1# Copyright 2020 Huawei Technologies Co., Ltd 2# 3# Licensed under the Apache License, Version 2.0 (the "License"); 4# you may not use this file except in compliance with the License. 5# You may obtain a copy of the License at 6# 7# http://www.apache.org/licenses/LICENSE-2.0 8# 9# Unless required by applicable law or agreed to in writing, software 10# distributed under the License is distributed on an "AS IS" BASIS, 11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12# See the License for the specific language governing permissions and 13# limitations under the License. 14# ============================================================================ 15 16import numpy as np 17import pytest 18 19import mindspore.context as context 20import mindspore.nn as nn 21from mindspore import Tensor 22from mindspore.common.initializer import initializer 23from mindspore.common.parameter import Parameter 24from mindspore.ops import operations as P 25 26context.set_context(mode=context.GRAPH_MODE, device_target="CPU") 27 28 29class NetEqualBool(nn.Cell): 30 def __init__(self): 31 super(NetEqualBool, self).__init__() 32 self.equal = P.Equal() 33 x = Tensor(np.array([True, True, False]).astype(np.bool)) 34 y = Tensor(np.array([True, False, True]).astype(np.bool)) 35 self.x = Parameter(initializer(x, x.shape), name="x") 36 self.y = Parameter(initializer(y, y.shape), name="y") 37 38 def construct(self): 39 return self.equal(self.x, self.y) 40 41 42@pytest.mark.level0 43@pytest.mark.platform_x86_cpu 44@pytest.mark.env_onecard 45def test_equal_bool(): 46 Equal = NetEqualBool() 47 output = Equal() 48 print("================================") 49 expect = np.array([True, False, False]).astype(np.bool) 50 print(output) 51 assert (output.asnumpy() == expect).all() 52 53 54class NetEqualInt(nn.Cell): 55 def __init__(self): 56 super(NetEqualInt, self).__init__() 57 self.equal = P.Equal() 58 x = Tensor(np.array([1, 20, 5]).astype(np.int32)) 59 y = Tensor(np.array([2, 20, 5]).astype(np.int32)) 60 self.x = Parameter(initializer(x, x.shape), name="x") 61 self.y = Parameter(initializer(y, y.shape), name="y") 62 63 def construct(self): 64 return self.equal(self.x, self.y) 65 66 67@pytest.mark.level0 68@pytest.mark.platform_x86_cpu 69@pytest.mark.env_onecard 70def test_equal_int(): 71 Equal = NetEqualInt() 72 output = Equal() 73 print("================================") 74 expect = np.array([False, True, True]).astype(np.bool) 75 print(output) 76 assert (output.asnumpy() == expect).all() 77 78 79class NetEqualFloat(nn.Cell): 80 def __init__(self): 81 super(NetEqualFloat, self).__init__() 82 self.equal = P.Equal() 83 x = Tensor(np.array([1.2, 10.4, 5.5]).astype(np.float32)) 84 y = Tensor(np.array([1.2, 10.3, 5.4]).astype(np.float32)) 85 self.x = Parameter(initializer(x, x.shape), name="x") 86 self.y = Parameter(initializer(y, y.shape), name="y") 87 88 def construct(self): 89 return self.equal(self.x, self.y) 90 91 92@pytest.mark.level0 93@pytest.mark.platform_x86_cpu 94@pytest.mark.env_onecard 95def test_equal_float(): 96 Equal = NetEqualFloat() 97 output = Equal() 98 print("================================") 99 expect = np.array([True, False, False]).astype(np.bool) 100 print(output) 101 assert (output.asnumpy() == expect).all() 102