• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2015-2019 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  */
23 
24 /** @file brw_eu_validate.c
25  *
26  * This file implements a pass that validates shader assembly.
27  *
28  * The restrictions implemented herein are intended to verify that instructions
29  * in shader assembly do not violate restrictions documented in the graphics
30  * programming reference manuals.
31  *
32  * The restrictions are difficult for humans to quickly verify due to their
33  * complexity and abundance.
34  *
35  * It is critical that this code is thoroughly unit tested because false
36  * results will lead developers astray, which is worse than having no validator
37  * at all. Functional changes to this file without corresponding unit tests (in
38  * test_eu_validate.cpp) will be rejected.
39  */
40 
41 #include <stdlib.h>
42 #include "brw_eu.h"
43 
44 /* We're going to do lots of string concatenation, so this should help. */
45 struct string {
46    char *str;
47    size_t len;
48 };
49 
50 static void
cat(struct string * dest,const struct string src)51 cat(struct string *dest, const struct string src)
52 {
53    dest->str = realloc(dest->str, dest->len + src.len + 1);
54    memcpy(dest->str + dest->len, src.str, src.len);
55    dest->str[dest->len + src.len] = '\0';
56    dest->len = dest->len + src.len;
57 }
58 #define CAT(dest, src) cat(&dest, (struct string){src, strlen(src)})
59 
60 static bool
contains(const struct string haystack,const struct string needle)61 contains(const struct string haystack, const struct string needle)
62 {
63    return haystack.str && memmem(haystack.str, haystack.len,
64                                  needle.str, needle.len) != NULL;
65 }
66 #define CONTAINS(haystack, needle) \
67    contains(haystack, (struct string){needle, strlen(needle)})
68 
69 #define error(str)   "\tERROR: " str "\n"
70 #define ERROR_INDENT "\t       "
71 
72 #define ERROR(msg) ERROR_IF(true, msg)
73 #define ERROR_IF(cond, msg)                             \
74    do {                                                 \
75       if ((cond) && !CONTAINS(error_msg, error(msg))) { \
76          CAT(error_msg, error(msg));                    \
77       }                                                 \
78    } while(0)
79 
80 #define CHECK(func, args...)                             \
81    do {                                                  \
82       struct string __msg = func(devinfo, inst, ##args); \
83       if (__msg.str) {                                   \
84          cat(&error_msg, __msg);                         \
85          free(__msg.str);                                \
86       }                                                  \
87    } while (0)
88 
89 #define STRIDE(stride) (stride != 0 ? 1 << ((stride) - 1) : 0)
90 #define WIDTH(width)   (1 << (width))
91 
92 static bool
inst_is_send(const struct intel_device_info * devinfo,const brw_inst * inst)93 inst_is_send(const struct intel_device_info *devinfo, const brw_inst *inst)
94 {
95    switch (brw_inst_opcode(devinfo, inst)) {
96    case BRW_OPCODE_SEND:
97    case BRW_OPCODE_SENDC:
98    case BRW_OPCODE_SENDS:
99    case BRW_OPCODE_SENDSC:
100       return true;
101    default:
102       return false;
103    }
104 }
105 
106 static bool
inst_is_split_send(const struct intel_device_info * devinfo,const brw_inst * inst)107 inst_is_split_send(const struct intel_device_info *devinfo,
108                    const brw_inst *inst)
109 {
110    if (devinfo->ver >= 12) {
111       return inst_is_send(devinfo, inst);
112    } else {
113       switch (brw_inst_opcode(devinfo, inst)) {
114       case BRW_OPCODE_SENDS:
115       case BRW_OPCODE_SENDSC:
116          return true;
117       default:
118          return false;
119       }
120    }
121 }
122 
123 static unsigned
signed_type(unsigned type)124 signed_type(unsigned type)
125 {
126    switch (type) {
127    case BRW_REGISTER_TYPE_UD: return BRW_REGISTER_TYPE_D;
128    case BRW_REGISTER_TYPE_UW: return BRW_REGISTER_TYPE_W;
129    case BRW_REGISTER_TYPE_UB: return BRW_REGISTER_TYPE_B;
130    case BRW_REGISTER_TYPE_UQ: return BRW_REGISTER_TYPE_Q;
131    default:                   return type;
132    }
133 }
134 
135 static enum brw_reg_type
inst_dst_type(const struct intel_device_info * devinfo,const brw_inst * inst)136 inst_dst_type(const struct intel_device_info *devinfo, const brw_inst *inst)
137 {
138    return (devinfo->ver < 12 || !inst_is_send(devinfo, inst)) ?
139       brw_inst_dst_type(devinfo, inst) : BRW_REGISTER_TYPE_D;
140 }
141 
142 static bool
inst_is_raw_move(const struct intel_device_info * devinfo,const brw_inst * inst)143 inst_is_raw_move(const struct intel_device_info *devinfo, const brw_inst *inst)
144 {
145    unsigned dst_type = signed_type(inst_dst_type(devinfo, inst));
146    unsigned src_type = signed_type(brw_inst_src0_type(devinfo, inst));
147 
148    if (brw_inst_src0_reg_file(devinfo, inst) == BRW_IMMEDIATE_VALUE) {
149       /* FIXME: not strictly true */
150       if (brw_inst_src0_type(devinfo, inst) == BRW_REGISTER_TYPE_VF ||
151           brw_inst_src0_type(devinfo, inst) == BRW_REGISTER_TYPE_UV ||
152           brw_inst_src0_type(devinfo, inst) == BRW_REGISTER_TYPE_V) {
153          return false;
154       }
155    } else if (brw_inst_src0_negate(devinfo, inst) ||
156               brw_inst_src0_abs(devinfo, inst)) {
157       return false;
158    }
159 
160    return brw_inst_opcode(devinfo, inst) == BRW_OPCODE_MOV &&
161           brw_inst_saturate(devinfo, inst) == 0 &&
162           dst_type == src_type;
163 }
164 
165 static bool
dst_is_null(const struct intel_device_info * devinfo,const brw_inst * inst)166 dst_is_null(const struct intel_device_info *devinfo, const brw_inst *inst)
167 {
168    return brw_inst_dst_reg_file(devinfo, inst) == BRW_ARCHITECTURE_REGISTER_FILE &&
169           brw_inst_dst_da_reg_nr(devinfo, inst) == BRW_ARF_NULL;
170 }
171 
172 static bool
src0_is_null(const struct intel_device_info * devinfo,const brw_inst * inst)173 src0_is_null(const struct intel_device_info *devinfo, const brw_inst *inst)
174 {
175    return brw_inst_src0_address_mode(devinfo, inst) == BRW_ADDRESS_DIRECT &&
176           brw_inst_src0_reg_file(devinfo, inst) == BRW_ARCHITECTURE_REGISTER_FILE &&
177           brw_inst_src0_da_reg_nr(devinfo, inst) == BRW_ARF_NULL;
178 }
179 
180 static bool
src1_is_null(const struct intel_device_info * devinfo,const brw_inst * inst)181 src1_is_null(const struct intel_device_info *devinfo, const brw_inst *inst)
182 {
183    return brw_inst_src1_reg_file(devinfo, inst) == BRW_ARCHITECTURE_REGISTER_FILE &&
184           brw_inst_src1_da_reg_nr(devinfo, inst) == BRW_ARF_NULL;
185 }
186 
187 static bool
src0_is_acc(const struct intel_device_info * devinfo,const brw_inst * inst)188 src0_is_acc(const struct intel_device_info *devinfo, const brw_inst *inst)
189 {
190    return brw_inst_src0_reg_file(devinfo, inst) == BRW_ARCHITECTURE_REGISTER_FILE &&
191           (brw_inst_src0_da_reg_nr(devinfo, inst) & 0xF0) == BRW_ARF_ACCUMULATOR;
192 }
193 
194 static bool
src1_is_acc(const struct intel_device_info * devinfo,const brw_inst * inst)195 src1_is_acc(const struct intel_device_info *devinfo, const brw_inst *inst)
196 {
197    return brw_inst_src1_reg_file(devinfo, inst) == BRW_ARCHITECTURE_REGISTER_FILE &&
198           (brw_inst_src1_da_reg_nr(devinfo, inst) & 0xF0) == BRW_ARF_ACCUMULATOR;
199 }
200 
201 static bool
src0_has_scalar_region(const struct intel_device_info * devinfo,const brw_inst * inst)202 src0_has_scalar_region(const struct intel_device_info *devinfo,
203                        const brw_inst *inst)
204 {
205    return brw_inst_src0_vstride(devinfo, inst) == BRW_VERTICAL_STRIDE_0 &&
206           brw_inst_src0_width(devinfo, inst) == BRW_WIDTH_1 &&
207           brw_inst_src0_hstride(devinfo, inst) == BRW_HORIZONTAL_STRIDE_0;
208 }
209 
210 static bool
src1_has_scalar_region(const struct intel_device_info * devinfo,const brw_inst * inst)211 src1_has_scalar_region(const struct intel_device_info *devinfo,
212                        const brw_inst *inst)
213 {
214    return brw_inst_src1_vstride(devinfo, inst) == BRW_VERTICAL_STRIDE_0 &&
215           brw_inst_src1_width(devinfo, inst) == BRW_WIDTH_1 &&
216           brw_inst_src1_hstride(devinfo, inst) == BRW_HORIZONTAL_STRIDE_0;
217 }
218 
219 static unsigned
num_sources_from_inst(const struct intel_device_info * devinfo,const brw_inst * inst)220 num_sources_from_inst(const struct intel_device_info *devinfo,
221                       const brw_inst *inst)
222 {
223    const struct opcode_desc *desc =
224       brw_opcode_desc(devinfo, brw_inst_opcode(devinfo, inst));
225    unsigned math_function;
226 
227    if (brw_inst_opcode(devinfo, inst) == BRW_OPCODE_MATH) {
228       math_function = brw_inst_math_function(devinfo, inst);
229    } else if (devinfo->ver < 6 &&
230               brw_inst_opcode(devinfo, inst) == BRW_OPCODE_SEND) {
231       if (brw_inst_sfid(devinfo, inst) == BRW_SFID_MATH) {
232          /* src1 must be a descriptor (including the information to determine
233           * that the SEND is doing an extended math operation), but src0 can
234           * actually be null since it serves as the source of the implicit GRF
235           * to MRF move.
236           *
237           * If we stop using that functionality, we'll have to revisit this.
238           */
239          return 2;
240       } else {
241          /* Send instructions are allowed to have null sources since they use
242           * the base_mrf field to specify which message register source.
243           */
244          return 0;
245       }
246    } else {
247       assert(desc->nsrc < 4);
248       return desc->nsrc;
249    }
250 
251    switch (math_function) {
252    case BRW_MATH_FUNCTION_INV:
253    case BRW_MATH_FUNCTION_LOG:
254    case BRW_MATH_FUNCTION_EXP:
255    case BRW_MATH_FUNCTION_SQRT:
256    case BRW_MATH_FUNCTION_RSQ:
257    case BRW_MATH_FUNCTION_SIN:
258    case BRW_MATH_FUNCTION_COS:
259    case BRW_MATH_FUNCTION_SINCOS:
260    case GFX8_MATH_FUNCTION_INVM:
261    case GFX8_MATH_FUNCTION_RSQRTM:
262       return 1;
263    case BRW_MATH_FUNCTION_FDIV:
264    case BRW_MATH_FUNCTION_POW:
265    case BRW_MATH_FUNCTION_INT_DIV_QUOTIENT_AND_REMAINDER:
266    case BRW_MATH_FUNCTION_INT_DIV_QUOTIENT:
267    case BRW_MATH_FUNCTION_INT_DIV_REMAINDER:
268       return 2;
269    default:
270       unreachable("not reached");
271    }
272 }
273 
274 static struct string
invalid_values(const struct intel_device_info * devinfo,const brw_inst * inst)275 invalid_values(const struct intel_device_info *devinfo, const brw_inst *inst)
276 {
277    unsigned num_sources = num_sources_from_inst(devinfo, inst);
278    struct string error_msg = { .str = NULL, .len = 0 };
279 
280    switch ((enum brw_execution_size) brw_inst_exec_size(devinfo, inst)) {
281    case BRW_EXECUTE_1:
282    case BRW_EXECUTE_2:
283    case BRW_EXECUTE_4:
284    case BRW_EXECUTE_8:
285    case BRW_EXECUTE_16:
286    case BRW_EXECUTE_32:
287       break;
288    default:
289       ERROR("invalid execution size");
290       break;
291    }
292 
293    if (inst_is_send(devinfo, inst))
294       return error_msg;
295 
296    if (num_sources == 3) {
297       /* Nothing to test:
298        *    No 3-src instructions on Gfx4-5
299        *    No reg file bits on Gfx6-10 (align16)
300        *    No invalid encodings on Gfx10-12 (align1)
301        */
302    } else {
303       if (devinfo->ver > 6) {
304          ERROR_IF(brw_inst_dst_reg_file(devinfo, inst) == MRF ||
305                   (num_sources > 0 &&
306                    brw_inst_src0_reg_file(devinfo, inst) == MRF) ||
307                   (num_sources > 1 &&
308                    brw_inst_src1_reg_file(devinfo, inst) == MRF),
309                   "invalid register file encoding");
310       }
311    }
312 
313    if (error_msg.str)
314       return error_msg;
315 
316    if (num_sources == 3) {
317       if (brw_inst_access_mode(devinfo, inst) == BRW_ALIGN_1) {
318          if (devinfo->ver >= 10) {
319             ERROR_IF(brw_inst_3src_a1_dst_type (devinfo, inst) == INVALID_REG_TYPE ||
320                      brw_inst_3src_a1_src0_type(devinfo, inst) == INVALID_REG_TYPE ||
321                      brw_inst_3src_a1_src1_type(devinfo, inst) == INVALID_REG_TYPE ||
322                      brw_inst_3src_a1_src2_type(devinfo, inst) == INVALID_REG_TYPE,
323                      "invalid register type encoding");
324          } else {
325             ERROR("Align1 mode not allowed on Gen < 10");
326          }
327       } else {
328          ERROR_IF(brw_inst_3src_a16_dst_type(devinfo, inst) == INVALID_REG_TYPE ||
329                   brw_inst_3src_a16_src_type(devinfo, inst) == INVALID_REG_TYPE,
330                   "invalid register type encoding");
331       }
332    } else {
333       ERROR_IF(brw_inst_dst_type (devinfo, inst) == INVALID_REG_TYPE ||
334                (num_sources > 0 &&
335                 brw_inst_src0_type(devinfo, inst) == INVALID_REG_TYPE) ||
336                (num_sources > 1 &&
337                 brw_inst_src1_type(devinfo, inst) == INVALID_REG_TYPE),
338                "invalid register type encoding");
339    }
340 
341    return error_msg;
342 }
343 
344 static struct string
sources_not_null(const struct intel_device_info * devinfo,const brw_inst * inst)345 sources_not_null(const struct intel_device_info *devinfo,
346                  const brw_inst *inst)
347 {
348    unsigned num_sources = num_sources_from_inst(devinfo, inst);
349    struct string error_msg = { .str = NULL, .len = 0 };
350 
351    /* Nothing to test. 3-src instructions can only have GRF sources, and
352     * there's no bit to control the file.
353     */
354    if (num_sources == 3)
355       return (struct string){};
356 
357    /* Nothing to test.  Split sends can only encode a file in sources that are
358     * allowed to be NULL.
359     */
360    if (inst_is_split_send(devinfo, inst))
361       return (struct string){};
362 
363    if (num_sources >= 1 && brw_inst_opcode(devinfo, inst) != BRW_OPCODE_SYNC)
364       ERROR_IF(src0_is_null(devinfo, inst), "src0 is null");
365 
366    if (num_sources == 2)
367       ERROR_IF(src1_is_null(devinfo, inst), "src1 is null");
368 
369    return error_msg;
370 }
371 
372 static struct string
alignment_supported(const struct intel_device_info * devinfo,const brw_inst * inst)373 alignment_supported(const struct intel_device_info *devinfo,
374                     const brw_inst *inst)
375 {
376    struct string error_msg = { .str = NULL, .len = 0 };
377 
378    ERROR_IF(devinfo->ver >= 11 && brw_inst_access_mode(devinfo, inst) == BRW_ALIGN_16,
379             "Align16 not supported");
380 
381    return error_msg;
382 }
383 
384 static bool
inst_uses_src_acc(const struct intel_device_info * devinfo,const brw_inst * inst)385 inst_uses_src_acc(const struct intel_device_info *devinfo, const brw_inst *inst)
386 {
387    /* Check instructions that use implicit accumulator sources */
388    switch (brw_inst_opcode(devinfo, inst)) {
389    case BRW_OPCODE_MAC:
390    case BRW_OPCODE_MACH:
391    case BRW_OPCODE_SADA2:
392       return true;
393    default:
394       break;
395    }
396 
397    /* FIXME: support 3-src instructions */
398    unsigned num_sources = num_sources_from_inst(devinfo, inst);
399    assert(num_sources < 3);
400 
401    return src0_is_acc(devinfo, inst) || (num_sources > 1 && src1_is_acc(devinfo, inst));
402 }
403 
404 static struct string
send_restrictions(const struct intel_device_info * devinfo,const brw_inst * inst)405 send_restrictions(const struct intel_device_info *devinfo,
406                   const brw_inst *inst)
407 {
408    struct string error_msg = { .str = NULL, .len = 0 };
409 
410    if (inst_is_split_send(devinfo, inst)) {
411       ERROR_IF(brw_inst_send_src1_reg_file(devinfo, inst) == BRW_ARCHITECTURE_REGISTER_FILE &&
412                brw_inst_send_src1_reg_nr(devinfo, inst) != BRW_ARF_NULL,
413                "src1 of split send must be a GRF or NULL");
414 
415       ERROR_IF(brw_inst_eot(devinfo, inst) &&
416                brw_inst_src0_da_reg_nr(devinfo, inst) < 112,
417                "send with EOT must use g112-g127");
418       ERROR_IF(brw_inst_eot(devinfo, inst) &&
419                brw_inst_send_src1_reg_file(devinfo, inst) == BRW_GENERAL_REGISTER_FILE &&
420                brw_inst_send_src1_reg_nr(devinfo, inst) < 112,
421                "send with EOT must use g112-g127");
422 
423       if (brw_inst_send_src1_reg_file(devinfo, inst) == BRW_GENERAL_REGISTER_FILE) {
424          /* Assume minimums if we don't know */
425          unsigned mlen = 1;
426          if (!brw_inst_send_sel_reg32_desc(devinfo, inst)) {
427             const uint32_t desc = brw_inst_send_desc(devinfo, inst);
428             mlen = brw_message_desc_mlen(devinfo, desc);
429          }
430 
431          unsigned ex_mlen = 1;
432          if (!brw_inst_send_sel_reg32_ex_desc(devinfo, inst)) {
433             const uint32_t ex_desc = brw_inst_sends_ex_desc(devinfo, inst);
434             ex_mlen = brw_message_ex_desc_ex_mlen(devinfo, ex_desc);
435          }
436          const unsigned src0_reg_nr = brw_inst_src0_da_reg_nr(devinfo, inst);
437          const unsigned src1_reg_nr = brw_inst_send_src1_reg_nr(devinfo, inst);
438          ERROR_IF((src0_reg_nr <= src1_reg_nr &&
439                    src1_reg_nr < src0_reg_nr + mlen) ||
440                   (src1_reg_nr <= src0_reg_nr &&
441                    src0_reg_nr < src1_reg_nr + ex_mlen),
442                    "split send payloads must not overlap");
443       }
444    } else if (inst_is_send(devinfo, inst)) {
445       ERROR_IF(brw_inst_src0_address_mode(devinfo, inst) != BRW_ADDRESS_DIRECT,
446                "send must use direct addressing");
447 
448       if (devinfo->ver >= 7) {
449          ERROR_IF(brw_inst_send_src0_reg_file(devinfo, inst) != BRW_GENERAL_REGISTER_FILE,
450                   "send from non-GRF");
451          ERROR_IF(brw_inst_eot(devinfo, inst) &&
452                   brw_inst_src0_da_reg_nr(devinfo, inst) < 112,
453                   "send with EOT must use g112-g127");
454       }
455 
456       if (devinfo->ver >= 8) {
457          ERROR_IF(!dst_is_null(devinfo, inst) &&
458                   (brw_inst_dst_da_reg_nr(devinfo, inst) +
459                    brw_inst_rlen(devinfo, inst) > 127) &&
460                   (brw_inst_src0_da_reg_nr(devinfo, inst) +
461                    brw_inst_mlen(devinfo, inst) >
462                    brw_inst_dst_da_reg_nr(devinfo, inst)),
463                   "r127 must not be used for return address when there is "
464                   "a src and dest overlap");
465       }
466    }
467 
468    return error_msg;
469 }
470 
471 static bool
is_unsupported_inst(const struct intel_device_info * devinfo,const brw_inst * inst)472 is_unsupported_inst(const struct intel_device_info *devinfo,
473                     const brw_inst *inst)
474 {
475    return brw_inst_opcode(devinfo, inst) == BRW_OPCODE_ILLEGAL;
476 }
477 
478 /**
479  * Returns whether a combination of two types would qualify as mixed float
480  * operation mode
481  */
482 static inline bool
types_are_mixed_float(enum brw_reg_type t0,enum brw_reg_type t1)483 types_are_mixed_float(enum brw_reg_type t0, enum brw_reg_type t1)
484 {
485    return (t0 == BRW_REGISTER_TYPE_F && t1 == BRW_REGISTER_TYPE_HF) ||
486           (t1 == BRW_REGISTER_TYPE_F && t0 == BRW_REGISTER_TYPE_HF);
487 }
488 
489 static enum brw_reg_type
execution_type_for_type(enum brw_reg_type type)490 execution_type_for_type(enum brw_reg_type type)
491 {
492    switch (type) {
493    case BRW_REGISTER_TYPE_NF:
494    case BRW_REGISTER_TYPE_DF:
495    case BRW_REGISTER_TYPE_F:
496    case BRW_REGISTER_TYPE_HF:
497       return type;
498 
499    case BRW_REGISTER_TYPE_VF:
500       return BRW_REGISTER_TYPE_F;
501 
502    case BRW_REGISTER_TYPE_Q:
503    case BRW_REGISTER_TYPE_UQ:
504       return BRW_REGISTER_TYPE_Q;
505 
506    case BRW_REGISTER_TYPE_D:
507    case BRW_REGISTER_TYPE_UD:
508       return BRW_REGISTER_TYPE_D;
509 
510    case BRW_REGISTER_TYPE_W:
511    case BRW_REGISTER_TYPE_UW:
512    case BRW_REGISTER_TYPE_B:
513    case BRW_REGISTER_TYPE_UB:
514    case BRW_REGISTER_TYPE_V:
515    case BRW_REGISTER_TYPE_UV:
516       return BRW_REGISTER_TYPE_W;
517    }
518    unreachable("not reached");
519 }
520 
521 /**
522  * Returns the execution type of an instruction \p inst
523  */
524 static enum brw_reg_type
execution_type(const struct intel_device_info * devinfo,const brw_inst * inst)525 execution_type(const struct intel_device_info *devinfo, const brw_inst *inst)
526 {
527    unsigned num_sources = num_sources_from_inst(devinfo, inst);
528    enum brw_reg_type src0_exec_type, src1_exec_type;
529 
530    /* Execution data type is independent of destination data type, except in
531     * mixed F/HF instructions.
532     */
533    enum brw_reg_type dst_exec_type = inst_dst_type(devinfo, inst);
534 
535    src0_exec_type = execution_type_for_type(brw_inst_src0_type(devinfo, inst));
536    if (num_sources == 1) {
537       if (src0_exec_type == BRW_REGISTER_TYPE_HF)
538          return dst_exec_type;
539       return src0_exec_type;
540    }
541 
542    src1_exec_type = execution_type_for_type(brw_inst_src1_type(devinfo, inst));
543    if (types_are_mixed_float(src0_exec_type, src1_exec_type) ||
544        types_are_mixed_float(src0_exec_type, dst_exec_type) ||
545        types_are_mixed_float(src1_exec_type, dst_exec_type)) {
546       return BRW_REGISTER_TYPE_F;
547    }
548 
549    if (src0_exec_type == src1_exec_type)
550       return src0_exec_type;
551 
552    if (src0_exec_type == BRW_REGISTER_TYPE_NF ||
553        src1_exec_type == BRW_REGISTER_TYPE_NF)
554       return BRW_REGISTER_TYPE_NF;
555 
556    /* Mixed operand types where one is float is float on Gen < 6
557     * (and not allowed on later platforms)
558     */
559    if (devinfo->ver < 6 &&
560        (src0_exec_type == BRW_REGISTER_TYPE_F ||
561         src1_exec_type == BRW_REGISTER_TYPE_F))
562       return BRW_REGISTER_TYPE_F;
563 
564    if (src0_exec_type == BRW_REGISTER_TYPE_Q ||
565        src1_exec_type == BRW_REGISTER_TYPE_Q)
566       return BRW_REGISTER_TYPE_Q;
567 
568    if (src0_exec_type == BRW_REGISTER_TYPE_D ||
569        src1_exec_type == BRW_REGISTER_TYPE_D)
570       return BRW_REGISTER_TYPE_D;
571 
572    if (src0_exec_type == BRW_REGISTER_TYPE_W ||
573        src1_exec_type == BRW_REGISTER_TYPE_W)
574       return BRW_REGISTER_TYPE_W;
575 
576    if (src0_exec_type == BRW_REGISTER_TYPE_DF ||
577        src1_exec_type == BRW_REGISTER_TYPE_DF)
578       return BRW_REGISTER_TYPE_DF;
579 
580    unreachable("not reached");
581 }
582 
583 /**
584  * Returns whether a region is packed
585  *
586  * A region is packed if its elements are adjacent in memory, with no
587  * intervening space, no overlap, and no replicated values.
588  */
589 static bool
is_packed(unsigned vstride,unsigned width,unsigned hstride)590 is_packed(unsigned vstride, unsigned width, unsigned hstride)
591 {
592    if (vstride == width) {
593       if (vstride == 1) {
594          return hstride == 0;
595       } else {
596          return hstride == 1;
597       }
598    }
599 
600    return false;
601 }
602 
603 /**
604  * Returns whether an instruction is an explicit or implicit conversion
605  * to/from half-float.
606  */
607 static bool
is_half_float_conversion(const struct intel_device_info * devinfo,const brw_inst * inst)608 is_half_float_conversion(const struct intel_device_info *devinfo,
609                          const brw_inst *inst)
610 {
611    enum brw_reg_type dst_type = brw_inst_dst_type(devinfo, inst);
612 
613    unsigned num_sources = num_sources_from_inst(devinfo, inst);
614    enum brw_reg_type src0_type = brw_inst_src0_type(devinfo, inst);
615 
616    if (dst_type != src0_type &&
617        (dst_type == BRW_REGISTER_TYPE_HF || src0_type == BRW_REGISTER_TYPE_HF)) {
618       return true;
619    } else if (num_sources > 1) {
620       enum brw_reg_type src1_type = brw_inst_src1_type(devinfo, inst);
621       return dst_type != src1_type &&
622             (dst_type == BRW_REGISTER_TYPE_HF ||
623              src1_type == BRW_REGISTER_TYPE_HF);
624    }
625 
626    return false;
627 }
628 
629 /*
630  * Returns whether an instruction is using mixed float operation mode
631  */
632 static bool
is_mixed_float(const struct intel_device_info * devinfo,const brw_inst * inst)633 is_mixed_float(const struct intel_device_info *devinfo, const brw_inst *inst)
634 {
635    if (devinfo->ver < 8)
636       return false;
637 
638    if (inst_is_send(devinfo, inst))
639       return false;
640 
641    unsigned opcode = brw_inst_opcode(devinfo, inst);
642    const struct opcode_desc *desc = brw_opcode_desc(devinfo, opcode);
643    if (desc->ndst == 0)
644       return false;
645 
646    /* FIXME: support 3-src instructions */
647    unsigned num_sources = num_sources_from_inst(devinfo, inst);
648    assert(num_sources < 3);
649 
650    enum brw_reg_type dst_type = brw_inst_dst_type(devinfo, inst);
651    enum brw_reg_type src0_type = brw_inst_src0_type(devinfo, inst);
652 
653    if (num_sources == 1)
654       return types_are_mixed_float(src0_type, dst_type);
655 
656    enum brw_reg_type src1_type = brw_inst_src1_type(devinfo, inst);
657 
658    return types_are_mixed_float(src0_type, src1_type) ||
659           types_are_mixed_float(src0_type, dst_type) ||
660           types_are_mixed_float(src1_type, dst_type);
661 }
662 
663 /**
664  * Returns whether an instruction is an explicit or implicit conversion
665  * to/from byte.
666  */
667 static bool
is_byte_conversion(const struct intel_device_info * devinfo,const brw_inst * inst)668 is_byte_conversion(const struct intel_device_info *devinfo,
669                    const brw_inst *inst)
670 {
671    enum brw_reg_type dst_type = brw_inst_dst_type(devinfo, inst);
672 
673    unsigned num_sources = num_sources_from_inst(devinfo, inst);
674    enum brw_reg_type src0_type = brw_inst_src0_type(devinfo, inst);
675 
676    if (dst_type != src0_type &&
677        (type_sz(dst_type) == 1 || type_sz(src0_type) == 1)) {
678       return true;
679    } else if (num_sources > 1) {
680       enum brw_reg_type src1_type = brw_inst_src1_type(devinfo, inst);
681       return dst_type != src1_type &&
682             (type_sz(dst_type) == 1 || type_sz(src1_type) == 1);
683    }
684 
685    return false;
686 }
687 
688 /**
689  * Checks restrictions listed in "General Restrictions Based on Operand Types"
690  * in the "Register Region Restrictions" section.
691  */
692 static struct string
general_restrictions_based_on_operand_types(const struct intel_device_info * devinfo,const brw_inst * inst)693 general_restrictions_based_on_operand_types(const struct intel_device_info *devinfo,
694                                             const brw_inst *inst)
695 {
696    const struct opcode_desc *desc =
697       brw_opcode_desc(devinfo, brw_inst_opcode(devinfo, inst));
698    unsigned num_sources = num_sources_from_inst(devinfo, inst);
699    unsigned exec_size = 1 << brw_inst_exec_size(devinfo, inst);
700    struct string error_msg = { .str = NULL, .len = 0 };
701 
702    if (inst_is_send(devinfo, inst))
703       return error_msg;
704 
705    if (devinfo->ver >= 11) {
706       if (num_sources == 3) {
707          ERROR_IF(brw_reg_type_to_size(brw_inst_3src_a1_src1_type(devinfo, inst)) == 1 ||
708                   brw_reg_type_to_size(brw_inst_3src_a1_src2_type(devinfo, inst)) == 1,
709                   "Byte data type is not supported for src1/2 register regioning. This includes "
710                   "byte broadcast as well.");
711       }
712       if (num_sources == 2) {
713          ERROR_IF(brw_reg_type_to_size(brw_inst_src1_type(devinfo, inst)) == 1,
714                   "Byte data type is not supported for src1 register regioning. This includes "
715                   "byte broadcast as well.");
716       }
717    }
718 
719    if (num_sources == 3)
720       return error_msg;
721 
722    if (exec_size == 1)
723       return error_msg;
724 
725    if (desc->ndst == 0)
726       return error_msg;
727 
728    /* The PRMs say:
729     *
730     *    Where n is the largest element size in bytes for any source or
731     *    destination operand type, ExecSize * n must be <= 64.
732     *
733     * But we do not attempt to enforce it, because it is implied by other
734     * rules:
735     *
736     *    - that the destination stride must match the execution data type
737     *    - sources may not span more than two adjacent GRF registers
738     *    - destination may not span more than two adjacent GRF registers
739     *
740     * In fact, checking it would weaken testing of the other rules.
741     */
742 
743    unsigned dst_stride = STRIDE(brw_inst_dst_hstride(devinfo, inst));
744    enum brw_reg_type dst_type = inst_dst_type(devinfo, inst);
745    bool dst_type_is_byte =
746       inst_dst_type(devinfo, inst) == BRW_REGISTER_TYPE_B ||
747       inst_dst_type(devinfo, inst) == BRW_REGISTER_TYPE_UB;
748 
749    if (dst_type_is_byte) {
750       if (is_packed(exec_size * dst_stride, exec_size, dst_stride)) {
751          if (!inst_is_raw_move(devinfo, inst))
752             ERROR("Only raw MOV supports a packed-byte destination");
753          return error_msg;
754       }
755    }
756 
757    unsigned exec_type = execution_type(devinfo, inst);
758    unsigned exec_type_size = brw_reg_type_to_size(exec_type);
759    unsigned dst_type_size = brw_reg_type_to_size(dst_type);
760 
761    /* On IVB/BYT, region parameters and execution size for DF are in terms of
762     * 32-bit elements, so they are doubled. For evaluating the validity of an
763     * instruction, we halve them.
764     */
765    if (devinfo->verx10 == 70 &&
766        exec_type_size == 8 && dst_type_size == 4)
767       dst_type_size = 8;
768 
769    if (is_byte_conversion(devinfo, inst)) {
770       /* From the BDW+ PRM, Volume 2a, Command Reference, Instructions - MOV:
771        *
772        *    "There is no direct conversion from B/UB to DF or DF to B/UB.
773        *     There is no direct conversion from B/UB to Q/UQ or Q/UQ to B/UB."
774        *
775        * Even if these restrictions are listed for the MOV instruction, we
776        * validate this more generally, since there is the possibility
777        * of implicit conversions from other instructions.
778        */
779       enum brw_reg_type src0_type = brw_inst_src0_type(devinfo, inst);
780       enum brw_reg_type src1_type = num_sources > 1 ?
781                                     brw_inst_src1_type(devinfo, inst) : 0;
782 
783       ERROR_IF(type_sz(dst_type) == 1 &&
784                (type_sz(src0_type) == 8 ||
785                 (num_sources > 1 && type_sz(src1_type) == 8)),
786                "There are no direct conversions between 64-bit types and B/UB");
787 
788       ERROR_IF(type_sz(dst_type) == 8 &&
789                (type_sz(src0_type) == 1 ||
790                 (num_sources > 1 && type_sz(src1_type) == 1)),
791                "There are no direct conversions between 64-bit types and B/UB");
792    }
793 
794    if (is_half_float_conversion(devinfo, inst)) {
795       /**
796        * A helper to validate used in the validation of the following restriction
797        * from the BDW+ PRM, Volume 2a, Command Reference, Instructions - MOV:
798        *
799        *    "There is no direct conversion from HF to DF or DF to HF.
800        *     There is no direct conversion from HF to Q/UQ or Q/UQ to HF."
801        *
802        * Even if these restrictions are listed for the MOV instruction, we
803        * validate this more generally, since there is the possibility
804        * of implicit conversions from other instructions, such us implicit
805        * conversion from integer to HF with the ADD instruction in SKL+.
806        */
807       enum brw_reg_type src0_type = brw_inst_src0_type(devinfo, inst);
808       enum brw_reg_type src1_type = num_sources > 1 ?
809                                     brw_inst_src1_type(devinfo, inst) : 0;
810       ERROR_IF(dst_type == BRW_REGISTER_TYPE_HF &&
811                (type_sz(src0_type) == 8 ||
812                 (num_sources > 1 && type_sz(src1_type) == 8)),
813                "There are no direct conversions between 64-bit types and HF");
814 
815       ERROR_IF(type_sz(dst_type) == 8 &&
816                (src0_type == BRW_REGISTER_TYPE_HF ||
817                 (num_sources > 1 && src1_type == BRW_REGISTER_TYPE_HF)),
818                "There are no direct conversions between 64-bit types and HF");
819 
820       /* From the BDW+ PRM:
821        *
822        *   "Conversion between Integer and HF (Half Float) must be
823        *    DWord-aligned and strided by a DWord on the destination."
824        *
825        * Also, the above restrictions seems to be expanded on CHV and SKL+ by:
826        *
827        *   "There is a relaxed alignment rule for word destinations. When
828        *    the destination type is word (UW, W, HF), destination data types
829        *    can be aligned to either the lowest word or the second lowest
830        *    word of the execution channel. This means the destination data
831        *    words can be either all in the even word locations or all in the
832        *    odd word locations."
833        *
834        * We do not implement the second rule as is though, since empirical
835        * testing shows inconsistencies:
836        *   - It suggests that packed 16-bit is not allowed, which is not true.
837        *   - It suggests that conversions from Q/DF to W (which need to be
838        *     64-bit aligned on the destination) are not possible, which is
839        *     not true.
840        *
841        * So from this rule we only validate the implication that conversions
842        * from F to HF need to be DWord strided (except in Align1 mixed
843        * float mode where packed fp16 destination is allowed so long as the
844        * destination is oword-aligned).
845        *
846        * Finally, we only validate this for Align1 because Align16 always
847        * requires packed destinations, so these restrictions can't possibly
848        * apply to Align16 mode.
849        */
850       if (brw_inst_access_mode(devinfo, inst) == BRW_ALIGN_1) {
851          if ((dst_type == BRW_REGISTER_TYPE_HF &&
852               (brw_reg_type_is_integer(src0_type) ||
853                (num_sources > 1 && brw_reg_type_is_integer(src1_type)))) ||
854              (brw_reg_type_is_integer(dst_type) &&
855               (src0_type == BRW_REGISTER_TYPE_HF ||
856                (num_sources > 1 && src1_type == BRW_REGISTER_TYPE_HF)))) {
857             ERROR_IF(dst_stride * dst_type_size != 4,
858                      "Conversions between integer and half-float must be "
859                      "strided by a DWord on the destination");
860 
861             unsigned subreg = brw_inst_dst_da1_subreg_nr(devinfo, inst);
862             ERROR_IF(subreg % 4 != 0,
863                      "Conversions between integer and half-float must be "
864                      "aligned to a DWord on the destination");
865          } else if ((devinfo->is_cherryview || devinfo->ver >= 9) &&
866                     dst_type == BRW_REGISTER_TYPE_HF) {
867             unsigned subreg = brw_inst_dst_da1_subreg_nr(devinfo, inst);
868             ERROR_IF(dst_stride != 2 &&
869                      !(is_mixed_float(devinfo, inst) &&
870                        dst_stride == 1 && subreg % 16 == 0),
871                      "Conversions to HF must have either all words in even "
872                      "word locations or all words in odd word locations or "
873                      "be mixed-float with Oword-aligned packed destination");
874          }
875       }
876    }
877 
878    /* There are special regioning rules for mixed-float mode in CHV and SKL that
879     * override the general rule for the ratio of sizes of the destination type
880     * and the execution type. We will add validation for those in a later patch.
881     */
882    bool validate_dst_size_and_exec_size_ratio =
883       !is_mixed_float(devinfo, inst) ||
884       !(devinfo->is_cherryview || devinfo->ver >= 9);
885 
886    if (validate_dst_size_and_exec_size_ratio &&
887        exec_type_size > dst_type_size) {
888       if (!(dst_type_is_byte && inst_is_raw_move(devinfo, inst))) {
889          ERROR_IF(dst_stride * dst_type_size != exec_type_size,
890                   "Destination stride must be equal to the ratio of the sizes "
891                   "of the execution data type to the destination type");
892       }
893 
894       unsigned subreg = brw_inst_dst_da1_subreg_nr(devinfo, inst);
895 
896       if (brw_inst_access_mode(devinfo, inst) == BRW_ALIGN_1 &&
897           brw_inst_dst_address_mode(devinfo, inst) == BRW_ADDRESS_DIRECT) {
898          /* The i965 PRM says:
899           *
900           *    Implementation Restriction: The relaxed alignment rule for byte
901           *    destination (#10.5) is not supported.
902           */
903          if ((devinfo->ver > 4 || devinfo->is_g4x) && dst_type_is_byte) {
904             ERROR_IF(subreg % exec_type_size != 0 &&
905                      subreg % exec_type_size != 1,
906                      "Destination subreg must be aligned to the size of the "
907                      "execution data type (or to the next lowest byte for byte "
908                      "destinations)");
909          } else {
910             ERROR_IF(subreg % exec_type_size != 0,
911                      "Destination subreg must be aligned to the size of the "
912                      "execution data type");
913          }
914       }
915    }
916 
917    return error_msg;
918 }
919 
920 /**
921  * Checks restrictions listed in "General Restrictions on Regioning Parameters"
922  * in the "Register Region Restrictions" section.
923  */
924 static struct string
general_restrictions_on_region_parameters(const struct intel_device_info * devinfo,const brw_inst * inst)925 general_restrictions_on_region_parameters(const struct intel_device_info *devinfo,
926                                           const brw_inst *inst)
927 {
928    const struct opcode_desc *desc =
929       brw_opcode_desc(devinfo, brw_inst_opcode(devinfo, inst));
930    unsigned num_sources = num_sources_from_inst(devinfo, inst);
931    unsigned exec_size = 1 << brw_inst_exec_size(devinfo, inst);
932    struct string error_msg = { .str = NULL, .len = 0 };
933 
934    if (num_sources == 3)
935       return (struct string){};
936 
937    /* Split sends don't have the bits in the instruction to encode regions so
938     * there's nothing to check.
939     */
940    if (inst_is_split_send(devinfo, inst))
941       return (struct string){};
942 
943    if (brw_inst_access_mode(devinfo, inst) == BRW_ALIGN_16) {
944       if (desc->ndst != 0 && !dst_is_null(devinfo, inst))
945          ERROR_IF(brw_inst_dst_hstride(devinfo, inst) != BRW_HORIZONTAL_STRIDE_1,
946                   "Destination Horizontal Stride must be 1");
947 
948       if (num_sources >= 1) {
949          if (devinfo->verx10 >= 75) {
950             ERROR_IF(brw_inst_src0_reg_file(devinfo, inst) != BRW_IMMEDIATE_VALUE &&
951                      brw_inst_src0_vstride(devinfo, inst) != BRW_VERTICAL_STRIDE_0 &&
952                      brw_inst_src0_vstride(devinfo, inst) != BRW_VERTICAL_STRIDE_2 &&
953                      brw_inst_src0_vstride(devinfo, inst) != BRW_VERTICAL_STRIDE_4,
954                      "In Align16 mode, only VertStride of 0, 2, or 4 is allowed");
955          } else {
956             ERROR_IF(brw_inst_src0_reg_file(devinfo, inst) != BRW_IMMEDIATE_VALUE &&
957                      brw_inst_src0_vstride(devinfo, inst) != BRW_VERTICAL_STRIDE_0 &&
958                      brw_inst_src0_vstride(devinfo, inst) != BRW_VERTICAL_STRIDE_4,
959                      "In Align16 mode, only VertStride of 0 or 4 is allowed");
960          }
961       }
962 
963       if (num_sources == 2) {
964          if (devinfo->verx10 >= 75) {
965             ERROR_IF(brw_inst_src1_reg_file(devinfo, inst) != BRW_IMMEDIATE_VALUE &&
966                      brw_inst_src1_vstride(devinfo, inst) != BRW_VERTICAL_STRIDE_0 &&
967                      brw_inst_src1_vstride(devinfo, inst) != BRW_VERTICAL_STRIDE_2 &&
968                      brw_inst_src1_vstride(devinfo, inst) != BRW_VERTICAL_STRIDE_4,
969                      "In Align16 mode, only VertStride of 0, 2, or 4 is allowed");
970          } else {
971             ERROR_IF(brw_inst_src1_reg_file(devinfo, inst) != BRW_IMMEDIATE_VALUE &&
972                      brw_inst_src1_vstride(devinfo, inst) != BRW_VERTICAL_STRIDE_0 &&
973                      brw_inst_src1_vstride(devinfo, inst) != BRW_VERTICAL_STRIDE_4,
974                      "In Align16 mode, only VertStride of 0 or 4 is allowed");
975          }
976       }
977 
978       return error_msg;
979    }
980 
981    for (unsigned i = 0; i < num_sources; i++) {
982       unsigned vstride, width, hstride, element_size, subreg;
983       enum brw_reg_type type;
984 
985 #define DO_SRC(n)                                                              \
986       if (brw_inst_src ## n ## _reg_file(devinfo, inst) ==                     \
987           BRW_IMMEDIATE_VALUE)                                                 \
988          continue;                                                             \
989                                                                                \
990       vstride = STRIDE(brw_inst_src ## n ## _vstride(devinfo, inst));          \
991       width = WIDTH(brw_inst_src ## n ## _width(devinfo, inst));               \
992       hstride = STRIDE(brw_inst_src ## n ## _hstride(devinfo, inst));          \
993       type = brw_inst_src ## n ## _type(devinfo, inst);                        \
994       element_size = brw_reg_type_to_size(type);                               \
995       subreg = brw_inst_src ## n ## _da1_subreg_nr(devinfo, inst)
996 
997       if (i == 0) {
998          DO_SRC(0);
999       } else {
1000          DO_SRC(1);
1001       }
1002 #undef DO_SRC
1003 
1004       /* On IVB/BYT, region parameters and execution size for DF are in terms of
1005        * 32-bit elements, so they are doubled. For evaluating the validity of an
1006        * instruction, we halve them.
1007        */
1008       if (devinfo->verx10 == 70 &&
1009           element_size == 8)
1010          element_size = 4;
1011 
1012       /* ExecSize must be greater than or equal to Width. */
1013       ERROR_IF(exec_size < width, "ExecSize must be greater than or equal "
1014                                   "to Width");
1015 
1016       /* If ExecSize = Width and HorzStride ≠ 0,
1017        * VertStride must be set to Width * HorzStride.
1018        */
1019       if (exec_size == width && hstride != 0) {
1020          ERROR_IF(vstride != width * hstride,
1021                   "If ExecSize = Width and HorzStride ≠ 0, "
1022                   "VertStride must be set to Width * HorzStride");
1023       }
1024 
1025       /* If Width = 1, HorzStride must be 0 regardless of the values of
1026        * ExecSize and VertStride.
1027        */
1028       if (width == 1) {
1029          ERROR_IF(hstride != 0,
1030                   "If Width = 1, HorzStride must be 0 regardless "
1031                   "of the values of ExecSize and VertStride");
1032       }
1033 
1034       /* If ExecSize = Width = 1, both VertStride and HorzStride must be 0. */
1035       if (exec_size == 1 && width == 1) {
1036          ERROR_IF(vstride != 0 || hstride != 0,
1037                   "If ExecSize = Width = 1, both VertStride "
1038                   "and HorzStride must be 0");
1039       }
1040 
1041       /* If VertStride = HorzStride = 0, Width must be 1 regardless of the
1042        * value of ExecSize.
1043        */
1044       if (vstride == 0 && hstride == 0) {
1045          ERROR_IF(width != 1,
1046                   "If VertStride = HorzStride = 0, Width must be "
1047                   "1 regardless of the value of ExecSize");
1048       }
1049 
1050       /* VertStride must be used to cross GRF register boundaries. This rule
1051        * implies that elements within a 'Width' cannot cross GRF boundaries.
1052        */
1053       const uint64_t mask = (1ULL << element_size) - 1;
1054       unsigned rowbase = subreg;
1055 
1056       for (int y = 0; y < exec_size / width; y++) {
1057          uint64_t access_mask = 0;
1058          unsigned offset = rowbase;
1059 
1060          for (int x = 0; x < width; x++) {
1061             access_mask |= mask << (offset % 64);
1062             offset += hstride * element_size;
1063          }
1064 
1065          rowbase += vstride * element_size;
1066 
1067          if ((uint32_t)access_mask != 0 && (access_mask >> 32) != 0) {
1068             ERROR("VertStride must be used to cross GRF register boundaries");
1069             break;
1070          }
1071       }
1072    }
1073 
1074    /* Dst.HorzStride must not be 0. */
1075    if (desc->ndst != 0 && !dst_is_null(devinfo, inst)) {
1076       ERROR_IF(brw_inst_dst_hstride(devinfo, inst) == BRW_HORIZONTAL_STRIDE_0,
1077                "Destination Horizontal Stride must not be 0");
1078    }
1079 
1080    return error_msg;
1081 }
1082 
1083 static struct string
special_restrictions_for_mixed_float_mode(const struct intel_device_info * devinfo,const brw_inst * inst)1084 special_restrictions_for_mixed_float_mode(const struct intel_device_info *devinfo,
1085                                           const brw_inst *inst)
1086 {
1087    struct string error_msg = { .str = NULL, .len = 0 };
1088 
1089    const unsigned opcode = brw_inst_opcode(devinfo, inst);
1090    const unsigned num_sources = num_sources_from_inst(devinfo, inst);
1091    if (num_sources >= 3)
1092       return error_msg;
1093 
1094    if (!is_mixed_float(devinfo, inst))
1095       return error_msg;
1096 
1097    unsigned exec_size = 1 << brw_inst_exec_size(devinfo, inst);
1098    bool is_align16 = brw_inst_access_mode(devinfo, inst) == BRW_ALIGN_16;
1099 
1100    enum brw_reg_type src0_type = brw_inst_src0_type(devinfo, inst);
1101    enum brw_reg_type src1_type = num_sources > 1 ?
1102                                  brw_inst_src1_type(devinfo, inst) : 0;
1103    enum brw_reg_type dst_type = brw_inst_dst_type(devinfo, inst);
1104 
1105    unsigned dst_stride = STRIDE(brw_inst_dst_hstride(devinfo, inst));
1106    bool dst_is_packed = is_packed(exec_size * dst_stride, exec_size, dst_stride);
1107 
1108    /* From the SKL PRM, Special Restrictions for Handling Mixed Mode
1109     * Float Operations:
1110     *
1111     *    "Indirect addressing on source is not supported when source and
1112     *     destination data types are mixed float."
1113     */
1114    ERROR_IF(brw_inst_src0_address_mode(devinfo, inst) != BRW_ADDRESS_DIRECT ||
1115             (num_sources > 1 &&
1116              brw_inst_src1_address_mode(devinfo, inst) != BRW_ADDRESS_DIRECT),
1117             "Indirect addressing on source is not supported when source and "
1118             "destination data types are mixed float");
1119 
1120    /* From the SKL PRM, Special Restrictions for Handling Mixed Mode
1121     * Float Operations:
1122     *
1123     *    "No SIMD16 in mixed mode when destination is f32. Instruction
1124     *     execution size must be no more than 8."
1125     */
1126    ERROR_IF(exec_size > 8 && dst_type == BRW_REGISTER_TYPE_F,
1127             "Mixed float mode with 32-bit float destination is limited "
1128             "to SIMD8");
1129 
1130    if (is_align16) {
1131       /* From the SKL PRM, Special Restrictions for Handling Mixed Mode
1132        * Float Operations:
1133        *
1134        *   "In Align16 mode, when half float and float data types are mixed
1135        *    between source operands OR between source and destination operands,
1136        *    the register content are assumed to be packed."
1137        *
1138        * Since Align16 doesn't have a concept of horizontal stride (or width),
1139        * it means that vertical stride must always be 4, since 0 and 2 would
1140        * lead to replicated data, and any other value is disallowed in Align16.
1141        */
1142       ERROR_IF(brw_inst_src0_vstride(devinfo, inst) != BRW_VERTICAL_STRIDE_4,
1143                "Align16 mixed float mode assumes packed data (vstride must be 4");
1144 
1145       ERROR_IF(num_sources >= 2 &&
1146                brw_inst_src1_vstride(devinfo, inst) != BRW_VERTICAL_STRIDE_4,
1147                "Align16 mixed float mode assumes packed data (vstride must be 4");
1148 
1149       /* From the SKL PRM, Special Restrictions for Handling Mixed Mode
1150        * Float Operations:
1151        *
1152        *   "For Align16 mixed mode, both input and output packed f16 data
1153        *    must be oword aligned, no oword crossing in packed f16."
1154        *
1155        * The previous rule requires that Align16 operands are always packed,
1156        * and since there is only one bit for Align16 subnr, which represents
1157        * offsets 0B and 16B, this rule is always enforced and we don't need to
1158        * validate it.
1159        */
1160 
1161       /* From the SKL PRM, Special Restrictions for Handling Mixed Mode
1162        * Float Operations:
1163        *
1164        *    "No SIMD16 in mixed mode when destination is packed f16 for both
1165        *     Align1 and Align16."
1166        *
1167        * And:
1168        *
1169        *   "In Align16 mode, when half float and float data types are mixed
1170        *    between source operands OR between source and destination operands,
1171        *    the register content are assumed to be packed."
1172        *
1173        * Which implies that SIMD16 is not available in Align16. This is further
1174        * confirmed by:
1175        *
1176        *    "For Align16 mixed mode, both input and output packed f16 data
1177        *     must be oword aligned, no oword crossing in packed f16"
1178        *
1179        * Since oword-aligned packed f16 data would cross oword boundaries when
1180        * the execution size is larger than 8.
1181        */
1182       ERROR_IF(exec_size > 8, "Align16 mixed float mode is limited to SIMD8");
1183 
1184       /* From the SKL PRM, Special Restrictions for Handling Mixed Mode
1185        * Float Operations:
1186        *
1187        *    "No accumulator read access for Align16 mixed float."
1188        */
1189       ERROR_IF(inst_uses_src_acc(devinfo, inst),
1190                "No accumulator read access for Align16 mixed float");
1191    } else {
1192       assert(!is_align16);
1193 
1194       /* From the SKL PRM, Special Restrictions for Handling Mixed Mode
1195        * Float Operations:
1196        *
1197        *    "No SIMD16 in mixed mode when destination is packed f16 for both
1198        *     Align1 and Align16."
1199        */
1200       ERROR_IF(exec_size > 8 && dst_is_packed &&
1201                dst_type == BRW_REGISTER_TYPE_HF,
1202                "Align1 mixed float mode is limited to SIMD8 when destination "
1203                "is packed half-float");
1204 
1205       /* From the SKL PRM, Special Restrictions for Handling Mixed Mode
1206        * Float Operations:
1207        *
1208        *    "Math operations for mixed mode:
1209        *     - In Align1, f16 inputs need to be strided"
1210        */
1211       if (opcode == BRW_OPCODE_MATH) {
1212          if (src0_type == BRW_REGISTER_TYPE_HF) {
1213             ERROR_IF(STRIDE(brw_inst_src0_hstride(devinfo, inst)) <= 1,
1214                      "Align1 mixed mode math needs strided half-float inputs");
1215          }
1216 
1217          if (num_sources >= 2 && src1_type == BRW_REGISTER_TYPE_HF) {
1218             ERROR_IF(STRIDE(brw_inst_src1_hstride(devinfo, inst)) <= 1,
1219                      "Align1 mixed mode math needs strided half-float inputs");
1220          }
1221       }
1222 
1223       if (dst_type == BRW_REGISTER_TYPE_HF && dst_stride == 1) {
1224          /* From the SKL PRM, Special Restrictions for Handling Mixed Mode
1225           * Float Operations:
1226           *
1227           *    "In Align1, destination stride can be smaller than execution
1228           *     type. When destination is stride of 1, 16 bit packed data is
1229           *     updated on the destination. However, output packed f16 data
1230           *     must be oword aligned, no oword crossing in packed f16."
1231           *
1232           * The requirement of not crossing oword boundaries for 16-bit oword
1233           * aligned data means that execution size is limited to 8.
1234           */
1235          unsigned subreg;
1236          if (brw_inst_dst_address_mode(devinfo, inst) == BRW_ADDRESS_DIRECT)
1237             subreg = brw_inst_dst_da1_subreg_nr(devinfo, inst);
1238          else
1239             subreg = brw_inst_dst_ia_subreg_nr(devinfo, inst);
1240          ERROR_IF(subreg % 16 != 0,
1241                   "Align1 mixed mode packed half-float output must be "
1242                   "oword aligned");
1243          ERROR_IF(exec_size > 8,
1244                   "Align1 mixed mode packed half-float output must not "
1245                   "cross oword boundaries (max exec size is 8)");
1246 
1247          /* From the SKL PRM, Special Restrictions for Handling Mixed Mode
1248           * Float Operations:
1249           *
1250           *    "When source is float or half float from accumulator register and
1251           *     destination is half float with a stride of 1, the source must
1252           *     register aligned. i.e., source must have offset zero."
1253           *
1254           * Align16 mixed float mode doesn't allow accumulator access on sources,
1255           * so we only need to check this for Align1.
1256           */
1257          if (src0_is_acc(devinfo, inst) &&
1258              (src0_type == BRW_REGISTER_TYPE_F ||
1259               src0_type == BRW_REGISTER_TYPE_HF)) {
1260             ERROR_IF(brw_inst_src0_da1_subreg_nr(devinfo, inst) != 0,
1261                      "Mixed float mode requires register-aligned accumulator "
1262                      "source reads when destination is packed half-float");
1263 
1264          }
1265 
1266          if (num_sources > 1 &&
1267              src1_is_acc(devinfo, inst) &&
1268              (src1_type == BRW_REGISTER_TYPE_F ||
1269               src1_type == BRW_REGISTER_TYPE_HF)) {
1270             ERROR_IF(brw_inst_src1_da1_subreg_nr(devinfo, inst) != 0,
1271                      "Mixed float mode requires register-aligned accumulator "
1272                      "source reads when destination is packed half-float");
1273          }
1274       }
1275 
1276       /* From the SKL PRM, Special Restrictions for Handling Mixed Mode
1277        * Float Operations:
1278        *
1279        *    "No swizzle is allowed when an accumulator is used as an implicit
1280        *     source or an explicit source in an instruction. i.e. when
1281        *     destination is half float with an implicit accumulator source,
1282        *     destination stride needs to be 2."
1283        *
1284        * FIXME: it is not quite clear what the first sentence actually means
1285        *        or its link to the implication described after it, so we only
1286        *        validate the explicit implication, which is clearly described.
1287        */
1288       if (dst_type == BRW_REGISTER_TYPE_HF &&
1289           inst_uses_src_acc(devinfo, inst)) {
1290          ERROR_IF(dst_stride != 2,
1291                   "Mixed float mode with implicit/explicit accumulator "
1292                   "source and half-float destination requires a stride "
1293                   "of 2 on the destination");
1294       }
1295    }
1296 
1297    return error_msg;
1298 }
1299 
1300 /**
1301  * Creates an \p access_mask for an \p exec_size, \p element_size, and a region
1302  *
1303  * An \p access_mask is a 32-element array of uint64_t, where each uint64_t is
1304  * a bitmask of bytes accessed by the region.
1305  *
1306  * For instance the access mask of the source gX.1<4,2,2>F in an exec_size = 4
1307  * instruction would be
1308  *
1309  *    access_mask[0] = 0x00000000000000F0
1310  *    access_mask[1] = 0x000000000000F000
1311  *    access_mask[2] = 0x0000000000F00000
1312  *    access_mask[3] = 0x00000000F0000000
1313  *    access_mask[4-31] = 0
1314  *
1315  * because the first execution channel accesses bytes 7-4 and the second
1316  * execution channel accesses bytes 15-12, etc.
1317  */
1318 static void
align1_access_mask(uint64_t access_mask[static32],unsigned exec_size,unsigned element_size,unsigned subreg,unsigned vstride,unsigned width,unsigned hstride)1319 align1_access_mask(uint64_t access_mask[static 32],
1320                    unsigned exec_size, unsigned element_size, unsigned subreg,
1321                    unsigned vstride, unsigned width, unsigned hstride)
1322 {
1323    const uint64_t mask = (1ULL << element_size) - 1;
1324    unsigned rowbase = subreg;
1325    unsigned element = 0;
1326 
1327    for (int y = 0; y < exec_size / width; y++) {
1328       unsigned offset = rowbase;
1329 
1330       for (int x = 0; x < width; x++) {
1331          access_mask[element++] = mask << (offset % 64);
1332          offset += hstride * element_size;
1333       }
1334 
1335       rowbase += vstride * element_size;
1336    }
1337 
1338    assert(element == 0 || element == exec_size);
1339 }
1340 
1341 /**
1342  * Returns the number of registers accessed according to the \p access_mask
1343  */
1344 static int
registers_read(const uint64_t access_mask[static32])1345 registers_read(const uint64_t access_mask[static 32])
1346 {
1347    int regs_read = 0;
1348 
1349    for (unsigned i = 0; i < 32; i++) {
1350       if (access_mask[i] > 0xFFFFFFFF) {
1351          return 2;
1352       } else if (access_mask[i]) {
1353          regs_read = 1;
1354       }
1355    }
1356 
1357    return regs_read;
1358 }
1359 
1360 /**
1361  * Checks restrictions listed in "Region Alignment Rules" in the "Register
1362  * Region Restrictions" section.
1363  */
1364 static struct string
region_alignment_rules(const struct intel_device_info * devinfo,const brw_inst * inst)1365 region_alignment_rules(const struct intel_device_info *devinfo,
1366                        const brw_inst *inst)
1367 {
1368    const struct opcode_desc *desc =
1369       brw_opcode_desc(devinfo, brw_inst_opcode(devinfo, inst));
1370    unsigned num_sources = num_sources_from_inst(devinfo, inst);
1371    unsigned exec_size = 1 << brw_inst_exec_size(devinfo, inst);
1372    uint64_t dst_access_mask[32], src0_access_mask[32], src1_access_mask[32];
1373    struct string error_msg = { .str = NULL, .len = 0 };
1374 
1375    if (num_sources == 3)
1376       return (struct string){};
1377 
1378    if (brw_inst_access_mode(devinfo, inst) == BRW_ALIGN_16)
1379       return (struct string){};
1380 
1381    if (inst_is_send(devinfo, inst))
1382       return (struct string){};
1383 
1384    memset(dst_access_mask, 0, sizeof(dst_access_mask));
1385    memset(src0_access_mask, 0, sizeof(src0_access_mask));
1386    memset(src1_access_mask, 0, sizeof(src1_access_mask));
1387 
1388    for (unsigned i = 0; i < num_sources; i++) {
1389       unsigned vstride, width, hstride, element_size, subreg;
1390       enum brw_reg_type type;
1391 
1392       /* In Direct Addressing mode, a source cannot span more than 2 adjacent
1393        * GRF registers.
1394        */
1395 
1396 #define DO_SRC(n)                                                              \
1397       if (brw_inst_src ## n ## _address_mode(devinfo, inst) !=                 \
1398           BRW_ADDRESS_DIRECT)                                                  \
1399          continue;                                                             \
1400                                                                                \
1401       if (brw_inst_src ## n ## _reg_file(devinfo, inst) ==                     \
1402           BRW_IMMEDIATE_VALUE)                                                 \
1403          continue;                                                             \
1404                                                                                \
1405       vstride = STRIDE(brw_inst_src ## n ## _vstride(devinfo, inst));          \
1406       width = WIDTH(brw_inst_src ## n ## _width(devinfo, inst));               \
1407       hstride = STRIDE(brw_inst_src ## n ## _hstride(devinfo, inst));          \
1408       type = brw_inst_src ## n ## _type(devinfo, inst);                        \
1409       element_size = brw_reg_type_to_size(type);                               \
1410       subreg = brw_inst_src ## n ## _da1_subreg_nr(devinfo, inst);             \
1411       align1_access_mask(src ## n ## _access_mask,                             \
1412                          exec_size, element_size, subreg,                      \
1413                          vstride, width, hstride)
1414 
1415       if (i == 0) {
1416          DO_SRC(0);
1417       } else {
1418          DO_SRC(1);
1419       }
1420 #undef DO_SRC
1421 
1422       unsigned num_vstride = exec_size / width;
1423       unsigned num_hstride = width;
1424       unsigned vstride_elements = (num_vstride - 1) * vstride;
1425       unsigned hstride_elements = (num_hstride - 1) * hstride;
1426       unsigned offset = (vstride_elements + hstride_elements) * element_size +
1427                         subreg;
1428       ERROR_IF(offset >= 64,
1429                "A source cannot span more than 2 adjacent GRF registers");
1430    }
1431 
1432    if (desc->ndst == 0 || dst_is_null(devinfo, inst))
1433       return error_msg;
1434 
1435    unsigned stride = STRIDE(brw_inst_dst_hstride(devinfo, inst));
1436    enum brw_reg_type dst_type = inst_dst_type(devinfo, inst);
1437    unsigned element_size = brw_reg_type_to_size(dst_type);
1438    unsigned subreg = brw_inst_dst_da1_subreg_nr(devinfo, inst);
1439    unsigned offset = ((exec_size - 1) * stride * element_size) + subreg;
1440    ERROR_IF(offset >= 64,
1441             "A destination cannot span more than 2 adjacent GRF registers");
1442 
1443    if (error_msg.str)
1444       return error_msg;
1445 
1446    /* On IVB/BYT, region parameters and execution size for DF are in terms of
1447     * 32-bit elements, so they are doubled. For evaluating the validity of an
1448     * instruction, we halve them.
1449     */
1450    if (devinfo->verx10 == 70 &&
1451        element_size == 8)
1452       element_size = 4;
1453 
1454    align1_access_mask(dst_access_mask, exec_size, element_size, subreg,
1455                       exec_size == 1 ? 0 : exec_size * stride,
1456                       exec_size == 1 ? 1 : exec_size,
1457                       exec_size == 1 ? 0 : stride);
1458 
1459    unsigned dst_regs = registers_read(dst_access_mask);
1460    unsigned src0_regs = registers_read(src0_access_mask);
1461    unsigned src1_regs = registers_read(src1_access_mask);
1462 
1463    /* The SNB, IVB, HSW, BDW, and CHV PRMs say:
1464     *
1465     *    When an instruction has a source region spanning two registers and a
1466     *    destination region contained in one register, the number of elements
1467     *    must be the same between two sources and one of the following must be
1468     *    true:
1469     *
1470     *       1. The destination region is entirely contained in the lower OWord
1471     *          of a register.
1472     *       2. The destination region is entirely contained in the upper OWord
1473     *          of a register.
1474     *       3. The destination elements are evenly split between the two OWords
1475     *          of a register.
1476     */
1477    if (devinfo->ver <= 8) {
1478       if (dst_regs == 1 && (src0_regs == 2 || src1_regs == 2)) {
1479          unsigned upper_oword_writes = 0, lower_oword_writes = 0;
1480 
1481          for (unsigned i = 0; i < exec_size; i++) {
1482             if (dst_access_mask[i] > 0x0000FFFF) {
1483                upper_oword_writes++;
1484             } else {
1485                assert(dst_access_mask[i] != 0);
1486                lower_oword_writes++;
1487             }
1488          }
1489 
1490          ERROR_IF(lower_oword_writes != 0 &&
1491                   upper_oword_writes != 0 &&
1492                   upper_oword_writes != lower_oword_writes,
1493                   "Writes must be to only one OWord or "
1494                   "evenly split between OWords");
1495       }
1496    }
1497 
1498    /* The IVB and HSW PRMs say:
1499     *
1500     *    When an instruction has a source region that spans two registers and
1501     *    the destination spans two registers, the destination elements must be
1502     *    evenly split between the two registers [...]
1503     *
1504     * The SNB PRM contains similar wording (but written in a much more
1505     * confusing manner).
1506     *
1507     * The BDW PRM says:
1508     *
1509     *    When destination spans two registers, the source may be one or two
1510     *    registers. The destination elements must be evenly split between the
1511     *    two registers.
1512     *
1513     * The SKL PRM says:
1514     *
1515     *    When destination of MATH instruction spans two registers, the
1516     *    destination elements must be evenly split between the two registers.
1517     *
1518     * It is not known whether this restriction applies to KBL other Gens after
1519     * SKL.
1520     */
1521    if (devinfo->ver <= 8 ||
1522        brw_inst_opcode(devinfo, inst) == BRW_OPCODE_MATH) {
1523 
1524       /* Nothing explicitly states that on Gen < 8 elements must be evenly
1525        * split between two destination registers in the two exceptional
1526        * source-region-spans-one-register cases, but since Broadwell requires
1527        * evenly split writes regardless of source region, we assume that it was
1528        * an oversight and require it.
1529        */
1530       if (dst_regs == 2) {
1531          unsigned upper_reg_writes = 0, lower_reg_writes = 0;
1532 
1533          for (unsigned i = 0; i < exec_size; i++) {
1534             if (dst_access_mask[i] > 0xFFFFFFFF) {
1535                upper_reg_writes++;
1536             } else {
1537                assert(dst_access_mask[i] != 0);
1538                lower_reg_writes++;
1539             }
1540          }
1541 
1542          ERROR_IF(upper_reg_writes != lower_reg_writes,
1543                   "Writes must be evenly split between the two "
1544                   "destination registers");
1545       }
1546    }
1547 
1548    /* The IVB and HSW PRMs say:
1549     *
1550     *    When an instruction has a source region that spans two registers and
1551     *    the destination spans two registers, the destination elements must be
1552     *    evenly split between the two registers and each destination register
1553     *    must be entirely derived from one source register.
1554     *
1555     *    Note: In such cases, the regioning parameters must ensure that the
1556     *    offset from the two source registers is the same.
1557     *
1558     * The SNB PRM contains similar wording (but written in a much more
1559     * confusing manner).
1560     *
1561     * There are effectively three rules stated here:
1562     *
1563     *    For an instruction with a source and a destination spanning two
1564     *    registers,
1565     *
1566     *       (1) destination elements must be evenly split between the two
1567     *           registers
1568     *       (2) all destination elements in a register must be derived
1569     *           from one source register
1570     *       (3) the offset (i.e. the starting location in each of the two
1571     *           registers spanned by a region) must be the same in the two
1572     *           registers spanned by a region
1573     *
1574     * It is impossible to violate rule (1) without violating (2) or (3), so we
1575     * do not attempt to validate it.
1576     */
1577    if (devinfo->ver <= 7 && dst_regs == 2) {
1578       for (unsigned i = 0; i < num_sources; i++) {
1579 #define DO_SRC(n)                                                             \
1580          if (src ## n ## _regs <= 1)                                          \
1581             continue;                                                         \
1582                                                                               \
1583          for (unsigned i = 0; i < exec_size; i++) {                           \
1584             if ((dst_access_mask[i] > 0xFFFFFFFF) !=                          \
1585                 (src ## n ## _access_mask[i] > 0xFFFFFFFF)) {                 \
1586                ERROR("Each destination register must be entirely derived "    \
1587                      "from one source register");                             \
1588                break;                                                         \
1589             }                                                                 \
1590          }                                                                    \
1591                                                                               \
1592          unsigned offset_0 =                                                  \
1593             brw_inst_src ## n ## _da1_subreg_nr(devinfo, inst);               \
1594          unsigned offset_1 = offset_0;                                        \
1595                                                                               \
1596          for (unsigned i = 0; i < exec_size; i++) {                           \
1597             if (src ## n ## _access_mask[i] > 0xFFFFFFFF) {                   \
1598                offset_1 = __builtin_ctzll(src ## n ## _access_mask[i]) - 32;  \
1599                break;                                                         \
1600             }                                                                 \
1601          }                                                                    \
1602                                                                               \
1603          ERROR_IF(num_sources == 2 && offset_0 != offset_1,                   \
1604                   "The offset from the two source registers "                 \
1605                   "must be the same")
1606 
1607          if (i == 0) {
1608             DO_SRC(0);
1609          } else {
1610             DO_SRC(1);
1611          }
1612 #undef DO_SRC
1613       }
1614    }
1615 
1616    /* The IVB and HSW PRMs say:
1617     *
1618     *    When destination spans two registers, the source MUST span two
1619     *    registers. The exception to the above rule:
1620     *        1. When source is scalar, the source registers are not
1621     *           incremented.
1622     *        2. When source is packed integer Word and destination is packed
1623     *           integer DWord, the source register is not incremented by the
1624     *           source sub register is incremented.
1625     *
1626     * The SNB PRM does not contain this rule, but the internal documentation
1627     * indicates that it applies to SNB as well. We assume that the rule applies
1628     * to Gen <= 5 although their PRMs do not state it.
1629     *
1630     * While the documentation explicitly says in exception (2) that the
1631     * destination must be an integer DWord, the hardware allows at least a
1632     * float destination type as well. We emit such instructions from
1633     *
1634     *    fs_visitor::emit_interpolation_setup_gfx6
1635     *    fs_visitor::emit_fragcoord_interpolation
1636     *
1637     * and have for years with no ill effects.
1638     *
1639     * Additionally the simulator source code indicates that the real condition
1640     * is that the size of the destination type is 4 bytes.
1641     */
1642    if (devinfo->ver <= 7 && dst_regs == 2) {
1643       enum brw_reg_type dst_type = inst_dst_type(devinfo, inst);
1644       bool dst_is_packed_dword =
1645          is_packed(exec_size * stride, exec_size, stride) &&
1646          brw_reg_type_to_size(dst_type) == 4;
1647 
1648       for (unsigned i = 0; i < num_sources; i++) {
1649 #define DO_SRC(n)                                                                  \
1650          unsigned vstride, width, hstride;                                         \
1651          vstride = STRIDE(brw_inst_src ## n ## _vstride(devinfo, inst));           \
1652          width = WIDTH(brw_inst_src ## n ## _width(devinfo, inst));                \
1653          hstride = STRIDE(brw_inst_src ## n ## _hstride(devinfo, inst));           \
1654          bool src ## n ## _is_packed_word =                                        \
1655             is_packed(vstride, width, hstride) &&                                  \
1656             (brw_inst_src ## n ## _type(devinfo, inst) == BRW_REGISTER_TYPE_W ||   \
1657              brw_inst_src ## n ## _type(devinfo, inst) == BRW_REGISTER_TYPE_UW);   \
1658                                                                                    \
1659          ERROR_IF(src ## n ## _regs == 1 &&                                        \
1660                   !src ## n ## _has_scalar_region(devinfo, inst) &&                \
1661                   !(dst_is_packed_dword && src ## n ## _is_packed_word),           \
1662                   "When the destination spans two registers, the source must "     \
1663                   "span two registers\n" ERROR_INDENT "(exceptions for scalar "    \
1664                   "source and packed-word to packed-dword expansion)")
1665 
1666          if (i == 0) {
1667             DO_SRC(0);
1668          } else {
1669             DO_SRC(1);
1670          }
1671 #undef DO_SRC
1672       }
1673    }
1674 
1675    return error_msg;
1676 }
1677 
1678 static struct string
vector_immediate_restrictions(const struct intel_device_info * devinfo,const brw_inst * inst)1679 vector_immediate_restrictions(const struct intel_device_info *devinfo,
1680                               const brw_inst *inst)
1681 {
1682    unsigned num_sources = num_sources_from_inst(devinfo, inst);
1683    struct string error_msg = { .str = NULL, .len = 0 };
1684 
1685    if (num_sources == 3 || num_sources == 0)
1686       return (struct string){};
1687 
1688    unsigned file = num_sources == 1 ?
1689                    brw_inst_src0_reg_file(devinfo, inst) :
1690                    brw_inst_src1_reg_file(devinfo, inst);
1691    if (file != BRW_IMMEDIATE_VALUE)
1692       return (struct string){};
1693 
1694    enum brw_reg_type dst_type = inst_dst_type(devinfo, inst);
1695    unsigned dst_type_size = brw_reg_type_to_size(dst_type);
1696    unsigned dst_subreg = brw_inst_access_mode(devinfo, inst) == BRW_ALIGN_1 ?
1697                          brw_inst_dst_da1_subreg_nr(devinfo, inst) : 0;
1698    unsigned dst_stride = STRIDE(brw_inst_dst_hstride(devinfo, inst));
1699    enum brw_reg_type type = num_sources == 1 ?
1700                             brw_inst_src0_type(devinfo, inst) :
1701                             brw_inst_src1_type(devinfo, inst);
1702 
1703    /* The PRMs say:
1704     *
1705     *    When an immediate vector is used in an instruction, the destination
1706     *    must be 128-bit aligned with destination horizontal stride equivalent
1707     *    to a word for an immediate integer vector (v) and equivalent to a
1708     *    DWord for an immediate float vector (vf).
1709     *
1710     * The text has not been updated for the addition of the immediate unsigned
1711     * integer vector type (uv) on SNB, but presumably the same restriction
1712     * applies.
1713     */
1714    switch (type) {
1715    case BRW_REGISTER_TYPE_V:
1716    case BRW_REGISTER_TYPE_UV:
1717    case BRW_REGISTER_TYPE_VF:
1718       ERROR_IF(dst_subreg % (128 / 8) != 0,
1719                "Destination must be 128-bit aligned in order to use immediate "
1720                "vector types");
1721 
1722       if (type == BRW_REGISTER_TYPE_VF) {
1723          ERROR_IF(dst_type_size * dst_stride != 4,
1724                   "Destination must have stride equivalent to dword in order "
1725                   "to use the VF type");
1726       } else {
1727          ERROR_IF(dst_type_size * dst_stride != 2,
1728                   "Destination must have stride equivalent to word in order "
1729                   "to use the V or UV type");
1730       }
1731       break;
1732    default:
1733       break;
1734    }
1735 
1736    return error_msg;
1737 }
1738 
1739 static struct string
special_requirements_for_handling_double_precision_data_types(const struct intel_device_info * devinfo,const brw_inst * inst)1740 special_requirements_for_handling_double_precision_data_types(
1741                                        const struct intel_device_info *devinfo,
1742                                        const brw_inst *inst)
1743 {
1744    unsigned num_sources = num_sources_from_inst(devinfo, inst);
1745    struct string error_msg = { .str = NULL, .len = 0 };
1746 
1747    if (num_sources == 3 || num_sources == 0)
1748       return (struct string){};
1749 
1750    /* Split sends don't have types so there's no doubles there. */
1751    if (inst_is_split_send(devinfo, inst))
1752       return (struct string){};
1753 
1754    enum brw_reg_type exec_type = execution_type(devinfo, inst);
1755    unsigned exec_type_size = brw_reg_type_to_size(exec_type);
1756 
1757    enum brw_reg_file dst_file = brw_inst_dst_reg_file(devinfo, inst);
1758    enum brw_reg_type dst_type = inst_dst_type(devinfo, inst);
1759    unsigned dst_type_size = brw_reg_type_to_size(dst_type);
1760    unsigned dst_hstride = STRIDE(brw_inst_dst_hstride(devinfo, inst));
1761    unsigned dst_reg = brw_inst_dst_da_reg_nr(devinfo, inst);
1762    unsigned dst_subreg = brw_inst_dst_da1_subreg_nr(devinfo, inst);
1763    unsigned dst_address_mode = brw_inst_dst_address_mode(devinfo, inst);
1764 
1765    bool is_integer_dword_multiply =
1766       devinfo->ver >= 8 &&
1767       brw_inst_opcode(devinfo, inst) == BRW_OPCODE_MUL &&
1768       (brw_inst_src0_type(devinfo, inst) == BRW_REGISTER_TYPE_D ||
1769        brw_inst_src0_type(devinfo, inst) == BRW_REGISTER_TYPE_UD) &&
1770       (brw_inst_src1_type(devinfo, inst) == BRW_REGISTER_TYPE_D ||
1771        brw_inst_src1_type(devinfo, inst) == BRW_REGISTER_TYPE_UD);
1772 
1773    const bool is_double_precision =
1774       dst_type_size == 8 || exec_type_size == 8 || is_integer_dword_multiply;
1775 
1776    for (unsigned i = 0; i < num_sources; i++) {
1777       unsigned vstride, width, hstride, type_size, reg, subreg, address_mode;
1778       bool is_scalar_region;
1779       enum brw_reg_file file;
1780       enum brw_reg_type type;
1781 
1782 #define DO_SRC(n)                                                              \
1783       if (brw_inst_src ## n ## _reg_file(devinfo, inst) ==                     \
1784           BRW_IMMEDIATE_VALUE)                                                 \
1785          continue;                                                             \
1786                                                                                \
1787       is_scalar_region = src ## n ## _has_scalar_region(devinfo, inst);        \
1788       vstride = STRIDE(brw_inst_src ## n ## _vstride(devinfo, inst));          \
1789       width = WIDTH(brw_inst_src ## n ## _width(devinfo, inst));               \
1790       hstride = STRIDE(brw_inst_src ## n ## _hstride(devinfo, inst));          \
1791       file = brw_inst_src ## n ## _reg_file(devinfo, inst);                    \
1792       type = brw_inst_src ## n ## _type(devinfo, inst);                        \
1793       type_size = brw_reg_type_to_size(type);                                  \
1794       reg = brw_inst_src ## n ## _da_reg_nr(devinfo, inst);                    \
1795       subreg = brw_inst_src ## n ## _da1_subreg_nr(devinfo, inst);             \
1796       address_mode = brw_inst_src ## n ## _address_mode(devinfo, inst)
1797 
1798       if (i == 0) {
1799          DO_SRC(0);
1800       } else {
1801          DO_SRC(1);
1802       }
1803 #undef DO_SRC
1804 
1805       const unsigned src_stride = hstride * type_size;
1806       const unsigned dst_stride = dst_hstride * dst_type_size;
1807 
1808       /* The PRMs say that for CHV, BXT:
1809        *
1810        *    When source or destination datatype is 64b or operation is integer
1811        *    DWord multiply, regioning in Align1 must follow these rules:
1812        *
1813        *    1. Source and Destination horizontal stride must be aligned to the
1814        *       same qword.
1815        *    2. Regioning must ensure Src.Vstride = Src.Width * Src.Hstride.
1816        *    3. Source and Destination offset must be the same, except the case
1817        *       of scalar source.
1818        *
1819        * We assume that the restriction applies to GLK as well.
1820        */
1821       if (is_double_precision &&
1822           brw_inst_access_mode(devinfo, inst) == BRW_ALIGN_1 &&
1823           (devinfo->is_cherryview || intel_device_info_is_9lp(devinfo))) {
1824          ERROR_IF(!is_scalar_region &&
1825                   (src_stride % 8 != 0 ||
1826                    dst_stride % 8 != 0 ||
1827                    src_stride != dst_stride),
1828                   "Source and destination horizontal stride must equal and a "
1829                   "multiple of a qword when the execution type is 64-bit");
1830 
1831          ERROR_IF(vstride != width * hstride,
1832                   "Vstride must be Width * Hstride when the execution type is "
1833                   "64-bit");
1834 
1835          ERROR_IF(!is_scalar_region && dst_subreg != subreg,
1836                   "Source and destination offset must be the same when the "
1837                   "execution type is 64-bit");
1838       }
1839 
1840       /* The PRMs say that for CHV, BXT:
1841        *
1842        *    When source or destination datatype is 64b or operation is integer
1843        *    DWord multiply, indirect addressing must not be used.
1844        *
1845        * We assume that the restriction applies to GLK as well.
1846        */
1847       if (is_double_precision &&
1848           (devinfo->is_cherryview || intel_device_info_is_9lp(devinfo))) {
1849          ERROR_IF(BRW_ADDRESS_REGISTER_INDIRECT_REGISTER == address_mode ||
1850                   BRW_ADDRESS_REGISTER_INDIRECT_REGISTER == dst_address_mode,
1851                   "Indirect addressing is not allowed when the execution type "
1852                   "is 64-bit");
1853       }
1854 
1855       /* The PRMs say that for CHV, BXT:
1856        *
1857        *    ARF registers must never be used with 64b datatype or when
1858        *    operation is integer DWord multiply.
1859        *
1860        * We assume that the restriction applies to GLK as well.
1861        *
1862        * We assume that the restriction does not apply to the null register.
1863        */
1864       if (is_double_precision &&
1865           (devinfo->is_cherryview || intel_device_info_is_9lp(devinfo))) {
1866          ERROR_IF(brw_inst_opcode(devinfo, inst) == BRW_OPCODE_MAC ||
1867                   brw_inst_acc_wr_control(devinfo, inst) ||
1868                   (BRW_ARCHITECTURE_REGISTER_FILE == file &&
1869                    reg != BRW_ARF_NULL) ||
1870                   (BRW_ARCHITECTURE_REGISTER_FILE == dst_file &&
1871                    dst_reg != BRW_ARF_NULL),
1872                   "Architecture registers cannot be used when the execution "
1873                   "type is 64-bit");
1874       }
1875 
1876       /* From the hardware spec section "Register Region Restrictions":
1877        *
1878        * "In case where source or destination datatype is 64b or operation is
1879        *  integer DWord multiply [or in case where a floating point data type
1880        *  is used as destination]:
1881        *
1882        *   1. Register Regioning patterns where register data bit locations
1883        *      are changed between source and destination are not supported on
1884        *      Src0 and Src1 except for broadcast of a scalar.
1885        *
1886        *   2. Explicit ARF registers except null and accumulator must not be
1887        *      used."
1888        */
1889       if (devinfo->verx10 >= 125 &&
1890           (brw_reg_type_is_floating_point(dst_type) ||
1891            is_double_precision)) {
1892          ERROR_IF(!is_scalar_region &&
1893                   (vstride != width * hstride ||
1894                    src_stride != dst_stride ||
1895                    subreg != dst_subreg),
1896                   "Register Regioning patterns where register data bit "
1897                   "locations are changed between source and destination are not "
1898                   "supported except for broadcast of a scalar.");
1899 
1900          ERROR_IF((file == BRW_ARCHITECTURE_REGISTER_FILE &&
1901                    reg != BRW_ARF_NULL && !(reg >= BRW_ARF_ACCUMULATOR && reg < BRW_ARF_FLAG)) ||
1902                   (dst_file == BRW_ARCHITECTURE_REGISTER_FILE &&
1903                    dst_reg != BRW_ARF_NULL && dst_reg != BRW_ARF_ACCUMULATOR),
1904                   "Explicit ARF registers except null and accumulator must not "
1905                   "be used.");
1906       }
1907 
1908       /* From the hardware spec section "Register Region Restrictions":
1909        *
1910        * "Vx1 and VxH indirect addressing for Float, Half-Float, Double-Float and
1911        *  Quad-Word data must not be used."
1912        */
1913       if (devinfo->verx10 >= 125 &&
1914           (brw_reg_type_is_floating_point(type) || type_sz(type) == 8)) {
1915          ERROR_IF(address_mode == BRW_ADDRESS_REGISTER_INDIRECT_REGISTER &&
1916                   vstride == BRW_VERTICAL_STRIDE_ONE_DIMENSIONAL,
1917                   "Vx1 and VxH indirect addressing for Float, Half-Float, "
1918                   "Double-Float and Quad-Word data must not be used");
1919       }
1920    }
1921 
1922    /* The PRMs say that for BDW, SKL:
1923     *
1924     *    If Align16 is required for an operation with QW destination and non-QW
1925     *    source datatypes, the execution size cannot exceed 2.
1926     *
1927     * We assume that the restriction applies to all Gfx8+ parts.
1928     */
1929    if (is_double_precision && devinfo->ver >= 8) {
1930       enum brw_reg_type src0_type = brw_inst_src0_type(devinfo, inst);
1931       enum brw_reg_type src1_type =
1932          num_sources > 1 ? brw_inst_src1_type(devinfo, inst) : src0_type;
1933       unsigned src0_type_size = brw_reg_type_to_size(src0_type);
1934       unsigned src1_type_size = brw_reg_type_to_size(src1_type);
1935 
1936       ERROR_IF(brw_inst_access_mode(devinfo, inst) == BRW_ALIGN_16 &&
1937                dst_type_size == 8 &&
1938                (src0_type_size != 8 || src1_type_size != 8) &&
1939                brw_inst_exec_size(devinfo, inst) > BRW_EXECUTE_2,
1940                "In Align16 exec size cannot exceed 2 with a QWord destination "
1941                "and a non-QWord source");
1942    }
1943 
1944    /* The PRMs say that for CHV, BXT:
1945     *
1946     *    When source or destination datatype is 64b or operation is integer
1947     *    DWord multiply, DepCtrl must not be used.
1948     *
1949     * We assume that the restriction applies to GLK as well.
1950     */
1951    if (is_double_precision &&
1952        (devinfo->is_cherryview || intel_device_info_is_9lp(devinfo))) {
1953       ERROR_IF(brw_inst_no_dd_check(devinfo, inst) ||
1954                brw_inst_no_dd_clear(devinfo, inst),
1955                "DepCtrl is not allowed when the execution type is 64-bit");
1956    }
1957 
1958    return error_msg;
1959 }
1960 
1961 static struct string
instruction_restrictions(const struct intel_device_info * devinfo,const brw_inst * inst)1962 instruction_restrictions(const struct intel_device_info *devinfo,
1963                          const brw_inst *inst)
1964 {
1965    struct string error_msg = { .str = NULL, .len = 0 };
1966 
1967    /* From Wa_1604601757:
1968     *
1969     * "When multiplying a DW and any lower precision integer, source modifier
1970     *  is not supported."
1971     */
1972    if (devinfo->ver >= 12 &&
1973        brw_inst_opcode(devinfo, inst) == BRW_OPCODE_MUL) {
1974       enum brw_reg_type exec_type = execution_type(devinfo, inst);
1975       const bool src0_valid = type_sz(brw_inst_src0_type(devinfo, inst)) == 4 ||
1976          brw_inst_src0_reg_file(devinfo, inst) == BRW_IMMEDIATE_VALUE ||
1977          !(brw_inst_src0_negate(devinfo, inst) ||
1978            brw_inst_src0_abs(devinfo, inst));
1979       const bool src1_valid = type_sz(brw_inst_src1_type(devinfo, inst)) == 4 ||
1980          brw_inst_src1_reg_file(devinfo, inst) == BRW_IMMEDIATE_VALUE ||
1981          !(brw_inst_src1_negate(devinfo, inst) ||
1982            brw_inst_src1_abs(devinfo, inst));
1983 
1984       ERROR_IF(!brw_reg_type_is_floating_point(exec_type) &&
1985                type_sz(exec_type) == 4 && !(src0_valid && src1_valid),
1986                "When multiplying a DW and any lower precision integer, source "
1987                "modifier is not supported.");
1988    }
1989 
1990    if (brw_inst_opcode(devinfo, inst) == BRW_OPCODE_CMP ||
1991        brw_inst_opcode(devinfo, inst) == BRW_OPCODE_CMPN) {
1992       if (devinfo->ver <= 7) {
1993          /* Page 166 of the Ivy Bridge PRM Volume 4 part 3 (Execution Unit
1994           * ISA) says:
1995           *
1996           *    Accumulator cannot be destination, implicit or explicit. The
1997           *    destination must be a general register or the null register.
1998           *
1999           * Page 77 of the Haswell PRM Volume 2b contains the same text.  The
2000           * 965G PRMs contain similar text.
2001           *
2002           * Page 864 (page 880 of the PDF) of the Broadwell PRM Volume 7 says:
2003           *
2004           *    For the cmp and cmpn instructions, remove the accumulator
2005           *    restrictions.
2006           */
2007          ERROR_IF(brw_inst_dst_reg_file(devinfo, inst) == BRW_ARCHITECTURE_REGISTER_FILE &&
2008                   brw_inst_dst_da_reg_nr(devinfo, inst) != BRW_ARF_NULL,
2009                   "Accumulator cannot be destination, implicit or explicit.");
2010       }
2011 
2012       /* Page 166 of the Ivy Bridge PRM Volume 4 part 3 (Execution Unit ISA)
2013        * says:
2014        *
2015        *    If the destination is the null register, the {Switch} instruction
2016        *    option must be used.
2017        *
2018        * Page 77 of the Haswell PRM Volume 2b contains the same text.
2019        */
2020       if (devinfo->ver == 7) {
2021          ERROR_IF(dst_is_null(devinfo, inst) &&
2022                   brw_inst_thread_control(devinfo, inst) != BRW_THREAD_SWITCH,
2023                   "If the destination is the null register, the {Switch} "
2024                   "instruction option must be used.");
2025       }
2026    }
2027 
2028    if (brw_inst_opcode(devinfo, inst) == BRW_OPCODE_MATH) {
2029       unsigned math_function = brw_inst_math_function(devinfo, inst);
2030       switch (math_function) {
2031       case BRW_MATH_FUNCTION_INT_DIV_QUOTIENT_AND_REMAINDER:
2032       case BRW_MATH_FUNCTION_INT_DIV_QUOTIENT:
2033       case BRW_MATH_FUNCTION_INT_DIV_REMAINDER: {
2034          /* Page 442 of the Broadwell PRM Volume 2a "Extended Math Function" says:
2035           *    INT DIV function does not support source modifiers.
2036           * Bspec 6647 extends it back to Ivy Bridge.
2037           */
2038          bool src0_valid = !brw_inst_src0_negate(devinfo, inst) &&
2039                            !brw_inst_src0_abs(devinfo, inst);
2040          bool src1_valid = !brw_inst_src1_negate(devinfo, inst) &&
2041                            !brw_inst_src1_abs(devinfo, inst);
2042          ERROR_IF(!src0_valid || !src1_valid,
2043                   "INT DIV function does not support source modifiers.");
2044          break;
2045       }
2046       default:
2047          break;
2048       }
2049    }
2050 
2051    if (brw_inst_opcode(devinfo, inst) == BRW_OPCODE_DP4A) {
2052       /* Page 396 (page 412 of the PDF) of the DG1 PRM volume 2a says:
2053        *
2054        *    Only one of src0 or src1 operand may be an the (sic) accumulator
2055        *    register (acc#).
2056        */
2057       ERROR_IF(src0_is_acc(devinfo, inst) && src1_is_acc(devinfo, inst),
2058                "Only one of src0 or src1 operand may be an accumulator "
2059                "register (acc#).");
2060 
2061    }
2062 
2063    return error_msg;
2064 }
2065 
2066 static struct string
send_descriptor_restrictions(const struct intel_device_info * devinfo,const brw_inst * inst)2067 send_descriptor_restrictions(const struct intel_device_info *devinfo,
2068                              const brw_inst *inst)
2069 {
2070    struct string error_msg = { .str = NULL, .len = 0 };
2071 
2072    if (inst_is_split_send(devinfo, inst)) {
2073       /* We can only validate immediate descriptors */
2074       if (brw_inst_send_sel_reg32_desc(devinfo, inst))
2075          return error_msg;
2076    } else if (inst_is_send(devinfo, inst)) {
2077       /* We can only validate immediate descriptors */
2078       if (brw_inst_src1_reg_file(devinfo, inst) != BRW_IMMEDIATE_VALUE)
2079          return error_msg;
2080    } else {
2081       return error_msg;
2082    }
2083 
2084    const uint32_t desc = brw_inst_send_desc(devinfo, inst);
2085 
2086    switch (brw_inst_sfid(devinfo, inst)) {
2087    case GFX12_SFID_TGM:
2088    case GFX12_SFID_SLM:
2089    case GFX12_SFID_UGM:
2090       ERROR_IF(!devinfo->has_lsc, "Platform does not support LSC");
2091 
2092       ERROR_IF(lsc_opcode_has_transpose(lsc_msg_desc_opcode(devinfo, desc)) &&
2093                lsc_msg_desc_transpose(devinfo, desc) &&
2094                brw_inst_exec_size(devinfo, inst) != BRW_EXECUTE_1,
2095                "Transposed vectors are restricted to Exec_Mask = 1.");
2096       break;
2097 
2098    default:
2099       break;
2100    }
2101 
2102    return error_msg;
2103 }
2104 
2105 bool
brw_validate_instruction(const struct intel_device_info * devinfo,const brw_inst * inst,int offset,struct disasm_info * disasm)2106 brw_validate_instruction(const struct intel_device_info *devinfo,
2107                          const brw_inst *inst, int offset,
2108                          struct disasm_info *disasm)
2109 {
2110    struct string error_msg = { .str = NULL, .len = 0 };
2111 
2112    if (is_unsupported_inst(devinfo, inst)) {
2113       ERROR("Instruction not supported on this Gen");
2114    } else {
2115       CHECK(invalid_values);
2116 
2117       if (error_msg.str == NULL) {
2118          CHECK(sources_not_null);
2119          CHECK(send_restrictions);
2120          CHECK(alignment_supported);
2121          CHECK(general_restrictions_based_on_operand_types);
2122          CHECK(general_restrictions_on_region_parameters);
2123          CHECK(special_restrictions_for_mixed_float_mode);
2124          CHECK(region_alignment_rules);
2125          CHECK(vector_immediate_restrictions);
2126          CHECK(special_requirements_for_handling_double_precision_data_types);
2127          CHECK(instruction_restrictions);
2128          CHECK(send_descriptor_restrictions);
2129       }
2130    }
2131 
2132    if (error_msg.str && disasm) {
2133       disasm_insert_error(disasm, offset, error_msg.str);
2134    }
2135    free(error_msg.str);
2136 
2137    return error_msg.len == 0;
2138 }
2139 
2140 bool
brw_validate_instructions(const struct intel_device_info * devinfo,const void * assembly,int start_offset,int end_offset,struct disasm_info * disasm)2141 brw_validate_instructions(const struct intel_device_info *devinfo,
2142                           const void *assembly, int start_offset, int end_offset,
2143                           struct disasm_info *disasm)
2144 {
2145    bool valid = true;
2146 
2147    for (int src_offset = start_offset; src_offset < end_offset;) {
2148       const brw_inst *inst = assembly + src_offset;
2149       bool is_compact = brw_inst_cmpt_control(devinfo, inst);
2150       unsigned inst_size = is_compact ? sizeof(brw_compact_inst)
2151                                       : sizeof(brw_inst);
2152       brw_inst uncompacted;
2153 
2154       if (is_compact) {
2155          brw_compact_inst *compacted = (void *)inst;
2156          brw_uncompact_instruction(devinfo, &uncompacted, compacted);
2157          inst = &uncompacted;
2158       }
2159 
2160       bool v = brw_validate_instruction(devinfo, inst, src_offset, disasm);
2161       valid = valid && v;
2162 
2163       src_offset += inst_size;
2164    }
2165 
2166    return valid;
2167 }
2168