1 /*
2 * Copyright 2020 Advanced Micro Devices, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * on the rights to use, copy, modify, merge, publish, distribute, sub
9 * license, and/or sell copies of the Software, and to permit persons to whom
10 * the Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
20 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
21 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
22 * USE OR OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25 #include "si_pipe.h"
26 #include "si_shader_internal.h"
27 #include "sid.h"
28
si_get_sample_id(struct si_shader_context * ctx)29 LLVMValueRef si_get_sample_id(struct si_shader_context *ctx)
30 {
31 return si_unpack_param(ctx, ctx->args.ancillary, 8, 4);
32 }
33
load_sample_mask_in(struct ac_shader_abi * abi)34 static LLVMValueRef load_sample_mask_in(struct ac_shader_abi *abi)
35 {
36 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
37 return ac_to_integer(&ctx->ac, ac_get_arg(&ctx->ac, ctx->args.sample_coverage));
38 }
39
load_sample_position(struct ac_shader_abi * abi,LLVMValueRef sample_id)40 static LLVMValueRef load_sample_position(struct ac_shader_abi *abi, LLVMValueRef sample_id)
41 {
42 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
43 LLVMValueRef desc = ac_get_arg(&ctx->ac, ctx->internal_bindings);
44 LLVMValueRef buf_index = LLVMConstInt(ctx->ac.i32, SI_PS_CONST_SAMPLE_POSITIONS, 0);
45 LLVMValueRef resource = ac_build_load_to_sgpr(&ctx->ac, desc, buf_index);
46
47 /* offset = sample_id * 8 (8 = 2 floats containing samplepos.xy) */
48 LLVMValueRef offset0 =
49 LLVMBuildMul(ctx->ac.builder, sample_id, LLVMConstInt(ctx->ac.i32, 8, 0), "");
50 LLVMValueRef offset1 =
51 LLVMBuildAdd(ctx->ac.builder, offset0, LLVMConstInt(ctx->ac.i32, 4, 0), "");
52
53 LLVMValueRef pos[4] = {si_buffer_load_const(ctx, resource, offset0),
54 si_buffer_load_const(ctx, resource, offset1),
55 LLVMConstReal(ctx->ac.f32, 0), LLVMConstReal(ctx->ac.f32, 0)};
56
57 return ac_build_gather_values(&ctx->ac, pos, 4);
58 }
59
si_nir_emit_fbfetch(struct ac_shader_abi * abi)60 static LLVMValueRef si_nir_emit_fbfetch(struct ac_shader_abi *abi)
61 {
62 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
63 struct ac_image_args args = {};
64 LLVMValueRef ptr, image, fmask;
65
66 /* Ignore src0, because KHR_blend_func_extended disallows multiple render
67 * targets.
68 */
69
70 /* Load the image descriptor. */
71 STATIC_ASSERT(SI_PS_IMAGE_COLORBUF0 % 2 == 0);
72 ptr = ac_get_arg(&ctx->ac, ctx->internal_bindings);
73 ptr =
74 LLVMBuildPointerCast(ctx->ac.builder, ptr, ac_array_in_const32_addr_space(ctx->ac.v8i32), "");
75 image =
76 ac_build_load_to_sgpr(&ctx->ac, ptr, LLVMConstInt(ctx->ac.i32, SI_PS_IMAGE_COLORBUF0 / 2, 0));
77
78 unsigned chan = 0;
79
80 args.coords[chan++] = si_unpack_param(ctx, ctx->pos_fixed_pt, 0, 16);
81
82 if (!ctx->shader->key.mono.u.ps.fbfetch_is_1D)
83 args.coords[chan++] = si_unpack_param(ctx, ctx->pos_fixed_pt, 16, 16);
84
85 /* Get the current render target layer index. */
86 if (ctx->shader->key.mono.u.ps.fbfetch_layered)
87 args.coords[chan++] = si_unpack_param(ctx, ctx->args.ancillary, 16, 11);
88
89 if (ctx->shader->key.mono.u.ps.fbfetch_msaa)
90 args.coords[chan++] = si_get_sample_id(ctx);
91
92 if (ctx->shader->key.mono.u.ps.fbfetch_msaa && !(ctx->screen->debug_flags & DBG(NO_FMASK))) {
93 fmask = ac_build_load_to_sgpr(&ctx->ac, ptr,
94 LLVMConstInt(ctx->ac.i32, SI_PS_IMAGE_COLORBUF0_FMASK / 2, 0));
95
96 ac_apply_fmask_to_sample(&ctx->ac, fmask, args.coords,
97 ctx->shader->key.mono.u.ps.fbfetch_layered);
98 }
99
100 args.opcode = ac_image_load;
101 args.resource = image;
102 args.dmask = 0xf;
103 args.attributes = AC_FUNC_ATTR_READNONE;
104
105 if (ctx->shader->key.mono.u.ps.fbfetch_msaa)
106 args.dim =
107 ctx->shader->key.mono.u.ps.fbfetch_layered ? ac_image_2darraymsaa : ac_image_2dmsaa;
108 else if (ctx->shader->key.mono.u.ps.fbfetch_is_1D)
109 args.dim = ctx->shader->key.mono.u.ps.fbfetch_layered ? ac_image_1darray : ac_image_1d;
110 else
111 args.dim = ctx->shader->key.mono.u.ps.fbfetch_layered ? ac_image_2darray : ac_image_2d;
112
113 return ac_build_image_opcode(&ctx->ac, &args);
114 }
115
si_build_fs_interp(struct si_shader_context * ctx,unsigned attr_index,unsigned chan,LLVMValueRef prim_mask,LLVMValueRef i,LLVMValueRef j)116 static LLVMValueRef si_build_fs_interp(struct si_shader_context *ctx, unsigned attr_index,
117 unsigned chan, LLVMValueRef prim_mask, LLVMValueRef i,
118 LLVMValueRef j)
119 {
120 if (i || j) {
121 return ac_build_fs_interp(&ctx->ac, LLVMConstInt(ctx->ac.i32, chan, 0),
122 LLVMConstInt(ctx->ac.i32, attr_index, 0), prim_mask, i, j);
123 }
124 return ac_build_fs_interp_mov(&ctx->ac, LLVMConstInt(ctx->ac.i32, 2, 0), /* P0 */
125 LLVMConstInt(ctx->ac.i32, chan, 0),
126 LLVMConstInt(ctx->ac.i32, attr_index, 0), prim_mask);
127 }
128
129 /**
130 * Interpolate a fragment shader input.
131 *
132 * @param ctx context
133 * @param input_index index of the input in hardware
134 * @param semantic_index semantic index
135 * @param num_interp_inputs number of all interpolated inputs (= BCOLOR offset)
136 * @param colors_read_mask color components read (4 bits for each color, 8 bits in total)
137 * @param interp_param interpolation weights (i,j)
138 * @param prim_mask SI_PARAM_PRIM_MASK
139 * @param face SI_PARAM_FRONT_FACE
140 * @param result the return value (4 components)
141 */
interp_fs_color(struct si_shader_context * ctx,unsigned input_index,unsigned semantic_index,unsigned num_interp_inputs,unsigned colors_read_mask,LLVMValueRef interp_param,LLVMValueRef prim_mask,LLVMValueRef face,LLVMValueRef result[4])142 static void interp_fs_color(struct si_shader_context *ctx, unsigned input_index,
143 unsigned semantic_index, unsigned num_interp_inputs,
144 unsigned colors_read_mask, LLVMValueRef interp_param,
145 LLVMValueRef prim_mask, LLVMValueRef face, LLVMValueRef result[4])
146 {
147 LLVMValueRef i = NULL, j = NULL;
148 unsigned chan;
149
150 /* fs.constant returns the param from the middle vertex, so it's not
151 * really useful for flat shading. It's meant to be used for custom
152 * interpolation (but the intrinsic can't fetch from the other two
153 * vertices).
154 *
155 * Luckily, it doesn't matter, because we rely on the FLAT_SHADE state
156 * to do the right thing. The only reason we use fs.constant is that
157 * fs.interp cannot be used on integers, because they can be equal
158 * to NaN.
159 *
160 * When interp is false we will use fs.constant or for newer llvm,
161 * amdgcn.interp.mov.
162 */
163 bool interp = interp_param != NULL;
164
165 if (interp) {
166 interp_param =
167 LLVMBuildBitCast(ctx->ac.builder, interp_param, ctx->ac.v2f32, "");
168
169 i = LLVMBuildExtractElement(ctx->ac.builder, interp_param, ctx->ac.i32_0, "");
170 j = LLVMBuildExtractElement(ctx->ac.builder, interp_param, ctx->ac.i32_1, "");
171 }
172
173 if (ctx->shader->key.part.ps.prolog.color_two_side) {
174 LLVMValueRef is_face_positive;
175
176 /* If BCOLOR0 is used, BCOLOR1 is at offset "num_inputs + 1",
177 * otherwise it's at offset "num_inputs".
178 */
179 unsigned back_attr_offset = num_interp_inputs;
180 if (semantic_index == 1 && colors_read_mask & 0xf)
181 back_attr_offset += 1;
182
183 is_face_positive = LLVMBuildICmp(ctx->ac.builder, LLVMIntNE, face, ctx->ac.i32_0, "");
184
185 for (chan = 0; chan < 4; chan++) {
186 LLVMValueRef front, back;
187
188 front = si_build_fs_interp(ctx, input_index, chan, prim_mask, i, j);
189 back = si_build_fs_interp(ctx, back_attr_offset, chan, prim_mask, i, j);
190
191 result[chan] = LLVMBuildSelect(ctx->ac.builder, is_face_positive, front, back, "");
192 }
193 } else {
194 for (chan = 0; chan < 4; chan++) {
195 result[chan] = si_build_fs_interp(ctx, input_index, chan, prim_mask, i, j);
196 }
197 }
198 }
199
si_alpha_test(struct si_shader_context * ctx,LLVMValueRef alpha)200 static void si_alpha_test(struct si_shader_context *ctx, LLVMValueRef alpha)
201 {
202 if (ctx->shader->key.part.ps.epilog.alpha_func != PIPE_FUNC_NEVER) {
203 static LLVMRealPredicate cond_map[PIPE_FUNC_ALWAYS + 1] = {
204 [PIPE_FUNC_LESS] = LLVMRealOLT, [PIPE_FUNC_EQUAL] = LLVMRealOEQ,
205 [PIPE_FUNC_LEQUAL] = LLVMRealOLE, [PIPE_FUNC_GREATER] = LLVMRealOGT,
206 [PIPE_FUNC_NOTEQUAL] = LLVMRealONE, [PIPE_FUNC_GEQUAL] = LLVMRealOGE,
207 };
208 LLVMRealPredicate cond = cond_map[ctx->shader->key.part.ps.epilog.alpha_func];
209 assert(cond);
210
211 LLVMValueRef alpha_ref = LLVMGetParam(ctx->main_fn, SI_PARAM_ALPHA_REF);
212 if (LLVMTypeOf(alpha) == ctx->ac.f16)
213 alpha_ref = LLVMBuildFPTrunc(ctx->ac.builder, alpha_ref, ctx->ac.f16, "");
214
215 LLVMValueRef alpha_pass = LLVMBuildFCmp(ctx->ac.builder, cond, alpha, alpha_ref, "");
216 ac_build_kill_if_false(&ctx->ac, alpha_pass);
217 } else {
218 ac_build_kill_if_false(&ctx->ac, ctx->ac.i1false);
219 }
220 }
221
si_scale_alpha_by_sample_mask(struct si_shader_context * ctx,LLVMValueRef alpha,unsigned samplemask_param)222 static LLVMValueRef si_scale_alpha_by_sample_mask(struct si_shader_context *ctx, LLVMValueRef alpha,
223 unsigned samplemask_param)
224 {
225 LLVMValueRef coverage;
226
227 /* alpha = alpha * popcount(coverage) / SI_NUM_SMOOTH_AA_SAMPLES */
228 coverage = LLVMGetParam(ctx->main_fn, samplemask_param);
229 coverage = ac_build_bit_count(&ctx->ac, ac_to_integer(&ctx->ac, coverage));
230 coverage = LLVMBuildUIToFP(ctx->ac.builder, coverage, ctx->ac.f32, "");
231
232 coverage = LLVMBuildFMul(ctx->ac.builder, coverage,
233 LLVMConstReal(ctx->ac.f32, 1.0 / SI_NUM_SMOOTH_AA_SAMPLES), "");
234
235 if (LLVMTypeOf(alpha) == ctx->ac.f16)
236 coverage = LLVMBuildFPTrunc(ctx->ac.builder, coverage, ctx->ac.f16, "");
237
238 return LLVMBuildFMul(ctx->ac.builder, alpha, coverage, "");
239 }
240
241 struct si_ps_exports {
242 unsigned num;
243 struct ac_export_args args[10];
244 };
245
pack_two_16bit(struct ac_llvm_context * ctx,LLVMValueRef args[2])246 static LLVMValueRef pack_two_16bit(struct ac_llvm_context *ctx, LLVMValueRef args[2])
247 {
248 LLVMValueRef tmp = ac_build_gather_values(ctx, args, 2);
249 return LLVMBuildBitCast(ctx->builder, tmp, ctx->v2f16, "");
250 }
251
get_color_32bit(struct si_shader_context * ctx,unsigned color_type,LLVMValueRef value)252 static LLVMValueRef get_color_32bit(struct si_shader_context *ctx, unsigned color_type,
253 LLVMValueRef value)
254 {
255 switch (color_type) {
256 case SI_TYPE_FLOAT16:
257 return LLVMBuildFPExt(ctx->ac.builder, value, ctx->ac.f32, "");
258 case SI_TYPE_INT16:
259 value = ac_to_integer(&ctx->ac, value);
260 value = LLVMBuildSExt(ctx->ac.builder, value, ctx->ac.i32, "");
261 return ac_to_float(&ctx->ac, value);
262 case SI_TYPE_UINT16:
263 value = ac_to_integer(&ctx->ac, value);
264 value = LLVMBuildZExt(ctx->ac.builder, value, ctx->ac.i32, "");
265 return ac_to_float(&ctx->ac, value);
266 case SI_TYPE_ANY32:
267 return value;
268 }
269 return NULL;
270 }
271
272 /* Initialize arguments for the shader export intrinsic */
si_llvm_init_ps_export_args(struct si_shader_context * ctx,LLVMValueRef * values,unsigned cbuf,unsigned compacted_mrt_index,unsigned color_type,struct ac_export_args * args)273 static void si_llvm_init_ps_export_args(struct si_shader_context *ctx, LLVMValueRef *values,
274 unsigned cbuf, unsigned compacted_mrt_index,
275 unsigned color_type, struct ac_export_args *args)
276 {
277 const struct si_shader_key *key = &ctx->shader->key;
278 unsigned col_formats = key->part.ps.epilog.spi_shader_col_format;
279 LLVMValueRef f32undef = LLVMGetUndef(ctx->ac.f32);
280 unsigned spi_shader_col_format;
281 unsigned chan;
282 bool is_int8, is_int10;
283
284 assert(cbuf < 8);
285
286 spi_shader_col_format = (col_formats >> (cbuf * 4)) & 0xf;
287 is_int8 = (key->part.ps.epilog.color_is_int8 >> cbuf) & 0x1;
288 is_int10 = (key->part.ps.epilog.color_is_int10 >> cbuf) & 0x1;
289
290 /* Default is 0xf. Adjusted below depending on the format. */
291 args->enabled_channels = 0xf; /* writemask */
292
293 /* Specify whether the EXEC mask represents the valid mask */
294 args->valid_mask = 0;
295
296 /* Specify whether this is the last export */
297 args->done = 0;
298
299 /* Specify the target we are exporting */
300 args->target = V_008DFC_SQ_EXP_MRT + compacted_mrt_index;
301
302 args->compr = false;
303 args->out[0] = f32undef;
304 args->out[1] = f32undef;
305 args->out[2] = f32undef;
306 args->out[3] = f32undef;
307
308 LLVMValueRef (*packf)(struct ac_llvm_context * ctx, LLVMValueRef args[2]) = NULL;
309 LLVMValueRef (*packi)(struct ac_llvm_context * ctx, LLVMValueRef args[2], unsigned bits,
310 bool hi) = NULL;
311
312 switch (spi_shader_col_format) {
313 case V_028714_SPI_SHADER_ZERO:
314 args->enabled_channels = 0; /* writemask */
315 args->target = V_008DFC_SQ_EXP_NULL;
316 break;
317
318 case V_028714_SPI_SHADER_32_R:
319 args->enabled_channels = 1; /* writemask */
320 args->out[0] = get_color_32bit(ctx, color_type, values[0]);
321 break;
322
323 case V_028714_SPI_SHADER_32_GR:
324 args->enabled_channels = 0x3; /* writemask */
325 args->out[0] = get_color_32bit(ctx, color_type, values[0]);
326 args->out[1] = get_color_32bit(ctx, color_type, values[1]);
327 break;
328
329 case V_028714_SPI_SHADER_32_AR:
330 if (ctx->screen->info.chip_class >= GFX10) {
331 args->enabled_channels = 0x3; /* writemask */
332 args->out[0] = get_color_32bit(ctx, color_type, values[0]);
333 args->out[1] = get_color_32bit(ctx, color_type, values[3]);
334 } else {
335 args->enabled_channels = 0x9; /* writemask */
336 args->out[0] = get_color_32bit(ctx, color_type, values[0]);
337 args->out[3] = get_color_32bit(ctx, color_type, values[3]);
338 }
339 break;
340
341 case V_028714_SPI_SHADER_FP16_ABGR:
342 if (color_type != SI_TYPE_ANY32)
343 packf = pack_two_16bit;
344 else
345 packf = ac_build_cvt_pkrtz_f16;
346 break;
347
348 case V_028714_SPI_SHADER_UNORM16_ABGR:
349 if (color_type != SI_TYPE_ANY32)
350 packf = ac_build_cvt_pknorm_u16_f16;
351 else
352 packf = ac_build_cvt_pknorm_u16;
353 break;
354
355 case V_028714_SPI_SHADER_SNORM16_ABGR:
356 if (color_type != SI_TYPE_ANY32)
357 packf = ac_build_cvt_pknorm_i16_f16;
358 else
359 packf = ac_build_cvt_pknorm_i16;
360 break;
361
362 case V_028714_SPI_SHADER_UINT16_ABGR:
363 if (color_type != SI_TYPE_ANY32)
364 packf = pack_two_16bit;
365 else
366 packi = ac_build_cvt_pk_u16;
367 break;
368
369 case V_028714_SPI_SHADER_SINT16_ABGR:
370 if (color_type != SI_TYPE_ANY32)
371 packf = pack_two_16bit;
372 else
373 packi = ac_build_cvt_pk_i16;
374 break;
375
376 case V_028714_SPI_SHADER_32_ABGR:
377 for (unsigned i = 0; i < 4; i++)
378 args->out[i] = get_color_32bit(ctx, color_type, values[i]);
379 break;
380 }
381
382 /* Pack f16 or norm_i16/u16. */
383 if (packf) {
384 for (chan = 0; chan < 2; chan++) {
385 LLVMValueRef pack_args[2] = {values[2 * chan], values[2 * chan + 1]};
386 LLVMValueRef packed;
387
388 packed = packf(&ctx->ac, pack_args);
389 args->out[chan] = ac_to_float(&ctx->ac, packed);
390 }
391 args->compr = 1; /* COMPR flag */
392 }
393 /* Pack i16/u16. */
394 if (packi) {
395 for (chan = 0; chan < 2; chan++) {
396 LLVMValueRef pack_args[2] = {ac_to_integer(&ctx->ac, values[2 * chan]),
397 ac_to_integer(&ctx->ac, values[2 * chan + 1])};
398 LLVMValueRef packed;
399
400 packed = packi(&ctx->ac, pack_args, is_int8 ? 8 : is_int10 ? 10 : 16, chan == 1);
401 args->out[chan] = ac_to_float(&ctx->ac, packed);
402 }
403 args->compr = 1; /* COMPR flag */
404 }
405 }
406
si_export_mrt_color(struct si_shader_context * ctx,LLVMValueRef * color,unsigned index,unsigned compacted_mrt_index,unsigned samplemask_param,bool is_last,unsigned color_type,struct si_ps_exports * exp)407 static bool si_export_mrt_color(struct si_shader_context *ctx, LLVMValueRef *color, unsigned index,
408 unsigned compacted_mrt_index, unsigned samplemask_param,
409 bool is_last, unsigned color_type, struct si_ps_exports *exp)
410 {
411 int i;
412
413 /* Clamp color */
414 if (ctx->shader->key.part.ps.epilog.clamp_color)
415 for (i = 0; i < 4; i++)
416 color[i] = ac_build_clamp(&ctx->ac, color[i]);
417
418 /* Alpha to one */
419 if (ctx->shader->key.part.ps.epilog.alpha_to_one)
420 color[3] = LLVMConstReal(LLVMTypeOf(color[0]), 1);
421
422 /* Alpha test */
423 if (index == 0 && ctx->shader->key.part.ps.epilog.alpha_func != PIPE_FUNC_ALWAYS)
424 si_alpha_test(ctx, color[3]);
425
426 /* Line & polygon smoothing */
427 if (ctx->shader->key.part.ps.epilog.poly_line_smoothing)
428 color[3] = si_scale_alpha_by_sample_mask(ctx, color[3], samplemask_param);
429
430 /* If last_cbuf > 0, FS_COLOR0_WRITES_ALL_CBUFS is true. */
431 if (ctx->shader->key.part.ps.epilog.last_cbuf > 0) {
432 struct ac_export_args args[8];
433 int c, last = -1;
434
435 assert(compacted_mrt_index == 0);
436
437 /* Get the export arguments, also find out what the last one is. */
438 for (c = 0; c <= ctx->shader->key.part.ps.epilog.last_cbuf; c++) {
439 si_llvm_init_ps_export_args(ctx, color, c, compacted_mrt_index,
440 color_type, &args[c]);
441 if (args[c].enabled_channels) {
442 compacted_mrt_index++;
443 last = c;
444 }
445 }
446 if (last == -1)
447 return false;
448
449 /* Emit all exports. */
450 for (c = 0; c <= ctx->shader->key.part.ps.epilog.last_cbuf; c++) {
451 if (is_last && last == c) {
452 args[c].valid_mask = 1; /* whether the EXEC mask is valid */
453 args[c].done = 1; /* DONE bit */
454 } else if (!args[c].enabled_channels)
455 continue; /* unnecessary NULL export */
456
457 memcpy(&exp->args[exp->num++], &args[c], sizeof(args[c]));
458 }
459 } else {
460 struct ac_export_args args;
461
462 /* Export */
463 si_llvm_init_ps_export_args(ctx, color, index, compacted_mrt_index,
464 color_type, &args);
465 if (is_last) {
466 args.valid_mask = 1; /* whether the EXEC mask is valid */
467 args.done = 1; /* DONE bit */
468 } else if (!args.enabled_channels)
469 return false; /* unnecessary NULL export */
470
471 memcpy(&exp->args[exp->num++], &args, sizeof(args));
472 }
473 return true;
474 }
475
476 /**
477 * Return PS outputs in this order:
478 *
479 * v[0:3] = color0.xyzw
480 * v[4:7] = color1.xyzw
481 * ...
482 * vN+0 = Depth
483 * vN+1 = Stencil
484 * vN+2 = SampleMask
485 * vN+3 = SampleMaskIn (used for OpenGL smoothing)
486 *
487 * The alpha-ref SGPR is returned via its original location.
488 */
si_llvm_return_fs_outputs(struct ac_shader_abi * abi)489 static void si_llvm_return_fs_outputs(struct ac_shader_abi *abi)
490 {
491 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
492 struct si_shader *shader = ctx->shader;
493 struct si_shader_info *info = &shader->selector->info;
494 LLVMBuilderRef builder = ctx->ac.builder;
495 unsigned i, j, first_vgpr, vgpr;
496 LLVMValueRef *addrs = abi->outputs;
497
498 LLVMValueRef color[8][4] = {};
499 LLVMValueRef depth = NULL, stencil = NULL, samplemask = NULL;
500 LLVMValueRef ret;
501
502 /* Read the output values. */
503 for (i = 0; i < info->num_outputs; i++) {
504 unsigned semantic = info->output_semantic[i];
505
506 switch (semantic) {
507 case FRAG_RESULT_DEPTH:
508 depth = LLVMBuildLoad(builder, addrs[4 * i + 0], "");
509 break;
510 case FRAG_RESULT_STENCIL:
511 stencil = LLVMBuildLoad(builder, addrs[4 * i + 0], "");
512 break;
513 case FRAG_RESULT_SAMPLE_MASK:
514 samplemask = LLVMBuildLoad(builder, addrs[4 * i + 0], "");
515 break;
516 default:
517 if (semantic >= FRAG_RESULT_DATA0 && semantic <= FRAG_RESULT_DATA7) {
518 unsigned index = semantic - FRAG_RESULT_DATA0;
519
520 for (j = 0; j < 4; j++) {
521 LLVMValueRef ptr = addrs[4 * i + j];
522 LLVMValueRef result = LLVMBuildLoad(builder, ptr, "");
523 color[index][j] = result;
524 }
525 } else {
526 fprintf(stderr, "Warning: Unhandled fs output type:%d\n", semantic);
527 }
528 break;
529 }
530 }
531
532 /* Fill the return structure. */
533 ret = ctx->return_value;
534
535 /* Set SGPRs. */
536 ret = LLVMBuildInsertValue(
537 builder, ret, ac_to_integer(&ctx->ac, LLVMGetParam(ctx->main_fn, SI_PARAM_ALPHA_REF)),
538 SI_SGPR_ALPHA_REF, "");
539
540 /* Set VGPRs */
541 first_vgpr = vgpr = SI_SGPR_ALPHA_REF + 1;
542 for (i = 0; i < ARRAY_SIZE(color); i++) {
543 if (!color[i][0])
544 continue;
545
546 if (LLVMTypeOf(color[i][0]) == ctx->ac.f16) {
547 for (j = 0; j < 2; j++) {
548 LLVMValueRef tmp = ac_build_gather_values(&ctx->ac, &color[i][j * 2], 2);
549 tmp = LLVMBuildBitCast(builder, tmp, ctx->ac.f32, "");
550 ret = LLVMBuildInsertValue(builder, ret, tmp, vgpr++, "");
551 }
552 vgpr += 2;
553 } else {
554 for (j = 0; j < 4; j++)
555 ret = LLVMBuildInsertValue(builder, ret, color[i][j], vgpr++, "");
556 }
557 }
558 if (depth)
559 ret = LLVMBuildInsertValue(builder, ret, depth, vgpr++, "");
560 if (stencil)
561 ret = LLVMBuildInsertValue(builder, ret, stencil, vgpr++, "");
562 if (samplemask)
563 ret = LLVMBuildInsertValue(builder, ret, samplemask, vgpr++, "");
564
565 /* Add the input sample mask for smoothing at the end. */
566 if (vgpr < first_vgpr + PS_EPILOG_SAMPLEMASK_MIN_LOC)
567 vgpr = first_vgpr + PS_EPILOG_SAMPLEMASK_MIN_LOC;
568 ret = LLVMBuildInsertValue(builder, ret, LLVMGetParam(ctx->main_fn, SI_PARAM_SAMPLE_COVERAGE),
569 vgpr++, "");
570
571 ctx->return_value = ret;
572 }
573
si_llvm_emit_polygon_stipple(struct si_shader_context * ctx,LLVMValueRef param_internal_bindings,struct ac_arg param_pos_fixed_pt)574 static void si_llvm_emit_polygon_stipple(struct si_shader_context *ctx,
575 LLVMValueRef param_internal_bindings,
576 struct ac_arg param_pos_fixed_pt)
577 {
578 LLVMBuilderRef builder = ctx->ac.builder;
579 LLVMValueRef slot, desc, offset, row, bit, address[2];
580
581 /* Use the fixed-point gl_FragCoord input.
582 * Since the stipple pattern is 32x32 and it repeats, just get 5 bits
583 * per coordinate to get the repeating effect.
584 */
585 address[0] = si_unpack_param(ctx, param_pos_fixed_pt, 0, 5);
586 address[1] = si_unpack_param(ctx, param_pos_fixed_pt, 16, 5);
587
588 /* Load the buffer descriptor. */
589 slot = LLVMConstInt(ctx->ac.i32, SI_PS_CONST_POLY_STIPPLE, 0);
590 desc = ac_build_load_to_sgpr(&ctx->ac, param_internal_bindings, slot);
591
592 /* The stipple pattern is 32x32, each row has 32 bits. */
593 offset = LLVMBuildMul(builder, address[1], LLVMConstInt(ctx->ac.i32, 4, 0), "");
594 row = si_buffer_load_const(ctx, desc, offset);
595 row = ac_to_integer(&ctx->ac, row);
596 bit = LLVMBuildLShr(builder, row, address[0], "");
597 bit = LLVMBuildTrunc(builder, bit, ctx->ac.i1, "");
598 ac_build_kill_if_false(&ctx->ac, bit);
599 }
600
601 /**
602 * Build the pixel shader prolog function. This handles:
603 * - two-side color selection and interpolation
604 * - overriding interpolation parameters for the API PS
605 * - polygon stippling
606 *
607 * All preloaded SGPRs and VGPRs are passed through unmodified unless they are
608 * overriden by other states. (e.g. per-sample interpolation)
609 * Interpolated colors are stored after the preloaded VGPRs.
610 */
si_llvm_build_ps_prolog(struct si_shader_context * ctx,union si_shader_part_key * key)611 void si_llvm_build_ps_prolog(struct si_shader_context *ctx, union si_shader_part_key *key)
612 {
613 LLVMValueRef ret, func;
614 int num_returns, i, num_color_channels;
615
616 memset(&ctx->args, 0, sizeof(ctx->args));
617
618 /* Declare inputs. */
619 LLVMTypeRef return_types[AC_MAX_ARGS];
620 num_returns = 0;
621 num_color_channels = util_bitcount(key->ps_prolog.colors_read);
622 assert(key->ps_prolog.num_input_sgprs + key->ps_prolog.num_input_vgprs + num_color_channels <=
623 AC_MAX_ARGS);
624 for (i = 0; i < key->ps_prolog.num_input_sgprs; i++) {
625 ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, NULL);
626 return_types[num_returns++] = ctx->ac.i32;
627 }
628
629 struct ac_arg pos_fixed_pt;
630 struct ac_arg ancillary;
631 struct ac_arg param_sample_mask;
632 for (i = 0; i < key->ps_prolog.num_input_vgprs; i++) {
633 struct ac_arg *arg = NULL;
634 if (i == key->ps_prolog.ancillary_vgpr_index) {
635 arg = &ancillary;
636 } else if (i == key->ps_prolog.ancillary_vgpr_index + 1) {
637 arg = ¶m_sample_mask;
638 } else if (i == key->ps_prolog.num_input_vgprs - 1) {
639 /* POS_FIXED_PT is always last. */
640 arg = &pos_fixed_pt;
641 }
642 ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_FLOAT, arg);
643 return_types[num_returns++] = ctx->ac.f32;
644 }
645
646 /* Declare outputs (same as inputs + add colors if needed) */
647 for (i = 0; i < num_color_channels; i++)
648 return_types[num_returns++] = ctx->ac.f32;
649
650 /* Create the function. */
651 si_llvm_create_func(ctx, "ps_prolog", return_types, num_returns, 0);
652 func = ctx->main_fn;
653
654 /* Copy inputs to outputs. This should be no-op, as the registers match,
655 * but it will prevent the compiler from overwriting them unintentionally.
656 */
657 ret = ctx->return_value;
658 for (i = 0; i < ctx->args.arg_count; i++) {
659 LLVMValueRef p = LLVMGetParam(func, i);
660 ret = LLVMBuildInsertValue(ctx->ac.builder, ret, p, i, "");
661 }
662
663 /* Polygon stippling. */
664 if (key->ps_prolog.states.poly_stipple) {
665 LLVMValueRef list = si_prolog_get_internal_bindings(ctx);
666
667 si_llvm_emit_polygon_stipple(ctx, list, pos_fixed_pt);
668 }
669
670 if (key->ps_prolog.states.bc_optimize_for_persp ||
671 key->ps_prolog.states.bc_optimize_for_linear) {
672 unsigned i, base = key->ps_prolog.num_input_sgprs;
673 LLVMValueRef center[2], centroid[2], tmp, bc_optimize;
674
675 /* The shader should do: if (PRIM_MASK[31]) CENTROID = CENTER;
676 * The hw doesn't compute CENTROID if the whole wave only
677 * contains fully-covered quads.
678 *
679 * PRIM_MASK is after user SGPRs.
680 */
681 bc_optimize = LLVMGetParam(func, SI_PS_NUM_USER_SGPR);
682 bc_optimize =
683 LLVMBuildLShr(ctx->ac.builder, bc_optimize, LLVMConstInt(ctx->ac.i32, 31, 0), "");
684 bc_optimize = LLVMBuildTrunc(ctx->ac.builder, bc_optimize, ctx->ac.i1, "");
685
686 if (key->ps_prolog.states.bc_optimize_for_persp) {
687 /* Read PERSP_CENTER. */
688 for (i = 0; i < 2; i++)
689 center[i] = LLVMGetParam(func, base + 2 + i);
690 /* Read PERSP_CENTROID. */
691 for (i = 0; i < 2; i++)
692 centroid[i] = LLVMGetParam(func, base + 4 + i);
693 /* Select PERSP_CENTROID. */
694 for (i = 0; i < 2; i++) {
695 tmp = LLVMBuildSelect(ctx->ac.builder, bc_optimize, center[i], centroid[i], "");
696 ret = LLVMBuildInsertValue(ctx->ac.builder, ret, tmp, base + 4 + i, "");
697 }
698 }
699 if (key->ps_prolog.states.bc_optimize_for_linear) {
700 /* Read LINEAR_CENTER. */
701 for (i = 0; i < 2; i++)
702 center[i] = LLVMGetParam(func, base + 8 + i);
703 /* Read LINEAR_CENTROID. */
704 for (i = 0; i < 2; i++)
705 centroid[i] = LLVMGetParam(func, base + 10 + i);
706 /* Select LINEAR_CENTROID. */
707 for (i = 0; i < 2; i++) {
708 tmp = LLVMBuildSelect(ctx->ac.builder, bc_optimize, center[i], centroid[i], "");
709 ret = LLVMBuildInsertValue(ctx->ac.builder, ret, tmp, base + 10 + i, "");
710 }
711 }
712 }
713
714 /* Force per-sample interpolation. */
715 if (key->ps_prolog.states.force_persp_sample_interp) {
716 unsigned i, base = key->ps_prolog.num_input_sgprs;
717 LLVMValueRef persp_sample[2];
718
719 /* Read PERSP_SAMPLE. */
720 for (i = 0; i < 2; i++)
721 persp_sample[i] = LLVMGetParam(func, base + i);
722 /* Overwrite PERSP_CENTER. */
723 for (i = 0; i < 2; i++)
724 ret = LLVMBuildInsertValue(ctx->ac.builder, ret, persp_sample[i], base + 2 + i, "");
725 /* Overwrite PERSP_CENTROID. */
726 for (i = 0; i < 2; i++)
727 ret = LLVMBuildInsertValue(ctx->ac.builder, ret, persp_sample[i], base + 4 + i, "");
728 }
729 if (key->ps_prolog.states.force_linear_sample_interp) {
730 unsigned i, base = key->ps_prolog.num_input_sgprs;
731 LLVMValueRef linear_sample[2];
732
733 /* Read LINEAR_SAMPLE. */
734 for (i = 0; i < 2; i++)
735 linear_sample[i] = LLVMGetParam(func, base + 6 + i);
736 /* Overwrite LINEAR_CENTER. */
737 for (i = 0; i < 2; i++)
738 ret = LLVMBuildInsertValue(ctx->ac.builder, ret, linear_sample[i], base + 8 + i, "");
739 /* Overwrite LINEAR_CENTROID. */
740 for (i = 0; i < 2; i++)
741 ret = LLVMBuildInsertValue(ctx->ac.builder, ret, linear_sample[i], base + 10 + i, "");
742 }
743
744 /* Force center interpolation. */
745 if (key->ps_prolog.states.force_persp_center_interp) {
746 unsigned i, base = key->ps_prolog.num_input_sgprs;
747 LLVMValueRef persp_center[2];
748
749 /* Read PERSP_CENTER. */
750 for (i = 0; i < 2; i++)
751 persp_center[i] = LLVMGetParam(func, base + 2 + i);
752 /* Overwrite PERSP_SAMPLE. */
753 for (i = 0; i < 2; i++)
754 ret = LLVMBuildInsertValue(ctx->ac.builder, ret, persp_center[i], base + i, "");
755 /* Overwrite PERSP_CENTROID. */
756 for (i = 0; i < 2; i++)
757 ret = LLVMBuildInsertValue(ctx->ac.builder, ret, persp_center[i], base + 4 + i, "");
758 }
759 if (key->ps_prolog.states.force_linear_center_interp) {
760 unsigned i, base = key->ps_prolog.num_input_sgprs;
761 LLVMValueRef linear_center[2];
762
763 /* Read LINEAR_CENTER. */
764 for (i = 0; i < 2; i++)
765 linear_center[i] = LLVMGetParam(func, base + 8 + i);
766 /* Overwrite LINEAR_SAMPLE. */
767 for (i = 0; i < 2; i++)
768 ret = LLVMBuildInsertValue(ctx->ac.builder, ret, linear_center[i], base + 6 + i, "");
769 /* Overwrite LINEAR_CENTROID. */
770 for (i = 0; i < 2; i++)
771 ret = LLVMBuildInsertValue(ctx->ac.builder, ret, linear_center[i], base + 10 + i, "");
772 }
773
774 /* Interpolate colors. */
775 unsigned color_out_idx = 0;
776 for (i = 0; i < 2; i++) {
777 unsigned writemask = (key->ps_prolog.colors_read >> (i * 4)) & 0xf;
778 unsigned face_vgpr = key->ps_prolog.num_input_sgprs + key->ps_prolog.face_vgpr_index;
779 LLVMValueRef interp[2], color[4];
780 LLVMValueRef interp_ij = NULL, prim_mask = NULL, face = NULL;
781
782 if (!writemask)
783 continue;
784
785 /* If the interpolation qualifier is not CONSTANT (-1). */
786 if (key->ps_prolog.color_interp_vgpr_index[i] != -1) {
787 unsigned interp_vgpr =
788 key->ps_prolog.num_input_sgprs + key->ps_prolog.color_interp_vgpr_index[i];
789
790 /* Get the (i,j) updated by bc_optimize handling. */
791 interp[0] = LLVMBuildExtractValue(ctx->ac.builder, ret, interp_vgpr, "");
792 interp[1] = LLVMBuildExtractValue(ctx->ac.builder, ret, interp_vgpr + 1, "");
793 interp_ij = ac_build_gather_values(&ctx->ac, interp, 2);
794 }
795
796 /* Use the absolute location of the input. */
797 prim_mask = LLVMGetParam(func, SI_PS_NUM_USER_SGPR);
798
799 if (key->ps_prolog.states.color_two_side) {
800 face = LLVMGetParam(func, face_vgpr);
801 face = ac_to_integer(&ctx->ac, face);
802 }
803
804 interp_fs_color(ctx, key->ps_prolog.color_attr_index[i], i, key->ps_prolog.num_interp_inputs,
805 key->ps_prolog.colors_read, interp_ij, prim_mask, face, color);
806
807 while (writemask) {
808 unsigned chan = u_bit_scan(&writemask);
809 ret = LLVMBuildInsertValue(ctx->ac.builder, ret, color[chan],
810 ctx->args.arg_count + color_out_idx++, "");
811 }
812 }
813
814 /* Section 15.2.2 (Shader Inputs) of the OpenGL 4.5 (Core Profile) spec
815 * says:
816 *
817 * "When per-sample shading is active due to the use of a fragment
818 * input qualified by sample or due to the use of the gl_SampleID
819 * or gl_SamplePosition variables, only the bit for the current
820 * sample is set in gl_SampleMaskIn. When state specifies multiple
821 * fragment shader invocations for a given fragment, the sample
822 * mask for any single fragment shader invocation may specify a
823 * subset of the covered samples for the fragment. In this case,
824 * the bit corresponding to each covered sample will be set in
825 * exactly one fragment shader invocation."
826 *
827 * The samplemask loaded by hardware is always the coverage of the
828 * entire pixel/fragment, so mask bits out based on the sample ID.
829 */
830 if (key->ps_prolog.states.samplemask_log_ps_iter) {
831 /* The bit pattern matches that used by fixed function fragment
832 * processing. */
833 static const uint16_t ps_iter_masks[] = {
834 0xffff, /* not used */
835 0x5555, 0x1111, 0x0101, 0x0001,
836 };
837 assert(key->ps_prolog.states.samplemask_log_ps_iter < ARRAY_SIZE(ps_iter_masks));
838
839 uint32_t ps_iter_mask = ps_iter_masks[key->ps_prolog.states.samplemask_log_ps_iter];
840 LLVMValueRef sampleid = si_unpack_param(ctx, ancillary, 8, 4);
841 LLVMValueRef samplemask = ac_get_arg(&ctx->ac, param_sample_mask);
842
843 samplemask = ac_to_integer(&ctx->ac, samplemask);
844 samplemask =
845 LLVMBuildAnd(ctx->ac.builder, samplemask,
846 LLVMBuildShl(ctx->ac.builder, LLVMConstInt(ctx->ac.i32, ps_iter_mask, false),
847 sampleid, ""),
848 "");
849 samplemask = ac_to_float(&ctx->ac, samplemask);
850
851 ret = LLVMBuildInsertValue(ctx->ac.builder, ret, samplemask, param_sample_mask.arg_index, "");
852 }
853
854 /* Tell LLVM to insert WQM instruction sequence when needed. */
855 if (key->ps_prolog.wqm) {
856 LLVMAddTargetDependentFunctionAttr(func, "amdgpu-ps-wqm-outputs", "");
857 }
858
859 si_llvm_build_ret(ctx, ret);
860 }
861
862 /**
863 * Build the pixel shader epilog function. This handles everything that must be
864 * emulated for pixel shader exports. (alpha-test, format conversions, etc)
865 */
si_llvm_build_ps_epilog(struct si_shader_context * ctx,union si_shader_part_key * key)866 void si_llvm_build_ps_epilog(struct si_shader_context *ctx, union si_shader_part_key *key)
867 {
868 LLVMValueRef depth = NULL, stencil = NULL, samplemask = NULL;
869 int i;
870 struct si_ps_exports exp = {};
871
872 memset(&ctx->args, 0, sizeof(ctx->args));
873
874 /* Declare input SGPRs. */
875 ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->internal_bindings);
876 ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->bindless_samplers_and_images);
877 ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->const_and_shader_buffers);
878 ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->samplers_and_images);
879 si_add_arg_checked(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_FLOAT, NULL, SI_PARAM_ALPHA_REF);
880
881 /* Declare input VGPRs. */
882 unsigned required_num_params =
883 ctx->args.num_sgprs_used + util_bitcount(key->ps_epilog.colors_written) * 4 +
884 key->ps_epilog.writes_z + key->ps_epilog.writes_stencil + key->ps_epilog.writes_samplemask;
885
886 required_num_params =
887 MAX2(required_num_params, ctx->args.num_sgprs_used + PS_EPILOG_SAMPLEMASK_MIN_LOC + 1);
888
889 while (ctx->args.arg_count < required_num_params)
890 ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_FLOAT, NULL);
891
892 /* Create the function. */
893 si_llvm_create_func(ctx, "ps_epilog", NULL, 0, 0);
894 /* Disable elimination of unused inputs. */
895 ac_llvm_add_target_dep_function_attr(ctx->main_fn, "InitialPSInputAddr", 0xffffff);
896
897 /* Process colors. */
898 unsigned vgpr = ctx->args.num_sgprs_used;
899 unsigned colors_written = key->ps_epilog.colors_written;
900 int last_color_export = -1;
901
902 /* Find the last color export. */
903 if (!key->ps_epilog.writes_z && !key->ps_epilog.writes_stencil &&
904 !key->ps_epilog.writes_samplemask) {
905 unsigned spi_format = key->ps_epilog.states.spi_shader_col_format;
906
907 /* If last_cbuf > 0, FS_COLOR0_WRITES_ALL_CBUFS is true. */
908 if (colors_written == 0x1 && key->ps_epilog.states.last_cbuf > 0) {
909 /* Just set this if any of the colorbuffers are enabled. */
910 if (spi_format & ((1ull << (4 * (key->ps_epilog.states.last_cbuf + 1))) - 1))
911 last_color_export = 0;
912 } else {
913 for (i = 0; i < 8; i++)
914 if (colors_written & (1 << i) && (spi_format >> (i * 4)) & 0xf)
915 last_color_export = i;
916 }
917 }
918
919 unsigned num_compacted_mrts = 0;
920 while (colors_written) {
921 LLVMValueRef color[4];
922 int output_index = u_bit_scan(&colors_written);
923 unsigned color_type = (key->ps_epilog.color_types >> (output_index * 2)) & 0x3;
924
925 if (color_type != SI_TYPE_ANY32) {
926 for (i = 0; i < 4; i++) {
927 color[i] = LLVMGetParam(ctx->main_fn, vgpr + i / 2);
928 color[i] = LLVMBuildBitCast(ctx->ac.builder, color[i], ctx->ac.v2f16, "");
929 color[i] = ac_llvm_extract_elem(&ctx->ac, color[i], i % 2);
930 }
931 vgpr += 4;
932 } else {
933 for (i = 0; i < 4; i++)
934 color[i] = LLVMGetParam(ctx->main_fn, vgpr++);
935 }
936
937 if (si_export_mrt_color(ctx, color, output_index, num_compacted_mrts,
938 ctx->args.arg_count - 1,
939 output_index == last_color_export, color_type, &exp))
940 num_compacted_mrts++;
941 }
942
943 /* Process depth, stencil, samplemask. */
944 if (key->ps_epilog.writes_z)
945 depth = LLVMGetParam(ctx->main_fn, vgpr++);
946 if (key->ps_epilog.writes_stencil)
947 stencil = LLVMGetParam(ctx->main_fn, vgpr++);
948 if (key->ps_epilog.writes_samplemask)
949 samplemask = LLVMGetParam(ctx->main_fn, vgpr++);
950
951 if (depth || stencil || samplemask)
952 ac_export_mrt_z(&ctx->ac, depth, stencil, samplemask, &exp.args[exp.num++]);
953 else if (last_color_export == -1)
954 ac_build_export_null(&ctx->ac);
955
956 if (exp.num) {
957 for (unsigned i = 0; i < exp.num; i++)
958 ac_build_export(&ctx->ac, &exp.args[i]);
959 }
960
961 /* Compile. */
962 LLVMBuildRetVoid(ctx->ac.builder);
963 }
964
si_llvm_build_monolithic_ps(struct si_shader_context * ctx,struct si_shader * shader)965 void si_llvm_build_monolithic_ps(struct si_shader_context *ctx, struct si_shader *shader)
966 {
967 LLVMValueRef parts[3];
968 unsigned num_parts = 0, main_index;
969 LLVMValueRef main_fn = ctx->main_fn;
970
971 union si_shader_part_key prolog_key;
972 si_get_ps_prolog_key(shader, &prolog_key, false);
973
974 if (si_need_ps_prolog(&prolog_key)) {
975 si_llvm_build_ps_prolog(ctx, &prolog_key);
976 parts[num_parts++] = ctx->main_fn;
977 }
978
979 main_index = num_parts;
980 parts[num_parts++] = main_fn;
981
982 union si_shader_part_key epilog_key;
983 si_get_ps_epilog_key(shader, &epilog_key);
984 si_llvm_build_ps_epilog(ctx, &epilog_key);
985 parts[num_parts++] = ctx->main_fn;
986
987 si_build_wrapper_function(ctx, parts, num_parts, main_index, 0, false);
988 }
989
si_llvm_init_ps_callbacks(struct si_shader_context * ctx)990 void si_llvm_init_ps_callbacks(struct si_shader_context *ctx)
991 {
992 ctx->abi.emit_outputs = si_llvm_return_fs_outputs;
993 ctx->abi.load_sample_position = load_sample_position;
994 ctx->abi.load_sample_mask_in = load_sample_mask_in;
995 ctx->abi.emit_fbfetch = si_nir_emit_fbfetch;
996 }
997