interpolation. */
745    if (key->ps_prolog.states.force_persp_center_interp) {
746       unsigned i, base = key->ps_prolog.num_input_sgprs;
747       LLVMValueRef persp_center[2];
748 
749       /* Read PERSP_CENTER. */
750       for (i = 0; i < 2; i++)
751          persp_center[i] = LLVMGetParam(func, base + 2 + i);
752       /* Overwrite PERSP_SAMPLE. */
753       for (i = 0; i < 2; i++)
754          ret = LLVMBuildInsertValue(ctx->ac.builder, ret, persp_center[i], base + i, "");
755       /* Overwrite PERSP_CENTROID. */
756       for (i = 0; i < 2; i++)
757          ret = LLVMBuildInsertValue(ctx->ac.builder, ret, persp_center[i], base + 4 + i, "");
758    }
759    if (key->ps_prolog.states.force_linear_center_interp) {
760       unsigned i, base = key->ps_prolog.num_input_sgprs;
761       LLVMValueRef linear_center[2];
762 
763       /* Read LINEAR_CENTER. */
764       for (i = 0; i < 2; i++)
765          linear_center[i] = LLVMGetParam(func, base + 8 + i);
766       /* Overwrite LINEAR_SAMPLE. */
767       for (i = 0; i < 2; i++)
768          ret = LLVMBuildInsertValue(ctx->ac.builder, ret, linear_center[i], base + 6 + i, "");
769       /* Overwrite LINEAR_CENTROID. */
770       for (i = 0; i < 2; i++)
771          ret = LLVMBuildInsertValue(ctx->ac.builder, ret, linear_center[i], base + 10 + i, "");
772    }
773 
774    /* Interpolate colors. */
775    unsigned color_out_idx = 0;
776    for (i = 0; i < 2; i++) {
777       unsigned writemask = (key->ps_prolog.colors_read >> (i * 4)) & 0xf;
778       unsigned face_vgpr = key->ps_prolog.num_input_sgprs + key->ps_prolog.face_vgpr_index;
779       LLVMValueRef interp[2], color[4];
780       LLVMValueRef interp_ij = NULL, prim_mask = NULL, face = NULL;
781 
782       if (!writemask)
783          continue;
784 
785       /* If the interpolation qualifier is not CONSTANT (-1). */
786       if (key->ps_prolog.color_interp_vgpr_index[i] != -1) {
787          unsigned interp_vgpr =
788             key->ps_prolog.num_input_sgprs + key->ps_prolog.color_interp_vgpr_index[i];
789 
790          /* Get the (i,j) updated by bc_optimize handling. */
791          interp[0] = LLVMBuildExtractValue(ctx->ac.builder, ret, interp_vgpr, "");
792          interp[1] = LLVMBuildExtractValue(ctx->ac.builder, ret, interp_vgpr + 1, "");
793          interp_ij = ac_build_gather_values(&ctx->ac, interp, 2);
794       }
795 
796       /* Use the absolute location of the input. */
797       prim_mask = LLVMGetParam(func, SI_PS_NUM_USER_SGPR);
798 
799       if (key->ps_prolog.states.color_two_side) {
800          face = LLVMGetParam(func, face_vgpr);
801          face = ac_to_integer(&ctx->ac, face);
802       }
803 
804       interp_fs_color(ctx, key->ps_prolog.color_attr_index[i], i, key->ps_prolog.num_interp_inputs,
805                       key->ps_prolog.colors_read, interp_ij, prim_mask, face, color);
806 
807       while (writemask) {
808          unsigned chan = u_bit_scan(&writemask);
809          ret = LLVMBuildInsertValue(ctx->ac.builder, ret, color[chan],
810                                     ctx->args.arg_count + color_out_idx++, "");
811       }
812    }
813 
814    /* Section 15.2.2 (Shader Inputs) of the OpenGL 4.5 (Core Profile) spec
815     * says:
816     *
817     *    "When per-sample shading is active due to the use of a fragment
818     *     input qualified by sample or due to the use of the gl_SampleID
819     *     or gl_SamplePosition variables, only the bit for the current
820     *     sample is set in gl_SampleMaskIn. When state specifies multiple
821     *     fragment shader invocations for a given fragment, the sample
822     *     mask for any single fragment shader invocation may specify a
823     *     subset of the covered samples for the fragment. In this case,
824     *     the bit corresponding to each covered sample will be set in
825     *     exactly one fragment shader invocation."
826     *
827     * The samplemask loaded by hardware is always the coverage of the
828     * entire pixel/fragment, so mask bits out based on the sample ID.
829     */
830    if (key->ps_prolog.states.samplemask_log_ps_iter) {
831       /* The bit pattern matches that used by fixed function fragment
832        * processing. */
833       static const uint16_t ps_iter_masks[] = {
834          0xffff, /* not used */
835          0x5555, 0x1111, 0x0101, 0x0001,
836       };
837       assert(key->ps_prolog.states.samplemask_log_ps_iter < ARRAY_SIZE(ps_iter_masks));
838 
839       uint32_t ps_iter_mask = ps_iter_masks[key->ps_prolog.states.samplemask_log_ps_iter];
840       LLVMValueRef sampleid = si_unpack_param(ctx, ancillary, 8, 4);
841       LLVMValueRef samplemask = ac_get_arg(&ctx->ac, param_sample_mask);
842 
843       samplemask = ac_to_integer(&ctx->ac, samplemask);
844       samplemask =
845          LLVMBuildAnd(ctx->ac.builder, samplemask,
846                       LLVMBuildShl(ctx->ac.builder, LLVMConstInt(ctx->ac.i32, ps_iter_mask, false),
847                                    sampleid, ""),
848                       "");
849       samplemask = ac_to_float(&ctx->ac, samplemask);
850 
851       ret = LLVMBuildInsertValue(ctx->ac.builder, ret, samplemask, param_sample_mask.arg_index, "");
852    }
853 
854    /* Tell LLVM to insert WQM instruction sequence when needed. */
855    if (key->ps_prolog.wqm) {
856       LLVMAddTargetDependentFunctionAttr(func, "amdgpu-ps-wqm-outputs", "");
857    }
858 
859    si_llvm_build_ret(ctx, ret);
860 }
861 
862 /**
863  * Build the pixel shader epilog function. This handles everything that must be
864  * emulated for pixel shader exports. (alpha-test, format conversions, etc)
865  */
si_llvm_build_ps_epilog(struct si_shader_context * ctx,union si_shader_part_key * key)866 void si_llvm_build_ps_epilog(struct si_shader_context *ctx, union si_shader_part_key *key)
867 {
868    LLVMValueRef depth = NULL, stencil = NULL, samplemask = NULL;
869    int i;
870    struct si_ps_exports exp = {};
871 
872    memset(&ctx->args, 0, sizeof(ctx->args));
873 
874    /* Declare input SGPRs. */
875    ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->internal_bindings);
876    ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->bindless_samplers_and_images);
877    ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->const_and_shader_buffers);
878    ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->samplers_and_images);
879    si_add_arg_checked(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_FLOAT, NULL, SI_PARAM_ALPHA_REF);
880 
881    /* Declare input VGPRs. */
882    unsigned required_num_params =
883       ctx->args.num_sgprs_used + util_bitcount(key->ps_epilog.colors_written) * 4 +
884       key->ps_epilog.writes_z + key->ps_epilog.writes_stencil + key->ps_epilog.writes_samplemask;
885 
886    required_num_params =
887       MAX2(required_num_params, ctx->args.num_sgprs_used + PS_EPILOG_SAMPLEMASK_MIN_LOC + 1);
888 
889    while (ctx->args.arg_count < required_num_params)
890       ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_FLOAT, NULL);
891 
892    /* Create the function. */
893    si_llvm_create_func(ctx, "ps_epilog", NULL, 0, 0);
894    /* Disable elimination of unused inputs. */
895    ac_llvm_add_target_dep_function_attr(ctx->main_fn, "InitialPSInputAddr", 0xffffff);
896 
897    /* Process colors. */
898    unsigned vgpr = ctx->args.num_sgprs_used;
899    unsigned colors_written = key->ps_epilog.colors_written;
900    int last_color_export = -1;
901 
902    /* Find the last color export. */
903    if (!key->ps_epilog.writes_z && !key->ps_epilog.writes_stencil &&
904        !key->ps_epilog.writes_samplemask) {
905       unsigned spi_format = key->ps_epilog.states.spi_shader_col_format;
906 
907       /* If last_cbuf > 0, FS_COLOR0_WRITES_ALL_CBUFS is true. */
908       if (colors_written == 0x1 && key->ps_epilog.states.last_cbuf > 0) {
909          /* Just set this if any of the colorbuffers are enabled. */
910          if (spi_format & ((1ull << (4 * (key->ps_epilog.states.last_cbuf + 1))) - 1))
911             last_color_export = 0;
912       } else {
913          for (i = 0; i < 8; i++)
914             if (colors_written & (1 << i) && (spi_format >> (i * 4)) & 0xf)
915                last_color_export = i;
916       }
917    }
918 
919    unsigned num_compacted_mrts = 0;
920    while (colors_written) {
921       LLVMValueRef color[4];
922       int output_index = u_bit_scan(&colors_written);
923       unsigned color_type = (key->ps_epilog.color_types >> (output_index * 2)) & 0x3;
924 
925       if (color_type != SI_TYPE_ANY32) {
926          for (i = 0; i < 4; i++) {
927             color[i] = LLVMGetParam(ctx->main_fn, vgpr + i / 2);
928             color[i] = LLVMBuildBitCast(ctx->ac.builder, color[i], ctx->ac.v2f16, "");
929             color[i] = ac_llvm_extract_elem(&ctx->ac, color[i], i % 2);
930          }
931          vgpr += 4;
932       } else {
933          for (i = 0; i < 4; i++)
934             color[i] = LLVMGetParam(ctx->main_fn, vgpr++);
935       }
936 
937       if (si_export_mrt_color(ctx, color, output_index, num_compacted_mrts,
938                               ctx->args.arg_count - 1,
939                               output_index == last_color_export, color_type, &exp))
940          num_compacted_mrts++;
941    }
942 
943    /* Process depth, stencil, samplemask. */
944    if (key->ps_epilog.writes_z)
945       depth = LLVMGetParam(ctx->main_fn, vgpr++);
946    if (key->ps_epilog.writes_stencil)
947       stencil = LLVMGetParam(ctx->main_fn, vgpr++);
948    if (key->ps_epilog.writes_samplemask)
949       samplemask = LLVMGetParam(ctx->main_fn, vgpr++);
950 
951    if (depth || stencil || samplemask)
952       ac_export_mrt_z(&ctx->ac, depth, stencil, samplemask, &exp.args[exp.num++]);
953    else if (last_color_export == -1)
954       ac_build_export_null(&ctx->ac);
955 
956    if (exp.num) {
957       for (unsigned i = 0; i < exp.num; i++)
958          ac_build_export(&ctx->ac, &exp.args[i]);
959    }
960 
961    /* Compile. */
962    LLVMBuildRetVoid(ctx->ac.builder);
963 }
964 
si_llvm_build_monolithic_ps(struct si_shader_context * ctx,struct si_shader * shader)965 void si_llvm_build_monolithic_ps(struct si_shader_context *ctx, struct si_shader *shader)
966 {
967    LLVMValueRef parts[3];
968    unsigned num_parts = 0, main_index;
969    LLVMValueRef main_fn = ctx->main_fn;
970 
971    union si_shader_part_key prolog_key;
972    si_get_ps_prolog_key(shader, &prolog_key, false);
973 
974    if (si_need_ps_prolog(&prolog_key)) {
975       si_llvm_build_ps_prolog(ctx, &prolog_key);
976       parts[num_parts++] = ctx->main_fn;
977    }
978 
979    main_index = num_parts;
980    parts[num_parts++] = main_fn;
981 
982    union si_shader_part_key epilog_key;
983    si_get_ps_epilog_key(shader, &epilog_key);
984    si_llvm_build_ps_epilog(ctx, &epilog_key);
985    parts[num_parts++] = ctx->main_fn;
986 
987    si_build_wrapper_function(ctx, parts, num_parts, main_index, 0, false);
988 }
989 
si_llvm_init_ps_callbacks(struct si_shader_context * ctx)990 void si_llvm_init_ps_callbacks(struct si_shader_context *ctx)
991 {
992    ctx->abi.emit_outputs = si_llvm_return_fs_outputs;
993    ctx->abi.load_sample_position = load_sample_position;
994    ctx->abi.load_sample_mask_in = load_sample_mask_in;
995    ctx->abi.emit_fbfetch = si_nir_emit_fbfetch;
996 }
997