• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Copyright 2020-2021 Huawei Technologies Co., Ltd
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7# http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ============================================================================
15"""unit tests for numpy math operations"""
16
17import pytest
18import numpy as onp
19import mindspore.numpy as mnp
20from mindspore import context
21from mindspore.common.dtype import dtype_to_nptype
22
23from .utils import rand_int, rand_bool, run_binop_test, run_unary_test, run_multi_test, \
24    run_single_test, match_res, match_array, match_meta, match_all_arrays, to_tensor
25
26context.set_context(mode=context.PYNATIVE_MODE)
27
28class Cases():
29    def __init__(self):
30        self.arrs = [
31            rand_int(2),
32            rand_int(2, 3),
33            rand_int(2, 3, 4),
34        ]
35
36        # scalars expanded across the 0th dimension
37        self.scalars = [
38            rand_int(),
39            rand_int(1),
40            rand_int(1, 1),
41        ]
42
43        # arrays of the same size expanded across the 0th dimension
44        self.expanded_arrs = [
45            rand_int(2, 3),
46            rand_int(1, 2, 3),
47            rand_int(1, 1, 2, 3),
48        ]
49
50        # arrays with last dimension aligned
51        self.aligned_arrs = [
52            rand_int(2, 3),
53            rand_int(1, 4, 3),
54            rand_int(5, 1, 2, 3),
55            rand_int(4, 2, 1, 1, 3),
56        ]
57
58        # arrays which can be broadcast
59        self.broadcastables = [
60            rand_int(5),
61            rand_int(6, 1),
62            rand_int(7, 1, 5),
63        ]
64
65        # boolean arrays which can be broadcast
66        self.bool_broadcastables = [
67            rand_bool(),
68            rand_bool(1),
69            rand_bool(5),
70            rand_bool(6, 1),
71            rand_bool(7, 1, 5),
72            rand_bool(8, 1, 6, 1),
73        ]
74
75        # core dimension 0 is matched for each
76        # pair of array[i] and array[i + 1]
77        self.core_broadcastables = [
78            rand_int(3),
79            rand_int(3),
80            rand_int(6),
81            rand_int(6, 4),
82            rand_int(5, 2),
83            rand_int(2),
84            rand_int(2, 9),
85            rand_int(9, 8),
86            rand_int(6),
87            rand_int(2, 6, 5),
88            rand_int(9, 2, 7),
89            rand_int(7),
90            rand_int(5, 2, 4),
91            rand_int(6, 1, 4, 9),
92            rand_int(7, 1, 5, 3, 2),
93            rand_int(8, 1, 6, 1, 2, 9),
94        ]
95
96        # arrays with dimensions of size 1
97        self.nested_arrs = [
98            rand_int(1),
99            rand_int(1, 2),
100            rand_int(3, 1, 8),
101            rand_int(1, 3, 9, 1),
102        ]
103
104
105test_case = Cases()
106
107
108def mnp_add(x1, x2):
109    return mnp.add(x1, x2)
110
111
112def onp_add(x1, x2):
113    return onp.add(x1, x2)
114
115
116def mnp_subtract(x1, x2):
117    return mnp.subtract(x1, x2)
118
119
120def onp_subtract(x1, x2):
121    return onp.subtract(x1, x2)
122
123
124def mnp_mutiply(x1, x2):
125    return mnp.multiply(x1, x2)
126
127
128def onp_multiply(x1, x2):
129    return onp.multiply(x1, x2)
130
131
132def mnp_divide(x1, x2):
133    return mnp.divide(x1, x2)
134
135
136def onp_divide(x1, x2):
137    return onp.divide(x1, x2)
138
139
140def mnp_true_divide(x1, x2):
141    return mnp.true_divide(x1, x2)
142
143
144def onp_true_divide(x1, x2):
145    return onp.true_divide(x1, x2)
146
147
148def mnp_power(x1, x2):
149    return mnp.power(x1, x2)
150
151
152def onp_power(x1, x2):
153    return onp.power(x1, x2)
154
155
156def mnp_float_power(x1, x2):
157    return mnp.float_power(x1, x2)
158
159
160def onp_float_power(x1, x2):
161    return onp.float_power(x1, x2)
162
163
164def mnp_minimum(a, b):
165    return mnp.minimum(a, b)
166
167
168def onp_minimum(a, b):
169    return onp.minimum(a, b)
170
171
172@pytest.mark.level1
173@pytest.mark.platform_arm_ascend_training
174@pytest.mark.platform_x86_ascend_training
175@pytest.mark.platform_x86_gpu_training
176@pytest.mark.platform_x86_cpu
177@pytest.mark.env_onecard
178def test_add():
179    run_binop_test(mnp_add, onp_add, test_case)
180
181
182@pytest.mark.level1
183@pytest.mark.platform_arm_ascend_training
184@pytest.mark.platform_x86_ascend_training
185@pytest.mark.platform_x86_gpu_training
186@pytest.mark.platform_x86_cpu
187@pytest.mark.env_onecard
188def test_subtract():
189    run_binop_test(mnp_subtract, onp_subtract, test_case)
190
191
192@pytest.mark.level1
193@pytest.mark.platform_arm_ascend_training
194@pytest.mark.platform_x86_ascend_training
195@pytest.mark.platform_x86_gpu_training
196@pytest.mark.platform_x86_cpu
197@pytest.mark.env_onecard
198def test_multiply():
199    run_binop_test(mnp_mutiply, onp_multiply, test_case)
200
201
202@pytest.mark.level1
203@pytest.mark.platform_arm_ascend_training
204@pytest.mark.platform_x86_ascend_training
205@pytest.mark.platform_x86_gpu_training
206@pytest.mark.platform_x86_cpu
207@pytest.mark.env_onecard
208def test_divide():
209    run_binop_test(mnp_divide, onp_divide, test_case)
210
211
212@pytest.mark.level1
213@pytest.mark.platform_arm_ascend_training
214@pytest.mark.platform_x86_ascend_training
215@pytest.mark.platform_x86_gpu_training
216@pytest.mark.platform_x86_cpu
217@pytest.mark.env_onecard
218def test_true_divide():
219    run_binop_test(mnp_true_divide, onp_true_divide, test_case)
220
221
222@pytest.mark.level1
223@pytest.mark.platform_arm_ascend_training
224@pytest.mark.platform_x86_ascend_training
225@pytest.mark.platform_x86_gpu_training
226@pytest.mark.platform_x86_cpu
227@pytest.mark.env_onecard
228def test_power():
229    run_binop_test(mnp_power, onp_power, test_case, error=1e-5)
230
231
232@pytest.mark.level1
233@pytest.mark.platform_arm_ascend_training
234@pytest.mark.platform_x86_ascend_training
235@pytest.mark.platform_x86_gpu_training
236@pytest.mark.platform_x86_cpu
237@pytest.mark.env_onecard
238def test_float_power():
239    run_binop_test(mnp_float_power, onp_float_power, test_case, error=1e-5)
240
241
242@pytest.mark.level1
243@pytest.mark.platform_x86_gpu_training
244@pytest.mark.platform_x86_cpu
245@pytest.mark.env_onecard
246def test_minimum():
247    run_binop_test(mnp_minimum, onp_minimum, test_case)
248    x = onp.random.randint(-10, 10, 20).astype(onp.float32)
249    y = onp.random.randint(-10, 10, 20).astype(onp.float32)
250    x[onp.random.randint(0, 10, 3)] = onp.nan
251    y[onp.random.randint(0, 10, 3)] = onp.nan
252    x[onp.random.randint(0, 10, 3)] = onp.NINF
253    y[onp.random.randint(0, 10, 3)] = onp.NINF
254    x[onp.random.randint(0, 10, 3)] = onp.PINF
255    y[onp.random.randint(0, 10, 3)] = onp.PINF
256    match_res(mnp_minimum, onp_minimum, x, y)
257    match_res(mnp_minimum, onp_minimum, y, x)
258
259
260def mnp_tensordot(x, y):
261    a = mnp.tensordot(x, y)
262    b = mnp.tensordot(x, y, axes=0)
263    c = mnp.tensordot(x, y, axes=1)
264    d = mnp.tensordot(x, y, axes=2)
265    e = mnp.tensordot(x, y, axes=(3, 0))
266    f = mnp.tensordot(x, y, axes=[2, 1])
267    g = mnp.tensordot(x, y, axes=((2, 3), (0, 1)))
268    h = mnp.tensordot(x, y, axes=[[3, 2], [1, 0]])
269    return a, b, c, d, e, f, g, h
270
271
272def onp_tensordot(x, y):
273    a = onp.tensordot(x, y)
274    b = onp.tensordot(x, y, axes=0)
275    c = onp.tensordot(x, y, axes=1)
276    d = onp.tensordot(x, y, axes=2)
277    e = onp.tensordot(x, y, axes=(3, 0))
278    f = onp.tensordot(x, y, axes=[2, 1])
279    g = onp.tensordot(x, y, axes=((2, 3), (0, 1)))
280    h = onp.tensordot(x, y, axes=[[3, 2], [1, 0]])
281    return a, b, c, d, e, f, g, h
282
283
284@pytest.mark.level1
285@pytest.mark.platform_arm_ascend_training
286@pytest.mark.platform_x86_ascend_training
287@pytest.mark.platform_x86_gpu_training
288@pytest.mark.platform_x86_cpu
289@pytest.mark.env_onecard
290def test_tensordot():
291    x = rand_int(4, 2, 7, 7)
292    y = rand_int(7, 7, 6)
293    run_multi_test(mnp_tensordot, onp_tensordot, (x, y))
294
295
296def mnp_std(x):
297    a = mnp.std(x)
298    b = mnp.std(x, axis=None)
299    c = mnp.std(x, axis=0)
300    d = mnp.std(x, axis=1)
301    e = mnp.std(x, axis=(-1, 1))
302    f = mnp.std(x, axis=(0, 1, 2))
303    g = mnp.std(x, axis=None, ddof=1, keepdims=True)
304    h = mnp.std(x, axis=0, ddof=1, keepdims=True)
305    i = mnp.std(x, axis=(2), ddof=1, keepdims=True)
306    return a, b, c, d, e, f, g, h, i
307
308
309def onp_std(x):
310    a = onp.std(x)
311    b = onp.std(x, axis=None)
312    c = onp.std(x, axis=0)
313    d = onp.std(x, axis=1)
314    e = onp.std(x, axis=(-1, 1))
315    f = onp.std(x, axis=(0, 1, 2))
316    g = onp.std(x, axis=None, ddof=1, keepdims=True)
317    h = onp.std(x, axis=0, ddof=1, keepdims=True)
318    i = onp.std(x, axis=(2), ddof=1, keepdims=True)
319    return a, b, c, d, e, f, g, h, i
320
321
322@pytest.mark.level1
323@pytest.mark.platform_arm_ascend_training
324@pytest.mark.platform_x86_ascend_training
325@pytest.mark.platform_x86_gpu_training
326@pytest.mark.platform_x86_cpu
327@pytest.mark.env_onecard
328def test_std():
329    arr1 = rand_int(2, 3, 4, 5)
330    arr2 = rand_int(4, 5, 4, 3, 3)
331    run_single_test(mnp_std, onp_std, arr1, error=1e-5)
332    run_single_test(mnp_std, onp_std, arr2, error=1e-5)
333
334
335def mnp_nanstd(x):
336    a = mnp.nanstd(x)
337    b = mnp.nanstd(x, axis=None)
338    c = mnp.nanstd(x, axis=0)
339    d = mnp.nanstd(x, axis=1)
340    e = mnp.nanstd(x, axis=(-1, 1))
341    f = mnp.nanstd(x, axis=(0, 1, 2))
342    g = mnp.nanstd(x, axis=None, ddof=1, keepdims=True)
343    h = mnp.nanstd(x, axis=0, ddof=1, keepdims=True)
344    i = mnp.nanstd(x, axis=(2), ddof=1, keepdims=True)
345    return a, b, c, d, e, f, g, h, i
346
347
348def onp_nanstd(x):
349    a = onp.nanstd(x)
350    b = onp.nanstd(x, axis=None)
351    c = onp.nanstd(x, axis=0)
352    d = onp.nanstd(x, axis=1)
353    e = onp.nanstd(x, axis=(-1, 1))
354    f = onp.nanstd(x, axis=(0, 1, 2))
355    g = onp.nanstd(x, axis=None, ddof=1, keepdims=True)
356    h = onp.nanstd(x, axis=0, ddof=1, keepdims=True)
357    i = onp.nanstd(x, axis=(2), ddof=1, keepdims=True)
358    return a, b, c, d, e, f, g, h, i
359
360
361@pytest.mark.level1
362@pytest.mark.platform_x86_gpu_training
363@pytest.mark.platform_x86_cpu
364@pytest.mark.env_onecard
365def test_nanstd():
366    arr1 = rand_int(2, 3, 4, 5)
367    arr1[0][2][1][3] = onp.nan
368    arr1[1][0][2][4] = onp.nan
369    arr1[1][1][1][1] = onp.nan
370    arr2 = rand_int(4, 5, 4, 3, 3)
371    arr2[3][1][2][1][0] = onp.nan
372    arr2[1][1][1][1][1] = onp.nan
373    arr2[0][4][3][0][2] = onp.nan
374    run_single_test(mnp_nanstd, onp_nanstd, arr1, error=1e-5)
375    run_single_test(mnp_nanstd, onp_nanstd, arr2, error=1e-5)
376    match_res(mnp.nanstd, onp.nanstd, rand_int())
377
378
379def mnp_var(x):
380    a = mnp.var(x)
381    b = mnp.var(x, axis=0)
382    c = mnp.var(x, axis=(0))
383    d = mnp.var(x, axis=(0, 1, 2))
384    e = mnp.var(x, axis=(-1, 1, 2), ddof=1, keepdims=True)
385    return a, b, c, d, e
386
387
388def onp_var(x):
389    a = onp.var(x)
390    b = onp.var(x, axis=0)
391    c = onp.var(x, axis=(0))
392    d = onp.var(x, axis=(0, 1, 2))
393    e = onp.var(x, axis=(-1, 1, 2), ddof=1, keepdims=True)
394    return a, b, c, d, e
395
396
397@pytest.mark.level1
398@pytest.mark.platform_arm_ascend_training
399@pytest.mark.platform_x86_ascend_training
400@pytest.mark.platform_x86_gpu_training
401@pytest.mark.platform_x86_cpu
402@pytest.mark.env_onecard
403def test_var():
404    arr1 = rand_int(2, 3, 4, 5)
405    arr2 = rand_int(4, 5, 4, 3, 3)
406    run_single_test(mnp_var, onp_var, arr1, error=1e-5)
407    run_single_test(mnp_var, onp_var, arr2, error=1e-5)
408
409
410def mnp_nanvar(x):
411    a = mnp.var(x)
412    b = mnp.var(x, axis=0)
413    c = mnp.var(x, axis=(0))
414    d = mnp.var(x, axis=(0, 1, 2))
415    e = mnp.var(x, axis=(-1, 1, 2), ddof=1, keepdims=True)
416    return a, b, c, d, e
417
418
419def onp_nanvar(x):
420    a = onp.var(x)
421    b = onp.var(x, axis=0)
422    c = onp.var(x, axis=(0))
423    d = onp.var(x, axis=(0, 1, 2))
424    e = onp.var(x, axis=(-1, 1, 2), ddof=1, keepdims=True)
425    return a, b, c, d, e
426
427
428@pytest.mark.level1
429@pytest.mark.platform_x86_gpu_training
430@pytest.mark.platform_x86_cpu
431@pytest.mark.env_onecard
432def test_nanvar():
433    arr1 = rand_int(2, 3, 4, 5)
434    arr1[0][2][1][3] = onp.nan
435    arr1[1][0][2][4] = onp.nan
436    arr1[1][1][1][1] = onp.nan
437    arr2 = rand_int(4, 5, 4, 3, 3)
438    arr2[3][1][2][1][0] = onp.nan
439    arr2[1][1][1][1][1] = onp.nan
440    arr2[0][4][3][0][2] = onp.nan
441    run_single_test(mnp_nanvar, onp_nanvar, arr1, error=1e-5)
442    run_single_test(mnp_nanvar, onp_nanvar, arr2, error=1e-5)
443    match_res(mnp.nanvar, onp.nanvar, rand_int())
444
445
446def mnp_average(x):
447    a = mnp.average(x)
448    b = mnp.average(x, axis=None)
449    c = mnp.average(x, axis=0)
450    d = mnp.average(x, axis=1)
451    e = mnp.average(x, axis=(-2, 1))
452    f = mnp.average(x, axis=(0, 1, 2, 3))
453    g = mnp.average(x, axis=None, weights=x)
454    h = mnp.average(x, axis=0, weights=x)
455    i = mnp.average(x, axis=(1, 2, 3), weights=x)
456    return a, b, c, d, e, f, g, h, i
457
458
459def onp_average(x):
460    a = onp.average(x)
461    b = onp.average(x, axis=None)
462    c = onp.average(x, axis=0)
463    d = onp.average(x, axis=1)
464    e = onp.average(x, axis=(-2, 1))
465    f = onp.average(x, axis=(0, 1, 2, 3))
466    g = onp.average(x, axis=None, weights=x)
467    h = onp.average(x, axis=0, weights=x)
468    i = onp.average(x, axis=(1, 2, 3), weights=x)
469    return a, b, c, d, e, f, g, h, i
470
471
472@pytest.mark.level0
473@pytest.mark.platform_arm_ascend_training
474@pytest.mark.platform_x86_ascend_training
475@pytest.mark.platform_x86_gpu_training
476@pytest.mark.platform_x86_cpu
477@pytest.mark.env_onecard
478def test_average():
479    arr1 = rand_int(2, 3, 4, 5)
480    arr2 = rand_int(4, 5, 1, 3, 1)
481    run_single_test(mnp_average, onp_average, arr1, error=1e-5)
482    run_single_test(mnp_average, onp_average, arr2, error=1e-5)
483
484
485def mnp_count_nonzero(x):
486    a = mnp.count_nonzero(x)
487    b = mnp.count_nonzero(x, axis=None)
488    c = mnp.count_nonzero(x, axis=0)
489    d = mnp.count_nonzero(x, axis=1)
490    e = mnp.count_nonzero(x, axis=(-2, 1))
491    f = mnp.count_nonzero(x, axis=(0, 1, 2, 3))
492    return a, b, c, d, e, f
493
494
495def onp_count_nonzero(x):
496    a = onp.count_nonzero(x)
497    b = onp.count_nonzero(x, axis=None)
498    c = onp.count_nonzero(x, axis=0)
499    d = onp.count_nonzero(x, axis=1)
500    e = onp.count_nonzero(x, axis=(-2, 1))
501    f = onp.count_nonzero(x, axis=(0, 1, 2, 3))
502    return a, b, c, d, e, f
503
504
505@pytest.mark.level1
506@pytest.mark.platform_arm_ascend_training
507@pytest.mark.platform_x86_ascend_training
508@pytest.mark.platform_x86_gpu_training
509@pytest.mark.platform_x86_cpu
510@pytest.mark.env_onecard
511def test_count_nonzero():
512    # minus 5 to make some values below zero
513    arr1 = rand_int(2, 3, 4, 5) - 5
514    arr2 = rand_int(4, 5, 4, 3, 3) - 5
515    run_single_test(mnp_count_nonzero, onp_count_nonzero, arr1)
516    run_single_test(mnp_count_nonzero, onp_count_nonzero, arr2)
517
518
519def mnp_inner(a, b):
520    return mnp.inner(a, b)
521
522
523def onp_inner(a, b):
524    return onp.inner(a, b)
525
526
527@pytest.mark.level1
528@pytest.mark.platform_arm_ascend_training
529@pytest.mark.platform_x86_ascend_training
530@pytest.mark.platform_x86_gpu_training
531@pytest.mark.platform_x86_cpu
532@pytest.mark.env_onecard
533def test_inner():
534    for arr1 in test_case.aligned_arrs:
535        for arr2 in test_case.aligned_arrs:
536            match_res(mnp_inner, onp_inner, arr1, arr2)
537
538    for scalar1 in test_case.scalars:
539        for scalar2 in test_case.scalars:
540            match_res(mnp_inner, onp_inner,
541                      scalar1, scalar2)
542
543
544def mnp_dot(a, b):
545    return mnp.dot(a, b)
546
547
548def onp_dot(a, b):
549    return onp.dot(a, b)
550
551
552@pytest.mark.level1
553@pytest.mark.platform_arm_ascend_training
554@pytest.mark.platform_x86_ascend_training
555@pytest.mark.platform_x86_gpu_training
556@pytest.mark.platform_x86_cpu
557@pytest.mark.env_onecard
558def test_dot():
559    # test case (1D, 1D)
560    match_res(mnp_dot, onp_dot, rand_int(3), rand_int(3))
561
562    # test case (2D, 2D)
563    match_res(mnp_dot, onp_dot, rand_int(4, 7), rand_int(7, 2))
564
565    # test case (0D, _) (_, 0D)
566    match_res(mnp_dot, onp_dot, rand_int(), rand_int(1, 9, 3))
567    match_res(mnp_dot, onp_dot, rand_int(8, 5, 6, 3), rand_int())
568
569    # test case (ND, 1D)
570    match_res(mnp_dot, onp_dot, rand_int(2, 4, 5), rand_int(5))
571
572    # test case (ND, MD)
573    match_res(mnp_dot, onp_dot, rand_int(5, 4, 1, 8), rand_int(8, 3))
574
575    for i in range(8):
576        match_res(mnp_dot, onp_dot,
577                  test_case.core_broadcastables[2*i], test_case.core_broadcastables[2*i + 1])
578
579
580def mnp_outer(a, b):
581    return mnp.outer(a, b)
582
583
584def onp_outer(a, b):
585    return onp.outer(a, b)
586
587
588@pytest.mark.level1
589@pytest.mark.platform_arm_ascend_training
590@pytest.mark.platform_x86_ascend_training
591@pytest.mark.platform_x86_gpu_training
592@pytest.mark.platform_x86_cpu
593@pytest.mark.env_onecard
594def test_outer():
595    run_binop_test(mnp_outer, onp_outer, test_case)
596
597
598@pytest.mark.level1
599@pytest.mark.platform_arm_ascend_training
600@pytest.mark.platform_x86_ascend_training
601@pytest.mark.platform_x86_gpu_training
602@pytest.mark.platform_x86_cpu
603@pytest.mark.env_onecard
604def test_type_promotion():
605    arr = rand_int(2, 3)
606    onp_res = onp_add(arr, arr)
607
608    a = to_tensor(arr, dtype=mnp.float16)
609    b = to_tensor(arr, dtype=mnp.float32)
610    c = to_tensor(arr, dtype=mnp.int32)
611
612    match_array(mnp_add(a, b).asnumpy(), onp_res)
613    match_array(mnp_add(b, c).asnumpy(), onp_res)
614
615
616def mnp_absolute(x):
617    return mnp.absolute(x)
618
619
620def onp_absolute(x):
621    return onp.absolute(x)
622
623
624@pytest.mark.level1
625@pytest.mark.platform_arm_ascend_training
626@pytest.mark.platform_x86_ascend_training
627@pytest.mark.platform_x86_gpu_training
628@pytest.mark.platform_x86_cpu
629@pytest.mark.env_onecard
630def test_absolute():
631    arr = rand_int(2, 3)
632
633    a = to_tensor(arr, dtype=mnp.float16)
634    b = to_tensor(arr, dtype=mnp.float32)
635    c = to_tensor(arr, dtype=mnp.uint8)
636    d = to_tensor(arr, dtype=mnp.bool_)
637
638    match_array(mnp_absolute(a).asnumpy(), onp_absolute(a.asnumpy()))
639    match_array(mnp_absolute(b).asnumpy(), onp_absolute(b.asnumpy()))
640    match_array(mnp_absolute(c).asnumpy(), onp_absolute(c.asnumpy()))
641    match_array(mnp_absolute(d).asnumpy(), onp_absolute(d.asnumpy()))
642
643
644@pytest.mark.level1
645@pytest.mark.platform_arm_ascend_training
646@pytest.mark.platform_x86_ascend_training
647@pytest.mark.platform_x86_gpu_training
648@pytest.mark.platform_x86_cpu
649@pytest.mark.env_onecard
650def test_deg2rad_rad2deg():
651    arrs = [rand_int(2, 3), rand_int(1, 2, 4), rand_int(2, 4)]
652    for arr in arrs:
653        match_res(mnp.deg2rad, onp.deg2rad, arr)
654        match_res(mnp.rad2deg, onp.rad2deg, arr)
655
656
657def mnp_ptp(x):
658    a = mnp.ptp(x)
659    b = mnp.ptp(x, keepdims=True)
660    c = mnp.ptp(x, axis=(0, 1))
661    d = mnp.ptp(x, axis=-1)
662    return a, b, c, d
663
664
665def onp_ptp(x):
666    a = onp.ptp(x)
667    b = onp.ptp(x, keepdims=True)
668    c = onp.ptp(x, axis=(0, 1))
669    d = onp.ptp(x, axis=-1)
670    return a, b, c, d
671
672
673@pytest.mark.level1
674@pytest.mark.platform_arm_ascend_training
675@pytest.mark.platform_x86_ascend_training
676@pytest.mark.platform_x86_gpu_training
677@pytest.mark.platform_x86_cpu
678@pytest.mark.env_onecard
679def test_ptp():
680    arrs = [rand_int(2, 3), rand_int(1, 2, 4), rand_int(2, 4)]
681    for arr in arrs:
682        match_res(mnp_ptp, onp_ptp, arr)
683
684
685def mnp_add_dtype(x1, x2):
686    return mnp.add(x1, x2, dtype=mnp.float32)
687
688
689def onp_add_dtype(x1, x2):
690    return onp.add(x1, x2, dtype=onp.float32)
691
692
693@pytest.mark.level1
694@pytest.mark.platform_arm_ascend_training
695@pytest.mark.platform_x86_ascend_training
696@pytest.mark.platform_x86_gpu_training
697@pytest.mark.platform_x86_cpu
698@pytest.mark.env_onecard
699def test_add_dtype():
700    x1 = rand_int(2, 3).astype('int32')
701    x2 = rand_int(2, 3).astype('int32')
702    arrs = (x1, x2)
703    mnp_arrs = map(to_tensor, arrs)
704    mnp_res = mnp_add_dtype(*mnp_arrs)
705    onp_res = onp_add_dtype(*arrs)
706    for actual, expected in zip(mnp_res, onp_res):
707        assert actual.asnumpy().dtype == expected.dtype
708
709
710def mnp_matmul(x1, x2):
711    return mnp.matmul(x1, x2)
712
713
714def onp_matmul(x1, x2):
715    return onp.matmul(x1, x2)
716
717
718@pytest.mark.level1
719@pytest.mark.platform_arm_ascend_training
720@pytest.mark.platform_x86_ascend_training
721@pytest.mark.platform_x86_gpu_training
722@pytest.mark.platform_x86_cpu
723@pytest.mark.env_onecard
724def test_matmul():
725    for scalar1 in test_case.scalars[1:]:
726        for scalar2 in test_case.scalars[1:]:
727            match_res(mnp_matmul, onp_matmul,
728                      scalar1, scalar2)
729    for i in range(8):
730        match_res(mnp_matmul, onp_matmul,
731                  test_case.core_broadcastables[2*i],
732                  test_case.core_broadcastables[2*i + 1])
733
734
735def mnp_square(x):
736    return mnp.square(x)
737
738
739def onp_square(x):
740    return onp.square(x)
741
742
743@pytest.mark.level1
744@pytest.mark.platform_arm_ascend_training
745@pytest.mark.platform_x86_ascend_training
746@pytest.mark.platform_x86_gpu_training
747@pytest.mark.platform_x86_cpu
748@pytest.mark.env_onecard
749def test_square():
750    run_unary_test(mnp_square, onp_square, test_case)
751
752
753def mnp_sqrt(x):
754    return mnp.sqrt(x)
755
756
757def onp_sqrt(x):
758    return onp.sqrt(x)
759
760
761@pytest.mark.level1
762@pytest.mark.platform_arm_ascend_training
763@pytest.mark.platform_x86_ascend_training
764@pytest.mark.platform_x86_gpu_training
765@pytest.mark.platform_x86_cpu
766@pytest.mark.env_onecard
767def test_sqrt():
768    run_unary_test(mnp_sqrt, onp_sqrt, test_case)
769
770
771def mnp_reciprocal(x):
772    return mnp.reciprocal(x)
773
774
775def onp_reciprocal(x):
776    return onp.reciprocal(x)
777
778
779@pytest.mark.level1
780@pytest.mark.platform_arm_ascend_training
781@pytest.mark.platform_x86_ascend_training
782@pytest.mark.platform_x86_gpu_training
783@pytest.mark.platform_x86_cpu
784@pytest.mark.env_onecard
785def test_reciprocal():
786    run_unary_test(mnp_reciprocal, onp_reciprocal, test_case)
787
788
789def mnp_log(x):
790    return mnp.log(x)
791
792
793def onp_log(x):
794    return onp.log(x)
795
796
797@pytest.mark.level1
798@pytest.mark.platform_arm_ascend_training
799@pytest.mark.platform_x86_ascend_training
800@pytest.mark.platform_x86_gpu_training
801@pytest.mark.platform_x86_cpu
802@pytest.mark.env_onecard
803def test_log():
804    run_unary_test(mnp.log, onp.log, test_case, error=1e-5)
805
806
807def mnp_log1p(x):
808    return mnp.log1p(x)
809
810
811def onp_log1p(x):
812    return onp.log1p(x)
813
814
815@pytest.mark.level1
816@pytest.mark.platform_arm_ascend_training
817@pytest.mark.platform_x86_ascend_training
818@pytest.mark.platform_x86_gpu_training
819@pytest.mark.platform_x86_cpu
820@pytest.mark.env_onecard
821def test_log1p():
822    run_unary_test(mnp_log1p, onp_log1p, test_case, error=1e-5)
823
824
825def mnp_logaddexp(x1, x2):
826    return mnp.logaddexp(x1, x2)
827
828
829def onp_logaddexp(x1, x2):
830    return onp.logaddexp(x1, x2)
831
832
833@pytest.mark.level0
834@pytest.mark.platform_arm_ascend_training
835@pytest.mark.platform_x86_ascend_training
836@pytest.mark.platform_x86_gpu_training
837@pytest.mark.platform_x86_cpu
838@pytest.mark.env_onecard
839def test_logaddexp():
840    test_cases = [
841        onp.random.randint(1, 5, (5, 6, 3, 2)).astype('float16')]
842    for _, x1 in enumerate(test_cases):
843        for _, x2 in enumerate(test_cases):
844            expected = onp_logaddexp(x1, x2)
845            actual = mnp_logaddexp(to_tensor(x1), to_tensor(x2))
846            onp.testing.assert_almost_equal(actual.asnumpy().tolist(), expected.tolist(),
847                                            decimal=2)
848
849
850def mnp_log2(x):
851    return mnp.log2(x)
852
853
854def onp_log2(x):
855    return onp.log2(x)
856
857
858@pytest.mark.level1
859@pytest.mark.platform_arm_ascend_training
860@pytest.mark.platform_x86_ascend_training
861@pytest.mark.platform_x86_gpu_training
862@pytest.mark.platform_x86_cpu
863@pytest.mark.env_onecard
864def test_log2():
865    run_unary_test(mnp_log2, onp_log2, test_case, error=1e-5)
866
867
868def mnp_logaddexp2(x1, x2):
869    return mnp.logaddexp2(x1, x2)
870
871
872def onp_logaddexp2(x1, x2):
873    return onp.logaddexp2(x1, x2)
874
875
876@pytest.mark.level1
877@pytest.mark.platform_arm_ascend_training
878@pytest.mark.platform_x86_ascend_training
879@pytest.mark.platform_x86_gpu_training
880@pytest.mark.platform_x86_cpu
881@pytest.mark.env_onecard
882def test_logaddexp2():
883    test_cases = [
884        onp.random.randint(1, 5, (2)).astype('float16'),
885        onp.random.randint(1, 5, (3, 2)).astype('float16'),
886        onp.random.randint(1, 5, (1, 3, 2)).astype('float16'),
887        onp.random.randint(1, 5, (5, 6, 3, 2)).astype('float16')]
888    for _, x1 in enumerate(test_cases):
889        for _, x2 in enumerate(test_cases):
890            expected = onp_logaddexp2(x1, x2)
891            actual = mnp_logaddexp2(to_tensor(x1), to_tensor(x2))
892            onp.testing.assert_almost_equal(actual.asnumpy().tolist(), expected.tolist(),
893                                            decimal=2)
894
895
896def mnp_log10(x):
897    return mnp.log10(x)
898
899
900def onp_log10(x):
901    return onp.log10(x)
902
903
904@pytest.mark.level1
905@pytest.mark.platform_arm_ascend_training
906@pytest.mark.platform_x86_ascend_training
907@pytest.mark.platform_x86_gpu_training
908@pytest.mark.platform_x86_cpu
909@pytest.mark.env_onecard
910def test_log10():
911    run_unary_test(mnp_log10, onp_log10, test_case, error=1e-5)
912
913
914def mnp_maximum(x1, x2):
915    return mnp.maximum(x1, x2)
916
917
918def onp_maximum(x1, x2):
919    return onp.maximum(x1, x2)
920
921
922@pytest.mark.level0
923@pytest.mark.platform_x86_gpu_training
924@pytest.mark.platform_x86_cpu
925@pytest.mark.env_onecard
926def test_maximum():
927    run_binop_test(mnp_maximum, onp_maximum, test_case)
928    x = onp.random.randint(-10, 10, 20).astype(onp.float32)
929    y = onp.random.randint(-10, 10, 20).astype(onp.float32)
930    x[onp.random.randint(0, 10, 3)] = onp.nan
931    y[onp.random.randint(0, 10, 3)] = onp.nan
932    x[onp.random.randint(0, 10, 3)] = onp.NINF
933    y[onp.random.randint(0, 10, 3)] = onp.NINF
934    x[onp.random.randint(0, 10, 3)] = onp.PINF
935    y[onp.random.randint(0, 10, 3)] = onp.PINF
936    match_res(mnp_maximum, onp_maximum, x, y)
937    match_res(mnp_maximum, onp_maximum, y, x)
938
939
940def mnp_clip(x):
941    a = mnp.clip(x, to_tensor(10.0), to_tensor([2,]))
942    b = mnp.clip(x, 0, 1)
943    c = mnp.clip(x, to_tensor(0), to_tensor(10), dtype=mnp.float32)
944    d = x.clip(to_tensor(10.0), to_tensor([2,]))
945    e = x.clip(0, 1)
946    f = x.clip(to_tensor(0), to_tensor(10), dtype=mnp.float32)
947    return a, b, c, d, e, f
948
949
950def onp_clip(x):
951    a = onp.clip(x, onp.asarray(10.0), onp.asarray([2,]))
952    b = onp.clip(x, 0, 1)
953    c = onp.clip(x, onp.asarray(0), onp.asarray(10), dtype=onp.float32)
954    d = x.clip(onp.asarray(10.0), onp.asarray([2,]))
955    e = x.clip(0, 1)
956    f = x.clip(onp.asarray(0), onp.asarray(10), dtype=onp.float32)
957    return a, b, c, d, e, f
958
959
960@pytest.mark.level0
961@pytest.mark.platform_arm_ascend_training
962@pytest.mark.platform_x86_ascend_training
963@pytest.mark.platform_x86_gpu_training
964@pytest.mark.platform_x86_cpu
965@pytest.mark.env_onecard
966def test_clip():
967    run_unary_test(mnp_clip, onp_clip, test_case)
968
969
970def mnp_amax(x, mask):
971    a = mnp.amax(x)
972    b = mnp.amax(x, axis=-3)
973    c = mnp.amax(x, keepdims=True)
974    d = mnp.amax(x, initial=3)
975    e = mnp.amax(x, axis=(0, 1), keepdims=True)
976    f = mnp.amax(x, initial=4, where=mask)
977    g = mnp.amax(x, initial=5, where=mask, keepdims=True)
978    h = mnp.amax(x, axis=(1, 2, 3), initial=6, where=mask)
979    return a, b, c, d, e, f, g, h
980
981
982def onp_amax(x, mask):
983    a = onp.amax(x)
984    b = onp.amax(x, axis=-3)
985    c = onp.amax(x, keepdims=True)
986    d = onp.amax(x, initial=3)
987    e = onp.amax(x, axis=(0, 1), keepdims=True)
988    f = onp.amax(x, initial=4, where=mask)
989    g = onp.amax(x, initial=5, where=mask, keepdims=True)
990    h = onp.amax(x, axis=(1, 2, 3), initial=6, where=mask)
991    return a, b, c, d, e, f, g, h
992
993
994@pytest.mark.level1
995@pytest.mark.platform_arm_ascend_training
996@pytest.mark.platform_x86_ascend_training
997@pytest.mark.platform_x86_gpu_training
998@pytest.mark.platform_x86_cpu
999@pytest.mark.env_onecard
1000def test_amax():
1001    a = rand_int(2, 3, 4, 5).astype('float32')
1002    mask = rand_bool(2, 3, 4, 5)
1003    run_multi_test(mnp_amax, onp_amax, (a, mask))
1004    match_res(mnp.amax, onp.amax, rand_int())
1005
1006
1007def mnp_amin(x, mask):
1008    a = mnp.amin(x)
1009    b = mnp.amin(x, axis=-3)
1010    c = mnp.amin(x, keepdims=True)
1011    d = mnp.amin(x, initial=-1)
1012    e = mnp.amin(x, axis=(0, 1), keepdims=True)
1013    f = mnp.amin(x, initial=-2)
1014    g = mnp.amin(x, initial=-3, keepdims=True)
1015    h = mnp.amin(x, axis=(1, 2, 3), initial=-4, where=mask)
1016    return a, b, c, d, e, f, g, h
1017
1018
1019def onp_amin(x, mask):
1020    a = onp.amin(x)
1021    b = onp.amin(x, axis=-3)
1022    c = onp.amin(x, keepdims=True)
1023    d = onp.amin(x, initial=-1)
1024    e = onp.amin(x, axis=(0, 1), keepdims=True)
1025    f = onp.amin(x, initial=-2)
1026    g = onp.amin(x, initial=-3, keepdims=True)
1027    h = onp.amin(x, axis=(1, 2, 3), initial=-4, where=mask)
1028    return a, b, c, d, e, f, g, h
1029
1030
1031@pytest.mark.level1
1032@pytest.mark.platform_arm_ascend_training
1033@pytest.mark.platform_x86_ascend_training
1034@pytest.mark.platform_x86_gpu_training
1035@pytest.mark.platform_x86_cpu
1036@pytest.mark.env_onecard
1037def test_amin():
1038    a = rand_int(2, 3, 4, 5).astype('float32')
1039    mask = rand_bool(2, 3, 4, 5)
1040    run_multi_test(mnp_amin, onp_amin, (a, mask))
1041    match_res(mnp.amin, onp.amin, rand_int())
1042
1043
1044def mnp_hypot(x1, x2):
1045    return mnp.hypot(x1, x2)
1046
1047
1048def onp_hypot(x1, x2):
1049    return onp.hypot(x1, x2)
1050
1051
1052@pytest.mark.level1
1053@pytest.mark.platform_arm_ascend_training
1054@pytest.mark.platform_x86_ascend_training
1055@pytest.mark.platform_x86_gpu_training
1056@pytest.mark.platform_x86_cpu
1057@pytest.mark.env_onecard
1058def test_hypot():
1059    run_binop_test(mnp_hypot, onp_hypot, test_case)
1060
1061
1062def mnp_heaviside(x1, x2):
1063    return mnp.heaviside(x1, x2)
1064
1065
1066def onp_heaviside(x1, x2):
1067    return onp.heaviside(x1, x2)
1068
1069
1070@pytest.mark.level1
1071@pytest.mark.platform_arm_ascend_training
1072@pytest.mark.platform_x86_ascend_training
1073@pytest.mark.platform_x86_gpu_training
1074@pytest.mark.platform_x86_cpu
1075@pytest.mark.env_onecard
1076def test_heaviside():
1077    broadcastables = test_case.broadcastables
1078    for b1 in broadcastables:
1079        for b2 in broadcastables:
1080            b = onp.subtract(b1, b2)
1081            match_res(mnp_heaviside, onp_heaviside, b, b1)
1082            match_res(mnp_heaviside, onp_heaviside, b, b2)
1083
1084
1085def mnp_floor(x):
1086    return mnp.floor(x)
1087
1088
1089def onp_floor(x):
1090    return onp.floor(x)
1091
1092
1093@pytest.mark.level1
1094@pytest.mark.platform_arm_ascend_training
1095@pytest.mark.platform_x86_ascend_training
1096@pytest.mark.platform_x86_gpu_training
1097@pytest.mark.platform_x86_cpu
1098@pytest.mark.env_onecard
1099def test_floor():
1100    run_unary_test(mnp_floor, onp_floor, test_case)
1101    x = rand_int(2, 3) * onp.random.rand(2, 3)
1102    match_res(mnp_floor, onp_floor, x)
1103    match_res(mnp_floor, onp_floor, -x)
1104
1105
1106def mnp_floor_divide(x, y):
1107    return mnp.floor_divide(x, y)
1108
1109
1110def onp_floor_divde(x, y):
1111    return onp.floor_divide(x, y)
1112
1113
1114@pytest.mark.level1
1115@pytest.mark.platform_arm_ascend_training
1116@pytest.mark.platform_x86_ascend_training
1117@pytest.mark.platform_x86_gpu_training
1118@pytest.mark.platform_x86_cpu
1119@pytest.mark.env_onecard
1120def test_floor_divide():
1121    run_binop_test(mnp_floor_divide, onp_floor_divde, test_case)
1122
1123
1124def mnp_remainder(x, y):
1125    return mnp.remainder(x, y)
1126
1127
1128def onp_remainder(x, y):
1129    return onp.remainder(x, y)
1130
1131
1132@pytest.mark.level0
1133@pytest.mark.platform_arm_ascend_training
1134@pytest.mark.platform_x86_ascend_training
1135@pytest.mark.platform_x86_gpu_training
1136@pytest.mark.platform_x86_cpu
1137@pytest.mark.env_onecard
1138def test_remainder():
1139    x = rand_int(2, 3)
1140    y = rand_int(2, 3)
1141    match_res(mnp_remainder, onp_remainder, x, y)
1142
1143
1144def mnp_mod(x, y):
1145    return mnp.mod(x, y)
1146
1147
1148def onp_mod(x, y):
1149    return onp.mod(x, y)
1150
1151
1152@pytest.mark.level1
1153@pytest.mark.platform_arm_ascend_training
1154@pytest.mark.platform_x86_ascend_training
1155@pytest.mark.platform_x86_gpu_training
1156@pytest.mark.platform_x86_cpu
1157@pytest.mark.env_onecard
1158def test_mod():
1159    x = rand_int(2, 3)
1160    y = rand_int(2, 3)
1161    match_res(mnp_mod, onp_mod, x, y)
1162
1163
1164def mnp_fmod(x, y):
1165    return mnp.fmod(x, y)
1166
1167
1168def onp_fmod(x, y):
1169    return onp.fmod(x, y)
1170
1171
1172@pytest.mark.level1
1173@pytest.mark.platform_x86_gpu_training
1174@pytest.mark.platform_x86_cpu
1175@pytest.mark.env_onecard
1176def test_fmod():
1177    x = rand_int(2, 3)
1178    y = rand_int(2, 3)
1179    match_res(mnp_fmod, onp_fmod, x, y)
1180
1181
1182def mnp_fix(x):
1183    return mnp.fix(x)
1184
1185
1186def onp_fix(x):
1187    return onp.fix(x)
1188
1189
1190@pytest.mark.level1
1191@pytest.mark.platform_arm_ascend_training
1192@pytest.mark.platform_x86_ascend_training
1193@pytest.mark.platform_x86_gpu_training
1194@pytest.mark.platform_x86_cpu
1195@pytest.mark.env_onecard
1196def test_fix():
1197    x = rand_int(2, 3)
1198    y = rand_int(2, 3)
1199    floats = onp.divide(onp.subtract(x, y), y)
1200    match_res(mnp_fix, onp_fix, floats, error=1e-5)
1201
1202
1203def mnp_trunc(x):
1204    return mnp.trunc(x)
1205
1206
1207def onp_trunc(x):
1208    return onp.trunc(x)
1209
1210
1211@pytest.mark.level1
1212@pytest.mark.platform_arm_ascend_training
1213@pytest.mark.platform_x86_ascend_training
1214@pytest.mark.platform_x86_gpu_training
1215@pytest.mark.platform_x86_cpu
1216@pytest.mark.env_onecard
1217def test_trunc():
1218    x = rand_int(2, 3)
1219    y = rand_int(2, 3)
1220    floats = onp.divide(onp.subtract(x, y), y)
1221    match_res(mnp_trunc, onp_trunc, floats, error=1e-5)
1222
1223
1224def mnp_exp(x):
1225    return mnp.exp(x)
1226
1227
1228def onp_exp(x):
1229    return onp.exp(x)
1230
1231
1232@pytest.mark.level1
1233@pytest.mark.platform_arm_ascend_training
1234@pytest.mark.platform_x86_ascend_training
1235@pytest.mark.platform_x86_gpu_training
1236@pytest.mark.platform_x86_cpu
1237@pytest.mark.env_onecard
1238def test_exp():
1239    run_unary_test(mnp_exp, onp_exp, test_case, error=5)
1240
1241
1242def mnp_expm1(x):
1243    return mnp.expm1(x)
1244
1245
1246def onp_expm1(x):
1247    return onp.expm1(x)
1248
1249
1250@pytest.mark.level1
1251@pytest.mark.platform_arm_ascend_training
1252@pytest.mark.platform_x86_ascend_training
1253@pytest.mark.platform_x86_gpu_training
1254@pytest.mark.platform_x86_cpu
1255@pytest.mark.env_onecard
1256def test_expm1():
1257    run_unary_test(mnp_expm1, onp_expm1, test_case, error=5)
1258
1259
1260def mnp_exp2(x):
1261    return mnp.exp2(x)
1262
1263
1264def onp_exp2(x):
1265    return onp.exp2(x)
1266
1267
1268@pytest.mark.level1
1269@pytest.mark.platform_arm_ascend_training
1270@pytest.mark.platform_x86_ascend_training
1271@pytest.mark.platform_x86_gpu_training
1272@pytest.mark.platform_x86_cpu
1273@pytest.mark.env_onecard
1274def test_exp2():
1275    run_unary_test(mnp_exp2, onp_exp2, test_case, error=5)
1276
1277
1278def mnp_kron(x, y):
1279    return mnp.kron(x, y)
1280
1281
1282def onp_kron(x, y):
1283    return onp.kron(x, y)
1284
1285
1286@pytest.mark.level0
1287@pytest.mark.platform_arm_ascend_training
1288@pytest.mark.platform_x86_ascend_training
1289@pytest.mark.platform_x86_gpu_training
1290@pytest.mark.platform_x86_cpu
1291@pytest.mark.env_onecard
1292def test_kron():
1293    x = rand_int()
1294    y = rand_int(2, 3, 4)
1295    match_res(mnp.kron, onp.kron, x, y)
1296
1297    x = rand_int(6, 1)
1298    y = rand_int(7, 1, 5)
1299    match_res(mnp.kron, onp.kron, x, y)
1300
1301    x = rand_int(1, 1, 2, 3)
1302    y = rand_int(1, 1, 2, 3)
1303    match_res(mnp.kron, onp.kron, x, y)
1304
1305
1306@pytest.mark.level0
1307@pytest.mark.platform_arm_ascend_training
1308@pytest.mark.platform_x86_ascend_training
1309@pytest.mark.platform_x86_gpu_training
1310@pytest.mark.platform_x86_cpu
1311@pytest.mark.env_onecard
1312def test_cross():
1313    x = onp.arange(8).reshape(2, 2, 1, 2)
1314    y = onp.arange(4).reshape(1, 2, 2)
1315    match_res(mnp.cross, onp.cross, x, y)
1316    match_res(mnp.cross, onp.cross, x, y, axisa=-3, axisb=1, axisc=2)
1317    match_res(mnp.cross, onp.cross, x, y, axisa=-3, axisb=1, axisc=2, axis=1)
1318    x = onp.arange(18).reshape(2, 3, 1, 3)
1319    y = onp.arange(9).reshape(1, 3, 3)
1320    match_res(mnp.cross, onp.cross, x, y)
1321    match_res(mnp.cross, onp.cross, x, y, axisa=-3, axisb=1, axisc=2)
1322    match_res(mnp.cross, onp.cross, x, y, axisa=-3, axisb=1, axisc=2, axis=1)
1323
1324
1325def mnp_ceil(x):
1326    return mnp.ceil(x)
1327
1328
1329def onp_ceil(x):
1330    return onp.ceil(x)
1331
1332
1333@pytest.mark.platform_arm_ascend_training
1334@pytest.mark.platform_x86_ascend_training
1335@pytest.mark.platform_x86_gpu_training
1336@pytest.mark.platform_x86_cpu
1337@pytest.mark.env_onecard
1338def test_ceil():
1339    run_unary_test(mnp_ceil, onp_ceil, test_case)
1340
1341
1342def mnp_positive(x):
1343    return mnp.positive(x)
1344
1345
1346def onp_positive(x):
1347    return onp.positive(x)
1348
1349
1350@pytest.mark.level1
1351@pytest.mark.platform_arm_ascend_training
1352@pytest.mark.platform_x86_ascend_training
1353@pytest.mark.platform_x86_gpu_training
1354@pytest.mark.platform_x86_cpu
1355@pytest.mark.env_onecard
1356def test_positive():
1357    arr = onp.arange(-6, 6).reshape((2, 2, 3)).astype('float32')
1358    onp_pos = onp_positive(arr)
1359    mnp_pos = mnp_positive(to_tensor(arr))
1360    match_array(mnp_pos.asnumpy(), onp_pos)
1361
1362
1363def mnp_negative(x):
1364    return mnp.negative(x)
1365
1366
1367def onp_negative(x):
1368    return onp.negative(x)
1369
1370
1371@pytest.mark.level1
1372@pytest.mark.platform_arm_ascend_training
1373@pytest.mark.platform_x86_ascend_training
1374@pytest.mark.platform_x86_gpu_training
1375@pytest.mark.platform_x86_cpu
1376@pytest.mark.env_onecard
1377def test_negative():
1378    arr = onp.arange(-6, 6).reshape((2, 2, 3)).astype('float32')
1379    onp_neg = onp_negative(arr)
1380    mnp_neg = mnp_negative(to_tensor(arr))
1381    match_array(mnp_neg.asnumpy(), onp_neg, 1e-5)
1382
1383
1384@pytest.mark.level1
1385@pytest.mark.platform_arm_ascend_training
1386@pytest.mark.platform_x86_ascend_training
1387@pytest.mark.platform_x86_gpu_training
1388@pytest.mark.platform_x86_cpu
1389@pytest.mark.env_onecard
1390def test_cumsum():
1391    x = mnp.ones((16, 16), dtype="bool")
1392    match_array(mnp.cumsum(x).asnumpy(), onp.cumsum(x.asnumpy()))
1393    match_array(mnp.cumsum(x, axis=0).asnumpy(),
1394                onp.cumsum(x.asnumpy(), axis=0))
1395    match_meta(mnp.cumsum(x).asnumpy(), onp.cumsum(x.asnumpy()))
1396
1397    x = rand_int(3, 4, 5)
1398    match_array(mnp.cumsum(to_tensor(x), dtype="bool").asnumpy(),
1399                onp.cumsum(x, dtype="bool"))
1400    match_array(mnp.cumsum(to_tensor(x), axis=-1).asnumpy(),
1401                onp.cumsum(x, axis=-1))
1402
1403
1404@pytest.mark.level1
1405@pytest.mark.platform_arm_ascend_training
1406@pytest.mark.platform_x86_ascend_training
1407@pytest.mark.platform_x86_gpu_training
1408@pytest.mark.platform_x86_cpu
1409@pytest.mark.env_onecard
1410def test_promote_types():
1411    assert mnp.promote_types(mnp.int32, mnp.bool_) == mnp.int32
1412    assert mnp.promote_types(int, mnp.bool_) == mnp.int32
1413    assert mnp.promote_types("float32", mnp.int64) == mnp.float32
1414    assert mnp.promote_types(mnp.int64, mnp.float16) == mnp.float16
1415    assert mnp.promote_types(int, float) == mnp.float32
1416
1417
1418def mnp_diff(input_tensor):
1419    a = mnp.diff(input_tensor, 2, append=3.0)
1420    b = mnp.diff(input_tensor, 4, prepend=6, axis=-2)
1421    c = mnp.diff(input_tensor, 0, append=3.0, axis=-1)
1422    d = mnp.diff(input_tensor, 1, prepend=input_tensor)
1423    e = mnp.ediff1d(input_tensor, to_end=input_tensor)
1424    f = mnp.ediff1d(input_tensor)
1425    g = mnp.ediff1d(input_tensor, to_begin=3)
1426    return a, b, c, d, e, f, g
1427
1428
1429def onp_diff(input_array):
1430    a = onp.diff(input_array, 2, append=3.0)
1431    b = onp.diff(input_array, 4, prepend=6, axis=-2)
1432    c = onp.diff(input_array, 0, append=3.0, axis=-1)
1433    d = onp.diff(input_array, 1, prepend=input_array)
1434    e = onp.ediff1d(input_array, to_end=input_array)
1435    f = onp.ediff1d(input_array)
1436    g = onp.ediff1d(input_array, to_begin=3)
1437    return a, b, c, d, e, f, g
1438
1439
1440@pytest.mark.level0
1441@pytest.mark.platform_arm_ascend_training
1442@pytest.mark.platform_x86_ascend_training
1443@pytest.mark.platform_x86_gpu_training
1444@pytest.mark.platform_x86_cpu
1445@pytest.mark.env_onecard
1446def test_diff():
1447    arr = rand_int(3, 4, 5)
1448    match_res(mnp_diff, onp_diff, arr)
1449    arr = rand_int(1, 4, 6, 3)
1450    match_res(mnp_diff, onp_diff, arr)
1451
1452
1453def mnp_sin(x):
1454    return mnp.sin(x)
1455
1456
1457def onp_sin(x):
1458    return onp.sin(x)
1459
1460
1461@pytest.mark.level1
1462@pytest.mark.platform_arm_ascend_training
1463@pytest.mark.platform_x86_ascend_training
1464@pytest.mark.platform_x86_gpu_training
1465@pytest.mark.platform_x86_cpu
1466@pytest.mark.env_onecard
1467def test_sin():
1468    arr = onp.random.rand(2, 3, 4).astype('float32')
1469    expect = onp_sin(arr)
1470    actual = mnp_sin(to_tensor(arr))
1471    match_array(actual.asnumpy(), expect, error=5)
1472
1473
1474def mnp_cos(x):
1475    return mnp.cos(x)
1476
1477
1478def onp_cos(x):
1479    return onp.cos(x)
1480
1481
1482@pytest.mark.level1
1483@pytest.mark.platform_arm_ascend_training
1484@pytest.mark.platform_x86_ascend_training
1485@pytest.mark.platform_x86_gpu_training
1486@pytest.mark.platform_x86_cpu
1487@pytest.mark.env_onecard
1488def test_cos():
1489    arr = onp.random.rand(2, 3, 4).astype('float32')
1490    expect = onp_cos(arr)
1491    actual = mnp_cos(to_tensor(arr))
1492    match_array(actual.asnumpy(), expect, error=5)
1493
1494
1495def mnp_tan(x):
1496    return mnp.tan(x)
1497
1498
1499def onp_tan(x):
1500    return onp.tan(x)
1501
1502
1503@pytest.mark.level1
1504@pytest.mark.platform_arm_ascend_training
1505@pytest.mark.platform_x86_ascend_training
1506@pytest.mark.platform_x86_cpu
1507@pytest.mark.env_onecard
1508def test_tan():
1509    arr = onp.array([-0.75, -0.5, 0, 0.5, 0.75]).astype('float32')
1510    expect = onp_tan(arr)
1511    actual = mnp_tan(to_tensor(arr))
1512    match_array(actual.asnumpy(), expect, error=5)
1513
1514
1515def mnp_arcsin(x):
1516    return mnp.arcsin(x)
1517
1518
1519def onp_arcsin(x):
1520    return onp.arcsin(x)
1521
1522
1523@pytest.mark.level1
1524@pytest.mark.platform_arm_ascend_training
1525@pytest.mark.platform_x86_ascend_training
1526@pytest.mark.platform_x86_gpu_training
1527@pytest.mark.platform_x86_cpu
1528@pytest.mark.env_onecard
1529def test_arcsin():
1530    arr = onp.random.uniform(-1, 1, 12).astype('float32')
1531    onp_asin = onp_arcsin(arr)
1532    mnp_asin = mnp_arcsin(to_tensor(arr))
1533    match_array(mnp_asin.asnumpy(), onp_asin, error=3)
1534
1535
1536def mnp_arccos(x):
1537    return mnp.arccos(x)
1538
1539
1540def onp_arccos(x):
1541    return onp.arccos(x)
1542
1543
1544@pytest.mark.level1
1545@pytest.mark.platform_arm_ascend_training
1546@pytest.mark.platform_x86_ascend_training
1547@pytest.mark.platform_x86_gpu_training
1548@pytest.mark.platform_x86_cpu
1549@pytest.mark.env_onecard
1550def test_arccos():
1551    arr = onp.random.uniform(-1, 1, 12).astype('float32')
1552    onp_acos = onp_arccos(arr)
1553    mnp_acos = mnp_arccos(to_tensor(arr))
1554    match_array(mnp_acos.asnumpy(), onp_acos, error=2)
1555
1556
1557def mnp_arctan(x):
1558    return mnp.arctan(x)
1559
1560
1561def onp_arctan(x):
1562    return onp.arctan(x)
1563
1564
1565@pytest.mark.level1
1566@pytest.mark.platform_arm_ascend_training
1567@pytest.mark.platform_x86_ascend_training
1568@pytest.mark.platform_x86_gpu_training
1569@pytest.mark.platform_x86_cpu
1570@pytest.mark.env_onecard
1571def test_arctan():
1572    arr = onp.random.uniform(-1, 1, 12).astype('float32')
1573    onp_atan = onp_arctan(arr)
1574    mnp_atan = mnp_arctan(to_tensor(arr))
1575    match_array(mnp_atan.asnumpy(), onp_atan, error=5)
1576
1577
1578def mnp_sinh(x):
1579    return mnp.sinh(x)
1580
1581
1582def onp_sinh(x):
1583    return onp.sinh(x)
1584
1585
1586@pytest.mark.level1
1587@pytest.mark.platform_arm_ascend_training
1588@pytest.mark.platform_x86_ascend_training
1589@pytest.mark.platform_x86_cpu
1590@pytest.mark.env_onecard
1591def test_sinh():
1592    arr = onp.random.rand(2, 3, 4).astype('float32')
1593    expect = onp_sinh(arr)
1594    actual = mnp_sinh(to_tensor(arr))
1595    match_array(actual.asnumpy(), expect, error=5)
1596
1597
1598def mnp_cosh(x):
1599    return mnp.cosh(x)
1600
1601
1602def onp_cosh(x):
1603    return onp.cosh(x)
1604
1605
1606@pytest.mark.level1
1607@pytest.mark.platform_arm_ascend_training
1608@pytest.mark.platform_x86_ascend_training
1609@pytest.mark.platform_x86_cpu
1610@pytest.mark.env_onecard
1611def test_cosh():
1612    arr = onp.random.rand(2, 3, 4).astype('float32')
1613    expect = onp_cosh(arr)
1614    actual = mnp_cosh(to_tensor(arr))
1615    match_array(actual.asnumpy(), expect, error=5)
1616
1617
1618def mnp_tanh(x):
1619    return mnp.tanh(x)
1620
1621
1622def onp_tanh(x):
1623    return onp.tanh(x)
1624
1625
1626@pytest.mark.level1
1627@pytest.mark.platform_arm_ascend_training
1628@pytest.mark.platform_x86_ascend_training
1629@pytest.mark.platform_x86_gpu_training
1630@pytest.mark.platform_x86_cpu
1631@pytest.mark.env_onecard
1632def test_tanh():
1633    arr = onp.random.rand(2, 3, 4).astype('float32')
1634    expect = onp_tanh(arr)
1635    actual = mnp_tanh(to_tensor(arr))
1636    match_array(actual.asnumpy(), expect, error=5)
1637
1638
1639def mnp_arcsinh(x):
1640    return mnp.arcsinh(x)
1641
1642
1643def onp_arcsinh(x):
1644    return onp.arcsinh(x)
1645
1646
1647@pytest.mark.level1
1648@pytest.mark.platform_arm_ascend_training
1649@pytest.mark.platform_x86_ascend_training
1650@pytest.mark.platform_x86_gpu_training
1651@pytest.mark.platform_x86_cpu
1652@pytest.mark.env_onecard
1653def test_arcsinh():
1654    arr = onp.random.rand(2, 3, 4).astype('float32')
1655    expect = onp_arcsinh(arr)
1656    actual = mnp_arcsinh(to_tensor(arr))
1657    match_array(actual.asnumpy(), expect, error=5)
1658
1659
1660def mnp_arccosh(x):
1661    return mnp.arccosh(x)
1662
1663
1664def onp_arccosh(x):
1665    return onp.arccosh(x)
1666
1667
1668@pytest.mark.level1
1669@pytest.mark.platform_arm_ascend_training
1670@pytest.mark.platform_x86_ascend_training
1671@pytest.mark.platform_x86_gpu_training
1672@pytest.mark.platform_x86_cpu
1673@pytest.mark.env_onecard
1674def test_arccosh():
1675    arr = onp.random.randint(1, 100, size=(2, 3)).astype('float32')
1676    expect = onp_arccosh(arr)
1677    actual = mnp_arccosh(to_tensor(arr))
1678    match_array(actual.asnumpy(), expect, error=5)
1679
1680
1681def mnp_arctanh(x):
1682    return mnp.arctanh(x)
1683
1684
1685def onp_arctanh(x):
1686    return onp.arctanh(x)
1687
1688
1689@pytest.mark.level1
1690@pytest.mark.platform_arm_ascend_training
1691@pytest.mark.platform_x86_ascend_training
1692@pytest.mark.platform_x86_cpu
1693@pytest.mark.env_onecard
1694def test_arctanh():
1695    arr = onp.random.uniform(-0.9, 1, 10).astype('float32')
1696    expect = onp_arctanh(arr)
1697    actual = mnp_arctanh(to_tensor(arr))
1698    match_array(actual.asnumpy(), expect, error=5)
1699
1700
1701def mnp_arctan2(x, y):
1702    return mnp.arctan2(x, y)
1703
1704
1705def onp_arctan2(x, y):
1706    return onp.arctan2(x, y)
1707
1708
1709@pytest.mark.level1
1710@pytest.mark.platform_arm_ascend_training
1711@pytest.mark.platform_x86_ascend_training
1712@pytest.mark.platform_x86_cpu
1713@pytest.mark.env_onecard
1714def test_arctan2():
1715    run_binop_test(mnp_arctan2, onp_arctan2, test_case, error=5)
1716
1717
1718def mnp_convolve(mode):
1719    a = mnp.convolve([1, 2, 3, 4, 5], 2, mode=mode)
1720    b = mnp.convolve([1, 2, 3, 4, 5], [2, 3], mode=mode)
1721    c = mnp.convolve([1, 2], [2, 5, 10], mode=mode)
1722    d = mnp.convolve(mnp.array([1, 2, 3, 4, 5]), mnp.array([1, 2, 3, 4, 5]), mode=mode)
1723    e = mnp.convolve([1, 2, 3, 4, 5], 2, mode=mode)
1724    return a, b, c, d, e
1725
1726
1727def onp_convolve(mode):
1728    a = onp.convolve([1, 2, 3, 4, 5], 2, mode=mode)
1729    b = onp.convolve([1, 2, 3, 4, 5], [2, 3], mode=mode)
1730    c = onp.convolve([1, 2], [2, 5, 10], mode=mode)
1731    d = onp.convolve(onp.array([1, 2, 3, 4, 5]), onp.array([1, 2, 3, 4, 5]), mode=mode)
1732    e = onp.convolve([1, 2, 3, 4, 5], 2, mode=mode)
1733    return a, b, c, d, e
1734
1735
1736@pytest.mark.level0
1737@pytest.mark.platform_x86_gpu_training
1738@pytest.mark.env_onecard
1739def test_convolve():
1740    for mode in ['full', 'same', 'valid']:
1741        mnp_res = mnp_convolve(mode)
1742        onp_res = onp_convolve(mode)
1743        match_all_arrays(mnp_res, onp_res)
1744
1745
1746@pytest.mark.level0
1747@pytest.mark.platform_arm_ascend_training
1748@pytest.mark.platform_x86_ascend_training
1749@pytest.mark.platform_x86_gpu_training
1750@pytest.mark.platform_x86_cpu
1751@pytest.mark.env_onecard
1752def test_cov():
1753    x = onp.random.random((3, 4)).tolist()
1754    w1 = [0, 1, 2, 3]
1755    w2 = [4, 5, 6, 7]
1756    mnp_res = mnp.cov(x, fweights=w1, aweights=w2, ddof=3)
1757    onp_res = onp.cov(x, fweights=w1, aweights=w2, ddof=3)
1758    match_all_arrays(mnp_res, onp_res, error=1e-5)
1759    mnp_res = mnp.cov(x, fweights=w1, aweights=w2, bias=True)
1760    onp_res = onp.cov(x, fweights=w1, aweights=w2, bias=True)
1761    match_all_arrays(mnp_res, onp_res, error=1e-5)
1762    mnp_res = mnp.cov(x, fweights=w1[0:3], aweights=w2[0:3], rowvar=False, bias=True)
1763    onp_res = onp.cov(x, fweights=w1[0:3], aweights=w2[0:3], rowvar=False, bias=True)
1764    match_all_arrays(mnp_res, onp_res, error=1e-5)
1765
1766
1767@pytest.mark.level0
1768@pytest.mark.platform_arm_ascend_training
1769@pytest.mark.platform_x86_ascend_training
1770@pytest.mark.platform_x86_gpu_training
1771@pytest.mark.platform_x86_cpu
1772@pytest.mark.env_onecard
1773def test_trapz():
1774    y = rand_int(2, 3, 4, 5)
1775    match_res(mnp.trapz, onp.trapz, y)
1776    match_res(mnp.trapz, onp.trapz, y, x=[-5, -3, 0, 7, 10])
1777    match_res(mnp.trapz, onp.trapz, y, dx=2, axis=3)
1778    match_res(mnp.trapz, onp.trapz, y, x=[1, 5, 6, 9], dx=3, axis=-2)
1779
1780
1781def mnp_gcd(x, y):
1782    return mnp.gcd(x, y)
1783
1784
1785def onp_gcd(x, y):
1786    return onp.gcd(x, y)
1787
1788
1789@pytest.mark.level1
1790@pytest.mark.platform_arm_ascend_training
1791@pytest.mark.platform_x86_ascend_training
1792@pytest.mark.platform_x86_gpu_training
1793@pytest.mark.platform_x86_cpu
1794@pytest.mark.env_onecard
1795def test_gcd():
1796    x = onp.arange(-12, 12).reshape(2, 3, 4)
1797    y = onp.arange(24).reshape(2, 3, 4)
1798    match_res(mnp_gcd, onp_gcd, x, y)
1799
1800
1801def mnp_lcm(x, y):
1802    return mnp.lcm(x, y)
1803
1804
1805def onp_lcm(x, y):
1806    return onp.lcm(x, y)
1807
1808
1809@pytest.mark.level0
1810@pytest.mark.platform_arm_ascend_training
1811@pytest.mark.platform_x86_ascend_training
1812@pytest.mark.platform_x86_gpu_training
1813@pytest.mark.platform_x86_cpu
1814@pytest.mark.env_onecard
1815def test_lcm():
1816    x = onp.arange(-12, 12).reshape(2, 3, 4)
1817    y = onp.arange(24).reshape(2, 3, 4)
1818    match_res(mnp_lcm, onp_lcm, x, y)
1819
1820
1821@pytest.mark.level1
1822@pytest.mark.platform_arm_ascend_training
1823@pytest.mark.platform_x86_ascend_training
1824@pytest.mark.platform_x86_gpu_training
1825@pytest.mark.platform_x86_cpu
1826@pytest.mark.env_onecard
1827def test_exception_innner():
1828    with pytest.raises(ValueError):
1829        mnp.inner(to_tensor(test_case.arrs[0]),
1830                  to_tensor(test_case.arrs[1]))
1831
1832
1833@pytest.mark.level1
1834@pytest.mark.platform_arm_ascend_training
1835@pytest.mark.platform_x86_ascend_training
1836@pytest.mark.platform_x86_gpu_training
1837@pytest.mark.platform_x86_cpu
1838@pytest.mark.env_onecard
1839def test_exception_add():
1840    with pytest.raises(ValueError):
1841        mnp.add(to_tensor(test_case.arrs[1]), to_tensor(test_case.arrs[2]))
1842
1843
1844def mnp_nanmax(x):
1845    a = mnp.nanmax(x)
1846    b = mnp.nanmax(x, keepdims=True)
1847    c = mnp.nanmax(x, axis=-2)
1848    d = mnp.nanmax(x, axis=0, keepdims=True)
1849    e = mnp.nanmax(x, axis=(-2, 3))
1850    f = mnp.nanmax(x, axis=(-3, -1), keepdims=True)
1851    return a, b, c, d, e, f
1852
1853
1854def onp_nanmax(x):
1855    a = onp.nanmax(x)
1856    b = onp.nanmax(x, keepdims=True)
1857    c = onp.nanmax(x, axis=-2)
1858    d = onp.nanmax(x, axis=0, keepdims=True)
1859    e = onp.nanmax(x, axis=(-2, 3))
1860    f = onp.nanmax(x, axis=(-3, -1), keepdims=True)
1861    return a, b, c, d, e, f
1862
1863
1864@pytest.mark.level1
1865@pytest.mark.platform_x86_gpu_training
1866@pytest.mark.platform_x86_cpu
1867@pytest.mark.env_onecard
1868def test_nanmax():
1869    x = rand_int(2, 3, 4, 5)
1870    x[0][2][1][3] = onp.nan
1871    x[1][0][2][4] = onp.nan
1872    x[1][1][1][1] = onp.nan
1873    run_multi_test(mnp_nanmax, onp_nanmax, (x,))
1874
1875
1876def mnp_nanmin(x):
1877    a = mnp.nanmin(x)
1878    b = mnp.nanmin(x, keepdims=True)
1879    c = mnp.nanmin(x, axis=-2)
1880    d = mnp.nanmin(x, axis=0, keepdims=True)
1881    e = mnp.nanmin(x, axis=(-2, 3))
1882    f = mnp.nanmin(x, axis=(-3, -1), keepdims=True)
1883    return a, b, c, d, e, f
1884
1885
1886def onp_nanmin(x):
1887    a = onp.nanmin(x)
1888    b = onp.nanmin(x, keepdims=True)
1889    c = onp.nanmin(x, axis=-2)
1890    d = onp.nanmin(x, axis=0, keepdims=True)
1891    e = onp.nanmin(x, axis=(-2, 3))
1892    f = onp.nanmin(x, axis=(-3, -1), keepdims=True)
1893    return a, b, c, d, e, f
1894
1895
1896@pytest.mark.level1
1897@pytest.mark.platform_x86_gpu_training
1898@pytest.mark.platform_x86_cpu
1899@pytest.mark.env_onecard
1900def test_nanmin():
1901    x = rand_int(2, 3, 4, 5)
1902    x[0][2][1][3] = onp.nan
1903    x[1][0][2][4] = onp.nan
1904    x[1][1][1][1] = onp.nan
1905    run_multi_test(mnp_nanmin, onp_nanmin, (x,))
1906
1907
1908def mnp_nansum(x):
1909    a = mnp.nansum(x)
1910    b = mnp.nansum(x, keepdims=True)
1911    c = mnp.nansum(x, axis=-2)
1912    d = mnp.nansum(x, axis=0, keepdims=True)
1913    e = mnp.nansum(x, axis=(-2, 3))
1914    f = mnp.nansum(x, axis=(-3, -1), keepdims=True)
1915    return a, b, c, d, e, f
1916
1917
1918def onp_nansum(x):
1919    a = onp.nansum(x)
1920    b = onp.nansum(x, keepdims=True)
1921    c = onp.nansum(x, axis=-2)
1922    d = onp.nansum(x, axis=0, keepdims=True)
1923    e = onp.nansum(x, axis=(-2, 3))
1924    f = onp.nansum(x, axis=(-3, -1), keepdims=True)
1925    return a, b, c, d, e, f
1926
1927
1928@pytest.mark.level1
1929@pytest.mark.platform_x86_gpu_training
1930@pytest.mark.platform_x86_cpu
1931@pytest.mark.env_onecard
1932def test_nansum():
1933    x = rand_int(2, 3, 4, 5)
1934    x[0][2][1][3] = onp.nan
1935    x[1][0][2][4] = onp.nan
1936    x[1][1][1][1] = onp.nan
1937    run_multi_test(mnp_nansum, onp_nansum, (x,))
1938    match_res(mnp.nansum, onp.nansum, rand_int())
1939
1940
1941def mnp_nanmean(x):
1942    a = mnp.nanmean(x, keepdims=True)
1943    b = mnp.nanmean(x, axis=(-2, 3))
1944    c = mnp.nanmean(x, axis=(-3, -1), keepdims=True)
1945    return a, b, c
1946
1947
1948def onp_nanmean(x):
1949    a = onp.nanmean(x, keepdims=True)
1950    b = onp.nanmean(x, axis=(-2, 3))
1951    c = onp.nanmean(x, axis=(-3, -1), keepdims=True)
1952    return a, b, c
1953
1954
1955@pytest.mark.level0
1956@pytest.mark.platform_x86_gpu_training
1957@pytest.mark.platform_x86_cpu
1958@pytest.mark.env_onecard
1959def test_nanmean():
1960    x = rand_int(2, 3, 4, 5)
1961    x[0][2][1][3] = onp.nan
1962    x[1][0][2][4] = onp.nan
1963    x[1][1][1][1] = onp.nan
1964    run_multi_test(mnp_nanmean, onp_nanmean, (x,))
1965    match_res(mnp.nanmean, onp.nanmean, rand_int())
1966
1967
1968def mnp_mean(*arrs):
1969    arr1 = arrs[0]
1970    arr2 = arrs[1]
1971    arr3 = arrs[2]
1972    a = mnp.mean(arr1)
1973    b = mnp.mean(arr2, keepdims=True)
1974    c = mnp.mean(arr3, keepdims=False)
1975    d = mnp.mean(arr2, axis=0, keepdims=True)
1976    e = mnp.mean(arr3, axis=(0, -1))
1977    f = mnp.mean(arr3, axis=-1, keepdims=True)
1978    return a, b, c, d, e, f
1979
1980
1981def onp_mean(*arrs):
1982    arr1 = arrs[0]
1983    arr2 = arrs[1]
1984    arr3 = arrs[2]
1985    a = onp.mean(arr1)
1986    b = onp.mean(arr2, keepdims=True)
1987    c = onp.mean(arr3, keepdims=False)
1988    d = onp.mean(arr2, axis=0, keepdims=True)
1989    e = onp.mean(arr3, axis=(0, -1))
1990    f = onp.mean(arr3, axis=-1, keepdims=True)
1991    return a, b, c, d, e, f
1992
1993
1994@pytest.mark.level1
1995@pytest.mark.platform_arm_ascend_training
1996@pytest.mark.platform_x86_ascend_training
1997@pytest.mark.platform_x86_gpu_training
1998@pytest.mark.platform_x86_cpu
1999@pytest.mark.env_onecard
2000def test_mean():
2001    run_multi_test(mnp_mean, onp_mean, test_case.arrs, error=3)
2002    run_multi_test(mnp_mean, onp_mean, test_case.expanded_arrs, error=3)
2003    run_multi_test(mnp_mean, onp_mean, test_case.scalars, error=3)
2004
2005
2006@pytest.mark.level0
2007@pytest.mark.platform_arm_ascend_training
2008@pytest.mark.platform_x86_ascend_training
2009@pytest.mark.platform_x86_gpu_training
2010@pytest.mark.platform_x86_cpu
2011@pytest.mark.env_onecard
2012def test_corrcoef():
2013    x = onp.random.random((3, 4)).tolist()
2014    mnp_res = mnp.corrcoef(x)
2015    onp_res = onp.corrcoef(x)
2016    match_all_arrays(mnp_res, onp_res, error=1e-5)
2017    mnp_res = mnp.corrcoef(x, rowvar=False)
2018    onp_res = onp.corrcoef(x, rowvar=False)
2019    match_all_arrays(mnp_res, onp_res, error=1e-5)
2020
2021
2022@pytest.mark.level1
2023@pytest.mark.platform_arm_ascend_training
2024@pytest.mark.platform_x86_ascend_training
2025@pytest.mark.platform_x86_gpu_training
2026@pytest.mark.platform_x86_cpu
2027@pytest.mark.env_onecard
2028def test_multi_dot():
2029    arrays = [rand_int(3), rand_int(3, 5), rand_int(5, 2), rand_int(2, 7), rand_int(7)]
2030    mnp_arrays = [to_tensor(arr) for arr in arrays]
2031    match_all_arrays(mnp.multi_dot(mnp_arrays), onp.linalg.multi_dot(arrays))
2032    match_all_arrays(mnp.multi_dot(mnp_arrays[1:]), onp.linalg.multi_dot(arrays[1:]))
2033    match_all_arrays(mnp.multi_dot(mnp_arrays[:-1]), onp.linalg.multi_dot(arrays[:-1]))
2034    match_all_arrays(mnp.multi_dot(mnp_arrays[1:-1]), onp.linalg.multi_dot(arrays[1:-1]))
2035
2036
2037@pytest.mark.level0
2038@pytest.mark.platform_arm_ascend_training
2039@pytest.mark.platform_x86_ascend_training
2040@pytest.mark.platform_x86_gpu_training
2041@pytest.mark.platform_x86_cpu
2042@pytest.mark.env_onecard
2043def test_gradient():
2044    f = onp.random.random((3, 4, 5)).tolist()
2045    mnp_res = mnp.gradient(f, -3, axis=(-1, 1))
2046    onp_res = onp.gradient(f, -3, axis=(-1, 1))
2047    match_all_arrays(mnp_res, onp_res, error=1e-5)
2048    mnp_res = mnp.gradient(f, -3, 5, axis=(-1, 0))
2049    onp_res = onp.gradient(f, -3, 5, axis=(-1, 0))
2050    match_all_arrays(mnp_res, onp_res, error=1e-5)
2051
2052
2053@pytest.mark.level1
2054@pytest.mark.platform_arm_ascend_training
2055@pytest.mark.platform_x86_ascend_training
2056@pytest.mark.platform_x86_gpu_training
2057@pytest.mark.platform_x86_cpu
2058@pytest.mark.env_onecard
2059def test_argmax():
2060    match_res(mnp.argmax, onp.argmax, rand_int())
2061    match_res(mnp.argmax, onp.argmax, rand_int(3))
2062    match_res(mnp.argmax, onp.argmax, rand_int(1, 1, 1))
2063    x = onp.random.choice(onp.arange(-100, 100), size=(2, 3, 4, 5), replace=False)
2064    match_res(mnp.argmax, onp.argmax, x)
2065    for i in range(-4, 4):
2066        match_res(mnp.argmax, onp.argmax, x, axis=i)
2067
2068
2069@pytest.mark.level1
2070@pytest.mark.platform_arm_ascend_training
2071@pytest.mark.platform_x86_ascend_training
2072@pytest.mark.platform_x86_gpu_training
2073@pytest.mark.platform_x86_cpu
2074@pytest.mark.env_onecard
2075def test_argmin():
2076    match_res(mnp.argmin, onp.argmin, rand_int())
2077    match_res(mnp.argmin, onp.argmin, rand_int(3))
2078    match_res(mnp.argmin, onp.argmin, rand_int(1, 1, 1))
2079    x = rand_int(2, 3, 4, 5)
2080    match_res(mnp.argmin, onp.argmin, x)
2081    for i in range(-4, 4):
2082        match_res(mnp.argmin, onp.argmin, x, axis=i)
2083
2084
2085@pytest.mark.level0
2086@pytest.mark.platform_arm_ascend_training
2087@pytest.mark.platform_x86_ascend_training
2088@pytest.mark.platform_x86_gpu_training
2089@pytest.mark.platform_x86_cpu
2090@pytest.mark.env_onecard
2091def test_searchsorted():
2092    x = onp.arange(-10, 10)
2093    y = onp.random.randint(-15, 15, size=(2, 3, 4)) + onp.random.choice([0, 0.5], (2, 3, 4))
2094    sorter = onp.random.shuffle(onp.arange(20))
2095    match_res(mnp.searchsorted, onp.searchsorted, x, y, side='right', sorter=sorter)
2096
2097
2098@pytest.mark.level2
2099@pytest.mark.platform_arm_ascend_training
2100@pytest.mark.platform_x86_ascend_training
2101@pytest.mark.platform_x86_gpu_training
2102@pytest.mark.platform_x86_cpu
2103@pytest.mark.env_onecard
2104def test_interp():
2105    x = onp.random.randint(-15, 15, size=(2, 3, 4)) + onp.random.choice([0, 0.5], (2, 3, 4))
2106    xp = onp.arange(-10, 10)
2107    fp = onp.random.uniform(-50, 50, 20)
2108    match_res(mnp.interp, onp.interp, x, xp, fp, error=3)
2109    match_res(mnp.interp, onp.interp, x, xp, fp, left=onp.random.rand(), error=3)
2110    match_res(mnp.interp, onp.interp, x, xp, fp, right=onp.random.rand(), error=3)
2111    match_res(mnp.interp, onp.interp, x, xp, fp, left=onp.random.rand(), right=onp.random.rand(), error=3)
2112
2113
2114@pytest.mark.level2
2115@pytest.mark.platform_arm_ascend_training
2116@pytest.mark.platform_x86_ascend_training
2117@pytest.mark.platform_x86_gpu_training
2118@pytest.mark.platform_x86_cpu
2119@pytest.mark.env_onecard
2120def test_digitize():
2121    bins = onp.random.randint(-10, 10, size=10)
2122    bins.sort()
2123    x = onp.random.randint(-15, 15, size=(2, 3, 4)) + onp.random.choice([0, 0.5], (2, 3, 4))
2124    match_res(mnp.digitize, onp.digitize, x, [])
2125    match_res(mnp.digitize, onp.digitize, [], [])
2126    match_res(mnp.digitize, onp.digitize, [], bins)
2127    match_res(mnp.digitize, onp.digitize, x, bins)
2128    match_res(mnp.digitize, onp.digitize, x, bins, right=True)
2129    bins = onp.flip(bins)
2130    match_res(mnp.digitize, onp.digitize, x, bins)
2131    match_res(mnp.digitize, onp.digitize, x, bins, right=True)
2132
2133
2134@pytest.mark.level1
2135@pytest.mark.platform_arm_ascend_training
2136@pytest.mark.platform_x86_ascend_training
2137@pytest.mark.platform_x86_gpu_training
2138@pytest.mark.platform_x86_cpu
2139@pytest.mark.env_onecard
2140def test_bincount():
2141    x = onp.random.randint(0, 10, 20)
2142    weights = onp.random.randn(20)
2143    match_res(mnp.bincount, onp.bincount, x, dtype=mnp.int32)
2144    match_res(mnp.bincount, onp.bincount, x, minlength=25, dtype=mnp.int32)
2145    match_all_arrays(mnp.bincount(to_tensor(x), to_tensor(weights)),
2146                     onp.bincount(x, weights), error=3)
2147    match_all_arrays(mnp.bincount(to_tensor(x), to_tensor(weights), minlength=25),
2148                     onp.bincount(x, weights, minlength=25), error=3)
2149
2150
2151@pytest.mark.level0
2152@pytest.mark.platform_arm_ascend_training
2153@pytest.mark.platform_x86_ascend_training
2154@pytest.mark.platform_x86_gpu_training
2155@pytest.mark.platform_x86_cpu
2156@pytest.mark.env_onecard
2157def test_histogram():
2158    x = onp.random.randint(-10, 10, 10)
2159    weights = onp.random.randn(10)
2160    for bins in [(1, 2, 3), [2], 1, 5]:
2161        # pylint: disable=redefined-builtin
2162        for range in [None, (2, 20)]:
2163            match_res(mnp.histogram, onp.histogram, x, bins=bins, range=range, error=1)
2164            match_res(mnp.histogram, onp.histogram, x, bins=bins, range=range, density=True, error=1)
2165            mnp_res = mnp.histogram(to_tensor(x), bins=bins, range=range,
2166                                    weights=to_tensor(weights), density=True)
2167            onp_res = onp.histogram(x, bins=bins, range=range, weights=weights, density=True)
2168            match_all_arrays(mnp_res, onp_res, error=1)
2169
2170
2171@pytest.mark.level0
2172@pytest.mark.platform_arm_ascend_training
2173@pytest.mark.platform_x86_ascend_training
2174@pytest.mark.platform_x86_gpu_training
2175@pytest.mark.platform_x86_cpu
2176@pytest.mark.env_onecard
2177def test_histogramdd():
2178    x = onp.random.randint(-10, 10, (5, 3))
2179    y = [onp.random.randint(-10, 10, 5), onp.random.randint(-10, 10, 5), onp.random.randint(-10, 10, 5)]
2180    mnp_y = list(map(to_tensor, y))
2181    weights = onp.random.randn(5)
2182    for bins in [(15, 4, 9)]:
2183        # pylint: disable=redefined-builtin
2184        for range in [[[0, 5], [2, 7], [1, 3]]]:
2185            mnp_res = mnp.histogramdd(to_tensor(x), bins=bins, range=range)
2186            onp_res = onp.histogramdd(x, bins=bins, range=range)
2187            match_all_arrays(mnp_res[0], onp_res[0], error=1)
2188            match_all_arrays(mnp_res[1], onp_res[1], error=1)
2189            mnp_res = mnp.histogramdd(mnp_y, bins=bins, range=range, weights=to_tensor(weights),
2190                                      density=True)
2191            onp_res = onp.histogramdd(y, bins, range=range, weights=weights, density=True)
2192            match_all_arrays(mnp_res[0], onp_res[0], error=1)
2193            match_all_arrays(mnp_res[1], onp_res[1], error=1)
2194
2195    bins = onp.arange(24).reshape(3, 8)
2196    mnp_res = mnp.histogramdd(to_tensor(x), bins=to_tensor(bins))
2197    onp_res = onp.histogramdd(x, bins=bins)
2198    match_all_arrays(mnp_res[0], onp_res[0], error=1)
2199    match_all_arrays(mnp_res[1], onp_res[1], error=1)
2200
2201
2202@pytest.mark.level1
2203@pytest.mark.platform_arm_ascend_training
2204@pytest.mark.platform_x86_ascend_training
2205@pytest.mark.platform_x86_gpu_training
2206@pytest.mark.platform_x86_cpu
2207@pytest.mark.env_onecard
2208def test_histogram2d():
2209    x = onp.random.randint(-10, 10, 10)
2210    y = onp.random.randint(-10, 10, 10)
2211
2212    weights = onp.random.randn(10)
2213    for bins in [4, [8, [1, 2, 3]]]:
2214        # pylint: disable=redefined-builtin
2215        for range in [None, [(3, 3), (2, 20)]]:
2216            match_res(mnp.histogram2d, onp.histogram2d, x, y, bins=bins, range=range, error=1)
2217            mnp_res = mnp.histogram2d(to_tensor(x), to_tensor(y), bins=bins, range=range,
2218                                      weights=to_tensor(weights), density=True)
2219            onp_res = onp.histogram2d(x, y, bins=bins, range=range, weights=weights, density=True)
2220            match_all_arrays(mnp_res, onp_res, error=1)
2221
2222
2223@pytest.mark.level1
2224@pytest.mark.platform_arm_ascend_training
2225@pytest.mark.platform_x86_ascend_training
2226@pytest.mark.platform_x86_gpu_training
2227@pytest.mark.platform_x86_cpu
2228@pytest.mark.env_onecard
2229def test_exception_mean():
2230    with pytest.raises(ValueError):
2231        mnp.mean(to_tensor(test_case.arrs[0]), (-1, 0))
2232
2233
2234def mnp_sum(x):
2235    a = mnp.sum(x)
2236    b = mnp.sum(x, axis=0)
2237    c = mnp.sum(x, axis=(0, 1))
2238    d = mnp.sum(x, keepdims=True)
2239    e = mnp.sum(x, initial=-1)
2240    f = mnp.sum(x, initial=1)
2241    g = mnp.sum(x, axis=(0, 2, -2), keepdims=True, initial=0.5, dtype=mnp.float64)
2242    return a, b, c, d, e, f, g
2243
2244
2245def onp_sum(x):
2246    a = onp.sum(x)
2247    b = onp.sum(x, axis=0)
2248    c = onp.sum(x, axis=(0, 1))
2249    d = onp.sum(x, keepdims=True)
2250    e = onp.sum(x, initial=-1)
2251    f = onp.sum(x, initial=1)
2252    g = onp.sum(x, axis=(0, 2, -2), keepdims=True, initial=0.5, dtype=onp.float64)
2253    return a, b, c, d, e, f, g
2254
2255
2256@pytest.mark.level1
2257@pytest.mark.platform_arm_ascend_training
2258@pytest.mark.platform_x86_ascend_training
2259@pytest.mark.platform_x86_gpu_training
2260@pytest.mark.platform_x86_cpu
2261@pytest.mark.env_onecard
2262def test_sum():
2263    onp_arr = onp.random.rand(2, 3, 4).astype('float32')
2264    mnp_arr = to_tensor(onp_arr)
2265    for actual, expected in zip(mnp_sum(mnp_arr), onp_sum(onp_arr)):
2266        match_array(actual.asnumpy(), expected, error=5)
2267
2268
2269def mnp_sign(x):
2270    return mnp.sign(x)
2271
2272
2273def onp_sign(x):
2274    return onp.sign(x)
2275
2276
2277@pytest.mark.level1
2278@pytest.mark.platform_arm_ascend_training
2279@pytest.mark.platform_x86_ascend_training
2280@pytest.mark.platform_x86_gpu_training
2281@pytest.mark.platform_x86_cpu
2282@pytest.mark.env_onecard
2283def test_sign():
2284    onp_arr = [
2285        onp.array(3.5).astype('float32'),
2286        onp.arange(-5, 5).astype('float32'),
2287        onp.random.rand(2, 3, 4).astype('float32')
2288    ]
2289    mnp_arr = list(map(to_tensor, onp_arr))
2290    for onp_x, mnp_x in zip(onp_arr, mnp_arr):
2291        expected = onp_sign(onp_x)
2292        actual = mnp_sign(mnp_x)
2293        match_array(actual.asnumpy(), expected, error=5)
2294
2295
2296def mnp_copysign(x, y):
2297    return mnp.copysign(x, y)
2298
2299
2300def onp_copysign(x, y):
2301    return onp.copysign(x, y)
2302
2303
2304@pytest.mark.level1
2305@pytest.mark.platform_arm_ascend_training
2306@pytest.mark.platform_x86_ascend_training
2307@pytest.mark.platform_x86_gpu_training
2308@pytest.mark.platform_x86_cpu
2309@pytest.mark.env_onecard
2310def test_copysign():
2311    onp_arr = [[onp.array([1, -1, 2, -3]).astype('float32'),
2312                onp.array([1, -1, -1, 1]).astype('float32')],
2313               [onp.random.rand(2, 3, 4).astype('float32'),
2314                onp.random.rand(2, 3, 4).astype('float32')]]
2315    mnp_arr = list(map(to_tensor, onp_arr))
2316    for onp_x, mnp_x in zip(onp_arr, mnp_arr):
2317        expected = onp_copysign(onp_x[0], onp_x[1])
2318        actual = mnp_copysign(mnp_x[0], mnp_x[1])
2319        match_array(actual.asnumpy(), expected, error=5)
2320
2321
2322def mnp_matrix_power(x):
2323    a = mnp.matrix_power(x, 0)
2324    b = mnp.matrix_power(x, 1)
2325    c = mnp.matrix_power(x, 2)
2326    d = mnp.matrix_power(x, 3)
2327    return a, b, c, d
2328
2329
2330def onp_matrix_power(x):
2331    a = onp.linalg.matrix_power(x, 0)
2332    b = onp.linalg.matrix_power(x, 1)
2333    c = onp.linalg.matrix_power(x, 2)
2334    d = onp.linalg.matrix_power(x, 3)
2335    return a, b, c, d
2336
2337
2338@pytest.mark.level1
2339@pytest.mark.platform_arm_ascend_training
2340@pytest.mark.platform_x86_ascend_training
2341@pytest.mark.platform_x86_gpu_training
2342@pytest.mark.platform_x86_cpu
2343@pytest.mark.env_onecard
2344def test_matrix_power():
2345    arrs = [
2346        onp.random.rand(2, 2).astype('float32'),
2347        onp.random.rand(3, 2, 2).astype('float32'),
2348        onp.random.rand(5, 4, 3, 3).astype('float32'),
2349    ]
2350    for x in arrs:
2351        onp_res = onp_matrix_power(x)
2352        mnp_res = mnp_matrix_power(to_tensor(x))
2353        for expected, actual in zip(onp_res, mnp_res):
2354            match_array(actual.asnumpy(), expected, error=5)
2355
2356
2357def mnp_around(x):
2358    a = mnp.around(x)
2359    b = mnp.around(x, 1)
2360    c = mnp.around(x, 2)
2361    d = mnp.around(x, 3)
2362    return a, b, c, d
2363
2364
2365def onp_around(x):
2366    a = onp.around(x)
2367    b = onp.around(x, 1)
2368    c = onp.around(x, 2)
2369    d = onp.around(x, 3)
2370    return a, b, c, d
2371
2372
2373@pytest.mark.level1
2374@pytest.mark.platform_arm_ascend_training
2375@pytest.mark.platform_x86_ascend_training
2376@pytest.mark.platform_x86_gpu_training
2377@pytest.mark.platform_x86_cpu
2378@pytest.mark.env_onecard
2379def test_around():
2380    arrs = [
2381        onp.random.rand(2, 2).astype('float32'),
2382        onp.random.rand(3, 2, 2).astype('float32'),
2383        onp.random.rand(5, 4, 3, 3).astype('float32'),
2384    ]
2385    for x in arrs:
2386        onp_res = onp_around(x)
2387        mnp_res = mnp_around(to_tensor(x))
2388        for expected, actual in zip(onp_res, mnp_res):
2389            match_array(actual.asnumpy(), expected, error=5)
2390
2391
2392@pytest.mark.level1
2393@pytest.mark.platform_arm_ascend_training
2394@pytest.mark.platform_x86_ascend_training
2395@pytest.mark.platform_x86_gpu_training
2396@pytest.mark.platform_x86_cpu
2397@pytest.mark.env_onecard
2398def test_polyadd():
2399    arrs = [rand_int(), rand_int(1), rand_int(3), rand_int(7)]
2400    for x in arrs:
2401        for y in arrs:
2402            match_res(mnp.polyadd, onp.polyadd, x, y)
2403
2404
2405@pytest.mark.level1
2406@pytest.mark.platform_arm_ascend_training
2407@pytest.mark.platform_x86_ascend_training
2408@pytest.mark.platform_x86_gpu_training
2409@pytest.mark.platform_x86_cpu
2410@pytest.mark.env_onecard
2411def test_polysub():
2412    arrs = [rand_int(), rand_int(1), rand_int(3), rand_int(7)]
2413    for x in arrs:
2414        for y in arrs:
2415            match_res(mnp.polysub, onp.polysub, x, y, error=1)
2416
2417
2418@pytest.mark.level1
2419@pytest.mark.platform_arm_ascend_training
2420@pytest.mark.platform_x86_ascend_training
2421@pytest.mark.platform_x86_gpu_training
2422@pytest.mark.platform_x86_cpu
2423@pytest.mark.env_onecard
2424def test_polyval():
2425    polys = [rand_int(1), rand_int(3), rand_int(7)]
2426    arrs = [rand_int(), rand_int(1), rand_int(3), rand_int(2, 3, 1), rand_int(1, 5, 4)]
2427    for p in polys:
2428        for x in arrs:
2429            match_res(mnp.polyval, onp.polyval, p, x, error=3)
2430
2431
2432@pytest.mark.level1
2433@pytest.mark.platform_arm_ascend_training
2434@pytest.mark.platform_x86_ascend_training
2435@pytest.mark.platform_x86_gpu_training
2436@pytest.mark.platform_x86_cpu
2437@pytest.mark.env_onecard
2438def test_polyder():
2439    poly = rand_int(7)
2440    for i in range(5):
2441        match_res(mnp.polyder, onp.polyder, poly, m=i)
2442
2443
2444@pytest.mark.level2
2445@pytest.mark.platform_arm_ascend_training
2446@pytest.mark.platform_x86_ascend_training
2447@pytest.mark.platform_x86_gpu_training
2448@pytest.mark.platform_x86_cpu
2449@pytest.mark.env_onecard
2450def test_polymul():
2451    arrs = [rand_int(), rand_int(1), rand_int(3), rand_int(7)]
2452    for x in arrs:
2453        for y in arrs:
2454            match_res(mnp.polymul, onp.polymul, x, y)
2455
2456
2457@pytest.mark.level1
2458@pytest.mark.platform_arm_ascend_training
2459@pytest.mark.platform_x86_ascend_training
2460@pytest.mark.platform_x86_gpu_training
2461@pytest.mark.platform_x86_cpu
2462@pytest.mark.env_onecard
2463def test_polyint():
2464    poly = rand_int(7)
2465    match_res(mnp.polyint, onp.polyint, poly, m=1, k=7, error=3)
2466    match_res(mnp.polyint, onp.polyint, poly, m=1, k=[9], error=3)
2467    match_res(mnp.polyint, onp.polyint, poly, m=3, k=2, error=3)
2468
2469    for i in range(5):
2470        match_res(mnp.polyint, onp.polyint, poly, m=i, k=rand_int(i).tolist(), error=3)
2471
2472
2473@pytest.mark.level1
2474@pytest.mark.platform_arm_ascend_training
2475@pytest.mark.platform_x86_ascend_training
2476@pytest.mark.platform_x86_gpu_training
2477@pytest.mark.platform_x86_cpu
2478@pytest.mark.env_onecard
2479def test_result_type():
2480    x = ('?', True, mnp.uint16, mnp.ones((2, 3)).astype(mnp.int32), 'float')
2481    y = ('?', True, onp.uint16, onp.ones((2, 3)).astype(onp.int32), 'float')
2482    for i in range(4):
2483        mnp_args = x[:i + 1]
2484        actual = dtype_to_nptype(mnp.result_type(*mnp_args))
2485        onp_args = y[:i + 1]
2486        expected = onp.result_type(*onp_args)
2487        if expected == onp.int64:
2488            expected = onp.int
2489        elif expected == onp.float64:
2490            expected = onp.float32
2491        assert actual == expected
2492
2493
2494@pytest.mark.level0
2495@pytest.mark.platform_arm_ascend_training
2496@pytest.mark.platform_x86_ascend_training
2497@pytest.mark.platform_x86_gpu_training
2498@pytest.mark.platform_x86_cpu
2499@pytest.mark.env_onecard
2500def test_unwrap():
2501    x = onp.linspace(onp.linspace((0, 1), (10, 15), 5), onp.linspace((0, 2), (3*onp.pi, 7*onp.pi), 5), 7)
2502    x[5:2] += onp.pi
2503    match_res(mnp.unwrap, onp.unwrap, x, axis=0, error=3)
2504    match_res(mnp.unwrap, onp.unwrap, x, axis=-1, error=3)
2505
2506
2507@pytest.mark.level1
2508@pytest.mark.platform_arm_ascend_training
2509@pytest.mark.platform_x86_ascend_training
2510@pytest.mark.platform_x86_gpu_training
2511@pytest.mark.platform_x86_cpu
2512@pytest.mark.env_onecard
2513def test_exception_amax():
2514    with pytest.raises(TypeError):
2515        mnp.amax(mnp.array([[1, 2], [3, 4]]).astype(mnp.float32), initial=[1.0, 2.0])
2516
2517
2518def mnp_cumprod(x):
2519    a = mnp.cumprod(x)
2520    b = mnp.cumprod(x, axis=0)
2521    c = mnp.cumprod(x, axis=1)
2522    return a, b, c
2523
2524
2525def onp_cumprod(x):
2526    a = onp.cumprod(x)
2527    b = onp.cumprod(x, axis=0)
2528    c = onp.cumprod(x, axis=1)
2529    return a, b, c
2530
2531
2532@pytest.mark.level1
2533@pytest.mark.platform_arm_ascend_training
2534@pytest.mark.platform_x86_ascend_training
2535@pytest.mark.env_onecard
2536def test_cumprod():
2537    mnp_x = mnp.arange(1, 7).reshape(2, 3)
2538    tensors = [mnp_x.astype('bool'),
2539               mnp_x.astype('uint8'),
2540               mnp_x.astype('int16'),
2541               mnp_x.astype('float16'),
2542               mnp_x.astype('float32')]
2543    for x in tensors:
2544        onp_res = onp_cumprod(x.asnumpy())
2545        mnp_res = mnp_cumprod(x)
2546        for expected, actual in zip(onp_res, mnp_res):
2547            match_array(actual.asnumpy(), expected, error=5)
2548
2549
2550def mnp_ravel_multi_index(x):
2551    a = mnp.ravel_multi_index(x, (7, 6))
2552    b = mnp.ravel_multi_index(x, (7, 6), order='F')
2553    c = mnp.ravel_multi_index(x, (4, 6), mode='clip')
2554    d = mnp.ravel_multi_index(x, (4, 4), mode='wrap')
2555    return a, b, c, d
2556
2557
2558def onp_ravel_multi_index(x):
2559    a = onp.ravel_multi_index(x, (7, 6))
2560    b = onp.ravel_multi_index(x, (7, 6), order='F')
2561    c = onp.ravel_multi_index(x, (4, 6), mode='clip')
2562    d = onp.ravel_multi_index(x, (4, 4), mode='wrap')
2563    return a, b, c, d
2564
2565
2566@pytest.mark.level1
2567@pytest.mark.platform_x86_gpu_training
2568@pytest.mark.env_onecard
2569def test_ravel_multi_index():
2570    x = mnp.array([[3, 6, 6], [4, 5, 1]])
2571    onp_res = onp_ravel_multi_index(x.asnumpy())
2572    mnp_res = mnp_ravel_multi_index(x)
2573    for expected, actual in zip(onp_res, mnp_res):
2574        match_array(actual.asnumpy(), expected, error=5)
2575
2576
2577@pytest.mark.level0
2578@pytest.mark.platform_arm_ascend_training
2579@pytest.mark.platform_x86_ascend_training
2580@pytest.mark.platform_x86_gpu_training
2581@pytest.mark.platform_x86_cpu
2582@pytest.mark.env_onecard
2583def test_norm():
2584    arrs = [rand_int(5, 2, 3, 7)]
2585    for x in arrs:
2586        for keepdims in [True, False]:
2587            match_res(mnp.norm, onp.linalg.norm, x, keepdims=keepdims, error=3)
2588
2589    x = rand_int(3, 6, 4, 5)
2590    axes = [(0, 1), (0, 3), (1, 3), (2, 3)]
2591    order = [None, 'fro', float('inf'), -float('inf'), 1, -1]
2592    for axis in axes:
2593        # pylint: disable=redefined-builtin
2594        for ord in order:
2595            for keepdims in [True, False]:
2596                match_res(mnp.norm, onp.linalg.norm, x, ord=ord, axis=axis, keepdims=keepdims, error=3)
2597
2598
2599@pytest.mark.level1
2600@pytest.mark.platform_arm_ascend_training
2601@pytest.mark.platform_x86_ascend_training
2602@pytest.mark.env_onecard
2603def test_bitwise_and():
2604    arrs = [onp.random.randint(-100, 100, ()), onp.random.randint(-100, 100, (1,)),
2605            onp.random.randint(-100, 100, (5,)), onp.random.randint(-100, 100, (3, 1)),
2606            onp.random.randint(-100, 100, (4, 1, 5))]
2607    for x in arrs:
2608        for y in arrs:
2609            match_res(mnp.bitwise_and, onp.bitwise_and, x, y, dtype=mnp.int32)
2610
2611
2612@pytest.mark.level1
2613@pytest.mark.platform_arm_ascend_training
2614@pytest.mark.platform_x86_ascend_training
2615@pytest.mark.env_onecard
2616def test_bitwise_or():
2617    arrs = [onp.random.randint(-100, 100, ()), onp.random.randint(-100, 100, (1,)),
2618            onp.random.randint(-100, 100, (5,)), onp.random.randint(-100, 100, (3, 1)),
2619            onp.random.randint(-100, 100, (4, 1, 5))]
2620    for x in arrs:
2621        for y in arrs:
2622            match_res(mnp.bitwise_or, onp.bitwise_or, x, y, dtype=mnp.int32)
2623
2624
2625@pytest.mark.level1
2626@pytest.mark.platform_arm_ascend_training
2627@pytest.mark.platform_x86_ascend_training
2628@pytest.mark.env_onecard
2629def test_bitwise_xor():
2630    arrs = [onp.random.randint(-100, 100, ()), onp.random.randint(-100, 100, (1,)),
2631            onp.random.randint(-100, 100, (5,)), onp.random.randint(-100, 100, (3, 1)),
2632            onp.random.randint(-100, 100, (4, 1, 5))]
2633    for x in arrs:
2634        for y in arrs:
2635            match_res(mnp.bitwise_xor, onp.bitwise_xor, x, y, dtype=mnp.int32)
2636
2637
2638@pytest.mark.level1
2639@pytest.mark.platform_arm_ascend_training
2640@pytest.mark.platform_x86_ascend_training
2641@pytest.mark.env_onecard
2642def test_invert():
2643    x = onp.random.randint(-100, 100, (2, 3))
2644    match_res(mnp.invert, onp.invert, x, dtype=mnp.int16)
2645    match_res(mnp.invert, onp.invert, x.astype(onp.uint16), dtype=mnp.uint16)
2646
2647
2648@pytest.mark.level1
2649@pytest.mark.platform_arm_ascend_training
2650@pytest.mark.platform_x86_ascend_training
2651@pytest.mark.platform_x86_gpu_training
2652@pytest.mark.platform_x86_cpu
2653@pytest.mark.env_onecard
2654def test_rint():
2655    arrs = [
2656        onp.random.rand(2, 2).astype('float32'),
2657        onp.random.rand(3, 2, 2).astype('float32'),
2658        onp.random.rand(5, 4, 3, 3).astype('float32'),
2659    ]
2660    for x in arrs:
2661        for expected, actual in zip(onp.rint(x), mnp.rint(to_tensor(x))):
2662            match_array(actual.asnumpy(), expected, error=5)
2663
2664
2665def mnp_correlate(a, v):
2666    a = mnp.correlate(a, v, mode="valid")
2667    b = mnp.correlate(a, v, mode="full")
2668    c = mnp.correlate(a, v, mode="same")
2669    d = mnp.correlate(a, v)
2670    return a, b, c, d
2671
2672
2673def onp_correlate(a, v):
2674    a = onp.correlate(a, v, mode="valid")
2675    b = onp.correlate(a, v, mode="full")
2676    c = onp.correlate(a, v, mode="same")
2677    d = onp.correlate(a, v)
2678    return a, b, c, d
2679
2680
2681@pytest.mark.level0
2682@pytest.mark.platform_x86_gpu_training
2683@pytest.mark.env_onecard
2684def test_correlate():
2685    mnp_res = mnp_correlate([1, 2, 3, 4, 5], [1, 2, 3])
2686    onp_res = onp_correlate([1, 2, 3, 4, 5], [1, 2, 3])
2687    match_all_arrays(mnp_res, onp_res)
2688
2689
2690@pytest.mark.level1
2691@pytest.mark.platform_arm_ascend_training
2692@pytest.mark.platform_x86_ascend_training
2693@pytest.mark.platform_x86_gpu_training
2694@pytest.mark.platform_x86_cpu
2695@pytest.mark.env_onecard
2696def test_tensor_searchsorted():
2697    x = onp.arange(-10, 10)
2698    mnp_x = to_tensor(x)
2699    y = onp.random.randint(-15, 15, size=(2, 3, 4)) + onp.random.choice([0, 0.5], (2, 3, 4))
2700    sorter = onp.random.shuffle(onp.arange(20))
2701    match_res(mnp_x.searchsorted, x.searchsorted, y)
2702    match_res(mnp_x.searchsorted, x.searchsorted, y, side='right')
2703    match_res(mnp_x.searchsorted, x.searchsorted, y, sorter=sorter)
2704    match_res(mnp_x.searchsorted, x.searchsorted, y, side='right', sorter=sorter)
2705