• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /**
2  * @file
3  * Transmission Control Protocol for IP
4  * See also @ref tcp_raw
5  *
6  * @defgroup tcp_raw TCP
7  * @ingroup callbackstyle_api
8  * Transmission Control Protocol for IP\n
9  * @see @ref api
10  *
11  * Common functions for the TCP implementation, such as functions
12  * for manipulating the data structures and the TCP timer functions. TCP functions
13  * related to input and output is found in tcp_in.c and tcp_out.c respectively.\n
14  *
15  * TCP connection setup
16  * --------------------
17  * The functions used for setting up connections is similar to that of
18  * the sequential API and of the BSD socket API. A new TCP connection
19  * identifier (i.e., a protocol control block - PCB) is created with the
20  * tcp_new() function. This PCB can then be either set to listen for new
21  * incoming connections or be explicitly connected to another host.
22  * - tcp_new()
23  * - tcp_bind()
24  * - tcp_listen() and tcp_listen_with_backlog()
25  * - tcp_accept()
26  * - tcp_connect()
27  *
28  * Sending TCP data
29  * ----------------
30  * TCP data is sent by enqueueing the data with a call to tcp_write() and
31  * triggering to send by calling tcp_output(). When the data is successfully
32  * transmitted to the remote host, the application will be notified with a
33  * call to a specified callback function.
34  * - tcp_write()
35  * - tcp_output()
36  * - tcp_sent()
37  *
38  * Receiving TCP data
39  * ------------------
40  * TCP data reception is callback based - an application specified
41  * callback function is called when new data arrives. When the
42  * application has taken the data, it has to call the tcp_recved()
43  * function to indicate that TCP can advertise increase the receive
44  * window.
45  * - tcp_recv()
46  * - tcp_recved()
47  *
48  * Application polling
49  * -------------------
50  * When a connection is idle (i.e., no data is either transmitted or
51  * received), lwIP will repeatedly poll the application by calling a
52  * specified callback function. This can be used either as a watchdog
53  * timer for killing connections that have stayed idle for too long, or
54  * as a method of waiting for memory to become available. For instance,
55  * if a call to tcp_write() has failed because memory wasn't available,
56  * the application may use the polling functionality to call tcp_write()
57  * again when the connection has been idle for a while.
58  * - tcp_poll()
59  *
60  * Closing and aborting connections
61  * --------------------------------
62  * - tcp_close()
63  * - tcp_abort()
64  * - tcp_err()
65  *
66  */
67 
68 /*
69  * Copyright (c) 2001-2004 Swedish Institute of Computer Science.
70  * All rights reserved.
71  *
72  * Redistribution and use in source and binary forms, with or without modification,
73  * are permitted provided that the following conditions are met:
74  *
75  * 1. Redistributions of source code must retain the above copyright notice,
76  *    this list of conditions and the following disclaimer.
77  * 2. Redistributions in binary form must reproduce the above copyright notice,
78  *    this list of conditions and the following disclaimer in the documentation
79  *    and/or other materials provided with the distribution.
80  * 3. The name of the author may not be used to endorse or promote products
81  *    derived from this software without specific prior written permission.
82  *
83  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
84  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
85  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
86  * SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
87  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
88  * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
89  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
90  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
91  * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
92  * OF SUCH DAMAGE.
93  *
94  * This file is part of the lwIP TCP/IP stack.
95  *
96  * Author: Adam Dunkels <adam@sics.se>
97  *
98  */
99 
100 #include "lwip/opt.h"
101 
102 #if LWIP_TCP /* don't build if not configured for use in lwipopts.h */
103 
104 #include "lwip/def.h"
105 #include "lwip/mem.h"
106 #include "lwip/memp.h"
107 #include "lwip/tcp.h"
108 #include "lwip/priv/tcp_priv.h"
109 #include "lwip/debug.h"
110 #include "lwip/stats.h"
111 #include "lwip/ip6.h"
112 #include "lwip/ip6_addr.h"
113 #include "lwip/nd6.h"
114 
115 #include <string.h>
116 
117 #ifdef LWIP_HOOK_FILENAME
118 #include LWIP_HOOK_FILENAME
119 #endif
120 
121 #ifndef TCP_LOCAL_PORT_RANGE_START
122 /* From http://www.iana.org/assignments/port-numbers:
123    "The Dynamic and/or Private Ports are those from 49152 through 65535" */
124 #define TCP_LOCAL_PORT_RANGE_START        0xc000
125 #define TCP_LOCAL_PORT_RANGE_END          0xffff
126 #define TCP_ENSURE_LOCAL_PORT_RANGE(port) ((u16_t)(((port) & (u16_t)~TCP_LOCAL_PORT_RANGE_START) + TCP_LOCAL_PORT_RANGE_START))
127 #endif
128 
129 #if LWIP_TCP_KEEPALIVE
130 #define TCP_KEEP_DUR(pcb)   ((pcb)->keep_cnt * (pcb)->keep_intvl)
131 #define TCP_KEEP_INTVL(pcb) ((pcb)->keep_intvl)
132 #else /* LWIP_TCP_KEEPALIVE */
133 #define TCP_KEEP_DUR(pcb)   TCP_MAXIDLE
134 #define TCP_KEEP_INTVL(pcb) TCP_KEEPINTVL_DEFAULT
135 #endif /* LWIP_TCP_KEEPALIVE */
136 
137 /* As initial send MSS, we use TCP_MSS but limit it to 536. */
138 #if TCP_MSS > 536
139 #define INITIAL_MSS 536
140 #else
141 #define INITIAL_MSS TCP_MSS
142 #endif
143 
144 static const char *const tcp_state_str[] = {
145   "CLOSED",
146   "LISTEN",
147   "SYN_SENT",
148   "SYN_RCVD",
149   "ESTABLISHED",
150   "FIN_WAIT_1",
151   "FIN_WAIT_2",
152   "CLOSE_WAIT",
153   "CLOSING",
154   "LAST_ACK",
155   "TIME_WAIT"
156 };
157 
158 /* last local TCP port */
159 static volatile u16_t tcp_port = TCP_LOCAL_PORT_RANGE_START;
160 
161 /* Incremented every coarse grained timer shot (typically every 500 ms). */
162 u32_t tcp_ticks;
163 static const u8_t tcp_backoff[13] =
164 { 1, 2, 3, 4, 5, 6, 7, 7, 7, 7, 7, 7, 7};
165 /* Times per slowtmr hits */
166 static const u8_t tcp_persist_backoff[7] = { 3, 6, 12, 24, 48, 96, 120 };
167 
168 /* The TCP PCB lists. */
169 
170 /** List of all TCP PCBs bound but not yet (connected || listening) */
171 struct tcp_pcb *tcp_bound_pcbs;
172 /** List of all TCP PCBs in LISTEN state */
173 union tcp_listen_pcbs_t tcp_listen_pcbs;
174 /** List of all TCP PCBs that are in a state in which
175  * they accept or send data. */
176 struct tcp_pcb *tcp_active_pcbs;
177 /** List of all TCP PCBs in TIME-WAIT state */
178 struct tcp_pcb *tcp_tw_pcbs;
179 
180 /** An array with all (non-temporary) PCB lists, mainly used for smaller code size */
181 struct tcp_pcb **const tcp_pcb_lists[] = {&tcp_listen_pcbs.pcbs, &tcp_bound_pcbs,
182          &tcp_active_pcbs, &tcp_tw_pcbs
183 };
184 
185 u8_t tcp_active_pcbs_changed;
186 
187 /** Timer counter to handle calling slow-timer from tcp_tmr() */
188 static u8_t tcp_timer;
189 static u8_t tcp_timer_ctr;
190 static u16_t tcp_new_port(void);
191 
192 static err_t tcp_close_shutdown_fin(struct tcp_pcb *pcb);
193 #if LWIP_TCP_PCB_NUM_EXT_ARGS
194 static void tcp_ext_arg_invoke_callbacks_destroyed(struct tcp_pcb_ext_args *ext_args);
195 #endif
196 
197 /**
198  * Initialize this module.
199  */
200 void
tcp_init(void)201 tcp_init(void)
202 {
203 #ifdef LWIP_RAND
204   tcp_port = TCP_ENSURE_LOCAL_PORT_RANGE(LWIP_RAND());
205 #endif /* LWIP_RAND */
206 }
207 
208 /** Free a tcp pcb */
209 void
tcp_free(struct tcp_pcb * pcb)210 tcp_free(struct tcp_pcb *pcb)
211 {
212   LWIP_ASSERT("tcp_free: LISTEN", pcb->state != LISTEN);
213 #if LWIP_TCP_PCB_NUM_EXT_ARGS
214   tcp_ext_arg_invoke_callbacks_destroyed(pcb->ext_args);
215 #endif
216   memp_free(MEMP_TCP_PCB, pcb);
217 }
218 
219 /** Free a tcp listen pcb */
220 static void
tcp_free_listen(struct tcp_pcb * pcb)221 tcp_free_listen(struct tcp_pcb *pcb)
222 {
223   LWIP_ASSERT("tcp_free_listen: !LISTEN", pcb->state != LISTEN);
224 #if LWIP_TCP_PCB_NUM_EXT_ARGS
225   tcp_ext_arg_invoke_callbacks_destroyed(pcb->ext_args);
226 #endif
227   memp_free(MEMP_TCP_PCB_LISTEN, pcb);
228 }
229 
230 /**
231  * Called periodically to dispatch TCP timers.
232  */
233 void
tcp_tmr(void)234 tcp_tmr(void)
235 {
236   /* Call tcp_fasttmr() every 250 ms */
237   tcp_fasttmr();
238 
239   if (++tcp_timer & 1) {
240     /* Call tcp_slowtmr() every 500 ms, i.e., every other timer
241        tcp_tmr() is called. */
242     tcp_slowtmr();
243   }
244 }
245 
246 #if LWIP_CALLBACK_API || TCP_LISTEN_BACKLOG
247 /** Called when a listen pcb is closed. Iterates one pcb list and removes the
248  * closed listener pcb from pcb->listener if matching.
249  */
250 static void
tcp_remove_listener(struct tcp_pcb * list,struct tcp_pcb_listen * lpcb)251 tcp_remove_listener(struct tcp_pcb *list, struct tcp_pcb_listen *lpcb)
252 {
253   struct tcp_pcb *pcb;
254 
255   LWIP_ASSERT("tcp_remove_listener: invalid listener", lpcb != NULL);
256 
257   for (pcb = list; pcb != NULL; pcb = pcb->next) {
258     if (pcb->listener == lpcb) {
259       pcb->listener = NULL;
260     }
261   }
262 }
263 #endif
264 
265 /** Called when a listen pcb is closed. Iterates all pcb lists and removes the
266  * closed listener pcb from pcb->listener if matching.
267  */
268 static void
tcp_listen_closed(struct tcp_pcb * pcb)269 tcp_listen_closed(struct tcp_pcb *pcb)
270 {
271 #if LWIP_CALLBACK_API || TCP_LISTEN_BACKLOG
272   size_t i;
273   LWIP_ASSERT("pcb != NULL", pcb != NULL);
274   LWIP_ASSERT("pcb->state == LISTEN", pcb->state == LISTEN);
275   for (i = 1; i < LWIP_ARRAYSIZE(tcp_pcb_lists); i++) {
276     tcp_remove_listener(*tcp_pcb_lists[i], (struct tcp_pcb_listen *)pcb);
277   }
278 #endif
279   LWIP_UNUSED_ARG(pcb);
280 }
281 
282 #if TCP_LISTEN_BACKLOG
283 /** @ingroup tcp_raw
284  * Delay accepting a connection in respect to the listen backlog:
285  * the number of outstanding connections is increased until
286  * tcp_backlog_accepted() is called.
287  *
288  * ATTENTION: the caller is responsible for calling tcp_backlog_accepted()
289  * or else the backlog feature will get out of sync!
290  *
291  * @param pcb the connection pcb which is not fully accepted yet
292  */
293 void
tcp_backlog_delayed(struct tcp_pcb * pcb)294 tcp_backlog_delayed(struct tcp_pcb *pcb)
295 {
296   LWIP_ASSERT("pcb != NULL", pcb != NULL);
297   LWIP_ASSERT_CORE_LOCKED();
298   if ((pcb->flags & TF_BACKLOGPEND) == 0) {
299     if (pcb->listener != NULL) {
300       pcb->listener->accepts_pending++;
301       LWIP_ASSERT("accepts_pending != 0", pcb->listener->accepts_pending != 0);
302       tcp_set_flags(pcb, TF_BACKLOGPEND);
303     }
304   }
305 }
306 
307 /** @ingroup tcp_raw
308  * A delayed-accept a connection is accepted (or closed/aborted): decreases
309  * the number of outstanding connections after calling tcp_backlog_delayed().
310  *
311  * ATTENTION: the caller is responsible for calling tcp_backlog_accepted()
312  * or else the backlog feature will get out of sync!
313  *
314  * @param pcb the connection pcb which is now fully accepted (or closed/aborted)
315  */
316 void
tcp_backlog_accepted(struct tcp_pcb * pcb)317 tcp_backlog_accepted(struct tcp_pcb *pcb)
318 {
319   LWIP_ASSERT("pcb != NULL", pcb != NULL);
320   LWIP_ASSERT_CORE_LOCKED();
321   if ((pcb->flags & TF_BACKLOGPEND) != 0) {
322     if (pcb->listener != NULL) {
323       LWIP_ASSERT("accepts_pending != 0", pcb->listener->accepts_pending != 0);
324       pcb->listener->accepts_pending--;
325       tcp_clear_flags(pcb, TF_BACKLOGPEND);
326     }
327   }
328 }
329 #endif /* TCP_LISTEN_BACKLOG */
330 
331 /**
332  * Closes the TX side of a connection held by the PCB.
333  * For tcp_close(), a RST is sent if the application didn't receive all data
334  * (tcp_recved() not called for all data passed to recv callback).
335  *
336  * Listening pcbs are freed and may not be referenced any more.
337  * Connection pcbs are freed if not yet connected and may not be referenced
338  * any more. If a connection is established (at least SYN received or in
339  * a closing state), the connection is closed, and put in a closing state.
340  * The pcb is then automatically freed in tcp_slowtmr(). It is therefore
341  * unsafe to reference it.
342  *
343  * @param pcb the tcp_pcb to close
344  * @return ERR_OK if connection has been closed
345  *         another err_t if closing failed and pcb is not freed
346  */
347 static err_t
tcp_close_shutdown(struct tcp_pcb * pcb,u8_t rst_on_unacked_data)348 tcp_close_shutdown(struct tcp_pcb *pcb, u8_t rst_on_unacked_data)
349 {
350   LWIP_ASSERT("tcp_close_shutdown: invalid pcb", pcb != NULL);
351 
352   if (rst_on_unacked_data && ((pcb->state == ESTABLISHED) || (pcb->state == CLOSE_WAIT))) {
353     if ((pcb->refused_data != NULL) || (pcb->rcv_wnd != TCP_WND_MAX(pcb))) {
354       /* Not all data received by application, send RST to tell the remote
355          side about this. */
356       LWIP_ASSERT("pcb->flags & TF_RXCLOSED", pcb->flags & TF_RXCLOSED);
357 
358       /* don't call tcp_abort here: we must not deallocate the pcb since
359          that might not be expected when calling tcp_close */
360       tcp_rst(pcb, pcb->snd_nxt, pcb->rcv_nxt, &pcb->local_ip, &pcb->remote_ip,
361               pcb->local_port, pcb->remote_port);
362 
363       tcp_pcb_purge(pcb);
364       TCP_RMV_ACTIVE(pcb);
365       /* Deallocate the pcb since we already sent a RST for it */
366       if (tcp_input_pcb == pcb) {
367         /* prevent using a deallocated pcb: free it from tcp_input later */
368         tcp_trigger_input_pcb_close();
369       } else {
370         tcp_free(pcb);
371       }
372       return ERR_OK;
373     }
374   }
375 
376   /* - states which free the pcb are handled here,
377      - states which send FIN and change state are handled in tcp_close_shutdown_fin() */
378   switch (pcb->state) {
379     case CLOSED:
380       /* Closing a pcb in the CLOSED state might seem erroneous,
381        * however, it is in this state once allocated and as yet unused
382        * and the user needs some way to free it should the need arise.
383        * Calling tcp_close() with a pcb that has already been closed, (i.e. twice)
384        * or for a pcb that has been used and then entered the CLOSED state
385        * is erroneous, but this should never happen as the pcb has in those cases
386        * been freed, and so any remaining handles are bogus. */
387       if (pcb->local_port != 0) {
388         TCP_RMV(&tcp_bound_pcbs, pcb);
389       }
390       tcp_free(pcb);
391       break;
392     case LISTEN:
393       tcp_listen_closed(pcb);
394       tcp_pcb_remove(&tcp_listen_pcbs.pcbs, pcb);
395       tcp_free_listen(pcb);
396       break;
397     case SYN_SENT:
398       TCP_PCB_REMOVE_ACTIVE(pcb);
399       tcp_free(pcb);
400       MIB2_STATS_INC(mib2.tcpattemptfails);
401       break;
402     default:
403       return tcp_close_shutdown_fin(pcb);
404   }
405   return ERR_OK;
406 }
407 
408 static err_t
tcp_close_shutdown_fin(struct tcp_pcb * pcb)409 tcp_close_shutdown_fin(struct tcp_pcb *pcb)
410 {
411   err_t err;
412   LWIP_ASSERT("pcb != NULL", pcb != NULL);
413 
414   switch (pcb->state) {
415     case SYN_RCVD:
416       err = tcp_send_fin(pcb);
417       if (err == ERR_OK) {
418         tcp_backlog_accepted(pcb);
419         MIB2_STATS_INC(mib2.tcpattemptfails);
420         pcb->state = FIN_WAIT_1;
421       }
422       break;
423     case ESTABLISHED:
424       err = tcp_send_fin(pcb);
425       if (err == ERR_OK) {
426         MIB2_STATS_INC(mib2.tcpestabresets);
427         pcb->state = FIN_WAIT_1;
428       }
429       break;
430     case CLOSE_WAIT:
431       err = tcp_send_fin(pcb);
432       if (err == ERR_OK) {
433         MIB2_STATS_INC(mib2.tcpestabresets);
434         pcb->state = LAST_ACK;
435       }
436       break;
437     default:
438       /* Has already been closed, do nothing. */
439       return ERR_OK;
440   }
441 
442   if (err == ERR_OK) {
443     /* To ensure all data has been sent when tcp_close returns, we have
444        to make sure tcp_output doesn't fail.
445        Since we don't really have to ensure all data has been sent when tcp_close
446        returns (unsent data is sent from tcp timer functions, also), we don't care
447        for the return value of tcp_output for now. */
448     tcp_output(pcb);
449   } else if (err == ERR_MEM) {
450     /* Mark this pcb for closing. Closing is retried from tcp_tmr. */
451     tcp_set_flags(pcb, TF_CLOSEPEND);
452     /* We have to return ERR_OK from here to indicate to the callers that this
453        pcb should not be used any more as it will be freed soon via tcp_tmr.
454        This is OK here since sending FIN does not guarantee a time frime for
455        actually freeing the pcb, either (it is left in closure states for
456        remote ACK or timeout) */
457     return ERR_OK;
458   }
459   return err;
460 }
461 
462 /**
463  * @ingroup tcp_raw
464  * Closes the connection held by the PCB.
465  *
466  * Listening pcbs are freed and may not be referenced any more.
467  * Connection pcbs are freed if not yet connected and may not be referenced
468  * any more. If a connection is established (at least SYN received or in
469  * a closing state), the connection is closed, and put in a closing state.
470  * The pcb is then automatically freed in tcp_slowtmr(). It is therefore
471  * unsafe to reference it (unless an error is returned).
472  *
473  * The function may return ERR_MEM if no memory
474  * was available for closing the connection. If so, the application
475  * should wait and try again either by using the acknowledgment
476  * callback or the polling functionality. If the close succeeds, the
477  * function returns ERR_OK.
478  *
479  * @param pcb the tcp_pcb to close
480  * @return ERR_OK if connection has been closed
481  *         another err_t if closing failed and pcb is not freed
482  */
483 err_t
tcp_close(struct tcp_pcb * pcb)484 tcp_close(struct tcp_pcb *pcb)
485 {
486   LWIP_ASSERT_CORE_LOCKED();
487 
488   LWIP_ERROR("tcp_close: invalid pcb", pcb != NULL, return ERR_ARG);
489   LWIP_DEBUGF(TCP_DEBUG, ("tcp_close: closing in "));
490 
491   tcp_debug_print_state(pcb->state);
492 
493   if (pcb->state != LISTEN) {
494     /* Set a flag not to receive any more data... */
495     tcp_set_flags(pcb, TF_RXCLOSED);
496   }
497   /* ... and close */
498   return tcp_close_shutdown(pcb, 1);
499 }
500 
501 /**
502  * @ingroup tcp_raw
503  * Causes all or part of a full-duplex connection of this PCB to be shut down.
504  * This doesn't deallocate the PCB unless shutting down both sides!
505  * Shutting down both sides is the same as calling tcp_close, so if it succeds
506  * (i.e. returns ER_OK), the PCB must not be referenced any more!
507  *
508  * @param pcb PCB to shutdown
509  * @param shut_rx shut down receive side if this is != 0
510  * @param shut_tx shut down send side if this is != 0
511  * @return ERR_OK if shutdown succeeded (or the PCB has already been shut down)
512  *         another err_t on error.
513  */
514 err_t
tcp_shutdown(struct tcp_pcb * pcb,int shut_rx,int shut_tx)515 tcp_shutdown(struct tcp_pcb *pcb, int shut_rx, int shut_tx)
516 {
517   LWIP_ASSERT_CORE_LOCKED();
518 
519   LWIP_ERROR("tcp_shutdown: invalid pcb", pcb != NULL, return ERR_ARG);
520 
521   if (pcb->state == LISTEN) {
522     return ERR_CONN;
523   }
524   if (shut_rx) {
525     /* shut down the receive side: set a flag not to receive any more data... */
526     tcp_set_flags(pcb, TF_RXCLOSED);
527     if (shut_tx) {
528       /* shutting down the tx AND rx side is the same as closing for the raw API */
529       return tcp_close_shutdown(pcb, 1);
530     }
531     /* ... and free buffered data */
532     if (pcb->refused_data != NULL) {
533       pbuf_free(pcb->refused_data);
534       pcb->refused_data = NULL;
535     }
536   }
537   if (shut_tx) {
538     /* This can't happen twice since if it succeeds, the pcb's state is changed.
539        Only close in these states as the others directly deallocate the PCB */
540     switch (pcb->state) {
541       case SYN_RCVD:
542       case ESTABLISHED:
543       case CLOSE_WAIT:
544         return tcp_close_shutdown(pcb, (u8_t)shut_rx);
545       default:
546         /* Not (yet?) connected, cannot shutdown the TX side as that would bring us
547           into CLOSED state, where the PCB is deallocated. */
548         return ERR_CONN;
549     }
550   }
551   return ERR_OK;
552 }
553 
554 /**
555  * Abandons a connection and optionally sends a RST to the remote
556  * host.  Deletes the local protocol control block. This is done when
557  * a connection is killed because of shortage of memory.
558  *
559  * @param pcb the tcp_pcb to abort
560  * @param reset boolean to indicate whether a reset should be sent
561  */
562 void
tcp_abandon(struct tcp_pcb * pcb,int reset)563 tcp_abandon(struct tcp_pcb *pcb, int reset)
564 {
565   u32_t seqno, ackno;
566 #if LWIP_CALLBACK_API
567   tcp_err_fn errf;
568 #endif /* LWIP_CALLBACK_API */
569   void *errf_arg;
570 
571   LWIP_ASSERT_CORE_LOCKED();
572 
573   LWIP_ERROR("tcp_abandon: invalid pcb", pcb != NULL, return);
574 
575   /* pcb->state LISTEN not allowed here */
576   LWIP_ASSERT("don't call tcp_abort/tcp_abandon for listen-pcbs",
577               pcb->state != LISTEN);
578   /* Figure out on which TCP PCB list we are, and remove us. If we
579      are in an active state, call the receive function associated with
580      the PCB with a NULL argument, and send an RST to the remote end. */
581   if (pcb->state == TIME_WAIT) {
582     tcp_pcb_remove(&tcp_tw_pcbs, pcb);
583     tcp_free(pcb);
584   } else {
585     int send_rst = 0;
586     u16_t local_port = 0;
587     enum tcp_state last_state;
588     seqno = pcb->snd_nxt;
589     ackno = pcb->rcv_nxt;
590 #if LWIP_CALLBACK_API
591     errf = pcb->errf;
592 #endif /* LWIP_CALLBACK_API */
593     errf_arg = pcb->callback_arg;
594     if (pcb->state == CLOSED) {
595       if (pcb->local_port != 0) {
596         /* bound, not yet opened */
597         TCP_RMV(&tcp_bound_pcbs, pcb);
598       }
599     } else {
600       send_rst = reset;
601       local_port = pcb->local_port;
602       TCP_PCB_REMOVE_ACTIVE(pcb);
603     }
604     if (pcb->unacked != NULL) {
605       tcp_segs_free(pcb->unacked);
606     }
607     if (pcb->unsent != NULL) {
608       tcp_segs_free(pcb->unsent);
609     }
610 #if TCP_QUEUE_OOSEQ
611     if (pcb->ooseq != NULL) {
612       tcp_segs_free(pcb->ooseq);
613     }
614 #endif /* TCP_QUEUE_OOSEQ */
615     tcp_backlog_accepted(pcb);
616     if (send_rst) {
617       LWIP_DEBUGF(TCP_RST_DEBUG, ("tcp_abandon: sending RST\n"));
618       tcp_rst(pcb, seqno, ackno, &pcb->local_ip, &pcb->remote_ip, local_port, pcb->remote_port);
619     }
620     last_state = pcb->state;
621     tcp_free(pcb);
622     TCP_EVENT_ERR(last_state, errf, errf_arg, ERR_ABRT);
623   }
624 }
625 
626 /**
627  * @ingroup tcp_raw
628  * Aborts the connection by sending a RST (reset) segment to the remote
629  * host. The pcb is deallocated. This function never fails.
630  *
631  * ATTENTION: When calling this from one of the TCP callbacks, make
632  * sure you always return ERR_ABRT (and never return ERR_ABRT otherwise
633  * or you will risk accessing deallocated memory or memory leaks!
634  *
635  * @param pcb the tcp pcb to abort
636  */
637 void
tcp_abort(struct tcp_pcb * pcb)638 tcp_abort(struct tcp_pcb *pcb)
639 {
640   tcp_abandon(pcb, 1);
641 }
642 
643 /**
644  * @ingroup tcp_raw
645  * Binds the connection to a local port number and IP address. If the
646  * IP address is not given (i.e., ipaddr == IP_ANY_TYPE), the connection is
647  * bound to all local IP addresses.
648  * If another connection is bound to the same port, the function will
649  * return ERR_USE, otherwise ERR_OK is returned.
650  * @see MEMP_NUM_TCP_PCB_LISTEN and MEMP_NUM_TCP_PCB
651  *
652  * @param pcb the tcp_pcb to bind (no check is done whether this pcb is
653  *        already bound!)
654  * @param ipaddr the local ip address to bind to (use IPx_ADDR_ANY to bind
655  *        to any local address
656  * @param port the local port to bind to
657  * @return ERR_USE if the port is already in use
658  *         ERR_VAL if bind failed because the PCB is not in a valid state
659  *         ERR_OK if bound
660  */
661 err_t
tcp_bind(struct tcp_pcb * pcb,const ip_addr_t * ipaddr,u16_t port)662 tcp_bind(struct tcp_pcb *pcb, const ip_addr_t *ipaddr, u16_t port)
663 {
664   int i;
665   int max_pcb_list = NUM_TCP_PCB_LISTS;
666   struct tcp_pcb *cpcb;
667 #if LWIP_IPV6 && LWIP_IPV6_SCOPES
668   ip_addr_t zoned_ipaddr;
669 #endif /* LWIP_IPV6 && LWIP_IPV6_SCOPES */
670 
671   LWIP_ASSERT_CORE_LOCKED();
672 
673 #if LWIP_IPV4
674   /* Don't propagate NULL pointer (IPv4 ANY) to subsequent functions */
675   if (ipaddr == NULL) {
676     ipaddr = IP4_ADDR_ANY;
677   }
678 #else /* LWIP_IPV4 */
679   LWIP_ERROR("tcp_bind: invalid ipaddr", ipaddr != NULL, return ERR_ARG);
680 #endif /* LWIP_IPV4 */
681 
682   LWIP_ERROR("tcp_bind: invalid pcb", pcb != NULL, return ERR_ARG);
683 
684   LWIP_ERROR("tcp_bind: can only bind in state CLOSED", pcb->state == CLOSED, return ERR_VAL);
685 
686 #if SO_REUSE
687   /* Unless the REUSEADDR flag is set,
688      we have to check the pcbs in TIME-WAIT state, also.
689      We do not dump TIME_WAIT pcb's; they can still be matched by incoming
690      packets using both local and remote IP addresses and ports to distinguish.
691    */
692   if (ip_get_option(pcb, SOF_REUSEADDR)) {
693     max_pcb_list = NUM_TCP_PCB_LISTS_NO_TIME_WAIT;
694   }
695 #endif /* SO_REUSE */
696 
697 #if LWIP_IPV6 && LWIP_IPV6_SCOPES
698   /* If the given IP address should have a zone but doesn't, assign one now.
699    * This is legacy support: scope-aware callers should always provide properly
700    * zoned source addresses. Do the zone selection before the address-in-use
701    * check below; as such we have to make a temporary copy of the address. */
702   if (IP_IS_V6(ipaddr) && ip6_addr_lacks_zone(ip_2_ip6(ipaddr), IP6_UNICAST)) {
703     ip_addr_copy(zoned_ipaddr, *ipaddr);
704     ip6_addr_select_zone(ip_2_ip6(&zoned_ipaddr), ip_2_ip6(&zoned_ipaddr));
705     ipaddr = &zoned_ipaddr;
706   }
707 #endif /* LWIP_IPV6 && LWIP_IPV6_SCOPES */
708 
709   if (port == 0) {
710     port = tcp_new_port();
711     if (port == 0) {
712       return ERR_BUF;
713     }
714   } else {
715     /* Check if the address already is in use (on all lists) */
716     for (i = 0; i < max_pcb_list; i++) {
717       for (cpcb = *tcp_pcb_lists[i]; cpcb != NULL; cpcb = cpcb->next) {
718         if (cpcb->local_port == port) {
719 #if SO_REUSE
720           /* Omit checking for the same port if both pcbs have REUSEADDR set.
721              For SO_REUSEADDR, the duplicate-check for a 5-tuple is done in
722              tcp_connect. */
723           if (!ip_get_option(pcb, SOF_REUSEADDR) ||
724               !ip_get_option(cpcb, SOF_REUSEADDR))
725 #endif /* SO_REUSE */
726           {
727             /* @todo: check accept_any_ip_version */
728             if ((IP_IS_V6(ipaddr) == IP_IS_V6_VAL(cpcb->local_ip)) &&
729                 (ip_addr_isany(&cpcb->local_ip) ||
730                  ip_addr_isany(ipaddr) ||
731                  ip_addr_cmp(&cpcb->local_ip, ipaddr))) {
732               return ERR_USE;
733             }
734           }
735         }
736       }
737     }
738   }
739 
740   if (!ip_addr_isany(ipaddr)
741 #if LWIP_IPV4 && LWIP_IPV6
742       || (IP_GET_TYPE(ipaddr) != IP_GET_TYPE(&pcb->local_ip))
743 #endif /* LWIP_IPV4 && LWIP_IPV6 */
744      ) {
745     ip_addr_set(&pcb->local_ip, ipaddr);
746   }
747   pcb->local_port = port;
748   TCP_REG(&tcp_bound_pcbs, pcb);
749   LWIP_DEBUGF(TCP_DEBUG, ("tcp_bind: bind to port %"U16_F"\n", port));
750   return ERR_OK;
751 }
752 
753 /**
754  * @ingroup tcp_raw
755  * Binds the connection to a netif and IP address.
756  * After calling this function, all packets received via this PCB
757  * are guaranteed to have come in via the specified netif, and all
758  * outgoing packets will go out via the specified netif.
759  *
760  * @param pcb the tcp_pcb to bind.
761  * @param netif the netif to bind to. Can be NULL.
762  */
763 void
tcp_bind_netif(struct tcp_pcb * pcb,const struct netif * netif)764 tcp_bind_netif(struct tcp_pcb *pcb, const struct netif *netif)
765 {
766   LWIP_ASSERT_CORE_LOCKED();
767   if (netif != NULL) {
768     pcb->netif_idx = netif_get_index(netif);
769   } else {
770     pcb->netif_idx = NETIF_NO_INDEX;
771   }
772 }
773 
774 #if LWIP_CALLBACK_API
775 /**
776  * Default accept callback if no accept callback is specified by the user.
777  */
778 static err_t
tcp_accept_null(void * arg,struct tcp_pcb * pcb,err_t err)779 tcp_accept_null(void *arg, struct tcp_pcb *pcb, err_t err)
780 {
781   LWIP_UNUSED_ARG(arg);
782   LWIP_UNUSED_ARG(err);
783 
784   LWIP_ASSERT("tcp_accept_null: invalid pcb", pcb != NULL);
785 
786   tcp_abort(pcb);
787 
788   return ERR_ABRT;
789 }
790 #endif /* LWIP_CALLBACK_API */
791 
792 /**
793  * @ingroup tcp_raw
794  * Set the state of the connection to be LISTEN, which means that it
795  * is able to accept incoming connections. The protocol control block
796  * is reallocated in order to consume less memory. Setting the
797  * connection to LISTEN is an irreversible process.
798  * When an incoming connection is accepted, the function specified with
799  * the tcp_accept() function will be called. The pcb has to be bound
800  * to a local port with the tcp_bind() function.
801  *
802  * The tcp_listen() function returns a new connection identifier, and
803  * the one passed as an argument to the function will be
804  * deallocated. The reason for this behavior is that less memory is
805  * needed for a connection that is listening, so tcp_listen() will
806  * reclaim the memory needed for the original connection and allocate a
807  * new smaller memory block for the listening connection.
808  *
809  * tcp_listen() may return NULL if no memory was available for the
810  * listening connection. If so, the memory associated with the pcb
811  * passed as an argument to tcp_listen() will not be deallocated.
812  *
813  * The backlog limits the number of outstanding connections
814  * in the listen queue to the value specified by the backlog argument.
815  * To use it, your need to set TCP_LISTEN_BACKLOG=1 in your lwipopts.h.
816  *
817  * @param pcb the original tcp_pcb
818  * @param backlog the incoming connections queue limit
819  * @return tcp_pcb used for listening, consumes less memory.
820  *
821  * @note The original tcp_pcb is freed. This function therefore has to be
822  *       called like this:
823  *             tpcb = tcp_listen_with_backlog(tpcb, backlog);
824  */
825 struct tcp_pcb *
tcp_listen_with_backlog(struct tcp_pcb * pcb,u8_t backlog)826 tcp_listen_with_backlog(struct tcp_pcb *pcb, u8_t backlog)
827 {
828   LWIP_ASSERT_CORE_LOCKED();
829   return tcp_listen_with_backlog_and_err(pcb, backlog, NULL);
830 }
831 
832 /**
833  * @ingroup tcp_raw
834  * Set the state of the connection to be LISTEN, which means that it
835  * is able to accept incoming connections. The protocol control block
836  * is reallocated in order to consume less memory. Setting the
837  * connection to LISTEN is an irreversible process.
838  *
839  * @param pcb the original tcp_pcb
840  * @param backlog the incoming connections queue limit
841  * @param err when NULL is returned, this contains the error reason
842  * @return tcp_pcb used for listening, consumes less memory.
843  *
844  * @note The original tcp_pcb is freed. This function therefore has to be
845  *       called like this:
846  *             tpcb = tcp_listen_with_backlog_and_err(tpcb, backlog, &err);
847  */
848 struct tcp_pcb *
tcp_listen_with_backlog_and_err(struct tcp_pcb * pcb,u8_t backlog,err_t * err)849 tcp_listen_with_backlog_and_err(struct tcp_pcb *pcb, u8_t backlog, err_t *err)
850 {
851   struct tcp_pcb_listen *lpcb = NULL;
852   err_t res;
853 
854   LWIP_UNUSED_ARG(backlog);
855 
856   LWIP_ASSERT_CORE_LOCKED();
857 
858   LWIP_ERROR("tcp_listen_with_backlog_and_err: invalid pcb", pcb != NULL, res = ERR_ARG; goto done);
859   LWIP_ERROR("tcp_listen_with_backlog_and_err: pcb already connected", pcb->state == CLOSED, res = ERR_CLSD; goto done);
860 
861   /* already listening? */
862   if (pcb->state == LISTEN) {
863     lpcb = (struct tcp_pcb_listen *)pcb;
864     res = ERR_ALREADY;
865     goto done;
866   }
867 #if SO_REUSE
868   if (ip_get_option(pcb, SOF_REUSEADDR)) {
869     /* Since SOF_REUSEADDR allows reusing a local address before the pcb's usage
870        is declared (listen-/connection-pcb), we have to make sure now that
871        this port is only used once for every local IP. */
872     for (lpcb = tcp_listen_pcbs.listen_pcbs; lpcb != NULL; lpcb = lpcb->next) {
873       if ((lpcb->local_port == pcb->local_port) &&
874           ip_addr_cmp(&lpcb->local_ip, &pcb->local_ip)) {
875         /* this address/port is already used */
876         lpcb = NULL;
877         res = ERR_USE;
878         goto done;
879       }
880     }
881   }
882 #endif /* SO_REUSE */
883   lpcb = (struct tcp_pcb_listen *)memp_malloc(MEMP_TCP_PCB_LISTEN);
884   if (lpcb == NULL) {
885     res = ERR_MEM;
886     goto done;
887   }
888   lpcb->callback_arg = pcb->callback_arg;
889   lpcb->local_port = pcb->local_port;
890   lpcb->state = LISTEN;
891   lpcb->prio = pcb->prio;
892   lpcb->so_options = pcb->so_options;
893   lpcb->netif_idx = pcb->netif_idx;
894   lpcb->ttl = pcb->ttl;
895   lpcb->tos = pcb->tos;
896 #if LWIP_IPV4 && LWIP_IPV6
897   IP_SET_TYPE_VAL(lpcb->remote_ip, pcb->local_ip.type);
898 #endif /* LWIP_IPV4 && LWIP_IPV6 */
899   ip_addr_copy(lpcb->local_ip, pcb->local_ip);
900   if (pcb->local_port != 0) {
901     TCP_RMV(&tcp_bound_pcbs, pcb);
902   }
903 #if LWIP_TCP_PCB_NUM_EXT_ARGS
904   /* copy over ext_args to listening pcb  */
905   memcpy(&lpcb->ext_args, &pcb->ext_args, sizeof(pcb->ext_args));
906 #endif
907   tcp_free(pcb);
908 #if LWIP_CALLBACK_API
909   lpcb->accept = tcp_accept_null;
910 #endif /* LWIP_CALLBACK_API */
911 #if TCP_LISTEN_BACKLOG
912   lpcb->accepts_pending = 0;
913   tcp_backlog_set(lpcb, backlog);
914 #endif /* TCP_LISTEN_BACKLOG */
915   TCP_REG(&tcp_listen_pcbs.pcbs, (struct tcp_pcb *)lpcb);
916   res = ERR_OK;
917 done:
918   if (err != NULL) {
919     *err = res;
920   }
921   return (struct tcp_pcb *)lpcb;
922 }
923 
924 /**
925  * Update the state that tracks the available window space to advertise.
926  *
927  * Returns how much extra window would be advertised if we sent an
928  * update now.
929  */
930 u32_t
tcp_update_rcv_ann_wnd(struct tcp_pcb * pcb)931 tcp_update_rcv_ann_wnd(struct tcp_pcb *pcb)
932 {
933   u32_t new_right_edge;
934 
935   LWIP_ASSERT("tcp_update_rcv_ann_wnd: invalid pcb", pcb != NULL);
936   new_right_edge = pcb->rcv_nxt + pcb->rcv_wnd;
937 
938   if (TCP_SEQ_GEQ(new_right_edge, pcb->rcv_ann_right_edge + LWIP_MIN((TCP_WND / 2), pcb->mss))) {
939     /* we can advertise more window */
940     pcb->rcv_ann_wnd = pcb->rcv_wnd;
941     return new_right_edge - pcb->rcv_ann_right_edge;
942   } else {
943     if (TCP_SEQ_GT(pcb->rcv_nxt, pcb->rcv_ann_right_edge)) {
944       /* Can happen due to other end sending out of advertised window,
945        * but within actual available (but not yet advertised) window */
946       pcb->rcv_ann_wnd = 0;
947     } else {
948       /* keep the right edge of window constant */
949       u32_t new_rcv_ann_wnd = pcb->rcv_ann_right_edge - pcb->rcv_nxt;
950 #if !LWIP_WND_SCALE
951       LWIP_ASSERT("new_rcv_ann_wnd <= 0xffff", new_rcv_ann_wnd <= 0xffff);
952 #endif
953       pcb->rcv_ann_wnd = (tcpwnd_size_t)new_rcv_ann_wnd;
954     }
955     return 0;
956   }
957 }
958 
959 /**
960  * @ingroup tcp_raw
961  * This function should be called by the application when it has
962  * processed the data. The purpose is to advertise a larger window
963  * when the data has been processed.
964  *
965  * @param pcb the tcp_pcb for which data is read
966  * @param len the amount of bytes that have been read by the application
967  */
968 void
tcp_recved(struct tcp_pcb * pcb,u16_t len)969 tcp_recved(struct tcp_pcb *pcb, u16_t len)
970 {
971   u32_t wnd_inflation;
972   tcpwnd_size_t rcv_wnd;
973 
974   LWIP_ASSERT_CORE_LOCKED();
975 
976   LWIP_ERROR("tcp_recved: invalid pcb", pcb != NULL, return);
977 
978   /* pcb->state LISTEN not allowed here */
979   LWIP_ASSERT("don't call tcp_recved for listen-pcbs",
980               pcb->state != LISTEN);
981 
982   rcv_wnd = (tcpwnd_size_t)(pcb->rcv_wnd + len);
983   if ((rcv_wnd > TCP_WND_MAX(pcb)) || (rcv_wnd < pcb->rcv_wnd)) {
984     /* window got too big or tcpwnd_size_t overflow */
985     LWIP_DEBUGF(TCP_DEBUG, ("tcp_recved: window got too big or tcpwnd_size_t overflow\n"));
986     pcb->rcv_wnd = TCP_WND_MAX(pcb);
987   } else  {
988     pcb->rcv_wnd = rcv_wnd;
989   }
990 
991   wnd_inflation = tcp_update_rcv_ann_wnd(pcb);
992 
993   /* If the change in the right edge of window is significant (default
994    * watermark is TCP_WND/4), then send an explicit update now.
995    * Otherwise wait for a packet to be sent in the normal course of
996    * events (or more window to be available later) */
997   if (wnd_inflation >= TCP_WND_UPDATE_THRESHOLD) {
998     tcp_ack_now(pcb);
999     tcp_output(pcb);
1000   }
1001 
1002   LWIP_DEBUGF(TCP_DEBUG, ("tcp_recved: received %"U16_F" bytes, wnd %"TCPWNDSIZE_F" (%"TCPWNDSIZE_F").\n",
1003                           len, pcb->rcv_wnd, (u16_t)(TCP_WND_MAX(pcb) - pcb->rcv_wnd)));
1004 }
1005 
1006 /**
1007  * Allocate a new local TCP port.
1008  *
1009  * @return a new (free) local TCP port number
1010  */
1011 static u16_t
tcp_new_port(void)1012 tcp_new_port(void)
1013 {
1014   u8_t i;
1015   u16_t n = 0;
1016   struct tcp_pcb *pcb;
1017 
1018 again:
1019   tcp_port++;
1020   if (tcp_port == TCP_LOCAL_PORT_RANGE_END) {
1021     tcp_port = TCP_LOCAL_PORT_RANGE_START;
1022   }
1023   /* Check all PCB lists. */
1024   for (i = 0; i < NUM_TCP_PCB_LISTS; i++) {
1025     for (pcb = *tcp_pcb_lists[i]; pcb != NULL; pcb = pcb->next) {
1026       if (pcb->local_port == tcp_port) {
1027         n++;
1028         if (n > (TCP_LOCAL_PORT_RANGE_END - TCP_LOCAL_PORT_RANGE_START)) {
1029           return 0;
1030         }
1031         goto again;
1032       }
1033     }
1034   }
1035   return tcp_port;
1036 }
1037 
1038 /**
1039  * @ingroup tcp_raw
1040  * Connects to another host. The function given as the "connected"
1041  * argument will be called when the connection has been established.
1042  *  Sets up the pcb to connect to the remote host and sends the
1043  * initial SYN segment which opens the connection.
1044  *
1045  * The tcp_connect() function returns immediately; it does not wait for
1046  * the connection to be properly setup. Instead, it will call the
1047  * function specified as the fourth argument (the "connected" argument)
1048  * when the connection is established. If the connection could not be
1049  * properly established, either because the other host refused the
1050  * connection or because the other host didn't answer, the "err"
1051  * callback function of this pcb (registered with tcp_err, see below)
1052  * will be called.
1053  *
1054  * The tcp_connect() function can return ERR_MEM if no memory is
1055  * available for enqueueing the SYN segment. If the SYN indeed was
1056  * enqueued successfully, the tcp_connect() function returns ERR_OK.
1057  *
1058  * @param pcb the tcp_pcb used to establish the connection
1059  * @param ipaddr the remote ip address to connect to
1060  * @param port the remote tcp port to connect to
1061  * @param connected callback function to call when connected (on error,
1062                     the err calback will be called)
1063  * @return ERR_VAL if invalid arguments are given
1064  *         ERR_OK if connect request has been sent
1065  *         other err_t values if connect request couldn't be sent
1066  */
1067 err_t
tcp_connect(struct tcp_pcb * pcb,const ip_addr_t * ipaddr,u16_t port,tcp_connected_fn connected)1068 tcp_connect(struct tcp_pcb *pcb, const ip_addr_t *ipaddr, u16_t port,
1069             tcp_connected_fn connected)
1070 {
1071   struct netif *netif = NULL;
1072   err_t ret;
1073   u32_t iss;
1074   u16_t old_local_port;
1075 
1076   LWIP_ASSERT_CORE_LOCKED();
1077 
1078   LWIP_ERROR("tcp_connect: invalid pcb", pcb != NULL, return ERR_ARG);
1079   LWIP_ERROR("tcp_connect: invalid ipaddr", ipaddr != NULL, return ERR_ARG);
1080 
1081   LWIP_ERROR("tcp_connect: can only connect from state CLOSED", pcb->state == CLOSED, return ERR_ISCONN);
1082 
1083   LWIP_DEBUGF(TCP_DEBUG, ("tcp_connect to port %"U16_F"\n", port));
1084   ip_addr_set(&pcb->remote_ip, ipaddr);
1085   pcb->remote_port = port;
1086 
1087   if (pcb->netif_idx != NETIF_NO_INDEX) {
1088     netif = netif_get_by_index(pcb->netif_idx);
1089   } else {
1090     /* check if we have a route to the remote host */
1091     netif = ip_route(&pcb->local_ip, &pcb->remote_ip);
1092   }
1093   if (netif == NULL) {
1094     /* Don't even try to send a SYN packet if we have no route since that will fail. */
1095     return ERR_RTE;
1096   }
1097 
1098   /* check if local IP has been assigned to pcb, if not, get one */
1099   if (ip_addr_isany(&pcb->local_ip)) {
1100     const ip_addr_t *local_ip = ip_netif_get_local_ip(netif, ipaddr);
1101     if (local_ip == NULL) {
1102       return ERR_RTE;
1103     }
1104     ip_addr_copy(pcb->local_ip, *local_ip);
1105   }
1106 
1107 #if LWIP_IPV6 && LWIP_IPV6_SCOPES
1108   /* If the given IP address should have a zone but doesn't, assign one now.
1109    * Given that we already have the target netif, this is easy and cheap. */
1110   if (IP_IS_V6(&pcb->remote_ip) &&
1111       ip6_addr_lacks_zone(ip_2_ip6(&pcb->remote_ip), IP6_UNICAST)) {
1112     ip6_addr_assign_zone(ip_2_ip6(&pcb->remote_ip), IP6_UNICAST, netif);
1113   }
1114 #endif /* LWIP_IPV6 && LWIP_IPV6_SCOPES */
1115 
1116   old_local_port = pcb->local_port;
1117   if (pcb->local_port == 0) {
1118     pcb->local_port = tcp_new_port();
1119     if (pcb->local_port == 0) {
1120       return ERR_BUF;
1121     }
1122   } else {
1123 #if SO_REUSE
1124     if (ip_get_option(pcb, SOF_REUSEADDR)) {
1125       /* Since SOF_REUSEADDR allows reusing a local address, we have to make sure
1126          now that the 5-tuple is unique. */
1127       struct tcp_pcb *cpcb;
1128       int i;
1129       /* Don't check listen- and bound-PCBs, check active- and TIME-WAIT PCBs. */
1130       for (i = 2; i < NUM_TCP_PCB_LISTS; i++) {
1131         for (cpcb = *tcp_pcb_lists[i]; cpcb != NULL; cpcb = cpcb->next) {
1132           if ((cpcb->local_port == pcb->local_port) &&
1133               (cpcb->remote_port == port) &&
1134               ip_addr_cmp(&cpcb->local_ip, &pcb->local_ip) &&
1135               ip_addr_cmp(&cpcb->remote_ip, ipaddr)) {
1136             /* linux returns EISCONN here, but ERR_USE should be OK for us */
1137             return ERR_USE;
1138           }
1139         }
1140       }
1141     }
1142 #endif /* SO_REUSE */
1143   }
1144 
1145   iss = tcp_next_iss(pcb);
1146   pcb->rcv_nxt = 0;
1147   pcb->snd_nxt = iss;
1148   pcb->lastack = iss - 1;
1149   pcb->snd_wl2 = iss - 1;
1150   pcb->snd_lbb = iss - 1;
1151   /* Start with a window that does not need scaling. When window scaling is
1152      enabled and used, the window is enlarged when both sides agree on scaling. */
1153   pcb->rcv_wnd = pcb->rcv_ann_wnd = TCPWND_MIN16(TCP_WND);
1154   pcb->rcv_ann_right_edge = pcb->rcv_nxt;
1155   pcb->snd_wnd = TCP_WND;
1156   /* As initial send MSS, we use TCP_MSS but limit it to 536.
1157      The send MSS is updated when an MSS option is received. */
1158   pcb->mss = INITIAL_MSS;
1159 #if TCP_CALCULATE_EFF_SEND_MSS
1160   pcb->mss = tcp_eff_send_mss_netif(pcb->mss, netif, &pcb->remote_ip);
1161 #endif /* TCP_CALCULATE_EFF_SEND_MSS */
1162   pcb->cwnd = 1;
1163 #if LWIP_CALLBACK_API
1164   pcb->connected = connected;
1165 #else /* LWIP_CALLBACK_API */
1166   LWIP_UNUSED_ARG(connected);
1167 #endif /* LWIP_CALLBACK_API */
1168 
1169   /* Send a SYN together with the MSS option. */
1170   ret = tcp_enqueue_flags(pcb, TCP_SYN);
1171   if (ret == ERR_OK) {
1172     /* SYN segment was enqueued, changed the pcbs state now */
1173     pcb->state = SYN_SENT;
1174     if (old_local_port != 0) {
1175       TCP_RMV(&tcp_bound_pcbs, pcb);
1176     }
1177     TCP_REG_ACTIVE(pcb);
1178     MIB2_STATS_INC(mib2.tcpactiveopens);
1179 
1180     tcp_output(pcb);
1181   }
1182   return ret;
1183 }
1184 
1185 /**
1186  * Called every 500 ms and implements the retransmission timer and the timer that
1187  * removes PCBs that have been in TIME-WAIT for enough time. It also increments
1188  * various timers such as the inactivity timer in each PCB.
1189  *
1190  * Automatically called from tcp_tmr().
1191  */
1192 void
tcp_slowtmr(void)1193 tcp_slowtmr(void)
1194 {
1195   struct tcp_pcb *pcb, *prev;
1196   tcpwnd_size_t eff_wnd;
1197   u8_t pcb_remove;      /* flag if a PCB should be removed */
1198   u8_t pcb_reset;       /* flag if a RST should be sent when removing */
1199   err_t err;
1200 
1201   err = ERR_OK;
1202 
1203   ++tcp_ticks;
1204   ++tcp_timer_ctr;
1205 
1206 tcp_slowtmr_start:
1207   /* Steps through all of the active PCBs. */
1208   prev = NULL;
1209   pcb = tcp_active_pcbs;
1210   if (pcb == NULL) {
1211     LWIP_DEBUGF(TCP_DEBUG, ("tcp_slowtmr: no active pcbs\n"));
1212   }
1213   while (pcb != NULL) {
1214     LWIP_DEBUGF(TCP_DEBUG, ("tcp_slowtmr: processing active pcb\n"));
1215     LWIP_ASSERT("tcp_slowtmr: active pcb->state != CLOSED\n", pcb->state != CLOSED);
1216     LWIP_ASSERT("tcp_slowtmr: active pcb->state != LISTEN\n", pcb->state != LISTEN);
1217     LWIP_ASSERT("tcp_slowtmr: active pcb->state != TIME-WAIT\n", pcb->state != TIME_WAIT);
1218     if (pcb->last_timer == tcp_timer_ctr) {
1219       /* skip this pcb, we have already processed it */
1220       prev = pcb;
1221       pcb = pcb->next;
1222       continue;
1223     }
1224     pcb->last_timer = tcp_timer_ctr;
1225 
1226     pcb_remove = 0;
1227     pcb_reset = 0;
1228 
1229     if (pcb->state == SYN_SENT && pcb->nrtx >= TCP_SYNMAXRTX) {
1230       ++pcb_remove;
1231       LWIP_DEBUGF(TCP_DEBUG, ("tcp_slowtmr: max SYN retries reached\n"));
1232     } else if (pcb->nrtx >= TCP_MAXRTX) {
1233       ++pcb_remove;
1234       LWIP_DEBUGF(TCP_DEBUG, ("tcp_slowtmr: max DATA retries reached\n"));
1235     } else {
1236       if (pcb->persist_backoff > 0) {
1237         LWIP_ASSERT("tcp_slowtimr: persist ticking with in-flight data", pcb->unacked == NULL);
1238         LWIP_ASSERT("tcp_slowtimr: persist ticking with empty send buffer", pcb->unsent != NULL);
1239         if (pcb->persist_probe >= TCP_MAXRTX) {
1240           ++pcb_remove; /* max probes reached */
1241         } else {
1242           u8_t backoff_cnt = tcp_persist_backoff[pcb->persist_backoff - 1];
1243           if (pcb->persist_cnt < backoff_cnt) {
1244             pcb->persist_cnt++;
1245           }
1246           if (pcb->persist_cnt >= backoff_cnt) {
1247             int next_slot = 1; /* increment timer to next slot */
1248             /* If snd_wnd is zero, send 1 byte probes */
1249             if (pcb->snd_wnd == 0) {
1250               if (tcp_zero_window_probe(pcb) != ERR_OK) {
1251                 next_slot = 0; /* try probe again with current slot */
1252               }
1253               /* snd_wnd not fully closed, split unsent head and fill window */
1254             } else {
1255               if (tcp_split_unsent_seg(pcb, (u16_t)pcb->snd_wnd) == ERR_OK) {
1256                 if (tcp_output(pcb) == ERR_OK) {
1257                   /* sending will cancel persist timer, else retry with current slot */
1258                   next_slot = 0;
1259                 }
1260               }
1261             }
1262             if (next_slot) {
1263               pcb->persist_cnt = 0;
1264               if (pcb->persist_backoff < sizeof(tcp_persist_backoff)) {
1265                 pcb->persist_backoff++;
1266               }
1267             }
1268           }
1269         }
1270       } else {
1271         /* Increase the retransmission timer if it is running */
1272         if ((pcb->rtime >= 0) && (pcb->rtime < 0x7FFF)) {
1273           ++pcb->rtime;
1274         }
1275 
1276         if (pcb->rtime >= pcb->rto) {
1277           /* Time for a retransmission. */
1278           LWIP_DEBUGF(TCP_RTO_DEBUG, ("tcp_slowtmr: rtime %"S16_F
1279                                       " pcb->rto %"S16_F"\n",
1280                                       pcb->rtime, pcb->rto));
1281           /* If prepare phase fails but we have unsent data but no unacked data,
1282              still execute the backoff calculations below, as this means we somehow
1283              failed to send segment. */
1284           if ((tcp_rexmit_rto_prepare(pcb) == ERR_OK) || ((pcb->unacked == NULL) && (pcb->unsent != NULL))) {
1285             /* Double retransmission time-out unless we are trying to
1286              * connect to somebody (i.e., we are in SYN_SENT). */
1287             if (pcb->state != SYN_SENT) {
1288               u8_t backoff_idx = LWIP_MIN(pcb->nrtx, sizeof(tcp_backoff) - 1);
1289               int calc_rto = ((pcb->sa >> 3) + pcb->sv) << tcp_backoff[backoff_idx];
1290               pcb->rto = (s16_t)LWIP_MIN(calc_rto, 0x7FFF);
1291             }
1292 
1293             /* Reset the retransmission timer. */
1294             pcb->rtime = 0;
1295 
1296             /* Reduce congestion window and ssthresh. */
1297             eff_wnd = LWIP_MIN(pcb->cwnd, pcb->snd_wnd);
1298             pcb->ssthresh = eff_wnd >> 1;
1299             if (pcb->ssthresh < (tcpwnd_size_t)(pcb->mss << 1)) {
1300               pcb->ssthresh = (tcpwnd_size_t)(pcb->mss << 1);
1301             }
1302             pcb->cwnd = pcb->mss;
1303             LWIP_DEBUGF(TCP_CWND_DEBUG, ("tcp_slowtmr: cwnd %"TCPWNDSIZE_F
1304                                          " ssthresh %"TCPWNDSIZE_F"\n",
1305                                          pcb->cwnd, pcb->ssthresh));
1306             pcb->bytes_acked = 0;
1307 
1308             /* The following needs to be called AFTER cwnd is set to one
1309                mss - STJ */
1310             tcp_rexmit_rto_commit(pcb);
1311           }
1312         }
1313       }
1314     }
1315     /* Check if this PCB has stayed too long in FIN-WAIT-2 */
1316     if (pcb->state == FIN_WAIT_2) {
1317       /* If this PCB is in FIN_WAIT_2 because of SHUT_WR don't let it time out. */
1318       if (pcb->flags & TF_RXCLOSED) {
1319         /* PCB was fully closed (either through close() or SHUT_RDWR):
1320            normal FIN-WAIT timeout handling. */
1321         if ((u32_t)(tcp_ticks - pcb->tmr) >
1322             TCP_FIN_WAIT_TIMEOUT / TCP_SLOW_INTERVAL) {
1323           ++pcb_remove;
1324           LWIP_DEBUGF(TCP_DEBUG, ("tcp_slowtmr: removing pcb stuck in FIN-WAIT-2\n"));
1325         }
1326       }
1327     }
1328 
1329     /* Check if KEEPALIVE should be sent */
1330     if (ip_get_option(pcb, SOF_KEEPALIVE) &&
1331         ((pcb->state == ESTABLISHED) ||
1332          (pcb->state == CLOSE_WAIT))) {
1333       if ((u32_t)(tcp_ticks - pcb->tmr) >
1334           (pcb->keep_idle + TCP_KEEP_DUR(pcb)) / TCP_SLOW_INTERVAL) {
1335         LWIP_DEBUGF(TCP_DEBUG, ("tcp_slowtmr: KEEPALIVE timeout. Aborting connection to "));
1336         ip_addr_debug_print_val(TCP_DEBUG, pcb->remote_ip);
1337         LWIP_DEBUGF(TCP_DEBUG, ("\n"));
1338 
1339         ++pcb_remove;
1340         ++pcb_reset;
1341       } else if ((u32_t)(tcp_ticks - pcb->tmr) >
1342                  (pcb->keep_idle + pcb->keep_cnt_sent * TCP_KEEP_INTVL(pcb))
1343                  / TCP_SLOW_INTERVAL) {
1344         err = tcp_keepalive(pcb);
1345         if (err == ERR_OK) {
1346           pcb->keep_cnt_sent++;
1347         }
1348       }
1349     }
1350 
1351     /* If this PCB has queued out of sequence data, but has been
1352        inactive for too long, will drop the data (it will eventually
1353        be retransmitted). */
1354 #if TCP_QUEUE_OOSEQ
1355     if (pcb->ooseq != NULL &&
1356         (tcp_ticks - pcb->tmr >= (u32_t)pcb->rto * TCP_OOSEQ_TIMEOUT)) {
1357       LWIP_DEBUGF(TCP_CWND_DEBUG, ("tcp_slowtmr: dropping OOSEQ queued data\n"));
1358       tcp_free_ooseq(pcb);
1359     }
1360 #endif /* TCP_QUEUE_OOSEQ */
1361 
1362     /* Check if this PCB has stayed too long in SYN-RCVD */
1363     if (pcb->state == SYN_RCVD) {
1364       if ((u32_t)(tcp_ticks - pcb->tmr) >
1365           TCP_SYN_RCVD_TIMEOUT / TCP_SLOW_INTERVAL) {
1366         ++pcb_remove;
1367         LWIP_DEBUGF(TCP_DEBUG, ("tcp_slowtmr: removing pcb stuck in SYN-RCVD\n"));
1368       }
1369     }
1370 
1371     /* Check if this PCB has stayed too long in LAST-ACK */
1372     if (pcb->state == LAST_ACK) {
1373       if ((u32_t)(tcp_ticks - pcb->tmr) > 2 * TCP_MSL / TCP_SLOW_INTERVAL) {
1374         ++pcb_remove;
1375         LWIP_DEBUGF(TCP_DEBUG, ("tcp_slowtmr: removing pcb stuck in LAST-ACK\n"));
1376       }
1377     }
1378 
1379     /* If the PCB should be removed, do it. */
1380     if (pcb_remove) {
1381       struct tcp_pcb *pcb2;
1382 #if LWIP_CALLBACK_API
1383       tcp_err_fn err_fn = pcb->errf;
1384 #endif /* LWIP_CALLBACK_API */
1385       void *err_arg;
1386       enum tcp_state last_state;
1387       tcp_pcb_purge(pcb);
1388       /* Remove PCB from tcp_active_pcbs list. */
1389       if (prev != NULL) {
1390         LWIP_ASSERT("tcp_slowtmr: middle tcp != tcp_active_pcbs", pcb != tcp_active_pcbs);
1391         prev->next = pcb->next;
1392       } else {
1393         /* This PCB was the first. */
1394         LWIP_ASSERT("tcp_slowtmr: first pcb == tcp_active_pcbs", tcp_active_pcbs == pcb);
1395         tcp_active_pcbs = pcb->next;
1396       }
1397 
1398       if (pcb_reset) {
1399         tcp_rst(pcb, pcb->snd_nxt, pcb->rcv_nxt, &pcb->local_ip, &pcb->remote_ip,
1400                 pcb->local_port, pcb->remote_port);
1401       }
1402 
1403       err_arg = pcb->callback_arg;
1404       last_state = pcb->state;
1405       pcb2 = pcb;
1406       pcb = pcb->next;
1407       tcp_free(pcb2);
1408 
1409       tcp_active_pcbs_changed = 0;
1410       TCP_EVENT_ERR(last_state, err_fn, err_arg, ERR_ABRT);
1411       if (tcp_active_pcbs_changed) {
1412         goto tcp_slowtmr_start;
1413       }
1414     } else {
1415       /* get the 'next' element now and work with 'prev' below (in case of abort) */
1416       prev = pcb;
1417       pcb = pcb->next;
1418 
1419       /* We check if we should poll the connection. */
1420       ++prev->polltmr;
1421       if (prev->polltmr >= prev->pollinterval) {
1422         prev->polltmr = 0;
1423         LWIP_DEBUGF(TCP_DEBUG, ("tcp_slowtmr: polling application\n"));
1424         tcp_active_pcbs_changed = 0;
1425         TCP_EVENT_POLL(prev, err);
1426         if (tcp_active_pcbs_changed) {
1427           goto tcp_slowtmr_start;
1428         }
1429         /* if err == ERR_ABRT, 'prev' is already deallocated */
1430         if (err == ERR_OK) {
1431           tcp_output(prev);
1432         }
1433       }
1434     }
1435   }
1436 
1437 
1438   /* Steps through all of the TIME-WAIT PCBs. */
1439   prev = NULL;
1440   pcb = tcp_tw_pcbs;
1441   while (pcb != NULL) {
1442     LWIP_ASSERT("tcp_slowtmr: TIME-WAIT pcb->state == TIME-WAIT", pcb->state == TIME_WAIT);
1443     pcb_remove = 0;
1444 
1445     /* Check if this PCB has stayed long enough in TIME-WAIT */
1446     if ((u32_t)(tcp_ticks - pcb->tmr) > 2 * TCP_MSL / TCP_SLOW_INTERVAL) {
1447       ++pcb_remove;
1448     }
1449 
1450     /* If the PCB should be removed, do it. */
1451     if (pcb_remove) {
1452       struct tcp_pcb *pcb2;
1453       tcp_pcb_purge(pcb);
1454       /* Remove PCB from tcp_tw_pcbs list. */
1455       if (prev != NULL) {
1456         LWIP_ASSERT("tcp_slowtmr: middle tcp != tcp_tw_pcbs", pcb != tcp_tw_pcbs);
1457         prev->next = pcb->next;
1458       } else {
1459         /* This PCB was the first. */
1460         LWIP_ASSERT("tcp_slowtmr: first pcb == tcp_tw_pcbs", tcp_tw_pcbs == pcb);
1461         tcp_tw_pcbs = pcb->next;
1462       }
1463       pcb2 = pcb;
1464       pcb = pcb->next;
1465       tcp_free(pcb2);
1466     } else {
1467       prev = pcb;
1468       pcb = pcb->next;
1469     }
1470   }
1471 }
1472 
1473 /**
1474  * Is called every TCP_FAST_INTERVAL (250 ms) and process data previously
1475  * "refused" by upper layer (application) and sends delayed ACKs or pending FINs.
1476  *
1477  * Automatically called from tcp_tmr().
1478  */
1479 void
tcp_fasttmr(void)1480 tcp_fasttmr(void)
1481 {
1482   struct tcp_pcb *pcb;
1483 
1484   ++tcp_timer_ctr;
1485 
1486 tcp_fasttmr_start:
1487   pcb = tcp_active_pcbs;
1488 
1489   while (pcb != NULL) {
1490     if (pcb->last_timer != tcp_timer_ctr) {
1491       struct tcp_pcb *next;
1492       pcb->last_timer = tcp_timer_ctr;
1493       /* send delayed ACKs */
1494       if (pcb->flags & TF_ACK_DELAY) {
1495         LWIP_DEBUGF(TCP_DEBUG, ("tcp_fasttmr: delayed ACK\n"));
1496         tcp_ack_now(pcb);
1497         tcp_output(pcb);
1498         tcp_clear_flags(pcb, TF_ACK_DELAY | TF_ACK_NOW);
1499       }
1500       /* send pending FIN */
1501       if (pcb->flags & TF_CLOSEPEND) {
1502         LWIP_DEBUGF(TCP_DEBUG, ("tcp_fasttmr: pending FIN\n"));
1503         tcp_clear_flags(pcb, TF_CLOSEPEND);
1504         tcp_close_shutdown_fin(pcb);
1505       }
1506 
1507       next = pcb->next;
1508 
1509       /* If there is data which was previously "refused" by upper layer */
1510       if (pcb->refused_data != NULL) {
1511         tcp_active_pcbs_changed = 0;
1512         tcp_process_refused_data(pcb);
1513         if (tcp_active_pcbs_changed) {
1514           /* application callback has changed the pcb list: restart the loop */
1515           goto tcp_fasttmr_start;
1516         }
1517       }
1518       pcb = next;
1519     } else {
1520       pcb = pcb->next;
1521     }
1522   }
1523 }
1524 
1525 /** Call tcp_output for all active pcbs that have TF_NAGLEMEMERR set */
1526 void
tcp_txnow(void)1527 tcp_txnow(void)
1528 {
1529   struct tcp_pcb *pcb;
1530 
1531   for (pcb = tcp_active_pcbs; pcb != NULL; pcb = pcb->next) {
1532     if (pcb->flags & TF_NAGLEMEMERR) {
1533       tcp_output(pcb);
1534     }
1535   }
1536 }
1537 
1538 /** Pass pcb->refused_data to the recv callback */
1539 err_t
tcp_process_refused_data(struct tcp_pcb * pcb)1540 tcp_process_refused_data(struct tcp_pcb *pcb)
1541 {
1542 #if TCP_QUEUE_OOSEQ && LWIP_WND_SCALE
1543   struct pbuf *rest;
1544 #endif /* TCP_QUEUE_OOSEQ && LWIP_WND_SCALE */
1545 
1546   LWIP_ERROR("tcp_process_refused_data: invalid pcb", pcb != NULL, return ERR_ARG);
1547 
1548 #if TCP_QUEUE_OOSEQ && LWIP_WND_SCALE
1549   while (pcb->refused_data != NULL)
1550 #endif /* TCP_QUEUE_OOSEQ && LWIP_WND_SCALE */
1551   {
1552     err_t err;
1553     u8_t refused_flags = pcb->refused_data->flags;
1554     /* set pcb->refused_data to NULL in case the callback frees it and then
1555        closes the pcb */
1556     struct pbuf *refused_data = pcb->refused_data;
1557 #if TCP_QUEUE_OOSEQ && LWIP_WND_SCALE
1558     pbuf_split_64k(refused_data, &rest);
1559     pcb->refused_data = rest;
1560 #else /* TCP_QUEUE_OOSEQ && LWIP_WND_SCALE */
1561     pcb->refused_data = NULL;
1562 #endif /* TCP_QUEUE_OOSEQ && LWIP_WND_SCALE */
1563     /* Notify again application with data previously received. */
1564     LWIP_DEBUGF(TCP_INPUT_DEBUG, ("tcp_input: notify kept packet\n"));
1565     TCP_EVENT_RECV(pcb, refused_data, ERR_OK, err);
1566     if (err == ERR_OK) {
1567       /* did refused_data include a FIN? */
1568       if ((refused_flags & PBUF_FLAG_TCP_FIN)
1569 #if TCP_QUEUE_OOSEQ && LWIP_WND_SCALE
1570           && (rest == NULL)
1571 #endif /* TCP_QUEUE_OOSEQ && LWIP_WND_SCALE */
1572          ) {
1573         /* correct rcv_wnd as the application won't call tcp_recved()
1574            for the FIN's seqno */
1575         if (pcb->rcv_wnd != TCP_WND_MAX(pcb)) {
1576           pcb->rcv_wnd++;
1577         }
1578         TCP_EVENT_CLOSED(pcb, err);
1579         if (err == ERR_ABRT) {
1580           return ERR_ABRT;
1581         }
1582       }
1583     } else if (err == ERR_ABRT) {
1584       /* if err == ERR_ABRT, 'pcb' is already deallocated */
1585       /* Drop incoming packets because pcb is "full" (only if the incoming
1586          segment contains data). */
1587       LWIP_DEBUGF(TCP_INPUT_DEBUG, ("tcp_input: drop incoming packets, because pcb is \"full\"\n"));
1588       return ERR_ABRT;
1589     } else {
1590       /* data is still refused, pbuf is still valid (go on for ACK-only packets) */
1591 #if TCP_QUEUE_OOSEQ && LWIP_WND_SCALE
1592       if (rest != NULL) {
1593         pbuf_cat(refused_data, rest);
1594       }
1595 #endif /* TCP_QUEUE_OOSEQ && LWIP_WND_SCALE */
1596       pcb->refused_data = refused_data;
1597       return ERR_INPROGRESS;
1598     }
1599   }
1600   return ERR_OK;
1601 }
1602 
1603 /**
1604  * Deallocates a list of TCP segments (tcp_seg structures).
1605  *
1606  * @param seg tcp_seg list of TCP segments to free
1607  */
1608 void
tcp_segs_free(struct tcp_seg * seg)1609 tcp_segs_free(struct tcp_seg *seg)
1610 {
1611   while (seg != NULL) {
1612     struct tcp_seg *next = seg->next;
1613     tcp_seg_free(seg);
1614     seg = next;
1615   }
1616 }
1617 
1618 /**
1619  * Frees a TCP segment (tcp_seg structure).
1620  *
1621  * @param seg single tcp_seg to free
1622  */
1623 void
tcp_seg_free(struct tcp_seg * seg)1624 tcp_seg_free(struct tcp_seg *seg)
1625 {
1626   if (seg != NULL) {
1627     if (seg->p != NULL) {
1628       pbuf_free(seg->p);
1629 #if TCP_DEBUG
1630       seg->p = NULL;
1631 #endif /* TCP_DEBUG */
1632     }
1633     memp_free(MEMP_TCP_SEG, seg);
1634   }
1635 }
1636 
1637 /**
1638  * @ingroup tcp
1639  * Sets the priority of a connection.
1640  *
1641  * @param pcb the tcp_pcb to manipulate
1642  * @param prio new priority
1643  */
1644 void
tcp_setprio(struct tcp_pcb * pcb,u8_t prio)1645 tcp_setprio(struct tcp_pcb *pcb, u8_t prio)
1646 {
1647   LWIP_ASSERT_CORE_LOCKED();
1648 
1649   LWIP_ERROR("tcp_setprio: invalid pcb", pcb != NULL, return);
1650 
1651   pcb->prio = prio;
1652 }
1653 
1654 #if TCP_QUEUE_OOSEQ
1655 /**
1656  * Returns a copy of the given TCP segment.
1657  * The pbuf and data are not copied, only the pointers
1658  *
1659  * @param seg the old tcp_seg
1660  * @return a copy of seg
1661  */
1662 struct tcp_seg *
tcp_seg_copy(struct tcp_seg * seg)1663 tcp_seg_copy(struct tcp_seg *seg)
1664 {
1665   struct tcp_seg *cseg;
1666 
1667   LWIP_ASSERT("tcp_seg_copy: invalid seg", seg != NULL);
1668 
1669   cseg = (struct tcp_seg *)memp_malloc(MEMP_TCP_SEG);
1670   if (cseg == NULL) {
1671     return NULL;
1672   }
1673   SMEMCPY((u8_t *)cseg, (const u8_t *)seg, sizeof(struct tcp_seg));
1674   pbuf_ref(cseg->p);
1675   return cseg;
1676 }
1677 #endif /* TCP_QUEUE_OOSEQ */
1678 
1679 #if LWIP_CALLBACK_API
1680 /**
1681  * Default receive callback that is called if the user didn't register
1682  * a recv callback for the pcb.
1683  */
1684 err_t
tcp_recv_null(void * arg,struct tcp_pcb * pcb,struct pbuf * p,err_t err)1685 tcp_recv_null(void *arg, struct tcp_pcb *pcb, struct pbuf *p, err_t err)
1686 {
1687   LWIP_UNUSED_ARG(arg);
1688 
1689   LWIP_ERROR("tcp_recv_null: invalid pcb", pcb != NULL, return ERR_ARG);
1690 
1691   if (p != NULL) {
1692     tcp_recved(pcb, p->tot_len);
1693     pbuf_free(p);
1694   } else if (err == ERR_OK) {
1695     return tcp_close(pcb);
1696   }
1697   return ERR_OK;
1698 }
1699 #endif /* LWIP_CALLBACK_API */
1700 
1701 /**
1702  * Kills the oldest active connection that has a lower priority than 'prio'.
1703  *
1704  * @param prio minimum priority
1705  */
1706 static void
tcp_kill_prio(u8_t prio)1707 tcp_kill_prio(u8_t prio)
1708 {
1709   struct tcp_pcb *pcb, *inactive;
1710   u32_t inactivity;
1711   u8_t mprio;
1712 
1713   mprio = LWIP_MIN(TCP_PRIO_MAX, prio);
1714 
1715   /* We want to kill connections with a lower prio, so bail out if
1716    * supplied prio is 0 - there can never be a lower prio
1717    */
1718   if (mprio == 0) {
1719     return;
1720   }
1721 
1722   /* We only want kill connections with a lower prio, so decrement prio by one
1723    * and start searching for oldest connection with same or lower priority than mprio.
1724    * We want to find the connections with the lowest possible prio, and among
1725    * these the one with the longest inactivity time.
1726    */
1727   mprio--;
1728 
1729   inactivity = 0;
1730   inactive = NULL;
1731   for (pcb = tcp_active_pcbs; pcb != NULL; pcb = pcb->next) {
1732         /* lower prio is always a kill candidate */
1733     if ((pcb->prio < mprio) ||
1734         /* longer inactivity is also a kill candidate */
1735         ((pcb->prio == mprio) && ((u32_t)(tcp_ticks - pcb->tmr) >= inactivity))) {
1736       inactivity = tcp_ticks - pcb->tmr;
1737       inactive   = pcb;
1738       mprio      = pcb->prio;
1739     }
1740   }
1741   if (inactive != NULL) {
1742     LWIP_DEBUGF(TCP_DEBUG, ("tcp_kill_prio: killing oldest PCB %p (%"S32_F")\n",
1743                             (void *)inactive, inactivity));
1744     tcp_abort(inactive);
1745   }
1746 }
1747 
1748 /**
1749  * Kills the oldest connection that is in specific state.
1750  * Called from tcp_alloc() for LAST_ACK and CLOSING if no more connections are available.
1751  */
1752 static void
tcp_kill_state(enum tcp_state state)1753 tcp_kill_state(enum tcp_state state)
1754 {
1755   struct tcp_pcb *pcb, *inactive;
1756   u32_t inactivity;
1757 
1758   LWIP_ASSERT("invalid state", (state == CLOSING) || (state == LAST_ACK));
1759 
1760   inactivity = 0;
1761   inactive = NULL;
1762   /* Go through the list of active pcbs and get the oldest pcb that is in state
1763      CLOSING/LAST_ACK. */
1764   for (pcb = tcp_active_pcbs; pcb != NULL; pcb = pcb->next) {
1765     if (pcb->state == state) {
1766       if ((u32_t)(tcp_ticks - pcb->tmr) >= inactivity) {
1767         inactivity = tcp_ticks - pcb->tmr;
1768         inactive = pcb;
1769       }
1770     }
1771   }
1772   if (inactive != NULL) {
1773     LWIP_DEBUGF(TCP_DEBUG, ("tcp_kill_closing: killing oldest %s PCB %p (%"S32_F")\n",
1774                             tcp_state_str[state], (void *)inactive, inactivity));
1775     /* Don't send a RST, since no data is lost. */
1776     tcp_abandon(inactive, 0);
1777   }
1778 }
1779 
1780 /**
1781  * Kills the oldest connection that is in TIME_WAIT state.
1782  * Called from tcp_alloc() if no more connections are available.
1783  */
1784 static void
tcp_kill_timewait(void)1785 tcp_kill_timewait(void)
1786 {
1787   struct tcp_pcb *pcb, *inactive;
1788   u32_t inactivity;
1789 
1790   inactivity = 0;
1791   inactive = NULL;
1792   /* Go through the list of TIME_WAIT pcbs and get the oldest pcb. */
1793   for (pcb = tcp_tw_pcbs; pcb != NULL; pcb = pcb->next) {
1794     if ((u32_t)(tcp_ticks - pcb->tmr) >= inactivity) {
1795       inactivity = tcp_ticks - pcb->tmr;
1796       inactive = pcb;
1797     }
1798   }
1799   if (inactive != NULL) {
1800     LWIP_DEBUGF(TCP_DEBUG, ("tcp_kill_timewait: killing oldest TIME-WAIT PCB %p (%"S32_F")\n",
1801                             (void *)inactive, inactivity));
1802     tcp_abort(inactive);
1803   }
1804 }
1805 
1806 /* Called when allocating a pcb fails.
1807  * In this case, we want to handle all pcbs that want to close first: if we can
1808  * now send the FIN (which failed before), the pcb might be in a state that is
1809  * OK for us to now free it.
1810  */
1811 static void
tcp_handle_closepend(void)1812 tcp_handle_closepend(void)
1813 {
1814   struct tcp_pcb *pcb = tcp_active_pcbs;
1815 
1816   while (pcb != NULL) {
1817     struct tcp_pcb *next = pcb->next;
1818     /* send pending FIN */
1819     if (pcb->flags & TF_CLOSEPEND) {
1820       LWIP_DEBUGF(TCP_DEBUG, ("tcp_handle_closepend: pending FIN\n"));
1821       tcp_clear_flags(pcb, TF_CLOSEPEND);
1822       tcp_close_shutdown_fin(pcb);
1823     }
1824     pcb = next;
1825   }
1826 }
1827 
1828 /**
1829  * Allocate a new tcp_pcb structure.
1830  *
1831  * @param prio priority for the new pcb
1832  * @return a new tcp_pcb that initially is in state CLOSED
1833  */
1834 struct tcp_pcb *
tcp_alloc(u8_t prio)1835 tcp_alloc(u8_t prio)
1836 {
1837   struct tcp_pcb *pcb;
1838 
1839   LWIP_ASSERT_CORE_LOCKED();
1840 
1841   pcb = (struct tcp_pcb *)memp_malloc(MEMP_TCP_PCB);
1842   if (pcb == NULL) {
1843     /* Try to send FIN for all pcbs stuck in TF_CLOSEPEND first */
1844     tcp_handle_closepend();
1845 
1846     /* Try killing oldest connection in TIME-WAIT. */
1847     LWIP_DEBUGF(TCP_DEBUG, ("tcp_alloc: killing off oldest TIME-WAIT connection\n"));
1848     tcp_kill_timewait();
1849     /* Try to allocate a tcp_pcb again. */
1850     pcb = (struct tcp_pcb *)memp_malloc(MEMP_TCP_PCB);
1851     if (pcb == NULL) {
1852       /* Try killing oldest connection in LAST-ACK (these wouldn't go to TIME-WAIT). */
1853       LWIP_DEBUGF(TCP_DEBUG, ("tcp_alloc: killing off oldest LAST-ACK connection\n"));
1854       tcp_kill_state(LAST_ACK);
1855       /* Try to allocate a tcp_pcb again. */
1856       pcb = (struct tcp_pcb *)memp_malloc(MEMP_TCP_PCB);
1857       if (pcb == NULL) {
1858         /* Try killing oldest connection in CLOSING. */
1859         LWIP_DEBUGF(TCP_DEBUG, ("tcp_alloc: killing off oldest CLOSING connection\n"));
1860         tcp_kill_state(CLOSING);
1861         /* Try to allocate a tcp_pcb again. */
1862         pcb = (struct tcp_pcb *)memp_malloc(MEMP_TCP_PCB);
1863         if (pcb == NULL) {
1864           /* Try killing oldest active connection with lower priority than the new one. */
1865           LWIP_DEBUGF(TCP_DEBUG, ("tcp_alloc: killing oldest connection with prio lower than %d\n", prio));
1866           tcp_kill_prio(prio);
1867           /* Try to allocate a tcp_pcb again. */
1868           pcb = (struct tcp_pcb *)memp_malloc(MEMP_TCP_PCB);
1869           if (pcb != NULL) {
1870             /* adjust err stats: memp_malloc failed multiple times before */
1871             MEMP_STATS_DEC(err, MEMP_TCP_PCB);
1872           }
1873         }
1874         if (pcb != NULL) {
1875           /* adjust err stats: memp_malloc failed multiple times before */
1876           MEMP_STATS_DEC(err, MEMP_TCP_PCB);
1877         }
1878       }
1879       if (pcb != NULL) {
1880         /* adjust err stats: memp_malloc failed multiple times before */
1881         MEMP_STATS_DEC(err, MEMP_TCP_PCB);
1882       }
1883     }
1884     if (pcb != NULL) {
1885       /* adjust err stats: memp_malloc failed above */
1886       MEMP_STATS_DEC(err, MEMP_TCP_PCB);
1887     }
1888   }
1889   if (pcb != NULL) {
1890     /* zero out the whole pcb, so there is no need to initialize members to zero */
1891     memset(pcb, 0, sizeof(struct tcp_pcb));
1892     pcb->prio = prio;
1893     pcb->snd_buf = TCP_SND_BUF;
1894     /* Start with a window that does not need scaling. When window scaling is
1895        enabled and used, the window is enlarged when both sides agree on scaling. */
1896     pcb->rcv_wnd = pcb->rcv_ann_wnd = TCPWND_MIN16(TCP_WND);
1897     pcb->ttl = TCP_TTL;
1898     /* As initial send MSS, we use TCP_MSS but limit it to 536.
1899        The send MSS is updated when an MSS option is received. */
1900     pcb->mss = INITIAL_MSS;
1901     pcb->rto = 3000 / TCP_SLOW_INTERVAL;
1902     pcb->sv = 3000 / TCP_SLOW_INTERVAL;
1903     pcb->rtime = -1;
1904     pcb->cwnd = 1;
1905     pcb->tmr = tcp_ticks;
1906     pcb->last_timer = tcp_timer_ctr;
1907 
1908     /* RFC 5681 recommends setting ssthresh abritrarily high and gives an example
1909     of using the largest advertised receive window.  We've seen complications with
1910     receiving TCPs that use window scaling and/or window auto-tuning where the
1911     initial advertised window is very small and then grows rapidly once the
1912     connection is established. To avoid these complications, we set ssthresh to the
1913     largest effective cwnd (amount of in-flight data) that the sender can have. */
1914     pcb->ssthresh = TCP_SND_BUF;
1915 
1916 #if LWIP_CALLBACK_API
1917     pcb->recv = tcp_recv_null;
1918 #endif /* LWIP_CALLBACK_API */
1919 
1920     /* Init KEEPALIVE timer */
1921     pcb->keep_idle  = TCP_KEEPIDLE_DEFAULT;
1922 
1923 #if LWIP_TCP_KEEPALIVE
1924     pcb->keep_intvl = TCP_KEEPINTVL_DEFAULT;
1925     pcb->keep_cnt   = TCP_KEEPCNT_DEFAULT;
1926 #endif /* LWIP_TCP_KEEPALIVE */
1927   }
1928   return pcb;
1929 }
1930 
1931 /**
1932  * @ingroup tcp_raw
1933  * Creates a new TCP protocol control block but doesn't place it on
1934  * any of the TCP PCB lists.
1935  * The pcb is not put on any list until binding using tcp_bind().
1936  * If memory is not available for creating the new pcb, NULL is returned.
1937  * @see MEMP_NUM_TCP_PCB_LISTEN and MEMP_NUM_TCP_PCB
1938  *
1939  * @internal: Maybe there should be a idle TCP PCB list where these
1940  * PCBs are put on. Port reservation using tcp_bind() is implemented but
1941  * allocated pcbs that are not bound can't be killed automatically if wanting
1942  * to allocate a pcb with higher prio (@see tcp_kill_prio())
1943  *
1944  * @return a new tcp_pcb that initially is in state CLOSED
1945  */
1946 struct tcp_pcb *
tcp_new(void)1947 tcp_new(void)
1948 {
1949   return tcp_alloc(TCP_PRIO_NORMAL);
1950 }
1951 
1952 /**
1953  * @ingroup tcp_raw
1954  * Creates a new TCP protocol control block but doesn't
1955  * place it on any of the TCP PCB lists.
1956  * The pcb is not put on any list until binding using tcp_bind().
1957  * @see MEMP_NUM_TCP_PCB_LISTEN and MEMP_NUM_TCP_PCB
1958  *
1959  * @param type IP address type, see @ref lwip_ip_addr_type definitions.
1960  * If you want to listen to IPv4 and IPv6 (dual-stack) connections,
1961  * supply @ref IPADDR_TYPE_ANY as argument and bind to @ref IP_ANY_TYPE.
1962  * @return a new tcp_pcb that initially is in state CLOSED
1963  */
1964 struct tcp_pcb *
tcp_new_ip_type(u8_t type)1965 tcp_new_ip_type(u8_t type)
1966 {
1967   struct tcp_pcb *pcb;
1968   pcb = tcp_alloc(TCP_PRIO_NORMAL);
1969 #if LWIP_IPV4 && LWIP_IPV6
1970   if (pcb != NULL) {
1971     IP_SET_TYPE_VAL(pcb->local_ip, type);
1972     IP_SET_TYPE_VAL(pcb->remote_ip, type);
1973   }
1974 #else
1975   LWIP_UNUSED_ARG(type);
1976 #endif /* LWIP_IPV4 && LWIP_IPV6 */
1977   return pcb;
1978 }
1979 
1980 /**
1981  * @ingroup tcp_raw
1982  * Specifies the program specific state that should be passed to all
1983  * other callback functions. The "pcb" argument is the current TCP
1984  * connection control block, and the "arg" argument is the argument
1985  * that will be passed to the callbacks.
1986  *
1987  * @param pcb tcp_pcb to set the callback argument
1988  * @param arg void pointer argument to pass to callback functions
1989  */
1990 void
tcp_arg(struct tcp_pcb * pcb,void * arg)1991 tcp_arg(struct tcp_pcb *pcb, void *arg)
1992 {
1993   LWIP_ASSERT_CORE_LOCKED();
1994   /* This function is allowed to be called for both listen pcbs and
1995      connection pcbs. */
1996   if (pcb != NULL) {
1997     pcb->callback_arg = arg;
1998   }
1999 }
2000 #if LWIP_CALLBACK_API
2001 
2002 /**
2003  * @ingroup tcp_raw
2004  * Sets the callback function that will be called when new data
2005  * arrives. The callback function will be passed a NULL pbuf to
2006  * indicate that the remote host has closed the connection. If the
2007  * callback function returns ERR_OK or ERR_ABRT it must have
2008  * freed the pbuf, otherwise it must not have freed it.
2009  *
2010  * @param pcb tcp_pcb to set the recv callback
2011  * @param recv callback function to call for this pcb when data is received
2012  */
2013 void
tcp_recv(struct tcp_pcb * pcb,tcp_recv_fn recv)2014 tcp_recv(struct tcp_pcb *pcb, tcp_recv_fn recv)
2015 {
2016   LWIP_ASSERT_CORE_LOCKED();
2017   if (pcb != NULL) {
2018     LWIP_ASSERT("invalid socket state for recv callback", pcb->state != LISTEN);
2019     pcb->recv = recv;
2020   }
2021 }
2022 
2023 /**
2024  * @ingroup tcp_raw
2025  * Specifies the callback function that should be called when data has
2026  * successfully been received (i.e., acknowledged) by the remote
2027  * host. The len argument passed to the callback function gives the
2028  * amount bytes that was acknowledged by the last acknowledgment.
2029  *
2030  * @param pcb tcp_pcb to set the sent callback
2031  * @param sent callback function to call for this pcb when data is successfully sent
2032  */
2033 void
tcp_sent(struct tcp_pcb * pcb,tcp_sent_fn sent)2034 tcp_sent(struct tcp_pcb *pcb, tcp_sent_fn sent)
2035 {
2036   LWIP_ASSERT_CORE_LOCKED();
2037   if (pcb != NULL) {
2038     LWIP_ASSERT("invalid socket state for sent callback", pcb->state != LISTEN);
2039     pcb->sent = sent;
2040   }
2041 }
2042 
2043 /**
2044  * @ingroup tcp_raw
2045  * Used to specify the function that should be called when a fatal error
2046  * has occurred on the connection.
2047  *
2048  * If a connection is aborted because of an error, the application is
2049  * alerted of this event by the err callback. Errors that might abort a
2050  * connection are when there is a shortage of memory. The callback
2051  * function to be called is set using the tcp_err() function.
2052  *
2053  * @note The corresponding pcb is already freed when this callback is called!
2054  *
2055  * @param pcb tcp_pcb to set the err callback
2056  * @param err callback function to call for this pcb when a fatal error
2057  *        has occurred on the connection
2058  */
2059 void
tcp_err(struct tcp_pcb * pcb,tcp_err_fn err)2060 tcp_err(struct tcp_pcb *pcb, tcp_err_fn err)
2061 {
2062   LWIP_ASSERT_CORE_LOCKED();
2063   if (pcb != NULL) {
2064     LWIP_ASSERT("invalid socket state for err callback", pcb->state != LISTEN);
2065     pcb->errf = err;
2066   }
2067 }
2068 
2069 /**
2070  * @ingroup tcp_raw
2071  * Used for specifying the function that should be called when a
2072  * LISTENing connection has been connected to another host.
2073  * @see MEMP_NUM_TCP_PCB_LISTEN and MEMP_NUM_TCP_PCB
2074  *
2075  * @param pcb tcp_pcb to set the accept callback
2076  * @param accept callback function to call for this pcb when LISTENing
2077  *        connection has been connected to another host
2078  */
2079 void
tcp_accept(struct tcp_pcb * pcb,tcp_accept_fn accept)2080 tcp_accept(struct tcp_pcb *pcb, tcp_accept_fn accept)
2081 {
2082   LWIP_ASSERT_CORE_LOCKED();
2083   if ((pcb != NULL) && (pcb->state == LISTEN)) {
2084     struct tcp_pcb_listen *lpcb = (struct tcp_pcb_listen *)pcb;
2085     lpcb->accept = accept;
2086   }
2087 }
2088 #endif /* LWIP_CALLBACK_API */
2089 
2090 
2091 /**
2092  * @ingroup tcp_raw
2093  * Specifies the polling interval and the callback function that should
2094  * be called to poll the application. The interval is specified in
2095  * number of TCP coarse grained timer shots, which typically occurs
2096  * twice a second. An interval of 10 means that the application would
2097  * be polled every 5 seconds.
2098  *
2099  * When a connection is idle (i.e., no data is either transmitted or
2100  * received), lwIP will repeatedly poll the application by calling a
2101  * specified callback function. This can be used either as a watchdog
2102  * timer for killing connections that have stayed idle for too long, or
2103  * as a method of waiting for memory to become available. For instance,
2104  * if a call to tcp_write() has failed because memory wasn't available,
2105  * the application may use the polling functionality to call tcp_write()
2106  * again when the connection has been idle for a while.
2107  */
2108 void
tcp_poll(struct tcp_pcb * pcb,tcp_poll_fn poll,u8_t interval)2109 tcp_poll(struct tcp_pcb *pcb, tcp_poll_fn poll, u8_t interval)
2110 {
2111   LWIP_ASSERT_CORE_LOCKED();
2112 
2113   LWIP_ERROR("tcp_poll: invalid pcb", pcb != NULL, return);
2114   LWIP_ASSERT("invalid socket state for poll", pcb->state != LISTEN);
2115 
2116 #if LWIP_CALLBACK_API
2117   pcb->poll = poll;
2118 #else /* LWIP_CALLBACK_API */
2119   LWIP_UNUSED_ARG(poll);
2120 #endif /* LWIP_CALLBACK_API */
2121   pcb->pollinterval = interval;
2122 }
2123 
2124 /**
2125  * Purges a TCP PCB. Removes any buffered data and frees the buffer memory
2126  * (pcb->ooseq, pcb->unsent and pcb->unacked are freed).
2127  *
2128  * @param pcb tcp_pcb to purge. The pcb itself is not deallocated!
2129  */
2130 void
tcp_pcb_purge(struct tcp_pcb * pcb)2131 tcp_pcb_purge(struct tcp_pcb *pcb)
2132 {
2133   LWIP_ERROR("tcp_pcb_purge: invalid pcb", pcb != NULL, return);
2134 
2135   if (pcb->state != CLOSED &&
2136       pcb->state != TIME_WAIT &&
2137       pcb->state != LISTEN) {
2138 
2139     LWIP_DEBUGF(TCP_DEBUG, ("tcp_pcb_purge\n"));
2140 
2141     tcp_backlog_accepted(pcb);
2142 
2143     if (pcb->refused_data != NULL) {
2144       LWIP_DEBUGF(TCP_DEBUG, ("tcp_pcb_purge: data left on ->refused_data\n"));
2145       pbuf_free(pcb->refused_data);
2146       pcb->refused_data = NULL;
2147     }
2148     if (pcb->unsent != NULL) {
2149       LWIP_DEBUGF(TCP_DEBUG, ("tcp_pcb_purge: not all data sent\n"));
2150     }
2151     if (pcb->unacked != NULL) {
2152       LWIP_DEBUGF(TCP_DEBUG, ("tcp_pcb_purge: data left on ->unacked\n"));
2153     }
2154 #if TCP_QUEUE_OOSEQ
2155     if (pcb->ooseq != NULL) {
2156       LWIP_DEBUGF(TCP_DEBUG, ("tcp_pcb_purge: data left on ->ooseq\n"));
2157       tcp_free_ooseq(pcb);
2158     }
2159 #endif /* TCP_QUEUE_OOSEQ */
2160 
2161     /* Stop the retransmission timer as it will expect data on unacked
2162        queue if it fires */
2163     pcb->rtime = -1;
2164 
2165     tcp_segs_free(pcb->unsent);
2166     tcp_segs_free(pcb->unacked);
2167     pcb->unacked = pcb->unsent = NULL;
2168 #if TCP_OVERSIZE
2169     pcb->unsent_oversize = 0;
2170 #endif /* TCP_OVERSIZE */
2171   }
2172 }
2173 
2174 /**
2175  * Purges the PCB and removes it from a PCB list. Any delayed ACKs are sent first.
2176  *
2177  * @param pcblist PCB list to purge.
2178  * @param pcb tcp_pcb to purge. The pcb itself is NOT deallocated!
2179  */
2180 void
tcp_pcb_remove(struct tcp_pcb ** pcblist,struct tcp_pcb * pcb)2181 tcp_pcb_remove(struct tcp_pcb **pcblist, struct tcp_pcb *pcb)
2182 {
2183   LWIP_ASSERT("tcp_pcb_remove: invalid pcb", pcb != NULL);
2184   LWIP_ASSERT("tcp_pcb_remove: invalid pcblist", pcblist != NULL);
2185 
2186   TCP_RMV(pcblist, pcb);
2187 
2188   tcp_pcb_purge(pcb);
2189 
2190   /* if there is an outstanding delayed ACKs, send it */
2191   if ((pcb->state != TIME_WAIT) &&
2192       (pcb->state != LISTEN) &&
2193       (pcb->flags & TF_ACK_DELAY)) {
2194     tcp_ack_now(pcb);
2195     tcp_output(pcb);
2196   }
2197 
2198   if (pcb->state != LISTEN) {
2199     LWIP_ASSERT("unsent segments leaking", pcb->unsent == NULL);
2200     LWIP_ASSERT("unacked segments leaking", pcb->unacked == NULL);
2201 #if TCP_QUEUE_OOSEQ
2202     LWIP_ASSERT("ooseq segments leaking", pcb->ooseq == NULL);
2203 #endif /* TCP_QUEUE_OOSEQ */
2204   }
2205 
2206   pcb->state = CLOSED;
2207   /* reset the local port to prevent the pcb from being 'bound' */
2208   pcb->local_port = 0;
2209 
2210   LWIP_ASSERT("tcp_pcb_remove: tcp_pcbs_sane()", tcp_pcbs_sane());
2211 }
2212 
2213 /**
2214  * Calculates a new initial sequence number for new connections.
2215  *
2216  * @return u32_t pseudo random sequence number
2217  */
2218 u32_t
tcp_next_iss(struct tcp_pcb * pcb)2219 tcp_next_iss(struct tcp_pcb *pcb)
2220 {
2221 #ifdef LWIP_HOOK_TCP_ISN
2222   LWIP_ASSERT("tcp_next_iss: invalid pcb", pcb != NULL);
2223   return LWIP_HOOK_TCP_ISN(&pcb->local_ip, pcb->local_port, &pcb->remote_ip, pcb->remote_port);
2224 #else /* LWIP_HOOK_TCP_ISN */
2225   static u32_t iss = 6510;
2226 
2227   LWIP_ASSERT("tcp_next_iss: invalid pcb", pcb != NULL);
2228   LWIP_UNUSED_ARG(pcb);
2229 
2230   iss += tcp_ticks;       /* XXX */
2231   return iss;
2232 #endif /* LWIP_HOOK_TCP_ISN */
2233 }
2234 
2235 #if TCP_CALCULATE_EFF_SEND_MSS
2236 /**
2237  * Calculates the effective send mss that can be used for a specific IP address
2238  * by calculating the minimum of TCP_MSS and the mtu (if set) of the target
2239  * netif (if not NULL).
2240  */
2241 u16_t
tcp_eff_send_mss_netif(u16_t sendmss,struct netif * outif,const ip_addr_t * dest)2242 tcp_eff_send_mss_netif(u16_t sendmss, struct netif *outif, const ip_addr_t *dest)
2243 {
2244   u16_t mss_s;
2245   u16_t mtu;
2246 
2247   LWIP_UNUSED_ARG(dest); /* in case IPv6 is disabled */
2248 
2249   LWIP_ASSERT("tcp_eff_send_mss_netif: invalid dst_ip", dest != NULL);
2250 
2251 #if LWIP_IPV6
2252 #if LWIP_IPV4
2253   if (IP_IS_V6(dest))
2254 #endif /* LWIP_IPV4 */
2255   {
2256     /* First look in destination cache, to see if there is a Path MTU. */
2257     mtu = nd6_get_destination_mtu(ip_2_ip6(dest), outif);
2258   }
2259 #if LWIP_IPV4
2260   else
2261 #endif /* LWIP_IPV4 */
2262 #endif /* LWIP_IPV6 */
2263 #if LWIP_IPV4
2264   {
2265     if (outif == NULL) {
2266       return sendmss;
2267     }
2268     mtu = outif->mtu;
2269   }
2270 #endif /* LWIP_IPV4 */
2271 
2272   if (mtu != 0) {
2273     u16_t offset;
2274 #if LWIP_IPV6
2275 #if LWIP_IPV4
2276     if (IP_IS_V6(dest))
2277 #endif /* LWIP_IPV4 */
2278     {
2279       offset = IP6_HLEN + TCP_HLEN;
2280     }
2281 #if LWIP_IPV4
2282     else
2283 #endif /* LWIP_IPV4 */
2284 #endif /* LWIP_IPV6 */
2285 #if LWIP_IPV4
2286     {
2287       offset = IP_HLEN + TCP_HLEN;
2288     }
2289 #endif /* LWIP_IPV4 */
2290     mss_s = (mtu > offset) ? (u16_t)(mtu - offset) : 0;
2291     /* RFC 1122, chap 4.2.2.6:
2292      * Eff.snd.MSS = min(SendMSS+20, MMS_S) - TCPhdrsize - IPoptionsize
2293      * We correct for TCP options in tcp_write(), and don't support IP options.
2294      */
2295     sendmss = LWIP_MIN(sendmss, mss_s);
2296   }
2297   return sendmss;
2298 }
2299 #endif /* TCP_CALCULATE_EFF_SEND_MSS */
2300 
2301 /** Helper function for tcp_netif_ip_addr_changed() that iterates a pcb list */
2302 static void
tcp_netif_ip_addr_changed_pcblist(const ip_addr_t * old_addr,struct tcp_pcb * pcb_list)2303 tcp_netif_ip_addr_changed_pcblist(const ip_addr_t *old_addr, struct tcp_pcb *pcb_list)
2304 {
2305   struct tcp_pcb *pcb;
2306   pcb = pcb_list;
2307 
2308   LWIP_ASSERT("tcp_netif_ip_addr_changed_pcblist: invalid old_addr", old_addr != NULL);
2309 
2310   while (pcb != NULL) {
2311     /* PCB bound to current local interface address? */
2312     if (ip_addr_cmp(&pcb->local_ip, old_addr)
2313 #if LWIP_AUTOIP
2314         /* connections to link-local addresses must persist (RFC3927 ch. 1.9) */
2315         && (!IP_IS_V4_VAL(pcb->local_ip) || !ip4_addr_islinklocal(ip_2_ip4(&pcb->local_ip)))
2316 #endif /* LWIP_AUTOIP */
2317        ) {
2318       /* this connection must be aborted */
2319       struct tcp_pcb *next = pcb->next;
2320       LWIP_DEBUGF(NETIF_DEBUG | LWIP_DBG_STATE, ("netif_set_ipaddr: aborting TCP pcb %p\n", (void *)pcb));
2321       tcp_abort(pcb);
2322       pcb = next;
2323     } else {
2324       pcb = pcb->next;
2325     }
2326   }
2327 }
2328 
2329 /** This function is called from netif.c when address is changed or netif is removed
2330  *
2331  * @param old_addr IP address of the netif before change
2332  * @param new_addr IP address of the netif after change or NULL if netif has been removed
2333  */
2334 void
tcp_netif_ip_addr_changed(const ip_addr_t * old_addr,const ip_addr_t * new_addr)2335 tcp_netif_ip_addr_changed(const ip_addr_t *old_addr, const ip_addr_t *new_addr)
2336 {
2337   struct tcp_pcb_listen *lpcb;
2338 
2339   if (!ip_addr_isany(old_addr)) {
2340     tcp_netif_ip_addr_changed_pcblist(old_addr, tcp_active_pcbs);
2341     tcp_netif_ip_addr_changed_pcblist(old_addr, tcp_bound_pcbs);
2342 
2343     if (!ip_addr_isany(new_addr)) {
2344       /* PCB bound to current local interface address? */
2345       for (lpcb = tcp_listen_pcbs.listen_pcbs; lpcb != NULL; lpcb = lpcb->next) {
2346         /* PCB bound to current local interface address? */
2347         if (ip_addr_cmp(&lpcb->local_ip, old_addr)) {
2348           /* The PCB is listening to the old ipaddr and
2349             * is set to listen to the new one instead */
2350           ip_addr_copy(lpcb->local_ip, *new_addr);
2351         }
2352       }
2353     }
2354   }
2355 }
2356 
2357 const char *
tcp_debug_state_str(enum tcp_state s)2358 tcp_debug_state_str(enum tcp_state s)
2359 {
2360   return tcp_state_str[s];
2361 }
2362 
2363 err_t
tcp_tcp_get_tcp_addrinfo(struct tcp_pcb * pcb,int local,ip_addr_t * addr,u16_t * port)2364 tcp_tcp_get_tcp_addrinfo(struct tcp_pcb *pcb, int local, ip_addr_t *addr, u16_t *port)
2365 {
2366   if (pcb) {
2367     if (local) {
2368       if (addr) {
2369         *addr = pcb->local_ip;
2370       }
2371       if (port) {
2372         *port = pcb->local_port;
2373       }
2374     } else {
2375       if (addr) {
2376         *addr = pcb->remote_ip;
2377       }
2378       if (port) {
2379         *port = pcb->remote_port;
2380       }
2381     }
2382     return ERR_OK;
2383   }
2384   return ERR_VAL;
2385 }
2386 
2387 #if TCP_QUEUE_OOSEQ
2388 /* Free all ooseq pbufs (and possibly reset SACK state) */
2389 void
tcp_free_ooseq(struct tcp_pcb * pcb)2390 tcp_free_ooseq(struct tcp_pcb *pcb)
2391 {
2392   if (pcb->ooseq) {
2393     tcp_segs_free(pcb->ooseq);
2394     pcb->ooseq = NULL;
2395 #if LWIP_TCP_SACK_OUT
2396     memset(pcb->rcv_sacks, 0, sizeof(pcb->rcv_sacks));
2397 #endif /* LWIP_TCP_SACK_OUT */
2398   }
2399 }
2400 #endif /* TCP_QUEUE_OOSEQ */
2401 
2402 #if TCP_DEBUG || TCP_INPUT_DEBUG || TCP_OUTPUT_DEBUG
2403 /**
2404  * Print a tcp header for debugging purposes.
2405  *
2406  * @param tcphdr pointer to a struct tcp_hdr
2407  */
2408 void
tcp_debug_print(struct tcp_hdr * tcphdr)2409 tcp_debug_print(struct tcp_hdr *tcphdr)
2410 {
2411   LWIP_DEBUGF(TCP_DEBUG, ("TCP header:\n"));
2412   LWIP_DEBUGF(TCP_DEBUG, ("+-------------------------------+\n"));
2413   LWIP_DEBUGF(TCP_DEBUG, ("|    %5"U16_F"      |    %5"U16_F"      | (src port, dest port)\n",
2414                           lwip_ntohs(tcphdr->src), lwip_ntohs(tcphdr->dest)));
2415   LWIP_DEBUGF(TCP_DEBUG, ("+-------------------------------+\n"));
2416   LWIP_DEBUGF(TCP_DEBUG, ("|           %010"U32_F"          | (seq no)\n",
2417                           lwip_ntohl(tcphdr->seqno)));
2418   LWIP_DEBUGF(TCP_DEBUG, ("+-------------------------------+\n"));
2419   LWIP_DEBUGF(TCP_DEBUG, ("|           %010"U32_F"          | (ack no)\n",
2420                           lwip_ntohl(tcphdr->ackno)));
2421   LWIP_DEBUGF(TCP_DEBUG, ("+-------------------------------+\n"));
2422   LWIP_DEBUGF(TCP_DEBUG, ("| %2"U16_F" |   |%"U16_F"%"U16_F"%"U16_F"%"U16_F"%"U16_F"%"U16_F"|     %5"U16_F"     | (hdrlen, flags (",
2423                           TCPH_HDRLEN(tcphdr),
2424                           (u16_t)(TCPH_FLAGS(tcphdr) >> 5 & 1),
2425                           (u16_t)(TCPH_FLAGS(tcphdr) >> 4 & 1),
2426                           (u16_t)(TCPH_FLAGS(tcphdr) >> 3 & 1),
2427                           (u16_t)(TCPH_FLAGS(tcphdr) >> 2 & 1),
2428                           (u16_t)(TCPH_FLAGS(tcphdr) >> 1 & 1),
2429                           (u16_t)(TCPH_FLAGS(tcphdr)      & 1),
2430                           lwip_ntohs(tcphdr->wnd)));
2431   tcp_debug_print_flags(TCPH_FLAGS(tcphdr));
2432   LWIP_DEBUGF(TCP_DEBUG, ("), win)\n"));
2433   LWIP_DEBUGF(TCP_DEBUG, ("+-------------------------------+\n"));
2434   LWIP_DEBUGF(TCP_DEBUG, ("|    0x%04"X16_F"     |     %5"U16_F"     | (chksum, urgp)\n",
2435                           lwip_ntohs(tcphdr->chksum), lwip_ntohs(tcphdr->urgp)));
2436   LWIP_DEBUGF(TCP_DEBUG, ("+-------------------------------+\n"));
2437 }
2438 
2439 /**
2440  * Print a tcp state for debugging purposes.
2441  *
2442  * @param s enum tcp_state to print
2443  */
2444 void
tcp_debug_print_state(enum tcp_state s)2445 tcp_debug_print_state(enum tcp_state s)
2446 {
2447   LWIP_DEBUGF(TCP_DEBUG, ("State: %s\n", tcp_state_str[s]));
2448 }
2449 
2450 /**
2451  * Print tcp flags for debugging purposes.
2452  *
2453  * @param flags tcp flags, all active flags are printed
2454  */
2455 void
tcp_debug_print_flags(u8_t flags)2456 tcp_debug_print_flags(u8_t flags)
2457 {
2458   if (flags & TCP_FIN) {
2459     LWIP_DEBUGF(TCP_DEBUG, ("FIN "));
2460   }
2461   if (flags & TCP_SYN) {
2462     LWIP_DEBUGF(TCP_DEBUG, ("SYN "));
2463   }
2464   if (flags & TCP_RST) {
2465     LWIP_DEBUGF(TCP_DEBUG, ("RST "));
2466   }
2467   if (flags & TCP_PSH) {
2468     LWIP_DEBUGF(TCP_DEBUG, ("PSH "));
2469   }
2470   if (flags & TCP_ACK) {
2471     LWIP_DEBUGF(TCP_DEBUG, ("ACK "));
2472   }
2473   if (flags & TCP_URG) {
2474     LWIP_DEBUGF(TCP_DEBUG, ("URG "));
2475   }
2476   if (flags & TCP_ECE) {
2477     LWIP_DEBUGF(TCP_DEBUG, ("ECE "));
2478   }
2479   if (flags & TCP_CWR) {
2480     LWIP_DEBUGF(TCP_DEBUG, ("CWR "));
2481   }
2482   LWIP_DEBUGF(TCP_DEBUG, ("\n"));
2483 }
2484 
2485 /**
2486  * Print all tcp_pcbs in every list for debugging purposes.
2487  */
2488 void
tcp_debug_print_pcbs(void)2489 tcp_debug_print_pcbs(void)
2490 {
2491   struct tcp_pcb *pcb;
2492   struct tcp_pcb_listen *pcbl;
2493 
2494   LWIP_DEBUGF(TCP_DEBUG, ("Active PCB states:\n"));
2495   for (pcb = tcp_active_pcbs; pcb != NULL; pcb = pcb->next) {
2496     LWIP_DEBUGF(TCP_DEBUG, ("Local port %"U16_F", foreign port %"U16_F" snd_nxt %"U32_F" rcv_nxt %"U32_F" ",
2497                             pcb->local_port, pcb->remote_port,
2498                             pcb->snd_nxt, pcb->rcv_nxt));
2499     tcp_debug_print_state(pcb->state);
2500   }
2501 
2502   LWIP_DEBUGF(TCP_DEBUG, ("Listen PCB states:\n"));
2503   for (pcbl = tcp_listen_pcbs.listen_pcbs; pcbl != NULL; pcbl = pcbl->next) {
2504     LWIP_DEBUGF(TCP_DEBUG, ("Local port %"U16_F" ", pcbl->local_port));
2505     tcp_debug_print_state(pcbl->state);
2506   }
2507 
2508   LWIP_DEBUGF(TCP_DEBUG, ("TIME-WAIT PCB states:\n"));
2509   for (pcb = tcp_tw_pcbs; pcb != NULL; pcb = pcb->next) {
2510     LWIP_DEBUGF(TCP_DEBUG, ("Local port %"U16_F", foreign port %"U16_F" snd_nxt %"U32_F" rcv_nxt %"U32_F" ",
2511                             pcb->local_port, pcb->remote_port,
2512                             pcb->snd_nxt, pcb->rcv_nxt));
2513     tcp_debug_print_state(pcb->state);
2514   }
2515 }
2516 
2517 /**
2518  * Check state consistency of the tcp_pcb lists.
2519  */
2520 s16_t
tcp_pcbs_sane(void)2521 tcp_pcbs_sane(void)
2522 {
2523   struct tcp_pcb *pcb;
2524   for (pcb = tcp_active_pcbs; pcb != NULL; pcb = pcb->next) {
2525     LWIP_ASSERT("tcp_pcbs_sane: active pcb->state != CLOSED", pcb->state != CLOSED);
2526     LWIP_ASSERT("tcp_pcbs_sane: active pcb->state != LISTEN", pcb->state != LISTEN);
2527     LWIP_ASSERT("tcp_pcbs_sane: active pcb->state != TIME-WAIT", pcb->state != TIME_WAIT);
2528   }
2529   for (pcb = tcp_tw_pcbs; pcb != NULL; pcb = pcb->next) {
2530     LWIP_ASSERT("tcp_pcbs_sane: tw pcb->state == TIME-WAIT", pcb->state == TIME_WAIT);
2531   }
2532   return 1;
2533 }
2534 #endif /* TCP_DEBUG */
2535 
2536 #if LWIP_TCP_PCB_NUM_EXT_ARGS
2537 /**
2538  * @defgroup tcp_raw_extargs ext arguments
2539  * @ingroup tcp_raw
2540  * Additional data storage per tcp pcb\n
2541  * @see @ref tcp_raw
2542  *
2543  * When LWIP_TCP_PCB_NUM_EXT_ARGS is > 0, every tcp pcb (including listen pcb)
2544  * includes a number of additional argument entries in an array.
2545  *
2546  * To support memory management, in addition to a 'void *', callbacks can be
2547  * provided to manage transition from listening pcbs to connections and to
2548  * deallocate memory when a pcb is deallocated (see struct @ref tcp_ext_arg_callbacks).
2549  *
2550  * After allocating this index, use @ref tcp_ext_arg_set and @ref tcp_ext_arg_get
2551  * to store and load arguments from this index for a given pcb.
2552  */
2553 
2554 static u8_t tcp_ext_arg_id;
2555 
2556 /**
2557  * @ingroup tcp_raw_extargs
2558  * Allocate an index to store data in ext_args member of struct tcp_pcb.
2559  * Returned value is an index in mentioned array.
2560  * The index is *global* over all pcbs!
2561  *
2562  * When @ref LWIP_TCP_PCB_NUM_EXT_ARGS is > 0, every tcp pcb (including listen pcb)
2563  * includes a number of additional argument entries in an array.
2564  *
2565  * To support memory management, in addition to a 'void *', callbacks can be
2566  * provided to manage transition from listening pcbs to connections and to
2567  * deallocate memory when a pcb is deallocated (see struct @ref tcp_ext_arg_callbacks).
2568  *
2569  * After allocating this index, use @ref tcp_ext_arg_set and @ref tcp_ext_arg_get
2570  * to store and load arguments from this index for a given pcb.
2571  *
2572  * @return a unique index into struct tcp_pcb.ext_args
2573  */
2574 u8_t
tcp_ext_arg_alloc_id(void)2575 tcp_ext_arg_alloc_id(void)
2576 {
2577   u8_t result = tcp_ext_arg_id;
2578   tcp_ext_arg_id++;
2579 
2580   LWIP_ASSERT_CORE_LOCKED();
2581 
2582 #if LWIP_TCP_PCB_NUM_EXT_ARGS >= 255
2583 #error LWIP_TCP_PCB_NUM_EXT_ARGS
2584 #endif
2585   LWIP_ASSERT("Increase LWIP_TCP_PCB_NUM_EXT_ARGS in lwipopts.h", result < LWIP_TCP_PCB_NUM_EXT_ARGS);
2586   return result;
2587 }
2588 
2589 /**
2590  * @ingroup tcp_raw_extargs
2591  * Set callbacks for a given index of ext_args on the specified pcb.
2592  *
2593  * @param pcb tcp_pcb for which to set the callback
2594  * @param id ext_args index to set (allocated via @ref tcp_ext_arg_alloc_id)
2595  * @param callbacks callback table (const since it is referenced, not copied!)
2596  */
2597 void
tcp_ext_arg_set_callbacks(struct tcp_pcb * pcb,uint8_t id,const struct tcp_ext_arg_callbacks * const callbacks)2598 tcp_ext_arg_set_callbacks(struct tcp_pcb *pcb, uint8_t id, const struct tcp_ext_arg_callbacks * const callbacks)
2599 {
2600   LWIP_ASSERT("pcb != NULL", pcb != NULL);
2601   LWIP_ASSERT("id < LWIP_TCP_PCB_NUM_EXT_ARGS", id < LWIP_TCP_PCB_NUM_EXT_ARGS);
2602   LWIP_ASSERT("callbacks != NULL", callbacks != NULL);
2603 
2604   LWIP_ASSERT_CORE_LOCKED();
2605 
2606   pcb->ext_args[id].callbacks = callbacks;
2607 }
2608 
2609 /**
2610  * @ingroup tcp_raw_extargs
2611  * Set data for a given index of ext_args on the specified pcb.
2612  *
2613  * @param pcb tcp_pcb for which to set the data
2614  * @param id ext_args index to set (allocated via @ref tcp_ext_arg_alloc_id)
2615  * @param arg data pointer to set
2616  */
tcp_ext_arg_set(struct tcp_pcb * pcb,uint8_t id,void * arg)2617 void tcp_ext_arg_set(struct tcp_pcb *pcb, uint8_t id, void *arg)
2618 {
2619   LWIP_ASSERT("pcb != NULL", pcb != NULL);
2620   LWIP_ASSERT("id < LWIP_TCP_PCB_NUM_EXT_ARGS", id < LWIP_TCP_PCB_NUM_EXT_ARGS);
2621 
2622   LWIP_ASSERT_CORE_LOCKED();
2623 
2624   pcb->ext_args[id].data = arg;
2625 }
2626 
2627 /**
2628  * @ingroup tcp_raw_extargs
2629  * Set data for a given index of ext_args on the specified pcb.
2630  *
2631  * @param pcb tcp_pcb for which to set the data
2632  * @param id ext_args index to set (allocated via @ref tcp_ext_arg_alloc_id)
2633  * @return data pointer at the given index
2634  */
tcp_ext_arg_get(const struct tcp_pcb * pcb,uint8_t id)2635 void *tcp_ext_arg_get(const struct tcp_pcb *pcb, uint8_t id)
2636 {
2637   LWIP_ASSERT("pcb != NULL", pcb != NULL);
2638   LWIP_ASSERT("id < LWIP_TCP_PCB_NUM_EXT_ARGS", id < LWIP_TCP_PCB_NUM_EXT_ARGS);
2639 
2640   LWIP_ASSERT_CORE_LOCKED();
2641 
2642   return pcb->ext_args[id].data;
2643 }
2644 
2645 /** This function calls the "destroy" callback for all ext_args once a pcb is
2646  * freed.
2647  */
2648 static void
tcp_ext_arg_invoke_callbacks_destroyed(struct tcp_pcb_ext_args * ext_args)2649 tcp_ext_arg_invoke_callbacks_destroyed(struct tcp_pcb_ext_args *ext_args)
2650 {
2651   int i;
2652   LWIP_ASSERT("ext_args != NULL", ext_args != NULL);
2653 
2654   for (i = 0; i < LWIP_TCP_PCB_NUM_EXT_ARGS; i++) {
2655     if (ext_args[i].callbacks != NULL) {
2656       if (ext_args[i].callbacks->destroy != NULL) {
2657         ext_args[i].callbacks->destroy((u8_t)i, ext_args[i].data);
2658       }
2659     }
2660   }
2661 }
2662 
2663 /** This function calls the "passive_open" callback for all ext_args if a connection
2664  * is in the process of being accepted. This is called just after the SYN is
2665  * received and before a SYN/ACK is sent, to allow to modify the very first
2666  * segment sent even on passive open. Naturally, the "accepted" callback of the
2667  * pcb has not been called yet!
2668  */
2669 err_t
tcp_ext_arg_invoke_callbacks_passive_open(struct tcp_pcb_listen * lpcb,struct tcp_pcb * cpcb)2670 tcp_ext_arg_invoke_callbacks_passive_open(struct tcp_pcb_listen *lpcb, struct tcp_pcb *cpcb)
2671 {
2672   int i;
2673   LWIP_ASSERT("lpcb != NULL", lpcb != NULL);
2674   LWIP_ASSERT("cpcb != NULL", cpcb != NULL);
2675 
2676   for (i = 0; i < LWIP_TCP_PCB_NUM_EXT_ARGS; i++) {
2677     if (lpcb->ext_args[i].callbacks != NULL) {
2678       if (lpcb->ext_args[i].callbacks->passive_open != NULL) {
2679         err_t err = lpcb->ext_args[i].callbacks->passive_open((u8_t)i, lpcb, cpcb);
2680         if (err != ERR_OK) {
2681           return err;
2682         }
2683       }
2684     }
2685   }
2686   return ERR_OK;
2687 }
2688 #endif /* LWIP_TCP_PCB_NUM_EXT_ARGS */
2689 
2690 #endif /* LWIP_TCP */
2691